National Accident Sampling System

Special Studies Number Four

Side Intrusion

User's Guide

and

Coding Manual

Revised Edition

July, 1979

Thomas L. McDole, Ph.D.

Prepared for

National Highway Traffic Safety Administration

U. S. Department of Transportation

By

Highway Safety Research Institute

The University of Michigan

Ann Arbor, Michigan 48109
This User's Guide describes the National Accident Sampling System (NASS) Special Studies data collection project Number Four: Side Intrusion. Contained herein is the necessary information and instructions for the field investigator to use in measuring, recording, and encoding the data on the NASS Side Intrusion Form necessary to describe the location and extent of exterior crush to the side surface of the vehicle and to quantitatively describe vehicle interior intrusion resulting from this side surface crush.

This is a revision of the April, 1979 edition.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>UM-HSRI-79-44</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

|-----------------------|---------------|--------------------------------|

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Thomas L. McDole, Ph.D.</td>
<td>UM-HSRI-79-44</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>9. Performing Organization Name and Address</th>
<th>10. Work Unit No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Highway Safety Research Institute</td>
<td></td>
</tr>
<tr>
<td>The University of Michigan</td>
<td></td>
</tr>
<tr>
<td>Ann Arbor, Michigan</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>11. Contract or Grant No.</th>
<th>12. Type of Report and Period Covered</th>
</tr>
</thead>
<tbody>
<tr>
<td>DOT-HS-7-01805</td>
<td>Task Final</td>
</tr>
<tr>
<td></td>
<td>1/1/79 - 7/31/79</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>National Highway Traffic Safety Admin</td>
<td></td>
</tr>
<tr>
<td>U.S. Department of Transportation</td>
<td></td>
</tr>
<tr>
<td>Washington, D.C. 20590</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>15. Supplementary Notes</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>16. Abstract</th>
</tr>
</thead>
</table>

This User's Guide describes the National Accident Sampling System (NASS) Special Studies data collection project Number Four: Side Intrusion. Contained herein is the necessary information and instructions for the field investigator to use in measuring, recording, and encoding the data on the NASS Side Intrusion Form necessary to describe the location and extent of exterior crush to the side surface of the vehicle and to quantitatively describe vehicle interior intrusion resulting from this side surface crush.

This is a revision of the April, 1979 edition.

<table>
<thead>
<tr>
<th>17. Key Words</th>
<th>18. Distribution Statement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crash; Side Surface Measurement; Intrusion; Data Recording; Coding; Data Form; Accident Investigation</td>
<td>Unlimited</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Unclassified</td>
<td>Unclassified</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
CONTENTS

1. PURPOSE 1
2. SIDE SURFACE DEFINITIONS 1
3. ORGANIZATION OF THE DATA FORM 6
4. CASE SELECTION--WHEN TO USE THIS FORM 6
5. ADDITIONAL DOCUMENTATION--PHOTOGRAPHIC 6
6. SUPPLEMENTAL INFORMATION 6
7. DATA RECORDING 7
8. VARIABLE CODING AND DESCRIPTION 7
 Form Identification 8
 Side Surface 9
 Crushing Force 11
 Component Damage 22
 Intrusion 26
9. FIELD DATA FORM 41
1. PURPOSE

The purpose of this Special Study is to gather data on the performance of the passenger compartment lower side surface during a collision, to document the location and extent of intrusion of the side surface into the passenger compartment, and to note resulting occupant contact and injury.

2. SIDE SURFACE DEFINITIONS

2.1 Side Surface

The side surface of the vehicle is defined as the area extending rearward from the A-pillar to the last passenger compartment pillar and from the bottom edge of the door sill-rocker panel (extended) to the belt line. Window glass and upper pillars are not included in this area. The side surface consists of up to three zones (depending upon the vehicle) defined as: (1) front--the area between the A and B pillars, (2) back--the area between the B and C pillars, and (3) rear--the area between the C and D pillars. There are two side surfaces, right and left, corresponding to the right and left sides of the vehicle.

2.2 Passenger Compartment

The passenger compartment is defined as that interior occupant space which is normally available for occupant seating, based upon both the vehicle design and seat configuration at the time of the accident.

A vehicle with fixed seating that can be folded down (i.e., station wagons) is considered to have an applicable side zone at that seat location whether the seat is open or folded.

A vehicle that has removable seating is considered to have an applicable side zone at that seat location only if the seat was present at the time of the collision.

The cargo space behind seats is not considered as having a side zone even though people could "occupy" the space.
There are also certain exceptions. The table below summarizes the common vehicle types and applicable side zones.

<table>
<thead>
<tr>
<th>Vehicle Type</th>
<th>Zone</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Front</td>
</tr>
<tr>
<td>Between Pillars: A & B</td>
<td>B & C</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Vehicle Type</th>
<th>Zone</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 seat sports car x</td>
<td></td>
</tr>
<tr>
<td>Sedan 2 & 4 door, incl. hatchback x x</td>
<td></td>
</tr>
<tr>
<td>Station wagon- 2 seat x x</td>
<td></td>
</tr>
<tr>
<td>3 seat x x x</td>
<td></td>
</tr>
<tr>
<td>dual facing rear seat x x x</td>
<td></td>
</tr>
<tr>
<td>Pick-up truck- std. x</td>
<td></td>
</tr>
<tr>
<td>w/crew cab x x</td>
<td></td>
</tr>
<tr>
<td>Van- cargo 1 x</td>
<td></td>
</tr>
<tr>
<td>passenger 2 x x x</td>
<td></td>
</tr>
<tr>
<td>custom-customized 3 x</td>
<td></td>
</tr>
<tr>
<td>Jeep-type 4 x x</td>
<td></td>
</tr>
<tr>
<td>Multi-purpose passenger 5 x x x</td>
<td></td>
</tr>
</tbody>
</table>

Notes:
1. Cargo van has only front seating; rest is for cargo.
2. Passenger van has all seating in factory-installed, removable seats.
3. Custom van has only front seating. Rest of area has been customized and has non-standard seating. Includes camper conversions.
4. Jeep-type includes back seating if installed. Otherwise, just front.
5. Multi-purpose passenger van or truck-based station wagon has all three zones or less, depending on available passenger seating.
2 Seat Passenger*

Station Wagon*

Pick-up Truck*

Passenger Van*

Cargo Van*

Passenger Compartment Definitions

Continued
Custom Van*

Utility Vehicle*

*The area between the two lines denotes the applicable passenger compartment area. Where optional rear seating is available, the compartment is extended to the line.

Passenger Compartment Definitions

Continued
2.3 Zone

A zone is that portion of the side surface area located between two pillars. The applicable zones are:

<table>
<thead>
<tr>
<th>Zone</th>
<th>Area Between</th>
</tr>
</thead>
<tbody>
<tr>
<td>FRONT</td>
<td>A & B Pillar</td>
</tr>
<tr>
<td>BACK</td>
<td>B & C Pillar</td>
</tr>
<tr>
<td>REAR</td>
<td>C & D Pillar</td>
</tr>
</tbody>
</table>

The sum of all zones on a side equals the applicable side surface.
3. ORGANIZATION OF THE DATA FORM

The data form is organized into three distinct major sections: (1) Crushing Force; (2) Component Damage; (3) Intrusion. The first two sections describe the location and extent of the damage to the exterior skin of the side surface, while the third describes the intrusion of the inner side surface into the passenger compartment.

4. CASE SELECTION—WHEN TO USE THIS FORM

The basic case selection criteria are the same for the study as for the NASS Vehicle Section.

This special study is to be completed whenever this vehicle has met the initial NASS sample selection and whenever an external crushing force has been applied to the side surface of the vehicle as a result of a side contact. The force can be from any direction but must crush the exterior side skin inward. Induced damage is not applicable.

5. ADDITIONAL DOCUMENTATION—PHOTOGRAPHIC

The data form is designed to be a response-only form with no additional drawing or sketching required. However, to facilitate a complete understanding of the damage pattern, photographic documentation is necessary.

Internal—Photograph each side surface intrusion. Take at least two views so as to best depict the location and magnitude of the intrusions.

External—Photograph each side surface zone where the side surface was contacted by a crushing force. Take at least two views so as to best depict the location and magnitude of the crush.

6. SUPPLEMENTAL INFORMATION

Additional notes, supplemental drawings, etc., are extremely valuable for understanding unusual situations. Such notation should be placed on the data form or supplemental paper as necessary. Extra pictures, brief descriptions, etc., are encouraged and should be included in the Special Studies documentation.
7. DATA RECORDING

The data form is designed for ease of data recording by the field investigator such that only a check mark or investigator-supplied number is needed to indicate the desired response. Provision is made in the lower right hand corner of each variable (or group of related variables) for subsequent coding by a data editor. See example below.

Right Door Hardware Contact
46. 47. 48. 49. 50. 51.
Latch/Striker Hinges Sill
F B F B F B Zone:
--- --- --- --- --- ---
Results of Investigation:
--- --- --- --- --- ---
--- --- --- --- --- ---
--- --- --- --- --- ---
--- --- --- --- --- ---
--- --- --- --- --- ---
Component Damage CODES
(1) Not damaged,
(2) Direct damage, no separation*
(3) Direct damage, separation*
(4) Indirect damage, no separation*
(5) Indirect damage, separation*
(8) Not applicable [not equipped]
(9) Unknown
* Separation must be complete.
Coded Data Value

To increase understanding of the coding, the element (code) values have been separated from the element (code) structure in this document only.

8. VARIABLE CODING AND DESCRIPTION

Each variable's coding structure is displayed on the following pages and accompanied by explanatory notes. The field data form is included in Section 9.0.
VARIABLE CODING AND DESCRIPTION

VARIABLE GROUP: Form Identification

VARIABLE NAME: 1-6. Form Header and Case Identification

FORMAT: 12 columns, numeric, beginning in column 1*

ELEMENT VALUES:
1 Primary Sampling Unit Number
2 Case Number
3 Special Study Number
4 Record Number Pre-coded on data form
5 Card Number
6 Vehicle Number

SOURCE: NASS Vehicle Form

REMARKS: Use the same number as coded for this vehicle in variable 06 on the Vehicle Form.

*See Section 9. "DATA FORM" for layout.
VARIABLE GROUP: Side Surface Zones

VARIABLE NAME: 7-12. Side Surface Zones

FORMAT: 1 x 6 columns, numeric, beginning in column 13

ELEMENT STRUCTURE:

<table>
<thead>
<tr>
<th></th>
<th>7.</th>
<th>8.</th>
<th>9.</th>
<th>10.</th>
<th>11.</th>
<th>12.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Front</td>
<td>L</td>
<td>R</td>
<td>L</td>
<td>R</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Back</td>
<td>L</td>
<td>R</td>
<td>L</td>
<td>R</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rear</td>
<td>L</td>
<td>R</td>
<td>L</td>
<td>R</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ELEMENT VALUES: L = Left, R = Right

1 Door
2 Panel
8 Not an applicable side surface
9 Unknown

SOURCE: Inspection only

REMARKS: The side surfaces of the passenger compartment consist of the two sides (left and right), each of which are divided into three zones:

- Front zone: from the A to the B pillar
- Back zone: from the B to the C pillar
- Rear zone: from the C to the D pillar

Depending on the type of vehicle, there may be up to six side zones. Each side zone is filled by either a door or a panel. If the vehicle configuration is such that a particular side zone does not exist, the zone area is coded "8 Not an applicable side surface."

See Section 2. "Side Surface Definitions" for more detailed definitions.

*See section 7. "Data Recording".
Code each zone to indicate which components make up each side surface.

A standard two-door passenger car would be coded as follows:

<table>
<thead>
<tr>
<th>Zone</th>
<th>Left side</th>
<th>Right side</th>
</tr>
</thead>
<tbody>
<tr>
<td>Front</td>
<td>1 Door</td>
<td>1 Door</td>
</tr>
<tr>
<td>Back</td>
<td>2 Panel</td>
<td>2 Panel</td>
</tr>
<tr>
<td>Rear</td>
<td>8 NA</td>
<td>8 NA</td>
</tr>
</tbody>
</table>

A passenger van would be coded as follows:

<table>
<thead>
<tr>
<th>Zone</th>
<th>Left side</th>
<th>Right side</th>
</tr>
</thead>
<tbody>
<tr>
<td>Front</td>
<td>1 Door</td>
<td>1 Door</td>
</tr>
<tr>
<td>Back</td>
<td>2 Panel</td>
<td>2 Door</td>
</tr>
<tr>
<td>Rear</td>
<td>2 Panel</td>
<td>2 Panel</td>
</tr>
</tbody>
</table>
VARIABLE GROUP: Crushing Force

VARIABLE NAME: 13. Angle of Intersecting Longitudinal Axes

FORMAT: 3 column, numeric, beginning column 19

ELEMENT VALUES: ____ ____ degrees -- Code to nearest ten degrees

500 Vehicle-object contact
999 Unknown

SOURCE: Inspection of crash scene
Crash scene data or drawings
Inspection of vehicles involved

REMARKS: Record the forward longitudinal axis of the other vehicle relative to the forward longitudinal axis of this vehicle at the moment of the initial collision between the two vehicles. In the case of multiple impacts from more than one vehicle, code the first impact only for this variable. The forward longitudinal axis of the other vehicle is to be measured clockwise from the forward longitudinal axis of this vehicle. This value is equal to the algebraic difference between the heading angles of the two vehicles. The value should be rounded off and recorded to the nearest 10 degrees.

The heading angle of a vehicle is the direction the front of the vehicle is pointing, relative to a fixed coordinate. This can be different from the direction in which the vehicle is moving. For example, the heading angle of a vehicle being driven eastbound is 90° relative to north. If this same vehicle, while being driven in an easterly direction, begins sliding sideways (south), the heading angle remains 90°. If, however, the vehicle rotates so that the front is now point south (while skidding), the heading angle becomes 180°.

Vehicle being driven east
Vehicle being driven east but skidding sideways

Vehicle, originally headed east, rotated and is skidding south

continued
Method for determining heading angle

(1) Make a sketch by drawing in the case vehicle and its centerline at the time of initial contact relative to the roadway.

(2) Continue the sketch by drawing in the other vehicle and its centerline at the time of initial contact relative to the case vehicle.

(3) Extend the centerlines (longitudinal axis) of each vehicle so they intersect and continue beyond the point of intersection.

(4) Place an arrowhead beyond the point of intersection to show the forward end of the path of travel had they not collided.

(5) Measure (in a clockwise direction) the angle formed by the direction-of-travel arrows, using the case vehicle (THIS VEHICLE) as the baseline.

continued
Example 1:

Result = 263°
Record as 260°
Example 2:

Non-Tracking
(Other vehicle skidding)

Tracking
(Other vehicle non-skidding)
VARIABLE GROUP: Crushing Force

VARIABLE NAME: 14-19. Which Zones Were Contacted by a Crushing Force

FORMAT: 1 x 6 columns*, numeric, beginning column 22

ELEMENT STRUCTURE: 14. 15. 16. 17. 18. 19.

 Front Rear Back
 L R L R L R
 --- --- --- --- ---
 --- --- --- --- ---

ELEMENT VALUES: Side: L = Left, R = Right

1 Contacted
2 Not contacted
8 Not applicable, not a side surface
9 Unknown if contacted

SOURCE: Inspection

REMARKS: Inspect the vehicle and record whether or not each side zone was contacted by a crushing force. If no side zone is present (see variables 7-12) it cannot have been contacted and must be coded "8--Not applicable".

The force that contacts a side zone can be the same or different from the force that contacts another zone. The only restriction is that the force be direct and crush the side inward. Induced damage alone is not applicable damage because there was no direct crushing force application. There can be as many crushing forces as there are applicable side zones.

*Format specification indicates that each of the six variables described on this page have a field width of one column.
VARIABLE GROUP: Crushing Force

VARIABLE NAME: 20-25. Location of the Center of the Crushing Force in Each Side Zone Contacted

FORMAT: 2 x 6 columns, numeric, beginning column 28

ELEMENT STRUCTURE: Front Back Rear

<table>
<thead>
<tr>
<th>L</th>
<th>R</th>
<th>L</th>
<th>R</th>
<th>L</th>
<th>R</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ELEMENT VALUES: Side: L = Left, R = Right

11-43 Center of crush

55 Crush distributed over all of zone (no crush center possible)

98 Not applicable, no side surface zone, or not damaged

99 Unknown center

SOURCE: Inspection only

REMARKS: This variable further defines the location of the crushing force by locating the point of application of the force to each of the side zones affected by the particular force.

Each zone is divided into a matrix of 12 cells. The door or panel itself is divided into nine equal cells numbered 1 to 3 vertically (from the top) and 1 and 3 horizontally (front to back). The door sill-rocker panel area below the door (or similar area in a panel-filled zone) is divided into three cells horizontally to correspond with the three cells in the door or panel above it. The number for the rocker-sill cells is 1 to 3 horizontally (front to back) and 4 vertically. The matrix applied to each zone will vary in width depending upon the style of the vehicle and the location of the zone on the vehicle. Back zones are often narrower than front (except in some vans).

To implement the coding, the side zone is examined and the location of the maximum penetration is determined. The matrix outline is mentally superimposed Continued
on the door or panel. The cell is then determined which best represents or includes the location of the maximum crush. The two-digit number associated with this cell is recorded on the data form.

The vertical component is the left digit and the horizontal component is the right digit.

<table>
<thead>
<tr>
<th>vertical</th>
<th>horizontal</th>
</tr>
</thead>
</table>

A note of caution: The damage and crush must be by direct contact with an object. Induced damage—no matter how severe—is not recorded.

In certain instances the location of the center of crush will be distributed in one or both directions. The use of code 5 for distributed crush allows the coding of tree or post impacts, guardrail contact, or totally distributed contacts made by a broad surface impact.

In the case of a pole-type impact, determine in which horizontal cells the contact lies and code 1, 2, or 3. Code the vertical component 5. Thus a tree impact to the center of the front door would be coded 52. The same code would be used for either the left or right side. A guardrail contact to the rear door near the rocker panel would be coded 35. In a pole or guardrail type impact, the depth of the contact need not be completely uniform and symmetrical. Pole and similar type impacts have varying depth due to the varying stiffness of the side structure and to the relationship of the vertical plane of the side to the pole.

In the case of overall contact to a zone (large truck into a small van), where the damage is uniformly distributed over the entire zone, code 55.

Where the contact is on a borderline, choose the cell most representative of the location of the contact.

The above procedure is repeated for each zone that makes up the side surface. The same crushing force can contact two or more zones, or a different crushing force can contact each zone. Code a center for each zone. If there are multiple contacts to a zone, choose the most severe.

If a zone was previously coded as not applicable or not contacted, then it cannot be coded as having a crush center. Code as "98 Not applicable".

Continued
Front Zone | Back Zone | Rear Zone

continued
Zone Cell Matrix Layout for Each Zone
VARIABLE GROUP: Crushing Force

VARIABLE NAME: 26-31. Depth of Crush to Each Zone

FORMAT: 1 x 6 columns, numeric, beginning column 40

ELEMENT STRUCTURE:

<table>
<thead>
<tr>
<th>Front</th>
<th>Back</th>
<th>Rear</th>
</tr>
</thead>
<tbody>
<tr>
<td>L</td>
<td>R</td>
<td>L</td>
</tr>
<tr>
<td></td>
<td></td>
<td>R</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ELEMENT VALUES:

Zone:

Side: L = Left, R = Right
1 0-2 inches
2 2-4 inches
3 4-6 inches
4 6-8 inches
5 8 inches
8 Not applicable, no contact or no side surface
9 Unknown

SOURCE: Inspection

REMARKS: Estimate the depth of crush to each zone, using the cell with maximum crush. If a zone was previously coded as not applicable or not contacted, then it cannot have a crush depth. Code as "8 Not applicable". The crush must result from a direct contact.
VARIABLE GROUP: Component Damage

VARIABLE NAME: 32-39. Structural Contact (Pillar Damage)

FORMAT: 1 x 8 columns, numeric, beginning column 46

ELEMENT STRUCTURE:

<table>
<thead>
<tr>
<th>Left Side</th>
<th>Right Side</th>
</tr>
</thead>
<tbody>
<tr>
<td>A B C D</td>
<td>A B C D</td>
</tr>
</tbody>
</table>

--- --- --- --- --- --- ---
--- --- --- --- --- --- ---

ELEMENT VALUES:

1. Not damaged
2. Direct damage, no separation*
3. Direct damage, separation*
4. Indirect damage, no separation*
5. Indirect damage, separation*
8. Not applicable (not equipped)
9. Unknown

*Separation must be complete.

SOURCE: Inspection

REMARKS: In addition to the damage described previously, were any structural/hardware components contacted or damaged? NOTE: Contact and damage (direct and induced) must result from a direct application of a crushing force to the side surface between the A-pillar and the last pillar of the passenger compartment.

Code all components present on the vehicle, either damaged or not damaged. Use 'not applicable' only if the component is not on the vehicle.

continued
The side structure components are subject to damage from the side crushing force. This damage may be either direct or induced, depending upon the contact location of the side crushing force.

Direct damage occurs when: (1) the crushing force directly hits the exposed component; or (2) contacts the sheet metal surface directly over a concealed component. In this latter case, a concealed component is one which is normally obscured by sheet metal.

Examples include the lower B pillar when obscured by the door edge, door hinges, etc.

Induced (indirect) damage occurs when the crushing force is applied to the door/panel surface at a location other than directly over or on the component. The subsequent panel deformation distorts or damages the associated component. An example is when a panel is contacted in the center and the inward deformation damages the pillar. There was no direct contact to the pillar; however, it was damaged.

The components subject to damage are:

Lower Pillars:
 A
 B
 C
 D
Latch/Striker
Hinges
Sill

NOTE: If there is an upper pillar present, then there must be a lower pillar.
VARIABLE GROUP: Component Damage

VARIABLE NAME: 40-45. Left Door Hardware Contact

FORMAT: 1 x 6 columns, numeric, beginning column 54

ELEMENT STRUCTURE:

\[
\begin{array}{cccc}
\text{Striker} & \text{Hinges} & \text{Sill} & \text{Zone}\,
\end{array}
\]

\[
\begin{array}{cccc}
F & B & F & B & F & B & \text{Zone: } F = \text{Front} \\
--- & --- & --- & --- & --- & --- & \text{B = Back}
\end{array}
\]

ELEMENT VALUES:

1. Not damaged
2. Direct damage, no separation*
3. Direct damage, separation*
4. Indirect damage, no separation*
5. Indirect damage, separation*
6. Not applicable (not equipped)
7. Unknown

*Separation must be complete.

SOURCE: Inspection

REMARKS: A continuation of the component contact and damage assessment.

In addition to the damage described previously, were any structural/hardware components contacted or damaged? NOTE: Contact and damage (direct and induced) must result from a direct application of a crushing force to the side surface between the A-pillar and the last pillar of the passenger compartment.

Induced damage to concealed components is permitted as long as the damage was a result of a crushing force applied to an applicable side surface.

Code all components present on the vehicle, either damaged or not damaged. Use 'not applicable' only if the component is not on vehicle.

*The latch is that portion of the lock mechanism which contacts the striker to hold the door shut. The door handle is part of the mechanism which operates the latch.

See variables 32-39 for further information.
VARIABLE GROUP: Component Damage

VARIABLE NAME: 46-51. Right Door Hardware Contact

FORMAT: 1 x 6 columns, numeric, beginning column 60

ELEMENT STRUCTURE:

<table>
<thead>
<tr>
<th></th>
<th>Latch/</th>
<th>Striker</th>
<th>Hinges</th>
<th>Sill</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zone</td>
<td>F</td>
<td>B</td>
<td>F</td>
<td>B</td>
</tr>
<tr>
<td></td>
<td>F</td>
<td>B</td>
<td>F</td>
<td>B</td>
</tr>
</tbody>
</table>

ELEMENT VALUES:
1. Not damaged
2. Direct damage, no separation*
3. Direct damage, separation*
4. Indirect damage, no separation*
5. Indirect damage, separation*
8. Not applicable (not equipped)
9. Unknown
*Separation must be complete.

SOURCE: Inspection

REMARKS: A continuation of the component contact and damage assessment.

In addition to the damage described previously, were any structural/hardware components contacted or damaged? NOTE: Contact and damage (direct and induced) must result from a direct application of a crushing force to the side surface between the A-pillar and the last pillar of the passenger compartment.

Induced damage to concealed components is permitted as long as the damage was a result of a crushing force applied to an applicable side surface.

Code all components present on the vehicle, either damaged or not damaged. Use not applicable only if the component is not on vehicle.

See variable 32-39 for further information.
VARIABLE GROUP: Intrusion

VARIABLE NAME: 52. Did Intrusion of the Internal Side Surface Result From the Side Crushing Force

FORMAT: 1 column, numeric, beginning column 66

ELEMENT VALUES: 1 Yes
 2 No } STOP! Complete external photographs only
 9 Unknown

SOURCE: Inspection

REMARKS: Intrusion Defined: Intrusion results whenever the internal boundary surface of the passenger compartment is moved inward due to direct damage resulting from the application of a crushing force to the exterior surfaces of the vehicle.

EXAMPLE

Undamaged Side Surface
Intruded Side Surface with Direct Damage Only

Intruded Side Surface with Direct and Induced Damage
Internal Side Surface. For the purposes of intrusion, the inner side surface extends from the inner door sill to the top of the upper window frame or top edge of the side glass. The roof rail is **NOT** included. Thus the inner side surface area is increased to include all of the door or panel area.

If the response is **No** or **Unknown**, do not complete the rest of the form. However, take external photographs as described earlier.

Discussion of Intrusion Matrix. When intrusion (other than catastrophic) is indicated, the matrix (variables 62-169) is to be completed. The matrix allows for both a description of the intrusion and occupant contact and injury (if any).

One line of the matrix should be completed for each intrusion. An intrusion occurs when a component intrudes into an occupant space. If a component intrudes into more than one occupant space, then there are multiple intrusions and multiple lines are to be used to describe these intrusions. Additionally, more than one component can intrude into an occupant space resulting in multiple intrusions.

For each intrusion, code the Intruding Component (Column A), Occupant Space Intruded (Column B), Associated Impact (Column C), Number of Occupant Spaces in Seat Row (Column D), as descriptive of the location of the intrusion. Columns E and F permit description of the amount of intrusion. Columns G, H and I describe occupant contact and injury, if any.

Each intrusion is to be documented whether the space was occupied or not and regardless of occupant contact and injury.

The intrusions are to be coded beginning with occupant space 11 and proceeding across the seat (left to right) and then by seat row (front to rear). If insufficient space is available (i.e., more than 12 intrusions) continue recording on the back of the form.
VARIABLE GROUP: Intrusion

VARIABLE NAME: 53. Was There Catastrophic Intrusion into the Passenger Compartment by the Side Surface

FORMAT: 1 column, numeric, beginning column 67

ELEMENT VALUES: 1 Yes - STOP! Complete both internal and external photographs.
2 No -- continue! (completing data form)
9 Unknown

SOURCE: Inspection only

REMARKS: Catastrophic Intrusion is declared when the passenger compartment is compromised through gross ruptures, tears, openings, avulsions and/or excessive passenger compartment compression or separation such that the performance of the side surface had little or no impact on the structural integrity of the passenger compartment. The intrusion is beyond measurement.

If the response is Yes or Unknown, do not complete the rest of the form. However, take both internal and external photographs as described earlier.

If the response is No, continue completing the Intrusion variable group.
VARIABLE GROUP: Intrusion

VARIABLE NAME: 54-59. Zone(s) in Which Intrusion(s) Occurred

FORMAT: 1 x 6 columns, numeric, beginning column 68

ELEMENT STRUCTURE: Front Back Rear
L R L R L R
--- --- --- --- ---

ELEMENT VALUES: Side: L = Left, R = Right
1 Intrusion
2 No intrusion
8 Not applicable, no side zone
9 Unknown

SOURCE: Inspection

REMARKS: Code all applicable zones to indicate either intruded or not intruded. Use "8, Not Applicable" only if the zone is not present. The coding should correlate with that of variables 7-12, i.e.: include only those zones coded '2' for variables 7-2.
VARIABLE GROUP: Intrusion

VARIABLE NAME: 60. Number of Occupant Spaces in Vehicle

FORMAT: 2 columns, numeric, beginning column 74

ELEMENT VALUES: ___ -- Code actual value
99 Unknown

SOURCE: Inspection

REMARKS: Count and record the total number of occupant spaces in the vehicle. See variable 63 for a definition of occupant space.
VARIABLE GROUP: Intrusion

VARIABLE NAME: 61. Total Number of Intrusions

FORMAT: 2 columns, numeric, beginning column 76

ELEMENT VALUES: __ __ -- Code actual value
99 Unknown

SOURCE: Total from Intrusion Matrix, Column A

REMARKS: Give the total number of intrusions.

This number can be equal to or greater than the number documented in the 12-row matrix.
VARIABLE GROUP: Intrusion

VARIABLE NAME: 62. Intruding Component

FORMAT: 2 columns, numeric, card no. 2, beginning column 11

ELEMENT VALUES: Column A: Intruding Component** Codes for intruded area(s) or component(s).

- 01 Window frame
- 02 A pillar--upper
- 03 A pillar--lower
- 04 B pillar--upper
- 05 B pillar--lower
- 06 C pillar--upper
- 07 C pillar--lower
- 08 D pillar--upper
- 09 D pillar--lower
- 10 Door panel or side panel--includes all hardware
- 97 Other side component--(specify)
- 98 Not applicable
- 99 Unknown

SOURCE: Inspection

REMARKS: The roof rail is not a side component. The door panel and side panel are inclusive. The various hardware components should not be listed separately.

*Also variables 71, 80, 89, 98, 107, 116, 125, 134, 143, 152, 161
**See variable 52 for definition of internal side surface.
VARIABLE GROUP: Intrusion

VARIABLE NAME: 63. Occupant Space Intruded

FORMAT: 2 columns, numeric, beginning column 13

ELEMENT VALUES: Column B: Occupant Space Intruded A two-digit code denotes occupant seat space. The first digit (left digit) denotes the seat row, with code values from 1-5. The second digit (right digit) denotes the position on the seat and (in some instances) the width of the seat.

Second Digit Codes:

<table>
<thead>
<tr>
<th>Seat Type</th>
<th>Code Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Individual seat (bucket)</td>
<td>1 Left</td>
</tr>
<tr>
<td></td>
<td>3 Right</td>
</tr>
<tr>
<td>Bench: full width 3 passenger</td>
<td>1 Left, 2 Center</td>
</tr>
<tr>
<td></td>
<td>3 Right</td>
</tr>
<tr>
<td>Bench: full width 4 passenger</td>
<td>1 Left, 2 L. center,</td>
</tr>
<tr>
<td></td>
<td>6 R. center, 3 Right</td>
</tr>
<tr>
<td>Bench: partial width --left justified</td>
<td>1 Left, 2 Center,</td>
</tr>
<tr>
<td></td>
<td>5 Right + aisle space</td>
</tr>
<tr>
<td>Bench: partial width --centered</td>
<td>0 L.+space, 2 Center,</td>
</tr>
<tr>
<td></td>
<td>5 R.+space</td>
</tr>
<tr>
<td>Cargo area</td>
<td>4 Entire vehicle width</td>
</tr>
</tbody>
</table>

SOURCE: Inspection

REMARKS: An individual occupant space is that space (volume) defined by the manufacturer for the seating of an adult occupant and normally available to the occupant. The boundary surfaces are the six planes defined by the appropriate combinations of the following undeformed surfaces: (1) the interior side(s) of the vehicle; (2) a vertical plane parallel to the longitudinal axis of the vehicle extending upwards at the boundary between manufacturer designated seating positions; (3) the headliner (or interior roof surface); (4) the seatback surface and cushion surface (including cushion edges); (5) the seat-

*Also variables 72, 81, 90, 99, 108, 117, 126, 135, 144, 153, 162
back surface (extended to the headliner); (6) the instrument-panel surface, windshield, cowl surface and toe pan surface; (7) the floor-pan surface; (8) the rear surface (back panels/back door surface).

In general the entire interior volume of the vehicle is divided into occupant spaces whose sum equals the total interior volume. Thus an intrusion into the vehicle anywhere on a side surface intrudes into some occupant space.

OCCUPANT SPACE BOUNDARIES IN A PASSENGER VEHICLE

This cargo area is: (1) the seat row vacant because the seats have been removed; or (2) the area behind the last row of seats, normally designated and/or designed by the manufacturer for cargo, which is integral with the passenger compartment.

Examples of Occupant Space Numbering.

Passenger Car—5 passengers

<table>
<thead>
<tr>
<th>11</th>
<th>13</th>
<th>X</th>
<th>X</th>
</tr>
</thead>
<tbody>
<tr>
<td>21</td>
<td>22</td>
<td>23</td>
<td>X</td>
</tr>
</tbody>
</table>

Van—12 passenger capacity

<table>
<thead>
<tr>
<th>11</th>
<th>13</th>
<th>X</th>
<th>X</th>
</tr>
</thead>
<tbody>
<tr>
<td>21</td>
<td>22</td>
<td>25</td>
<td>X</td>
</tr>
<tr>
<td>31</td>
<td>32</td>
<td>35</td>
<td>X</td>
</tr>
<tr>
<td>41</td>
<td>42</td>
<td>46</td>
<td>43</td>
</tr>
</tbody>
</table>

35
VARIABLE GROUP: Intrusion

VARIABLE NAME: 64. Associated Impact

FORMAT: 1 column, numeric, beginning column 15

ELEMENT VALUES: Column C: Associated Impact Code relevant impact from the bottom of page 3 of the CSS VEHICLE FORM as follows:

1 Most severe impact (V15)
2 Secondary impact (V22)
3 Other recorded impact (i.e., remaining CDC's from top of page 3)
4 Other impact (not recorded on page 3)
9 Unknown impact

SOURCE: Inspection

REMARKS: Determine, if possible, which impact caused the intrusion and code according to the element values given above. NOTE: The CDC's at the top of page 3 are not coded directly and hence this coding scheme is necessary.

*Also variables 73, 82, 91, 100, 109, 118, 127, 136, 145, 154, 163
VARIABLE GROUP: Intrusion

VARIABLE NAME: 65. Number of Occupant Spaces in Seat Row

FORMAT: 1 column, numeric, beginning column 16

ELEMENT VALUES: Column D: Number of Occupant Spaces in Seat Row
- 2 Two occupant spaces
- 3 Three occupant spaces
- 4 Four occupant spaces
- 9 Unknown

SOURCE: Inspection

REMARKS: A count of occupant spaces in the seat row. See variable 63 for definition of Occupant Space.

*Also variables 74, 83, 92, 101, 110, 119, 128, 137, 146, 155, 164
VARIABLE GROUP: Intrusion

VARIABLE NAME: 66. Amount of Intrusion*

FORMAT: 2 columns, numeric, beginning column 17

ELEMENT VALUES: Column E: Amount of Intrusion
 (NOTE: Measured laterally in inches.)
 ______ Code actual value
 99 Unknown

SOURCE: Inspection

REMARKS: Measure laterally the maximum amount of intrusion of each occupant space.

*Also variables 75, 84, 93, 102, 111, 120, 129, 138, 147, 156, 164
VARIABLE GROUP: Intrusion

VARIABLE NAME: 67. Occupant Space Reduction*

FORMAT: 1 column, numeric, beginning column 19

ELEMENT VALUES: Column F: Occupant Space Reduction
1 No reduction
2 Up to 25 percent
3 25 percent to 50 percent
4 Greater than 50 percent
9 Unknown reduction

SOURCE: Inspection

REMARKS: Estimate the amount of reduction in each occupant space resulting from the intrusion. While this is a guesstimate, the measured intrusion divided by the original width of the space should yield an accurate value. It is not required that the original dimension be ascertained, but this may be helpful.

*Also variables 76, 85, 94, 103, 112, 121, 130, 139, 148, 157, 166
VARIABLE GROUP: Intrusion

VARIABLE NAME: 68. Contacted by Occupant Number *

FORMAT: 2 columns, numeric, beginning column 20

ELEMENT VALUES: Column G: Contacted by Occupant Number

00 No contact

_________ Number of the occupant contacting the intrusion—use occupant number from CSS OCCUPANT FORM, page 1, variable 007

97 Contacted, occupant unknown

98 Not applicable (vehicle not occupied)

99 Unknown if contacted

SOURCE: Inspection

Injury Data

REMARKS: If the intrusion was not contacted by any occupant, code "00 No Contact." If the vehicle was unoccupied at the time of the crash, code "98 Not Applicable." If an occupant contacted (or is suspected of having contacted) an intrusion, code his occupant number as per above. In this scheme, only one occupant can contact an intrusion in an occupant space and be recorded on the data form. The same intruding component can intrude into more than one space, hence multiple intrusions are possible and multiple contacts are permitted—provided the contacts occur in different occupant spaces.

The contacting occupant need not necessarily have been an occupant of the associated space.

*Also variables 77, 86, 95, 104, 113, 122, 131, 140, 149, 158, 167
VARIABLE GROUP: Intrusion

VARIABLE NAME: 69. Associated Injury #1. CSS Row No.*
70. Associated Injury #2. CSS Row No.*

FORMAT: 1 x 2 columns, numeric, beginning column 22

ELEMENT VALUES: Column H: Associated Injury #1.-CSS Row No.
Column I: Associated Injury #2.-CSS Row No.
Code the injury (if injured) associated with the specific intrusion described on this line.
0 No injury
1-6 Injury row number as listed at the bottom of page 7 of the CSS OCCUPANT FORM
7 Other (unlisted) injury
8 Not applicable (vehicle not occupied)
9 Unknown if injured or unknown injury number

SOURCE: Inspection
Injury Data

REMARKS: If the occupant contact number (Column G) was "00 No injury", indicating no contact, there can be no injury. An occupant can contact an intrusion and not be injured. If there was injury, up to two injuries can be listed (Columns H and I) for the contacting occupant. Code injuries that had the highest probability of resulting from the intrusion.

*Also variables 78, 79, 87, 88, 96, 97, 105, 106, 114, 115, 123, 124, 132, 133
9. FIELD DATA FORM

The field data form is reproduced here for reference purposes.
Side Intrusion Form

Side Surface Zones

(NOTE: Indicate which component is located in each zone to make up the side surface.)

<table>
<thead>
<tr>
<th>7.</th>
<th>8.</th>
<th>9.</th>
<th>10.</th>
<th>11.</th>
<th>12.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Front Back Rear Zone:</td>
<td>L</td>
<td>L</td>
<td>R</td>
<td>L</td>
<td>R</td>
</tr>
<tr>
<td>L = Left, R = Right</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>(1) Door</td>
<td>(2) Panel</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(8) Not an applicable side surface</td>
<td>(9) Unknown</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FL</td>
<td>FR</td>
<td>BL</td>
<td>BR</td>
<td>RL</td>
<td>RR</td>
</tr>
</tbody>
</table>

Which Zones Were Contacted by a Crushing Force

14. 15. 16. 17. 18. 19.

Front	Back	Rear	Zone:	L	R	
L = Left, R = Right	---	---	---	---	---	
(1) Contacted	(2) Not contacted	(8) Not applicable, not a side surface				
(9) Unknown if contacted	FL	FR	BL	BR	RL	RR

Angle of Intersecting Longitudinal Axes

(NOTE: Record the forward longitudinal axis of the other vehicle relative to the forward longitudinal axis of this vehicle at the moment of the initial collision between the two. The forward longitudinal axis of the other vehicle is to be measured clockwise from the forward longitudinal axis of this vehicle. This value is equal to the algebraic difference between the heading angles of the two vehicles.)

degrees -- Code to nearest ten degrees.

(500) Vehicle-object contact

(999) Unknown

CRUSHING FORCE

![Diagram of vehicle side surface and angle of intersecting longitudinal axes]
Location of the Center of the Crushing Force in Each Side Zone Contacted

<table>
<thead>
<tr>
<th>Front</th>
<th>Back</th>
<th>Rear</th>
<th>Zone: L=Left, R=Right</th>
</tr>
</thead>
<tbody>
<tr>
<td>20.</td>
<td>21.</td>
<td>22.</td>
<td>23. 24. 25.</td>
</tr>
</tbody>
</table>

- (11-43) Center of crush [preceding page]*
- (55) Crush distributed over all of zone [no crush center possible]
- (98) Not applicable, no side surface zone, or not damaged
- (99) Unknown center

* Select from the table on the preceding page the value most representative of the center of crush.

Depth of Crush to Each Zone

<table>
<thead>
<tr>
<th>Front</th>
<th>Back</th>
<th>Rear</th>
<th>Zone: L=Left, R=Right</th>
</tr>
</thead>
<tbody>
<tr>
<td>26.</td>
<td>27.</td>
<td>28.</td>
<td>29. 30. 31.</td>
</tr>
</tbody>
</table>

- (1) 0-2 inches
- (2) >2-4 inches
- (3) >4-6 inches
- (4) >6-8 inches
- (5) >8 inches
- (8) Not applicable, no contact or no side surface
- (9) Unknown

Structural Contact

<table>
<thead>
<tr>
<th>Left Side</th>
<th>Right Side</th>
</tr>
</thead>
<tbody>
<tr>
<td>A B C D</td>
<td>A B C D</td>
</tr>
<tr>
<td>P B F B</td>
<td>P B F B</td>
</tr>
</tbody>
</table>

- (1) See Codes
- (3) Codes Above
- (4) or
- (5) Adjacent
- (8)

Component Damage CODES

| (1) Not damaged |
| (2) Direct damage, no separation* |
| (3) Direct damage, separation* |
| (4) Indirect damage, no separation* |
| (5) Indirect damage, separation* |
| (8) Not applicable [not equipped] |
| (9) Unknown |

* Separation must be complete.

Left Door Hardware Contact

<table>
<thead>
<tr>
<th>Latch/Striker Hinges Sill</th>
<th>Left Door Hardware Contact</th>
</tr>
</thead>
<tbody>
<tr>
<td>P B F B</td>
<td>LF LB HF RB SF SB</td>
</tr>
</tbody>
</table>

Right Door Hardware Contact

<table>
<thead>
<tr>
<th>Latch/Striker Hinges Sill</th>
<th>Right Door Hardware Contact</th>
</tr>
</thead>
<tbody>
<tr>
<td>F B F B</td>
<td>LF LB HF HB SF SB</td>
</tr>
</tbody>
</table>

COMPONENT DAMAGE

In addition to the damage described above, were any structural/hardware components contacted or damaged? [NOTE: Contact and damage (direct and induced) must result from a direct application of a crushing force to the side surface between the A-pillar and the last pillar of the vehicle.]

Component Damage CODES

| (1) Not damaged |
| (2) Direct damage, no separation* |
| (3) Direct damage, separation* |
| (4) Indirect damage, no separation* |
| (5) Indirect damage, separation* |
| (8) Not applicable [not equipped] |
| (9) Unknown |

* Separation must be complete.
Intrusion

Intrusion Defined: Intrusion results whenever the internal boundary (surface) of the passenger compartment is moved inward due to direct damage resulting from the application of a crushing force as applied to the exterior surfaces of the vehicle. Intrusion, the inner side surface extends from the inner door sill to the top of the upper window frame or top edge of the side glass. The roof rail is NOT included.

<table>
<thead>
<tr>
<th>Zone(s) in which Intrusion(s) Occurred</th>
<th>54. 55. 56. 57. 58. 59.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Front Back Rear Zone: L R L R L R Side: L=Left, R=Right</td>
<td>FL FR BL BR RL RR</td>
</tr>
<tr>
<td>(1) Intrusion</td>
<td></td>
</tr>
<tr>
<td>(2) No</td>
<td></td>
</tr>
<tr>
<td>(8) Not applicable, no side zone</td>
<td></td>
</tr>
<tr>
<td>(9) Unknown</td>
<td></td>
</tr>
</tbody>
</table>

52. Did Intrusion of the Internal Side Surface Result from the Side Crushing Force

(1) Yes
(2) No
(9) Unknown

STOP! Complete external photographs only.

53. Was There Catastrophic Intrusion Into the Passenger Compartment by the Side Surface?

(1) Yes
(2) No -- continue!
(9) Unknown

*STOP! Complete both internal and external photographs.

Code Intrusions from Left to Right, Front to Rear Starting with Occupant Space #11.

<table>
<thead>
<tr>
<th>Col:</th>
<th>A-</th>
<th>B-</th>
<th>C-</th>
<th>D-</th>
<th>E-</th>
<th>F-</th>
<th>G-</th>
<th>H-</th>
<th>I-</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intrusion</td>
<td>Occupant Space</td>
<td>Associated Component Intruded</td>
<td>Number of Intrusions</td>
<td>Occupant Spaces in Seat Row</td>
<td>Amount of Occupant Intrusion Space (inches)</td>
<td>Reduction</td>
<td>Contacted Occupant</td>
<td>Associated Injury</td>
<td>Associated Associated Associated Number: CSS Row No CSS Row No</td>
</tr>
<tr>
<td>1</td>
<td>62.</td>
<td>63.</td>
<td>64.</td>
<td>65.</td>
<td>66.</td>
<td>67.</td>
<td>68.</td>
<td>69.</td>
<td>70.</td>
</tr>
<tr>
<td>2</td>
<td>71.</td>
<td>72.</td>
<td>73.</td>
<td>74.</td>
<td>75.</td>
<td>76.</td>
<td>77.</td>
<td>78.</td>
<td>79.</td>
</tr>
<tr>
<td>3</td>
<td>80.</td>
<td>81.</td>
<td>82.</td>
<td>83.</td>
<td>84.</td>
<td>85.</td>
<td>86.</td>
<td>87.</td>
<td>88.</td>
</tr>
<tr>
<td>4</td>
<td>89.</td>
<td>90.</td>
<td>91.</td>
<td>92.</td>
<td>93.</td>
<td>94.</td>
<td>95.</td>
<td>96.</td>
<td>97.</td>
</tr>
<tr>
<td>5</td>
<td>98.</td>
<td>99.</td>
<td>100.</td>
<td>101.</td>
<td>102.</td>
<td>103.</td>
<td>104.</td>
<td>105.</td>
<td>106.</td>
</tr>
<tr>
<td>6</td>
<td>107.</td>
<td>108.</td>
<td>109.</td>
<td>110.</td>
<td>111.</td>
<td>112.</td>
<td>113.</td>
<td>114.</td>
<td>115.</td>
</tr>
<tr>
<td>7</td>
<td>116.</td>
<td>117.</td>
<td>118.</td>
<td>119.</td>
<td>120.</td>
<td>121.</td>
<td>122.</td>
<td>123.</td>
<td>124.</td>
</tr>
<tr>
<td>8</td>
<td>125.</td>
<td>126.</td>
<td>127.</td>
<td>128.</td>
<td>129.</td>
<td>130.</td>
<td>131.</td>
<td>132.</td>
<td>133.</td>
</tr>
<tr>
<td>9</td>
<td>134.</td>
<td>135.</td>
<td>136.</td>
<td>137.</td>
<td>138.</td>
<td>139.</td>
<td>140.</td>
<td>141.</td>
<td>142.</td>
</tr>
<tr>
<td>10</td>
<td>143.</td>
<td>144.</td>
<td>145.</td>
<td>146.</td>
<td>147.</td>
<td>148.</td>
<td>149.</td>
<td>150.</td>
<td>151.</td>
</tr>
<tr>
<td>12</td>
<td>161.</td>
<td>162.</td>
<td>163.</td>
<td>164.</td>
<td>165.</td>
<td>166.</td>
<td>167.</td>
<td>168.</td>
<td>169.</td>
</tr>
</tbody>
</table>

*Duplicate columns 1-9, GO TO Card Number:

*Intrusion and reduction are measured laterally.
Intrusion Codes

| Column A: Intruding Component Codes for intruded area(s) or component(s). |
|-----------------------------|-----------------------------|
| (01) Window frame | (02) A pillar--upper |
| (03) A pillar--lower | (04) B pillar--upper |
| (05) B pillar--lower | (06) C pillar--upper |
| (07) C pillar--lower | (08) D pillar--upper |
| (09) D pillar--lower | (10) Door panel or side panel--includes all hardware |
| (97) Not applicable | (98) Unknown |

Column B: Occupant Space Intruded

A two digit code denotes occupant seat space. The first digit (left digit) denotes the seat row, with code values from 1-5. The second digit (right digit) denotes the position on the seat and (in some instances) the width of the seat.

Second Digit Codes:

- **Seat Type**
 - Individual seat
 - Bench: full width
 - Bench: partial width
 - Cargo area

Code Value

- (1) Left, (2) Center, (3) Right
- (1) Left, (2) L. center, (3) R. center, (3) Right
- (1) L. center, (2) L. center,
- (5) R. space, (2) Center, (5) R. space
- (4) Entire vehicle width

<table>
<thead>
<tr>
<th>Example: Passenger Car--5 passengers</th>
</tr>
</thead>
<tbody>
<tr>
<td>11 13 X X</td>
</tr>
<tr>
<td>21 22 23 X X X</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Example: Van--12 passenger capacity</th>
</tr>
</thead>
<tbody>
<tr>
<td>11 13 X X</td>
</tr>
<tr>
<td>21 22 25 X X X</td>
</tr>
<tr>
<td>31 32 35 X X X</td>
</tr>
<tr>
<td>41 42 43 X X X</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Column C: Associated Impact Code relevant impact from the bottom of page 3 of the CSS VEHICLE FORM as follows:</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) Most severe impact (V15)</td>
</tr>
<tr>
<td>(2) Secondary impact (V22)</td>
</tr>
<tr>
<td>(3) Other recorded impact (i.e., remaining CDC's from top of page 3)</td>
</tr>
<tr>
<td>(4) Other impact [not recorded on page 3]</td>
</tr>
<tr>
<td>(9) Unknown impact</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Column D: Number of Occupant Spaces in Seat Row</th>
</tr>
</thead>
<tbody>
<tr>
<td>(2) Two occupant spaces</td>
</tr>
<tr>
<td>(3) Three occupant spaces</td>
</tr>
<tr>
<td>(4) Four occupant spaces</td>
</tr>
<tr>
<td>(9) Unknown</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Column E: Amount of Intrusion (NOTE: Measured laterally in inches.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>-- Code actual value</td>
</tr>
<tr>
<td>(99) Unknown</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Column F: Occupant Space Reduction</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) No reduction</td>
</tr>
<tr>
<td>(2) Up to 25 percent</td>
</tr>
<tr>
<td>(3) 25 percent to 50 percent</td>
</tr>
<tr>
<td>(4) Greater than 50 percent</td>
</tr>
<tr>
<td>(9) Unknown reduction</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Column G: Contacted by Occupant Number:</th>
</tr>
</thead>
<tbody>
<tr>
<td>(00) No contact</td>
</tr>
<tr>
<td>-- Number of the occupant contacting the intrusion--use occupant number from CSS OCCUPANT FORM, page 1, variable 007</td>
</tr>
<tr>
<td>(97) Contacted, occupant unknown</td>
</tr>
<tr>
<td>(98) Not applicable [vehicle not occupied]</td>
</tr>
<tr>
<td>(99) Unknown if contacted</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Column H: Associated Injury #1.--CSS Row No</th>
</tr>
</thead>
<tbody>
<tr>
<td>Code the injury (if injured) associated with the specific intrusion described on this line.</td>
</tr>
<tr>
<td>(0) No injury</td>
</tr>
<tr>
<td>(1-6) Injury row number as listed at the bottom of page 7 of the CSS OCCUPANT FORM</td>
</tr>
<tr>
<td>(7) Other [unlisted] injury</td>
</tr>
<tr>
<td>(8) Not applicable [vehicle not occupied]</td>
</tr>
<tr>
<td>(9) Unknown if injured or unknown injury number</td>
</tr>
</tbody>
</table>