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by
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This dissertation ﬁresents a kinematic investigation of the direct
cold plane-strain extrusion process. The deformations are described in
terms of the differences in the path lines for the flow of 6061-0 alumi-
num through tapered dies as compared to an ideal flow. Actual deforma-
tions are also compared to the deformations predicted by the slip line
theory.

The deformations are determined experimentally by examining the
changes in a grid pattern that is marked on the halves of a split billet
before extrusion. Two different die angles and reductions in area are
investigated. A measure of the rotationality of the aluminum flow field
is determined, and an analytical model is created for the actual veloci-
ty field. The deformations predicted by the analytical model of the

actual velocity field are compared to the actual deformations.
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Chapter I

INTRODUCTION

This dissertation presents a kinematic investigation that begins to
answer a question that arose during a graduate seminar on metal forming.
This discussion may have transpired as follows:

Professor: Today's topic will be slip line theory as applied to
non-homogeneous plane strain deformations of rigid-perfectly
plastic isotropic solids.

Questioning Student: From our studies of the mechanical properties
of metals, we learned that for many annealed materials such
as brass, aluminum and low carbon steel, the yield strength
could change by a factor of two within 10 percent cold work.
How well does the slip line theory apply to forming these
materials, considering that a perfectly plastic material has
a constant yield strength?

Professor: Given the differences between the more common metals and
the perfectly plastic solid, slip line theory has proved to
be a surprisingly useful concept that has led to a better
understanding of many metal forming processes. But before
answering your question, let us review some properties of
slip lines. S1lip lines can be considered curvilinear coordi-
nates that coincide with the directions of the planes acted

€8]
upon by the maximum shear stresses. When substituting
expressions for the stresses into the stress equilibrium
equations,

_a_g.x + ?.I.yx= 0 = _Q_O.y + @..T_xy

ox 3y dy ax



an expression for the yield strength is included. 1If the
shear yield strength is a constant, the partial differentia-
tions in the stress equilibrium equations are performed eas-
ily, resulting in the commonly accepted slip line relationms.
These relations are derived from kinetical considerations
together with the material model for the perfectly plastic
solid. The kinetical expression of stress equilibria and se-
lection of a curvilinear coordinate system coincident with the
maximum shear stress planes are equally valid and useful when
analyzing deformations of work hardenable materials. However
the material models employed for work hardening metals usually
require the deformation histories. Deformation histories im-
ply the ability to identify material particles and determine
the strain state as a function of time along the particle's
path during the forming process.

Questioning Student: Wouldn't this introduce enormous complexities
when trying to perform the indicated partial differentiations
from the stress equilibrium equations?

Professor: Precisely. A general problem statement for this slip
line approach for work hardenable materials has been made,(z)
but solutions are difficult.

Student: It appears that a somewhat general kinematical model that
is stated in terms of a particle's path could be useful when
trying to analyze the forming of work hardening materials
from this generalized slip line approach.

Professor: Perhaps a research project studying the kinematical

relations of a specific metal forming process in terms of the



particles’' path line would be fruitful.

As a result of this discussion, the extrusion process was selected
for investigation and presentation in this dissertation.

The parameters completely characterizing extrusion can be classified
as belonging to two groups:

(1) The parameters characterizing the extrusion process.

(2) The parameters characterizing the extruded product.
The forces, energies, powers required, etc. for the process are directly
related to extruded material. The hardness distribution, inhomogeneity
in the yield strength, residual stresses, etc. in extruded product are
directly related to the extruded material. The analysis of the extrusion
process, therefore, depends on the accuracy of the material model.

The analysis of the problem can be thought to have three parts:

1. the kinematical part

2. the kinetical part

3. the material model part which relates the kinematics to the ki-

netics for the extrusion problem.

For material models that depend on the previous deformation, a particle's
deformation history must be part of the analysis. The particle's path
line must be determined and the deformation of a particle as a function
of time relative to the path line is required to meet this historical

(3)

requirement. Prandtl points out that this type of problem statement
has been a traditional source of difficulty.

The kinematical relationships of a flow can be described from two
points of view:

(1) The Eulerian point of view, which is to describe the flow in

the neighborhood of a fixed point in space.



(2) The Lagrangian point of view, which is to identify a neighbor-
hood of particles at some time, to, and describe the neighbor-
hood and its path through space as a function of time.

OBJECT OF INVESTIGATION

The object of this investigation is to provide a kinematic modeling
method for the flow of a work hardenable material during the extrusion
process; the method must be Lagrangian and give path lines, velocity
fields, and deformations relative to path lines as a function of time for
various die geometries.

Flow fields can be classified as either irrotational or rotational,
the flow of a real metal in an extrusion process being rotational. A
Lagrangian measure of this rotationality is defined by the modeling
method and the rotationality is characterized by this measure.

In addition, the kinematic modeling method must be adaptable to fur-
ther work relating the kinetics and kinematics through a material model
that depends on deformation history.

HISTORICAL REVIEW

The extrusion process is studied using the analytic principles of
plasticity. With the exception of shop practice, the history of the ana-
lytic investigations in plasticity started with M. H. Tresca in 1864,

(4,5)

when he attempted to answer the question, '""What is the stress
state under which a metal begins to plastically deform?'" The maximum
shear stress theory for the yielding of ductile metals was the result of
his investigation. Saint—Venant,(6) in applying this theory to the
problem of determining stresses in a partly plastic cylinder, recognized
there is no one-to-one relationship between stress and plastic strain.

7
Levy, ) adopting a Saint-Venant concept of an ideal plastic material,

proposed three dimensional relations between stress and plastic strain



rate, while Guest(g) investigated the yielding of materials under com-
bined stresses obtaining results broadly agreeing with Tresca's maximum
shear stress theory. These are the major accomplishments in the 19th
Century in attempting to develop a plasticity theory for ductile metals.

By the beginning of the 20th Century, the directions for future in-
vestigations had been charted:

(1) Refinement of the yield criteria.

(2) Continued material studies.

(3) Differentiating between small scale and large scale deformations.

(4) Solutions to specific problems or approximate solutions to spe-

cific problems.

von Mises(g) proposed a yield criterion that is analytically more
tractable than Tresca's, with experimental data usually bounded by
these two yield criteria. Hencky(lo) interpreted von Mises' yield cri-
terion to be a maximum distortion energy theory, while Nadai(ll) inter-
preted this yield criterion in terms of octahedral shear stresses. Al-
though Lode's(lz) experimental results were in agreement with von Mises
to a first approximation, Taylor and Quinney(l3) examined some of the
deviations in Lode's experimental work and determined that real metals
have regular deviations from the von Mises theory. Yoshimura and Taken-

(14) in their paper propose a theory that is an extension of the von

daka
Mises' theory of plasticity, for isotropic work-hardening materials.

This recent theory accounts for some of the regular deviations as observed
by Taylor and Quinney, however, it doesn't include the effects of tempera-
ture or strain rate which can be important at high temperatures and strain
rates. This is not mentioned as serious criticism, but to indicate the

complexities encountered describing material properties under all environ-

mental conditions.



With the advent of dislocation theory by G. I. Taylor et al. in the
20's and early 30's, investigations in material behavior have proceeded
from two points of view. The yielding phenomenon and the plastic behav-
ior of metals can be viewed as either macroscopic or microscopic. The
dislocation theory uses dislocation mechanics to explain the microscopic
behavior of individual crystals. On a sufficiently large scale with
proper averaging to account for the polycrystalline nature of metals,
the microscopic and macroscopic points of view in the limit should be the
same. Unfortunately, at present the respective points of view have not
developed to this level. Common metals and alloys are susceptible to
work hardening as judged by the tabulated results of yield strength versus

amount cold work in the Metals Handbook.(ls) The current state of the art

in material science is such that the material model must be judiciously
selected when specific plasticity problems are investigated.

The history of plasticity problems starts in 1920 and 1921 when
Prandtl(l6) showed that the two dimensional plastic problem for a perfect—-
ly plastic solid is hyperbolic. The general theory underlying Prandtl's
special solutions was supplied by Hencky(l7) in 1923. During this time,
Nadai investigated the plastic zones in a twisted prismatic bar of arbi-
trary contour both experimentally and theoretically. This work by Nadai

(11) (18)

is best summarized in his book. In 1925, von Karman analyzed

the state of stress in rolling using approximate techniques. Siebel and

then Sachs soon followed with a similar analysis for wire drawing.(lg’zo)

The analysis of plasticity renewed interest in the concept of strain.

P. Ludwik'?H (22)

used Hencky's concepts of natural or logarithmic
strain to compare tensile test and compressive test curves on the basis

of natural strains. He found that the stress strain relationships are



nearly coincident. This was the first modification of the concept of
strain to come into general use. Prior to this time the accepted theory
of strain was Cauchy's infinitesimal strain theory. Cauchy's equations
together with Cauchy's other analytical work in the 1820's form the elas-
tic theory now admitted for isotropic solid bodies with small deformations.

(23)

(Reference 23) Love references the history of the development of

strain theory for general displacement while summarizing the results in his

(24)

book. Green and Zerna also summarize the theory of strain for general
displacements emphasizing the general curvilinear tensoral properties of
the theory.

There is an important analytical distinction between plasticity prob-
lems that can be characterized as involving small deformations, such as
the yielding of bars, and problems characterized by large plastic deforma-
tions, such as extrusions. The plasticity problems characterized by small
deformations have plastic and elastic strains of approximately the same

order of magnitude. Reuss(zs)

produced a genral plasticity theory, to
allow for both components of strain. Plasticity problems characterized
by large deformations usually consider the elastic strain negligible; this
invokes the assumption that the material is incompressible. Prandtl used
this last assumption together with the isotropic, rigid, plastic, and non-
hardening material to describe large deformation plasticity problems as
hyperbolic. The characteristigs of the solution of these hyperbolic plas-
ticity equations are called slip lines. Geiringer(26) developed the equa-
tions governing the variation of velocity along these slip lines.

Since the slip line theory of Prandtl, Hencky, and Geiringer, several
other ways have been suggested for the analysis of plastic processes with

large deformations. These methods are sometimes classified as follows:(27)



a. The Siebel energy methodﬂlg)

b. The Sachs slab method. 20

¢. The Johnson-Kudo-Kobayaski upper-bound method.(28’29’3o)

d. The Thomsen visioplasticity methodel)
When compared to experiment, slip line and the first three methods predict
power requirements and forming forces that were within engineering accura-
cy, provided appropriate values for the effective stresses have been cho-

sen. (27)

These methods have been modified to approximate the variation
in the effective yield stress (the Sachs method), or predict a stress dis-
tribution (the slip line method). Those parameters characterizing the
process can be modeled quite accurately. On the other hand, the accurate
prediction of the distribution of deformations cannot be made for many
plastically deformed products.

The Thomsen visioplasticity method is a thorough experimental examin-
ation of a plastic process which is capable of correlating the process
variables to the yield strength distribution after the fact. However, it
is not predictive. This method consists of measuring the deformation and
calculating the strain field by using a split billet, with the assumption
of steady state operation, the strain rate field is determined and with
the aid of a material model, the stress field can be determined from the
strain and/or the strain rate field. This can then be compared with
experimentally measured loads.

In the plastic analysis of large deformations, the material model
provides the means of relating the mechanics of deformation to loading.

(32)

Bridgman, in his survey of material models, discusses the constraints
a model must exhibit if it is to display realistic behavior. At present,

a general model does not exist. Therefore, the material model selected



must be in agreement with observed behavior of the test material in the
range of process variables that are encountered in the specific plastic
process studied. The elevated temperatures and high strain rates of many
commercial processes are those very conditions where a rigid-plastic ma-
terial model can be effectively used. On the other hand, at lower temper-
atures and slower strain rates the work hardening behavior of materials
can predominate.

The work hardening behavior of metals is complex, yet reasonable ap-
approximations have been developed. Hodiernef33) for example, using the

well known power law, found that
o =K,

is a good approximation for the plastic portion of the stress strain be-
havior of 15 different metals. Barclay(34) in 1965 used the same relation-
ship in the experimental examination of hardening mechanisms in AISI type

(35)

301 stainless steel. Datsko uses this power law in the elementary

analysis of forming operations. Caddell and Atkins,(36’37) in a study of
redundant work factors for rod drawing, found that the redundant work fac-
tor can be related to the strain hardening characteristics of the metal
being drawn. Caddell, Needham, and Johnson(38) cold rolled rings of alum-
inum and compared experimentally determined yield strengths in three mutu-
ally perpendicular directions to the response of the annealed metal if it

(39)

were given equivalent uniaxial reductions. Avitzur includes effective
strain hardening in an upper bound solution of plastic flow through coni-
cal converging dies.

The cold extrusion of metals requires the analysis of the deformation

histories, if an accurate material model is to be included; such models
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are required to relate deformations to product properties. Because of
engineering interest in product properties, the Lagrangian point of view
for kinematic analysis of the cold extrusion of aluminum is used. This
analysis of the extrusion process is explicitly related to deformation
histories.

SCOPE OF INVESTIGATION

The extrusion process used in this investigation is the direct cold
plane strain extrusion through tapered dies; The work hardenable material
used in this investigation is 6061-0 aluminum. (See Appendix A.) Die angles
and reductions in area used in this study exclude those that would form
dead metal regions within the die cavity. In this dissertation the phrases
"plane-strain extrusion'" and "two-dimensional extrusion" will be used in-

terchangeably.

DIRECTION OF RAM TRAVEL

INLET DIMENSION = H;

OUTLET DIMENSION = H,
( SEMI-DIE ANGLE = ¥

-\d’\-J

».—-Ho -——1

Figure 1 Two dimensional extrusion through tapered dies.
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The reduction in area,

R = (Hi - Ho)/Hi’

(1)

and the semi-die angle, Y, are investigated for values shown in Table I.

The outlet to inlet dimension ratio,
H=H /H,
o i

is related to the reduction in area,

H=1-R.

TABLE 1

GEOMETRIES INVESTIGATED

(2)

(3)

Semi-die Angle Reduction in Area Dimension Ratio
Y (R) (H)
o
22.5 0.276 0.724
22.5° 0.451 0.549
45.0° 0.449 0.551

Within the limitations of these constraints, the kinematic modeling

of the direct two dimensional extrusion process takes the following steps:

1. A split billet is steadily extruded for the geometries listed in

Table I.



12

2. A reference frame or coordinate system is created for the geomet-
ries listed in Table I.

3. A reference continuum is chosen and the path lines and deforma-
tion field are determined for the steady flow through the geomet-
ries listed in Table I. The reference continuum chosen is the
perfect fluid. The deformation field of a perfect fluid is the
result of an irrotational flow field.

4. The real metal deformation field is compared to the perfect fluid
deformation field. The term real metal is used to indicate a
direct relation to the experimentally determined kinematic infor-
mation.

5. The selected measure of real metal rotationality is the differ-
ences between real metal path lines and perfect fluid path lines.

6. The measure of rotationality for the real metal flow is modeled.

7. Using stream function theory and the modeled measure of rotation-
ality, the modeled velocity field is determined.

8. The modeled real metal deformation fields are determined from
the modeled path lines and velocity field.

9. The modeled real metal deformation field is compared to the real
metal deformation field.

10. The slip line theory deformation field is compared to the real
metal deformation field.
These steps are taken to meet the objective of providing a kinematic mod-
eling method for the flow of a work hardenable material during the extru-

sion process.



Chapter II

EXPERIMENTAL PROCEDURE, TEST EQUIPMENT, AND EXPERIMENTAL RESULTS.

INTRODUCTION

It seems that small changes in system geometry can result in large
changes in the entire flow pattern during plastic deformation processes.
These small changes in system geometry can make the difference between:

(1) Die break through during stamping or no die break through.

(2) Columnar plastic instability during cold heading or no

columnar instability.
(3) Dead metal region formation during extrusion or no dead
metal region formation.
It is nearly impossible to predict flow patterns for all conditions from
theoretical considerations alone; other approaches are needed.

One of the most effective methods of approach is flow visualization.
Such direct observation of the internal flow in metals is in conflict
with metallic opaqueness, but the split billet technique partially over-
comes this difficulty for the steady two dimensional extrusion of metals.
In this technique, the billet is split normal to the third dimension and
a lattice is marked on these internal surfaces. The split billet i:s then
extruded as a single billet.

Two dimensional extrusion assumes no deformation gradient in the
third dimension. During the extrusion process the billet is contained in
a die cavity, so there is inevitable contact between the billet and the
outer die wall. As the extrusion process proceeds, the frictional effects
between the outer die wall and the billet can introduce deformation gra-
dients in the third dimension. Proper experimental techniques and lubri-

cation can minimize these frictional effects, but if any plane in the

13



14

third dimension is to be considered representative of the flow, a negli-
gible deformation gradient in the third dimension must be demonstrated
experimentally. To do this, different splitting planes relative to the
third dimension in the billet to be extruded are selected. The deforma-
tions of the lattices marked on these different planes are compared and
the magnitude of the deformation gradient in the third dimension is
assayed.

Flow visualization is an important tool for establishing flow models
as a basis for mathematical models. But in order to interpret pictures
of the flow field, it is necessary to understand four concepts that relate
the pictures to the kinematic description of the flow field, These four
concepts, from continuum mechanics, are:

(1) Path lines; the path a particle takes through space.

(2) Streak lines; the locus, at a given instant, of all particles

which have passed through or will pass through a fixed point
in space (coincident with (1) for steady state (s.s.)).
(3) Stream lines; the curves in space always tangent to the
velocity vectors of the flow field (coincident with (1) for s.s.).
(4) Time lines; the level curves of a time function defined
for the flow by identifying particles passing a particular
line in space. These lines and curves are surfaces in
general three dimensional flows.
In general, the time function is a path dependent function and the time
lines are most useful when the particles are identified at a particular
line normal to the flow directions. For steady flows, the path lines,
streak lines and stream lines are coincident, that is, the paths do not

change with time. All particles passing a particular point continue on
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the same path and, consequently, if the particles stay on the same path
the velocity must always be tangent to that path.

TEST EQUIPMENT

The equipment used to implement the experimental investigation can
be related to three areas: (1) that used to perform the extrusion pro-
cess, (2) that used to prepare the extrusion billets, (3) that used to
mark the lattices on the internal surfaces of the split plane in the
billets. The specific extrusion process used requires a press and an

extrusion machine. The specifications for the press are tabulated in

Table II.
TABLE II
PRESS SPECIFICATIONS
Company: Forney's Incorporated, New Castle, Pennsylvania
Model Number: QC-500
Serial Number: 62175
Operation: Hydraulic
Daylight Distance: The maximum distance between the lower platen and
upper frame cross member is 22-1/2 inches.
Load Range: 0 to 500,000 pounds
Load Indicator: Bourbon Tube type, 1,000 pound increments from

0 to 500,000 pounds.
Piston Velocity Range: O to 0.5 inches per minute.

Maximum Piston Stroke: 3 inches
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extrusion machine, Figure 2, was developed specifically for the

split billet technique of flow visualization as applied to the direct two

dimensional cold extrusion of aluminum. The final design of the machine

can be characterized as having met the following constraints:

(1)

(2)

(3)

(4)
(5)

(6)

It fits within the 22-1/2 inches maximum daylight clearance
in the press.

Allowance is made for ram travel, space for the billet
before extrusion, and space for the extruded product without
requiring modification of press cross members.

It is easily modified with respect to reduction in area

and semi-die angle.

Ram travel is controlled accurately.

The machine is easily disassembled for removal of the
partially extruded billet without damage.

It withstands the loads during the extrusion of 6061-0 aluminum.

MOUNT FOR RAM ( ~— RAM

TRAVEL CONTROLLER |
} CLEARANCE FOR RAM TRAVEL

H

¢ BILLET SHOWING SPLIT PLANE

SLOT FOR CLAMP OVER
TAPERED SECTION
OF THE DIE

DIE

DIE PEDESTAL

"SPACE FOR THE EXTRUDED PRODUCT

CONTAINER WALLS FOOTPRINTS OF MISSING

CONTAINER WALLS

6-INCH RULE

Figure 2 Exposed internal view of the extrusion machine
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The relationships between the extrusion machine elements for chang-
ing extrusion geometry are shown in Figure 3, where it can be seen that
two new die pieces are required to change extrusion geometry. While the
scope of this investigation is limited to tapered die geometries, the
possible die geometries to be studied are limited only by fabrication

techniques.

CONTAINER WALLS

N\

/—-—m INCHES ——

DIE TO BE
INSERTED

A

|
|
|
|
|
[
I
|
|
!
|
|
J

s

%

DIE PEDESTAL
V::;E AISI 1018 COLD ROLLED STEEL

AISI 6150 STEEL
N (HARDENED, TEMPERED, GROUND)

Figure 3 Die pieces for altering extrusion geometry

The control of ram travel (as shown in Figure 4) is required because
the piston travel is limited to three inches. As indicated in Figure 2,
the billets are fabricated so as to originally fill the tapered portion
of the die cavity before extrusion. 1In the first stage of extrusion, the
ram travel is limited to clearing the tapered section of the die of orig-
inal material and establishing a steady flow. The length of ram travel

required to establish steady flow is determined by a previous visual
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observation of the path lines on the split plane of an extruded billet

downstream from the tapered section. After the first stage the press is
stopped. After placing a spacer block between the ram and press cross-
head, the second stage of the extrusion is now accomplished. This pro-
duces a steadily extruded billet within the piston travel limitation of

three inches.

ADJUSTABLE ROD

L RAM

SET SCREW FOR

ADJUSTABLE ROD 4- CONTAINER WALLS

PRESET RAM i—l

TRAVEL DISTANCE T

MICROSWITCH FOR
CONTROLLING RAM
TRAVEL

\

CLAMP OVER SPACE
FOR BILLET

Figure 4 Essential elements of ram travel control

Clamping on the extrusion machine is shown in Figure 5. The clamp
over the lead-in region for ram guidance is held together with tapered
pins. This provides added rigidity to the container walls in the lead-in
region, but low clamping pressure so as to minimize binding the ram.
Tapered pins are threaded to accommodate a pin removal nut. The clamps
over the space for the billet and over the tapered die section are held

together with two, two-inch diameter threaded studs. Through the use of
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the threaded tapered pins and threaded studs, the extrusion machine can
be disassembled without damaging the partially extruded billet. Large
clamping forces on the container walls are produced by the clamps over
the space for the billet and over the tapered die section. These forces
are the result of evenly tightening the nuts on the threaded studs to
withstand over two thousand foot pounds of tightening torque. The clamp-
ing forces must be larger than the extrusion forces,which tend to separate
the container walls,if finning of the billet into the spaces between the
container walls is to be prevented. During the development of the extru-
sion machine, the magnitude of the required clamping forces was initially
underestimated. However, with the present setup, the extrusion machine
can withstand the loadings during the extrusion of 6061-0 aluminum. (See

Appendix B.)

NUT AND TREADED
TAPERED PIN

~— CLAMP OVER

RAM TRAVEL LEAD IN REGION

CONTROLLER

CLAMP OVER SPACE
FOR BILLET

\

CLAMP OVER TAPERED

LINE FROM MICROSWITCH TO
SECTION OF THE DIE

RELAY CONTROLLING POWER TO
HYDRAULIC PRESS PUMP

. CONTAINER WALLS

Figure 5 Clamps on assembled extrusion machine
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The billets are annealed, machined on a vertical milling machine,

then the surfaces of the billet are finished by hand with a single cut

mill smooth file. Finally, the process used to mark the lattice on the

billets is electrochemical marking and is accomplished with commercially

available equipment. The specifications of the marking equipment are

tabulated in Table III.

TABLE III

MARKING EQUIPMENT SPECIFICATIONS

Company:

Power Unit:

Power Unit Serial Number:

Rocker Pad Assembly:
Stencil:

Stencil Cleaner:
Electolyte:

Cleaner:

The Lectroetch Company, East Cleveland, Ohio
Model V45A with heavy duty cord set (nominally
0-25 volts AC/DC, 0-45 amperes)

274

Model 3-1/2" x 7" RP3

Model 3L25055, 5" x 9" Heavy Duty.

Type 3L

Type #210A

Type #3

The space for the billet in the extrusion machine is nominally 1 inch

by 2.4 inches wide by 6 inches long, and the billet shown in Figure 6 is

half as thick as the billet cavity. Two halves, as shown in Figure 6,

are required to make up the split billet for the flow visualization study.
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The bar stock is originally in a T-6511 temper condition. The 6061
Aluminum is heated at 775°F for 3 hours and then cooled at a maximum of
50°F/Hr until 500°F to give it an "0" temper designation as specified in

(15)

the Metals Handbook. The "0" temper designates a full anneal.

[e—————— 3 INCHES

NN AN

\ Q 1 INCH
AT

|"~— 2.4 INCHES ——'I

MATERIAL REMOVED BY
MILLING FROM BAR STOCK

CROSS SECTION OF
FINISHED BILLET

""— 6 INCHES —*"I

0.5 INCH

r

INLET DIMENSION = H,
= 2.4 INCHES

OUTLET DIMENSION = H,
SINGLE-DIE ANGLE = ¥

Figure 6 Extrusion Billet. Material: 6061-0 aluminum

Material is removed from the billet as shown in Figure 6 on a verti-
cal mill with successively smaller cuts, the final cut always being less
than 0.003 inches. This machining procedure is adopted to minimize the

material affected by deformation during machining.



22

The objects of the finishing procedure are:

(1) to further remove material deformed by machining and the

milling marks

(2) to prepare a surface that can be electrochemically marked

by the marking equipment

(3) to prepare a surface that can be photographed well to record

the visual flow pattern.
The billets are hand finished with a file; this is followed by light
buffing with crocus cloth. The draw filing procedure meets all three
objectives, however two hours of filing time are required for each
billet prepared for extrusion.
LUBRICATION

The effect of lubrication is twofold; both extruded product and the
loads during the extrusion process are influenced. Three different types
of lubricants, as specified in Table IV, are used and Figure 7 shows the
areas of application for the lubricants.

Inadequate lubrication can result in a poor surface finish on the
extruded product and is indicative of frictional effects that can cause
deformation gradients in the third dimension. The sacrificial lead foil
together with coatings of lubricant types A and B effectively reduces the
frictional effects in the third dimension.

The diminished frictional effects reduce the ram load and the extru-

sion forces on extrusion machine container walls, the latter leading to
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easier restraint by the clamping forces. More effective clamping forces

tend to reduce finning and increase overall quality of the extruded

product.
TABLE IV
LUBRICANT SPECIFICATIONS

Lubricant A: A grease gear lubricant (Mobil 0il, Mobilplex)
Lubricant B: Mixture by volume:

i) 5 parts, Gear Lube (Mobilplex)

ii) 2 parts, Vinyl Stearate Powder

iii) 1 part, Flake Graphite

Lead Foil: Commercially pure lead billet rolled to 0.008 inch foil

LUB.B  LUB.A LUB.B

RN

N

0.008 INCH LEAD FOIL
M~

‘\\\\\\—_ SPLIT PLANE
EXTRUSION BILLET

0.008 INCH LEAD FOIL

Figure 7 Lubrication for extrusion billet. The billet surfaces adjacent
to the die walls were coated with lubricant A.
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GRID SYSTEM

The regular lattice marked on the billet prior to extrusion will now
be called the grid;(AO) it is especially chosen to relate to the important
kinematic variables of the steady two dimensional extrusion process.
Figure 8 shows the photographic record of the change in the grid during
the extrusion process and this record is called the real metal deformation
field.

The grid chosen is a lattice of numbered concentric circles, 0.1 inch
and 0.2 inch diameters respectively, enclosed within 0.2 inch squares.

The sides of these squares, being coincident with the velocity direction
upstream from the tapered die section, are then stream lines. For steady
flow, the path lines, streak line and stream lines are coincident. Since
the flow of aluminum through the extrusion machine is steady, the paths

do not change with time, and all particles passing a particular point
continue on the same path. A steady flow is assured when the sides of the
deformed squares again are coincident with the direction of the steady
velocity downstream from the tapered die section as shown in Figure 8.

For this steady flow the sides of the squares are the path lines, streak
lines, and the streamlines.

Upstream from the tapered die section the lines normal to the stream-
lines are moving with the steady velocity of the ram. The distance be-
tween the normal lines is a constant 0.2 inches in this uniform velocity
region. The inlet velocity is Vi' If the material is incompressible,
the time interval for these normal lines to pass a point fixed in space

is also constant,

At = 0.2 inches/Vi . (4)
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Figure 8 Real metal deformation field. Material: 6061-0 aluminum

For the large deformations being studied here, the aluminum is con-
sidered incompressible. If the line between rows of circles numbered
163, 164, . . ., 174 and circles numbered 181, 182, . . ., 192 in Figure
8 is considered coincident with a fixed line in space at which the
particles are identified every At (Equation 4), the sides of the squares
normal to the flow directions at the line, are identified at equal time

intervals. This defines a time function, for the steady flow field, in
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the x plane, (See Figure 9.),
t = t(xl,xz). (5)

The level curves of this function are the sides of the squares and are

defined by
=
t(xl,xz) *NAt (6)

where N =0, 1, . . ., K and where At is defined by Equation (4). Down
stream where the flow is faster, the distance between time lines is
greater so that the time interval between time lines passing a fixed point
remains constant. Therefore, the sides of the squares originally normal
to the flow direction upstream from the tapered die section are time lines
for the entire flow field.

Stream lines proceeding through the periphery of an infinitesimal
area at some time t, will form a tube; this is called a stream tube.
Figure 8 shows 6 stream tubes on each side of the center line and the
changing of the circles to ellipses describes the deformations. Within
a stream tube the next ellipse downstream shows the change in deformation
of the ellipse during an increment of time, At. The procession of cir-~
cles changing to ellipses down each stream tube describes the deformation
history within the stream tube and this history is for discrete incre-
ments of time. The twelve stream tubes complete the incremental repre-
sentation of the entire deformation field from the Lagrangian point of
view.

EXPERIMENTAL RESULTS

The experimental results are summarized in Figures 9, 10, and 11.

In these figures are the photographic records of the steady flow pattern
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for 6061-0 aluminum during the direct cold plane strain extrusion through
tapered dies. These flow patterns which are called 'real metal deforma-
tion fields" are for the geometries listed both in Table I and on the
figures. The photographic records are for both the split plane and the
plane adjacent to the die wall as indicated on the figures.

During the extrusion process, the aluminum displaces some of the lead
in the foil (See Figure 7) and the clamps deflect due to the extrusion
pressure. The combined effects of displacing lead and deflecting clamps
results in an increase in thickness of the extruded billets. This is a
change in dimension normal to the X1y X plane shown in Figures 9, 10,
and 11. Due to the very nearly conserved volume during these plastic
deformations the squares in the grid are foreshortened in the direction
of flow. 1In Table V, the effective foreshortening ratio,

Shorter length due to increased thickness
Length without increased thickness

(7)

for geometries shown in Figures 9, 10, and 11 are listed. This results
in the interpretation that a somewhat thicker foreshortened billet under-

went extrusion.
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Figure 10 Real metal deformation field
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TABLE V

FORESHORTENING RATIOS

Figure Geometry Foreshortening Ratio

Y = 22.5°

9 H = 0.724 L = 0.975
R = 0.276
Y = 22.5°

10 H = 0.594 L = 0.942
R = 0.451
Y = 45°

11 H = 0.551 L = 0.960
R = 0.449

EXPERIMENTAL CAPABILITIES

The aim of the experimental portion of this investigation is to
provide a capability for the direct visualization of kinematic variables
which are the objects modeled. The steady extrusion results in the path,

1. Path lines

2. Streak lines

3. Stream lines

4, Time lines

5. Deformations.

These are the objects modeled. The steady extrusion results in the path,
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streak and stream lines being coincident. The split billet technique, the
selected grid and the specially developed extrusion machine are the exper-
imental techniques used to implement the flow visualization.

If any plane in the third dimension is to be representative of the
flow, different planes must be compared to determine the magnitude of any
deformation gradients introduced by friction. Assuming a deformation
gradient exists, the greatest difference in deformation exists between a
split plane at the center of the billet where the frictional effects are
the least and the plane adjacent to the die wall where the frictional
effects are the greatest. A split plane at the center of the billet and
the plane adjacent to the die wall are shown for the geometries listed in
Table I in Figures 9, 10, and 11. In each case, the planes adjacent to
the wall show evidence of local scraping where lubrication was inadequate.
Both planes in each figure have the same scale.

The existence of deformation gradients is evidenced by changes in
location and shape of the path lines, time lines, and deformation ellip-
ses between the central split plane and the plane adjacent to the die
wall. By comparing the differences in location and shape of the path
lines, time lines, and deformation ellipses between the split plane and
the plane adjacent to the die wall in Figures 9, 10, and 11, the deform-
ation gradients are assayed to be negligible.

The central split plane is taken as most representative of this
extrusion process. In conclusion it is felt that the experimental aim
of providing a capability for the direct visualization of path lines,
time lines and deformation ellipses is met. The real metal deformation
fields that result from the application of the experimental capability

described in this chapter are the objects of a Lagrangian kinematic
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modeling method that mathematically describes the deformation of a work

hardenable material as a function of time, relative to the path line.



Chapter III

ANALYTICAL PROCEDURE FOR MODELING REAL METAL DEFORMATION FIELDS IN
DIRECT TWO DIMENSIONAL COLD EXTRUSION OF ALUMINUM

INTRODUCTION AND ASSUMPTIONS

Real metal deformation fields shown in Figures 9, 10, and 11 are to
be modeled. The content of this chapter will show, by example for the
deformation field in Figure 9, how to use this kinematic information as
the basis for a mathematical model.
The presentation of the example follows these steps:
1. selection of a reference frame
2. selection of a reference continuum
3. determination of the path lines, time lines, and deformation
ellipses for the reference continuum in terms of the reference
frame for the geometry of Figure 9

4. determination of the kinematic variables in step 3 on the
computer and implementation of computer aided plots of these
variables in the format of the information shown in Figure 9

5. comparison of the plotted deformation field of the reference

continuum with the real metal deformation field

6. modeling of the real metal path lines

7. modeling of the real metal velocity field

8. modeling of the real metal deformation field using the models

from steps 6 and 7

9. implementation of the computer aided plots of the modeled real

metal deformation field.

Four assumptions are made:

1. The metal can be modeled by a continuum.

2. The continuum representing the metal can be modeled as

34
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incompressible for the large deformations encountered during
this two dimensional extrusion process.
3. The metal is bounded and follows the die geometry.
4. The flow is symmetric with respect to the center line.
The first assumption neglects the microscopic crystalline nature of

metals, while the second neglects changes in density. The third and

fourth assumptions limit the investigation to symmetric extrusion

processes where dead metal regions are not formed.

REFERENCE FRAME AND NORMALIZATION

The selected reference frame is the orthogonal curvilinear coordi-
nate system shown in Figure 12. The selected reference frame and the
reference continuum are directly related. The reference frame is the
result of the Schwarz Christoffel transformation for the general quadri-
lateral with two vertices extended. One of the extended vertices contains
a source and the other contains an equal sink and from the source to the
sink flows a perfect fluid. The perfect fluid is the selected reference
continuum. The complex analysis for this Schwarz Christoffel transforma-
tion is presented in Appendix C.

The generation of the Schwarz Christoffel transformation for the
geometry of Figure 9 starts with the extrusion geometry being transformed
to the upper Schwarz Christoffel half plane by conformal transformations
through the rationalizing plane. The solution for a perfect fluid flow-
ing in the transformed geometry is described by the conformal transform-
ation from the complex potential plane to the Schwarz Christoffel half
plane. Since conformal transformations of solutions remain solutions to

flow problems in the transformed geometry, the conformal transformation
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of the flow solution in the Schwarz Christoffel half plane to the physi-
cal plane is a solution to the flow problem in the physical plane. 1In
the complex potential plane, streamlines and potential lines are defined.
The images of a family of these lines in the physical plane results in

the orthigonal curvilinear lattice shown in Figure 12.
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Figure 12 Orthigonal curvilinear coordinate systems showing two
different spacings
The physical plane is shown in Figure 13. Due to the symmetry of
the extrusion process selected, only half of the flow field is needed for
completeness. The complex variable z is defined in terms of the normal-

ized physical dimensions of the extrusion billet (Figure 6),
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z = z1 + iz2 (8)
where
Z1 - X1/Xref ; z2 B XZ/Xref. (9
and
X g, = 1.2 inches/w (10)

With this definition the geometry becomes dimensionless. The inlet dimen-
sion becomes 27 and the distance to the center line becomes T, as shown
in Figures 12 and 13. 1In the limit upstream and downstream from the ta-
pered die section are the extended points A and D, while the tapered die

section is defined by points B and C in Figure 13.
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Figure 13 Physical plane

The derivative defining the Schwarz Christoffel transformation is in
terms of w, the complex variable defining the Schwarz Christoffel upper
half plane as shown in Figure 14. The derivative form of the transforma-

tion used for the extrusion geometry shown in Figure 9 is

i H(E:l>l/8

dw  w\w-H (11)
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The transformation defined by Equation (11) applies to all possible out-
let to inlet dimension ratios H, when the semi-die angle is 22.5° or m/8
radians. The images of the points defining the die geometry in the phys-

ical plane are shown in Figure 14.

) W PLANE

ANALYTIC REGIONS FOR
OTHER CONFORMAL
TRANSFORMATIQNS, SOURCE

7,5.P,Q

AN

Figure 14 The Schwarz Christoffel upper half plane where point D
is extended and contains sink

Equation (11) cannot be integrated directly, but by defining a new

variable
] w—HS 1/8 L
s=(e1) o a2
so that now
8 8
w=<—-————H — 88>’ (13)
1 - s

the Schwarz Christoffel transformation in terms of the rationalizing plane

becomes,

42 - gus® 1/ (1-s% - 7@t ) (14)
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The images of the points defining the die geo-

which can be integrated.
Equations (11),

metry in the rationalizing plane are shown in Figure 15.
(13), and (14) are conformal or define conformal transformations.
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S PLANE

Point C is extended.

Figure 15 The rationalizing plane.

The conformal transformation describing a perfect fluid flowing from

a source to an extended sink as shown in Schwarz Christoffel upper half

plane (Figure 14) is
V. Log w , (15)

o
1

(16)

or conversely
exp (p/VA) ,

€
1]

where the term VA is the normalized uniform velocity in the limit upstream

from the tapered die section,
VA = Actual Velocity/Reference Velocity (17)

where
Reference Velocity = 0.5 inches/minute (18)

" 2 2 ]
= log LA + W, + 16w

The term Log w (a complex function) is defined, Log w
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where 6 = tan_l(w /w,), 8 1is limited 0 < 6 < 7 for this problem, and
w 21 W w

log is a logarithm to the base e (2.7183...). The complex potential
plane is shown in Figure 16.
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Figure 16 The complex potential plane where Py equal to a constant

is a streamline and Py equal to a constant is a potential

line. Points A and D are extended.

The complex potential plane,

= + i
P Pl 1P2

can be interpreted as representing two important kinematic concepts for

the flow of a perfect fluid. The image of pl equaling a constant in the

z plane,

pl(zl,zz) = constant, (19)

is a potential line for the perfect fluid. The image of p2 equaling a
constant in the z plane,
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pz(zl,zz) = constant, (20

is a streamline for the perfect fluid. The potential function is defined
as that scalar function whose gradient defines the velocity field. Since
a conformal transformation conserves angular relations between lines, the
conformal transformation of a family of streamlines that are orthogonal
to the potential lines in the p plane remain orthogonal for the extrusion
geometry in the physical plane, =z.

Upon integration of Equation (14), the generation of the Schwarz

Christoffel transformation is finished. The integrated form is

)

, = / (= 1)1/2 + ¢ i)l/zLo i1/2H+s + iLogil¥s _ q Hts
- = 8“"‘“‘"—‘“ - o g — Log—
1/2 1/2 iH-s H-s
(-1) i H-s
1/2 1/2
-H [:illz gi—ilf7§—— + (-i)l/zLog—i7§——-+ 1Log~*— - Lo g%ii (21)
(-1)
L5 k- , where for the two possible values of 11/2 and (—i)l/2

tan 22.5°

the specific values required are

=V2/2 + iV2/2

and
)% - Nz/2 + V22,
Both values of il/2 and (—i)l/2 are in the upper half plane.

The Equations (12), (16), and (21) are combined to provide an expli-
cit closed form of the analytical expression for the conformal transform-

ation from the complex potential plane to the physical plane. Each point
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in the analytic region of the complex potential plane has a unique point
in the analytic region of the physical plane. Therefore, the conformal
transformation from the complex potential plane to the physical plane is
a coordinate transformation and the family of streamlines and potential
lines from the potential plane forms the basis of an orthogonal curvi-
linear coordinate system in the physical plane.

Three properties of this orthogonal curvilinear coordinate system
are explicitly used in this investigation. The first property used is
that boundaries and boundary conditions can be more economically de-
scribed in this somewhat more natural curvilinear coordinate system. For

example, the die shape is decribed by the expression,

The second property used concerns differentiation. Christoffel symbols
of the first and second kind are used when differentiating in general
curvilinear coordinate systems. The concepts and distinctions embodied
in Christoffel symbols for general curvilinear coordinate systems are not
required for differentiations in the two dimensional orthogonal coordi-
nate system shown in Figure 12. The third property used is the direct
relationship between the coordinate system and the kinematirs of the ref-
erence continuum.

REFERENCE CONTINUUM

The reference continuum selected is the perfect fluid; it is consid-
ered inviscid, incompressible and has only density, i.e., inertia. The
perfect fluid is an analytical concept and is conceived to flow steadily
in a symmetrically bounded channel as shown in Figure 12. This channel

is of similar geometry to the die configuration for the steady direct two
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dimensional cold extrusion of 6061-0 aluminum shown in Figure 9. The
extrusion of the aluminum is referenced to this flowing perfect fluid; in
essence, the flowing perfect fluid is the standard to which the actual
flow is compared. Any differences between the actual flow and the stand-
ard are the result of differences between:

1. the environmental or external influences

2. the process variables

3. the flowing materials.

Since the flow of the perfect fluid is steady, the path lines,
stream lines and streak lines are coincident. The stream lines for the
steady flow of a perfect fluid in the geometry of Figure 12 are described
by letting

p1 = constant,
in Equations (12), (16), and (21). These equations also describe the
path lines. The time lines are determined from the path lines when the

velocity with resﬁect to the path line is known. For the perfect fluid,

the velocity is defined by the conformal transformation

q = conjugate gg— . (22)

For the geometry of Figure 12 the expression for the velocity is,
q = (VA/H) conjugate (s). (23)

The velocity plane is shown in Figure 17 together with the images of the
points defining the die geometry. Equations (12), (16), and (23) direct-
ly relate the position on a path line to the velocity. The images of an
array of perfect fluid path lines in the perfect fluid velocity plane is

shown in Figure 18. The velocity at a particular position along a path
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line is determined by the coordinate values of that path line point in
the velocity plane. An example for a particular path line point is shown

in Figure 18.
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Figure 17 The velocity plane. Point C is extended.
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~

Figure 18 Images of an array of perfect fluid path lines in the
perfect fluid velocity plane
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PATH LINES, TIME LINES, AND STRAIN ELLIPSES

The path lines and time lines are related. For the discussion of
these relationships, the path and the velocities on the path lines are
assumed to be known. Experimentally the time lines can be identified
when the grid system is selected as discussed in Chapter II. The mathe-
matical expression for the time lines (two dimensional case) follows.

Let there be a velocity field. The curve
X = x(xl,xz) = constant (24)

identifies all particles flowing through or on that curve. The particle's

identity is assured if the position vector of that particle
R = R(t) (25)

is a solution to Equation (24) when time ¢t , is zero. That is, if

R = D(t) + R, (26)
where D(t) is the displacement vector, then_B(t) = 0 when t = 0 (27)

and RO is a solution to Equation (24).

The differential equation,

ar = Rd _ 48 (28)
IR
where
R = Ei/dt,
ds = R-dR/|R]| ,
and

<
1}
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together with the boundary conditions

S o= O (29)
Rle=0 = o (30)

defines the time function for this process. The specific RO associated

with a particle, identifies that particle's path. Time is a path function

as defined for this process and upon integration, time becomes,

t S
t = jg dt = ]5 as/v . (31)
Let the expression t = t(ﬁb,s) (32)

emphasize the path dependent nature of this time function. The expression
t(RO,S) = constant (33)

identifies the position of any particle on its path at some time equaling
a constant. The locus of these positions for all particles?f , is a time
line in continuum mechanics. Equation (33) is the mathematical expres-
sion for a time line. For a steady incompressible flow, the level curves
of this time function are identical with the concept defined by Equation
(6) in Chapter II. Equation (33) expresses the relationship between the
path lines, the velocities on the path lines, and the time lines.

The deformation ellipses are related to the path lines, time lines,
and the velocities on the path lines which are assumed to be known. As
shown in Figure 19 the identifying surface,

x(x = constant

1°%9)

is chosen normal to the flow direction. The differential length §, iden-

tifying the neighborhood of points about_ﬁb is small compared to the

radius of curvature characterizing the change in the path line and the

radius of curvature characterizing the change in the time line at RO.
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NORMAL TO THE PATH LINE

TIME LINE
t@,» =1

X(X].X;) = CONSTANT , PATH LINE
/ t®,.9 =0
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Figure 19 Schematic distortion of ellipse showing important parameters

These characteristic radii of curvature of the time line and path line
represent the magnitude of the second order differential geometrical
relations for the neighborhood of points. The differential length &, is
chosen to be small compared to these characteristic radii for an dis-
placement,js, of interest. That is to say that the changes in the rela-
tive displacements within this neighborhood are sensibly homogenous, are
of first differential order, and that these changes are described locally
by linear transformations. Within this neighborhood, by virtue of these
linear transformations, any straight line is transformed into a straight
line and any ellipse is transformed into an ellipse. These relative
displacements describe the strained neighborhood and the ellipses charac-

terizing the deformations are called strain ellipses.
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The descriptions of the strained neighborhoods proceed from the
x(xl,xz) = constant,

time equal zero surface. By definition, this is the zero strain state
surface. For two dimensional flow, the zero strain state ellipse is the
circle. If the zero strain surface is to represent all previous strain
history, the path lines and the velocities along the path lines must be
consistent with the motion of a rigid body previous to the intersection
of the path lines and the zero strain surface.

The condition of incompressibility assures that volume is conserved,
that is

LOAO = LlAl (34)

in terms of a differential length L, along the path line and a differen-
tial area A, normal to the path line. The subscripts 0 and 1 refer to
time t=0, and some later time t = tl, respectively. In terms of contin-

uity along the path line,
pVOAO =pViA - (35)
Since density is constant, from Equations (34) and (35),
L1/LO = V1/V0 . (36)

The strain ellipse at time t=0, is a circle and is transformed into
an ellipse at some later time t=tl. Relative to the path line, this
ellipse can be thought to have been formed by two transformations, an
elongation and a shear.

If the shear transformation is performed last, the shear angle and
the angle between the time line and the normal to the path line are the

same. The local coordinate systems, Figure 20, have the same scale as
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1’ %9 coordinates in Figures 9, 10, 11 and 19. The Cl’ nl, and ul

axis together with their respective unit vectors 11, m; and 0y are

the x

tangent to the path line. The CZ’ Nys and uz axis together with their

respective unit vectors are normal to the path line.

g, "
X(X},Xp) = CONSTANT
“T M LN PR = 0

TAE

o

=

Vi

3l

1A
T

H2  TIME LINE
— ¢

=3
n.

- €

2l

#y

MAJOR DIAMETER AXIS

MINOR DIAMETER AXIS

Figure 20 Local coordinate systems C and U; Intermediate
transformation coordinate system n

The ellipse at time, t = 0, is a circle,

=C 1 1
e=btl +5L, (37)
where
= 1
Cl Scos
Cz = dJsin %,
or
T = §(cos fll + sin le) . (38)
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The first transformation is a simple elongation with respect to the path-

line,

”1 = aTCl , (39)
n =
9 (1/aT)Z;2 .
The transformation constant is defined from Equation (36)
a, = L1/L0 . (40)

The second transformation is a simple shear with respect to the pathline

My = nl + anz s (41)
U= H
2 2
The second transformation constant is defined
b = tan ¢ , : (42)

where ¢ is the shear angle shown in Figures 19 and 20. The ellipse in

terms of the first transformation is,

e = 6(aTcos¢m1 + (1/aT)sin¢m2) . (43)

The final expression for the ellipse after both transformations is
e = 8 [(ajcost + (by/ap)sint)n + (1/ag)sintn, ] . (44)

Since the Jacobians for transformations represented by Equations (39)
and (41) are equal to one, the area of neighborhood § is conserved.
The semi-major diameter dl’ and the semi-minor diameter d2, of the

final ellipse as described by Equation (44) are
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4, , =\NB/FV? - )2,

b]

(45)

where d1 and d2 are defined by the minus sign and the plus sign respec-

tively and where
2 2 2
= + + .
c ap [(bT l)/aT] (46)
The angle Y from the path line to the major diameter axis is

Y = (w/8)F(L -0) (1 -5) + 1/2 arctan[ZbT/(a; + b% - 1)] (47)

where
I = bT/|bT| .

and r=1 when bT =0 |,
where 0 = (aT-l)/laT—l[
and 0=1 when ax =1 |,

- 4 2 4 2
where o= (aT + bT - 1)/[aT + bT - 1]

- 4 2 _
and = =1 when ar + bT =1.

The strain ellipse as described by Equations (44), (45), (46), and (47)
together with the angle of rotation O , of the path line relative to the

x., axis, is completely determined. This strain ellipse describing the

1
deformed neighborhood of points is completely determined for any shear
angle

-90° < ¢ < 90° ,

and any extension

0 < < o
&
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where 0 > a,, > 1 describes contractions with respect to the path line.

T

The maximum and minimum principal natural strains €1 and €, Te-

spectively, are defined

™
|

= log, (dl/G), (48)

and

e, = log, (dz/ﬁ). (49)

The El and 82 principal strain axes relative to the path line are de-

fined by ¥ and yY4m/2 respectively. The El and €, principal strain

axes relative to the fixed Xl axis are Y + Oand Y +6+7m/2 respectively,
as indicated in Figure 19. The natural elongation in the strained state

for any line at angle 4+ in the unstrained state is
€ = log, ([2]/8) (50)

where e is defined as in Equation (44).

The path lines, the velocities along the path lines, and the time
lines defined or discussed in this section are for general two dimension-
al continuous flows. The strain ellipse is defined relative to the path
line for general two dimensional incompressible flows and these kinematic
concepts describe the flow from a Lagrangian point of biew.

COMPUTER IMPLEMENTED MODEL OF PERFECT FLUID DEFORMATION IN THE SELECTED
SELECTED REFERENCE FRAME

Since the path lines and the velocities along the path lines are
known for the steadily flowing perfect fluid in the geometry of Figures
12 and 13, the kinematic variables from a Lagrangian point of view for
this flow are defined. The purpose of this section is to present the
method of evaluation and the method of graphically representing these

kinematic variables. The digital computing facilities at the University
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(41)

of Michigan are used to implement the evaluation and graphical pro-
cedures. This presentation is limited to the algorithms used and the
results of these algorithms; however, the program listings and example
non-~graphical output are presented in Appendix D. This manner of
presentation is used for all computer aided procedures presented in the
text of this dissertation.

The incremental array of perfect fluid path lines used to define
the time function is shown in Figure 21 where the time function for the
flow field is incrementally defined by numerically integrating Equation
(31) along each perfect fluid path line in the array shown. The index
I identifies the particular path line, while the index J identifies the
particular position along each path line. Each point on a path line
has an image in

1. the physical plane, z(1,J)

2. the complex potential plane, p(I,J)

3. the Schwarz Christoffel half plane, w(I,J)

4. the rationalizing plane, s(I,J)

5. the velocity plane, q(I,J).

The path lines (stream lines) are defined in the complex potential

plane,

p,(1) =0

p,(2) =K,

PZ(I) = N(Kz) + Kl (51)
where N =1I-2 , and I =3, . . ., 25
resulting when I =25,

in p2(25) = VAﬂ
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Semi-die angle: y = 22.5° Outlet to inlet

dimension ratio: H = 0.549

Reduction in area: R = 0.451

Figure 21 Incremental array of perfect fluid path lines used to
define the time function in the physical plane
The resulting path lines from this definition correspond to dividing the
experimental streamtubes in Figure 9 into fourths in the limit up and
down stream from the tapered die section. Every fourth path line de-
fined by Equation (51) corresponds with an experimental path line in the
limit up and down stream. The positions along the path lines are also

defined in the complex potential plane,

pL(D) = P} (D) + MK,

where
» 41 . (52)
When J = 1,

t
P (1) = p (D)

The index, I, in pl(I) identifies the starting point along each path
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line as being uniquely determined for that path line. The pl(I)'s are
determined by the intersection of the time equaling zero line in the
physical plane with the perfect fluid path lines. The time equaling zero
line for the perfect fluid is chosen to correspond to the experimentally
selected time line between circles numbered 199, 200, . . ., 209, 210 and
circles numbered 217, 218, . . ., 227, 228 in Figure 9. This selected
time line facilitates the comparison of the perfect fluid deformation
field with the real metal deformation field. The points plotted in

Figure 21 are defined
z(1,J) = z(p(I,J)) (53)

indicating the functional character of this definition. Path lines are
represented by the straight line segments between the images of path line
points in the physical plane as shown in Figure 21.

The velocity of the perfect fluid particle at each point in Figure

21 is defined
q(1,J) = q(p(1,1)). (54)

Equation (54) defines the images of the perfect fluid path lines in the
velocity plane, (See Figure 18.) As in Equations (51), (52), and (53),
the index I identifies a path line and the index J indicates a position
along the path line. Functional subprograms are defined for the func-
tions as represented by Equations (53) and (54), (See ZF and QF, Sub-
programs, Appendix D.) An increment of time is defined using the trape-
zoidal rule between points on a path line z(I,J) and z(I,J+1), (See DT,

Subprograms, Appendix D.),
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At = 1/2[(1/|q(1,J)|) + 1/ ]q, 3+ ][|2(1,94) - 21,0 ] . (59

Starting with t(I,1) = 0 and summing the time increments along the
incremental perfect fluid path line, each point on the path line z(I,J)
is assigned a time t(I,J). Upon integration along the entire array of
incremental perfect fluid path lines, the time function for the steady
flow field is determined for the array shown in Figure 21.

A new variable is employed to determine the level curves of this

time function. The new variable defined for the flow field is

it(I,J) = integer (t(I,J)/At), (56)
where

At = VAﬂ/lz

if twice as many level curves are desired as those shown in Figure 9.
This conversion from a real number to an integer drops all digits after
the decimal. While traveling downstream on path line I, if
it(I,J) + 1 = it(1,J+1),
the time function has acquired the value
t = NAt
where N = it(I,J+1)

in the interval between z(I,J) and z(I,J+1). The position

| £ - t(1,0) _
z(I,K) = [t(I,J+1) = t(I,J)J [2(1,3+1) - z(1,J) ] (57)

+ 1,J
where z(1,9)

K = it (1,J+1),
is defined at the location where the time function t = NAt, (See RINT,

Subprograms, Appendix D.) That is to say that the position z(I,K) is
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determined by the linear interpolation with respect to time along the
straight line segment between z(I,J) and z(I,J+1), and the index K iden-
tifies the position where level curve K intersects path line I. All
values of t(I,J) are examined in this manner, which determines the array
of positions z(I,K). The index K is thus associated with particular time
lines. The time lines are represented by straight line segments between
the images of time line points in the physical plane as shown in Figure

22.

L -—1=38

Z(1,K+D)

- | =

z(I,K) are time line segments, when K is constant

z(I1,J or K) are path line segments, when I is constant

Figure 22 Example array of z(I,J) and z(I,K) positions

An example array of z(I,K) and z(I,J) positions is shown in Figure
22, where time lines are defined for z(I,K) when K is a constant integer,
and path lines are defined for z(I,J) or z(I,K) when I is a constant
integer. 1In the limit up or down stream from the tapered section the
I =5 and the I = 9 perfect fluid path lines are straight and correspond
to the first and second experimentally selected path lines in from the
wall as shown in Figure 9. The perfect fluid time lines K=2 and K=4
correspond to the same time line increment as shown in Figure 9. There
are twice as many perfect fluid time lines as experimentally selected

time lines. The additional time lines are used to determine
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strain ellipses. 1In Figure 22 the solid lines correspond to those selec-
ted experimental lines shown in Figure 9.

To implement the computer aided plots of the time lines and the path
lines in the format of those kinematic variables shown in Figure 9, every
fourth perfect fluid path line and every other perfect fluid time line is
plotted, (See Perfect Fluid Deformation Field Computation and Plot, Ap-
pendix D.) The plotting is done on a CALCOMP 780/763 digital plotter
from plot descriptions generated on the IBM 360 model 67 computer at the
University of Michigan.(éz)

The perfect fluid deformation field resulting from the computer

aided plot is shown in Figure 23; this field includes strain ellipses.
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Figure 23 Perfect fluid deformation field
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Each strain ellipse is plotted using similar information as that repr~ -
sented in Figure 22, together with the velocity vector at the center of
the deformed squares. In Figure 22 the center of the deformed square is
z(I,K) = z2(7,3)
and the velocity vector in the complex form is
Q(1,K) = q,(7,3) + 14,(7,3)

The inclination of the path line to the z, axis at point z(I,K), (Angle

1
© , see Figure 19.) is determined from the velocity vector, since this

vector is tangent to the path line at point z(I,K). The elongation ratio
"

all

(the transformation constant T

, Equation (40)) is determined from the

velocity q(I1,K),
ap = Iq(I,K)l/VA . (58)

The tangent to the segmented time line at z(I,K) is represented by the

directed time line segment in complex form,
z(I+1,K) - z(I-1,K) = z(8,3) - z(6,3) (59)

The angle between this directed time line segment and the normal to the
path line at z(I,K) is shear angle ¢ . From the shear angle ¢, the

transformation constant is determined,

by = tan ¢ . (42)

The untransformed radius &, is selected to represent strain ellip-
ses intermediate in size between those strain ellipses that would result
from the concentric circles in the selected grid system discussed in
Chapter II. The collection of strain ellipses plotted at the centers of

the array of deformed squares is shown in Figure 23. The major and minor
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diameters together with the major diameter axes are determined from Liie
representative array of points associated with each deformed square in a
manner analogous to the example for the array of points shown in Figure
22. This collection of strain ellipses is an incremental representation
of the strain field for the flowing perfect fluid. The kinematic varia-
bles for the steadily flowing perfect fluid, i.e., (1) the path lines,
(2) the time lines, (3) the strain ellipses are presented in Figure 23 in
the same format as the experimentally determined kinematic variables of
the real metal deformation field shown in Figure 9. Both this analytical
and the experimental deformation fields are defined and interpreted from
the Lagrangian point of view.

COMPARISON OF THE DEFORMATION FIELD OF A PERFECT FLUID WITH THE
DEFORMATION FIELD OF A REAL METAL

The deformation field of Figure 23 is superimposed on the deforma-
tion field of Figure 9 in Figure 24. The composite in Figure 24 allows
the perfect fluid deformation field to be compared to the real metal
deformation field of 6061-0 Aluminum. The selected time equaling zero
line for the perfect fluid corresponds to the line between circles num-
bered 199, 200, . . ., 209, 210 and circles numbered 217, 218, . . .,
227, 228 of the real metal deformation field. This selected time line
does not define a zero strain state for the perfect fluid, since the
motion of the perfect fluid is not entirely consistent with that of a
rigid body previous to the selection time line. However, the selected
time line can be said to identify both perfect fluid particles and real
metal particles at equal time intervals and at the same location in the
flow field. Subsequent deviations in location between the real metal

time lines and the perfect fluid time lines as shown in Figure 24
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represent the kinematical differences in the flow fields. The time in-
crements in the perfect fluid deformation field have been corrected to
account for the effect of foreshortening in the real metal deformation

field, (See Table V.),

At corrected = LAt. (60)

NN TN ,_/\\“
(164 Ej\ @\@ .m 6

(@)efe] O
(@le)e)
@OG® 0

@

@@@
®

@©@©E©
0006
@).g@

DOWNSTREAM

Semi-die angle: Y = 22.5O Reduction in area: R = 0.276

Outlet to inlet
dimension ratio: H = 0.724 Material: 6061-0 aluminum

Figure 24 Perfect fluid deformation field superimposed on the real
metal deformation field. (Note that the real metal
deformation field has numbered ellipses.)
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The perfect fluid flows steadily with a velocity field that is de-
secribed as irrotational, whereas the real metal flows steadily in this
extrusion process with a velocity field that is described as rotational.
Whether a velocity field is rotational or irrotational depends on the
vorticity of the velocity field. The vorticity is defined by the vector

operator,

W= 1/2 curl(V) (61)

—

where V 1is a general velocity field. For an irrotational velocity
field the vorticity is everywhere equal to zero. Since vorticity is de-
fined at a point fixed in space, vorticity is defined from an Eulerian
point of view.

From a Lagrangian point of view the effects of the rotationality of
the real metal velocity field manifest themselves in the deviations be-
tween the families of time lines and path lines of the real metal defor-
mation field and those same families of lines in the irrotational perfect
fluid deformation field. The measure of rotationality for the real metal
flow field is selected to be the deviations of the real metal path line
from the perfect fluid path line, when both path lines would be coinci-
dent in the limit upstream and downstream from the tapered die section.
The effects of the rotationality are now defined as a function of time
along the real metal path line and therefore, the selected measure of
rotationality fulfills the requirements of a Lagrangian measure.

The environment of the extruding aluminum is that of a cold extru-
sion, i.e., the 0.5 inch per minute ram speed results in a negligible
increase in billet temperature above room temperature. The environment

of the perfect fluid is conceptual and is assumed to be compatible with
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that of the extruding aluminum, i.e., the perfect fluid flows steadily
in a similar geometry. The flowing aluminum is subject to frictional
effects at the die and container walls, but the flowing perfect fluid is
inviscid. Aluminum has all the properties of a metal, e.g., density,
hardness, yield strength, shear strength, tensile strength, elasticity,
ductility, etc. With respect to the large deformations encountered in
this extrusion process, the aluminum is assumed to be incompressible and
though the flowing perfect fluid is inviscid, it is also incompressible
with density. Therefore, within the given extrusion environment,

relations between the frictional effects and those metallic properties
other than density and incompressibility which can account for the

deviations between the families of path lines, remain to be determined.

MODELED REAL METAL PATH LINES

The Lagrangian model of the real metal flow field requires that the
real metal path lines are modeled. To accomplish this, these lines are

described in terms of the normalized complex variable r, where

r = rl + 1r2 (62)

Real metal path lines are defined when,

r, = constant (63)

and the position along a real metal path line is determined by a value of
rl. Figure 25 shows the schematic relationship between the perfect fluid
path lines, the real metal path lines, and the perfect fluid potential

lines.
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The explicit relation,
z = z(p)
is defined by Equations (12), (16), and (21), while the explicit relation

between the r plane and the complex potential plane p , is

p = p(r) (64)
where
Pl = rl s
and
P, = pz(rl,rz)
or

Py r, + AP . (65)

The flow of a real metal is rotational during the extrusion process and
no conformal representation can exist for the path lines (stream lines)
of a steady rotational flow. Thus, Equations (64) and (65) are not con-
formal representations of the transformation from the r plane to the
p plane.

The real metal path line and the perfect fluid path line are coinci-
dent at the center line, at the die wall, and in the limit upstream and
downstream from the tapered die section (See Figure 24.) That is,

pz(rl,rz) has the following constraints:

lim p(r yLo) =T s
T+ 4o 2 71’72 2
(66)
lim p,(r,,r,) =V.m ,
r, +VAW 2V°1°72 A
and
lim pz(rl,rz) = (.

r2—>O
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1f p2(r1,r2) is expressed by Equation (65), AP must be equal to zero at
the center line, at the die wall, and in the limit up and downstream from

the tapered die section. That is, AP has the following constraints:

lim AP =0,
Ty 7> Feo (67)
lim AP =0,
r2'+VA>W
and
1im AP =0 .
r2 >0

The functional notation

p = p(r)
implies a corrdinate transformation which, if it is to be unique, i,e.,
one-to-one, the following constraint must be met. As r, increases mono-

2

tonically from O to VAﬂ s pz(rl,rz) must increase monotonically from O

to VATr for any value r That is, from Equation (65),

1
sz(rl,rz)/ar2 > 0 (68)

or

BAP/Brz >-1.

Equations (66), (67), and (68) express constraints on the functional re-
lation,

p = p(r).

Let AP = [Pz(rl»rz) - Pz(l)]'rl = constant (69)

where

p, (1) = 1lim p,(xr.,r,) =1, .
2 e 12 12 T

This definition of AP satisfies constraint Equation (67). The perfect
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fluid path line p2(1), is coincident with the real metal path line Ty
in the limit up and down stream from the tapered die section. AP is mea-
sured along the perfect fluid potential line, since

Py =T -
The perfect fluid potential line P> is orthogonal to the perfect fluid
path line p2(l). AP represents the difference in position in the complex
potential plane between the real metal path line r,, and the perfect
fluid path line pz(l). Therefore, APis the selected Lagrangian measure
of rotationality for the real metal velocity field of this extrusion
process.

AP is defined in the complex physical plane and the coordinate sys-
tem shown in the right-hand side of Figure 12 facilitates the determina-
tion of positions in the physical plane in terms of complex potential
plane coordinates. Since every fourth perfect fluid path line in Fig-
ure 12 is coincident with the real metal path lines of Figure 9 in the
limit up and down stream, when the incremental array of real metal path
lines in Figure 9 is superimposed on the right-hand coordinate system of
Figure 12, the values of AP can be experimentally determined.

Deviations of the real metal path lines from the perfect fluid path
lines as shown in Figure 24 have a regular pattern on traveling down-
stream. The real metal path line first deviates toward the die wall and
then deviates toward the center line. 1In Figure 26 is shown a schematic
plot of these regular deviations in terms of the experimentally deter-

mined AP's. The model selected for the experimental AP's has the form,

AP = A - B, (70)
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2
where A =8/ 4 o1y 71)

2
B/(b(rl—B) + ecz(rl*B))_ (72)

and B

Modeling AP 1is equivalent to modeling the real metal path lines.
AP

AP, Fo2

O O O O EXPERIMENTAL DATA

MODELED A P
I, = CONSTANT
2 AP,
A A 1 1
4.0 -2.0 r
1 1
WQF%N
ZXT%N - 0.1

Figure 26 Schematic representation of the difference between the
perfect fluid path lines and the real metal path lines AP.
The synthesis of function A is diagrammed in Figure 27. The four cu-

efficients A, a, o, and c, are closely related to different geometric

1
properties of the nonlinear function A. The coefficient A , is closely
related to the maximum value of A and the coefficient a , is closely

related to the decay for increasing values £y from the maximum in the
function A. The coefficient « , is closely related to the location s
of the maximum in the function A , while the coefficient <1 is related
to the skewed symmetry of the function A . The function B is similar

to the function A except for the opposite sign in skewed symmetry term.

When the coefficient B , is less than the coefficient o , the synthesis

of the model for AP is shown in Figure 28.
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Figure 28 Schematic synthesis of function A P ,

Since AP = AP

and

(64)

(73)
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Alternate models exist for the experimental AP's, but the relative
accuracy of these models is not within the scope of this investigation.
The accuracy of the selected model isassayed by comparing the real metal
deformation field with the resulting modeled real metal deformation
field.

The coefficients for Apm are determined from the location of the
four expermientally determined points APma s Apmin’ 1/3APmaX, and

X

l/BAPﬁin as shown in Figure 26, together with the constraints that

dd P =0 (74)
rl Apmax
dA P
and ml = 0. (75)
dr AP .
1 min

When Equation (73) is evaluated at the four experimental points, and when
Equation (74) and (75) are evaluated at APmax and APmin respectively,
the resulting six nonlinear equations can be solved for six of the eight
coefficients in APm, if two of the coefficients are known. The skew
symmetric coefficients o and c, are selected to meet two criteria. The
first criterion is that the nonlinear equation solving algorithm used in
the computer program converges, (See Experimental Modeling Coefficients
Computations, Appendix D.) whereas the second is that the resulting APm
is representative of the flow field. The decision with respect to the
satisfaction of the second criterion is made by comparing the resulting
modeled real metal deformation field with the real metal deformation
field; a schematic representation of the modeled AP's, APm, is shown in
Figure 26. The selected skewed symmetry coefficients < and c, are

geometrically most closely related to the fit of the model APm,

between A Pmin and A Pmax‘
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The nonlinear equation solving computer program is typical in that
an initial estimate of the resulting model coefficients must be made.

If the initial estimate is not sufficiently close to the final result,
the computational algorithm may not converge. The geometric relationship
between the experimental values of APand the model coefficients is useful
in making the initial estimates of the model coefficients. After some
experience is gained with the successful solution of the set of nonlin-
ear equations, plots of the resulting coefficients versus their most
closely related geometrical properties are additionally useful in making
initial estimates.

The experimental points for determining the model coefficients for
the five interior path lines of the real metal deformation field in Fig-
ure 9 are tabulated in Table VI. The resulting coefficients A, a, Q,

B, b, and B from the nonlinear equation solving computer programs are
tabulated in Table VII, when the selected skewed symmetry terms have
values

= (4/TT)r2+l and c, = (4/TT)r2+3.

‘1 2

The modeled coefficients are a function of the real metal path line, r,.
In Figure 29 the model coefficients are plotted as a function of the path

line, - These five interior values for the model coefficients are

calculated from experimentally determined information. The values of the

= 0 and at the center line, r_ =T

model coefficients at the die wall, r 9

2
are not determined directly from the experimentally evaluated AP's, but
since AP is equal to zero at the die wall and center line, to insure that
the modeling deviations A Pm’ are also equal to zero, the values of the

model coefficients A and B are extrapolated to zero at the die wall and

center line, (See Figure 29 and Equations (70), (71), and (72).) With
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these extrapolations on model coefficients A and B, the model deviation
function APm, meets constraint Equation (67). The die wall value of
o and B are determined by a linear extrapolation of the first two exper-
imentally determined coefficients adjacent to the die wall. The other
extrapolated values of the model coefficients at the die wall or the
center line are set equal to the value of the coefficient adjacent to the
die wall or center line, respectively. The resulting modeled deviations
A Pm now meets the constraint equations and the extrapolated coeffi-

cients form a completed set.

TABLE VI

EXPERIMENTAL POINTS FOR DETERMINING MODEL COEFFICIENTS

R = 0.276
Die Geometry: H=0.724

Y = 22.59
Material: 6061 aluminum
Normalized Upstream Velocity: VA = 1.0
Lubrication: (See Lubrication, Chapter II)

T APmax r. (APmax) APmin r., (APmin) r_ (1/3APmax) r,(1/3
2 1 1 1 1
APmin)

0.468 0.100 -0.320 -0.0240 -2.733 0.980 -4.033
1.003 0.160 -0.670 -0.0263 -2.983 0.698 -4.283
1.538 0.173 -0.980 -0.0243 -3.109 0.455 -4.409
2.072 0.140 -1.220 -0.0221 -3.203 0.283 -4.503

2.607 0.077 -1.450 -0.0166 -3.210 0.120 -4.510
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TABLE VII

MODEL COEFFICIENTS

R = 0.276
Die Geometry: H = 0.724
Yy = 22.5°
Material: 6061-0 aluminum
Normalized Upstream Velocity: VA = 1.0
Lubrication: (See Lubrication, Chapter II)
Experimental Points: (See Table VI)
Skewed Symmetry Coefficients: ¢ = (4/ﬂ)r2+l, c, = (4/ﬂ)r2+3
T, A a a B b B
0.468 0.155 1.513 -0.939 0.0407 1.421 -1.945
1.003 0.222 1.421 ~-1.315 0.0387 1.430 -2.264
1.538 0.223 | 1.371 -1.614 0.0324 1.442 -2.467
2.072 0.172 1.338 ~-1.830 0.0271 1.465 -2.656
2.607 0.090 1.313 -2.033 0.0196 1.480 -2.712

An interpolative definition of the modeled real metal path line for
any path line desired is defined using the complete set of model coeffi-
cients. Interpolation by piece-wise cubic splines is the method of ap-
proximation used to define the model coefficients between experimentally
calculated values for any value of real metal path line, (See Cubic
Spline Fit, Appendix D.) The resulting cubic splines are plotted in Fig-

ure 29. The interpolated model coefficients equal the experimentally



74

4

9

9uTT yjed [e3lsW TEI1 SNSIA SJUITDOTIIS0D [9POW 67 2In31g

autTl yzed ‘<z

INIT ¥3INTD 1IvM 31Q
u /4 0
T T T T 00°'0
b
— 00'T-
%
q D — 00°¢-
¢
g — 00°¢-
— 00'h~
00°S-
sutT yaed ‘<z
INIT ¥3INTD 1M 31a
4 /u 0
T T T T 00°0
NOILY10d¥3INT 3NITdS 219n) 3ISIM3IIILd
SIN3I2144300 @iviodwitxd O
SINIID144300 @NIWY3LIC ATIWINIWIYIdX3 O 0T
D
K
X 3
q

00'¢

4

4w/

Z

T+ A&/ !

J 'SIN3IDIIFA30D  AYLIWWAS @IMINS

u

(IA 37a¥L 33S) SINIOd TYINIWINIX3

(1T ¥31dYHD NOILYII¥ENT 33S) *NOILWII¥EAM
0'T = "A :ALI20T3A WYIALSAN IZITVWION
WONIWNTY 0-T909 *TVIYILVW

920
hz/'0
05'%

3
H
A TAY13W039 31Q

INIT ¥3INTD

4

(e}

)

[

D

(=

S3us

4

AAQKHLVNQQ+NAQ|ﬂLVQV\m - :U-ﬂ-i.um,«mﬁu:,:vov\‘q +
aurt yaed *a
i/

T T T T T

t-4
TIwm 21d
0
@ 060
40T
— 02'0
050

s3u3



75

determined and extrapolated values of the model coefficients when the
selected real metal path line coincides with one of the experimental path
lines in Figure 9. The interpolated model coefficients are continuous
and possess continuous first and second derivatives with respect to Tys
the functions representing a perfect fluid are continuous and their
derivatives of all order are continuous. The modeled deviation function
A Pm, is continuous and its derivatives with respect to rl of all order
are continuous, therefore, the modeled real metal path lines are contin-
uous and the partial derivatives of this model are continuous at least
through the second order. The modeled path lines meet the requirements
for a continuum.

The model coefficients and the first derivative of the model coeffi-
cients with respect to any value r, are defined by a subroutine subprogram
DCONS (See DCONS, Subprograms, Appendix D.) This subprogram returns
values of the model coefficients and their derivatives when given a
value of the real metal path line . With the model coefficients for
a real metal path line, the functional subprogram RM, (See RM, subpro-
grams, Appendix D.) returns the pz(rl’rz) value for the modeled real

metal path line when r, is given. The functional subprogram RM is the

1
computer implementation of Equation (73). The subroutine subprogram
DCONS and the functional subprogram RM are the digital computer methods

employed to model the real metal path lines.

MODELED REAL METAL VELOCITY FIELDS

The Lagrangian model of the real metal flow field requires the
velocity of the metal particles along their path lines but the velocity
of a real metal particle is not directly observable with the split bil-

let techneque. For steady flows, the path lines and stream lines are
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coincident and when the path function equals a constant, a path line is
defined. For a steady flow, the path function and stream function are
identically equal and for incompressible, two dimensional and possibly
rotational flows, the stream function defines the velocity field. 1In

terms of the path function for the steadily flowing aluminum, the real

metal velocity field has the form in the physical plane,

or or
- 2T
v = 822 kl

N

|

ky - (76)

QL
[

Z

The coordinate transformations defined for the z, w, s, p, q, and r
planes are unique in each plane for the representative image of the die
cavity. Therefore, Equation (65) implicitly defines the unique func-
tion,

r, = rz(pl’pz),
and Equations (12), (16), and (21) implicitly define the unique func-
tional relatioms,

p; = py(2152,)
and

Py = Py(2),2,).

Now the partials in Equation (76) can have the forms

ar2 ] ar2 apl . 8r2 sz (77)
822 Bpl 322 8P2 822

and
Brz arz Bpl Brz BPZ (78)

5z, ~ Op, a2, @ b, 9%,
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Let "e‘q =3/]q] (79)
and 'Eﬁq = k3x€§, (vector cross product) (80)

where'E; is the unit normal to the z plane. Then using the Cauchy Rei-
mann conditions on the conformal relationship between z and p planes,

together with Equations (77) through (80), Equation (76) becomes,
|2 - 2T ) . (81)

Equation (8l) is expressed in terms most closely related to the selec-
ted reference frame. When T, is the modeled real metal path function,
Equation (81) represents the modeled real metal velocity field.

If the modeled real metal velocity field is to be evaluated as a
function of position along the path line, the expression for—a} arz/apz,
and grz/apl must be expressed as functions of position along the modeled
real metal path line. Upon selection of a modeled real metal path line

Ty and position along this path line r DCONS together with RM returns

1’
the image of this real metal particle in the p plane. From this image

in the p plane, the subroutine QF returns the velocity q, of a perfect

fluid particle at this position. Since Equations (64) and (73),
=r (64)
p, =T, + AP (r;,1)) (73)
implicitly define,
5 = Ty(P15Py)s

the partials arz/ap1 and arzlapz, must be evaluated by the techniques
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for partial differentiation of implicitly defined functions. The sub-
routine subprogram PDPRM (See PDPRM, Subprograms, Appendix D.) returns

the values for these two partials, when r 9> the model coefficients,

1t
and the derivatives of the model coefficients are given. The subroutine
subprogram DCONS that has been called to evaluate ¢, established the
values of the model coefficients and their derivatives. From the re-
sults of DCONS, RM, QF, and PDPRM the functional subprogram VF (See VF,
Subprograms, Appendix D.) returns the value for Equation (81).

Equation (81) expresses the velocity of a real metal particle in
terms of the deviation in the velocity of the real metal particle from
the velocity of a perfect fluid particle at the same point. These devia-
tions are the direct consequence of the deviations between the modeled
real metal and the perfect fluid path lines and the possibly rotational

character of the real metal velocity field at the specific point. Since

the real metal path line has the implicit form,
= A
p, = 1, + OP(r;,1,) (65)

the deviations in velocity between a real metal particle and a perfect
fluid particle at the same point are directly related to the Lagrangian
measure of rotationality AP, selected for these steady flows.

The images of an array of modeled real metal path lines in the
modeled real metal velocity plane are shown in Figure 30. The velocity
at avparticular position along a path line is determined by the coordi-
nate values of that modeled path line point in the modeled real metal
velocity plane. An example for a particular path line point is shown in
Figure 30, while the images of an array of modeled real metal path lines

in the perfect fluid velocity plane are shown in Figure 31.
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1,381

Semi-die angle: Yy = 22.5° Reduction in area: R = 0.276

Outlet to inlet Material: 6061-0 aluminum
dimension ratio: H = 0.724 ¢, = (4/H)r2+l, c, = (4/ﬂ)r2+3

Figure 30 Images of an array of modeled real metal path lines in
the modeled velocity plane

lq2
q2
1.381 '
Semi-die angle: Yy = 22.5° Reduction in area: R = 0.276
Outlet to inlet Material: 6061-0 a luminun
dimension ratio: H = 0.724 ¢ = (4/ﬂ)r2+1, c, = (4/w)r2+3

Figure 31 Images of an array of modeled real metal path lines in
the perfect fluid velocity plane
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The differences in Figures 30 and 31 are the results of the modifying
partials in Equation (81); the curves shown in Figure 30 are computer
generated, (See Modeled Real Metal and Perfect Fluid Velocity Hodograph
Plots, Appendix D.) The functions defining the modeled real metal velo-
city field are continuous; however, differentiation of functions such as
A Pm which have experimental input tends to magnify experimental errors.

Finite deformations for the modeled real metal flow field can be
defined in terms of integrals of strain rates. Strain rate equations
require differentiations of the velocity field. This information has
included an additional magnification of experimental error with respect
to AF&. The time line method for determining finite deformations uses
a single integration of the velocity information and integration is a
smoothing process. Finite deformations defined by the strain rate me-
thod are the result of smoothing operations on information that has a
double magnification of experimental error with respect to APm when
compared to finite deformations defined by the time line method.

Constraint Equation (68) insures the uniqueness of the coordinate
transformation between the p and r planes.
Since

Py = I (64)

then

9r2
8P2/8r2 = l/g{)— ’
2

now constrain Equation (68) can be reformulated,

Brz
—= > 0. (82)
'BP?_
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Upon inspection of Equation (81), Equation (82) can be interpreted as
constraining the velocity of a real metal particle to having a component
of velocity in the same direction as a perfect fluid particle at the same
point. The subroutine subprogram PDPRM that returns the partial deriva-
tives of the modeled real metal path line is used to check to see that
constraint Equation (82) is satisfied for the array of points used to de-
fine the modeled real metal deformation field in the next section.

COMPUTER IMPLEMENTED MODEL OF REAL METAL DEFORMATION FIELDS

Now the deformation field for the real metal can be modeled. The
computer implementation for the deformation field of the modeled real
metal is analogous to the computer generated deformation field of the
perfect fluid. An incremental array of modeled real metal path lines is
used to defined the time function. The time function is defined by inte-
grating scalar Equation (31) along each modeled real metal path line of

the array. The modeled real metal path lines are defined,

r2(l) =0
r2(2) = Kl (83)
rz(I) = N(K2)+K1
where N = I-2, and I = 3, .y 25
resulting when I = 25,
r2(25) =T
since VA = 1.0 for the real metal flow. The constants Kl and K2 are the

same as in Equation (51). Therefore, in the limit up and down stream
the modeled real metal path line array is coincident with the perfect
fluid path line array defined by Equation (51). The index I identifies

a particular modeled real metal path line.
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The positions along the modeled real metal path lines are defined,
- 1]
rl(J) = rl (1) + M(K3) (84)

where M = J-1 and J =1, 2, . . ., 41 and the constant K3, is the same as
in Equation (52). 1Index J identifies a position along a path line. When
J =1,
_ \]
rl(l) r (1).
The index I in ri (I) identifies the starting point along each path line

as being uniquely determined for the modeled real metal path line. The

1 (I)'s are determined by the intersection of the time equaling zero

r
line in the physical plane with the real metal path lines. The time
equaling zero line for the model real metal is chosen to correspond to
the experimentally selected line between circles numbered 199, 200, . . .,
209, 210 and circles numbered 217, 218, . . ., 227, 228 in Figure 9.

This selected time line facilitates the comparison of the modeled real
metal deformation field with both the real metal and the perfect fluid
deformation fields in Figures 9 and 23 respectively. The perfect fluid

points plotted in Figure 21 have an analog with respect to modeled real

metal points when the points in the physical plane are defined,
z(1,J) = z(r(1,J)). (85)

Equation (85) indicates that the plotted points are defined for a mod-
eled real metal. The path lines are represented by straight line seg-
ments between images of modeled real metal path line points in the phys-
ical plane. Equation (83) and (84) together with computer subprograms
DCONS, RM, AND ZF define the modeled real metal path line points, (See

Real Metal Deformation Field Modeling Computation and Plot, Appendix D.)
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The velocity of the modeled real metal particle at each point de-

fined by Equation (85) is defined
v(I,J) = v(r(1,J)). (86)

As in Equations (83), (84), and (85), the index I identifies a path line
and the index J indicates a position on a path line. v(I,J) is defined
using the information needed to evaluate Equation (85) together with sub-
programs PDPRM and VF.

An increment of time is defined,

ac = 1/2[Q/|v@n)) + @/|va,m#n))]x (87)

['Z(I,J+1) - z(I,J)l]

Starting with time equaling zero and summing the time increments along
each incrementally modeled real metal path line, every point in the array
z(I,J) is assigned a time t(I,J). The times t(I,J) are converted to inte-
gers, and the time lines z(I,K) are determined in a completely analogous
manner to those for the perfect fluid. To implement the computer aided
plots of the time lines and path lines of the modeled real metal in the
format of those kinematic variables shown in Figure 9, every fourth mod-
eled real metal path line and every other modeled real metal time .ine

is plotted, (See Real Metal Deformation Field Modeling Computation and
Plot, Appendix D.)

The modeled real metal deformation field resulting form the computer
aided plot is shown in Figure 32. This deformation field includes strain
ellipses. From the time lines, velocity fields, and the path lines are
determined the transformation coefficients for a given strain ellipse.

That is to say that the strain ellipses are determined and plotted in a
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completely analogous manner to those for the perfect fluid. This coilec-
tion of strain ellipses shown in Figure 32 is an incremental representa-
tion of the strain field for the modeled real metal. The kinematic vari-
ables for the steadily flowing modeled real metal, i.e., (1) the path
lines, (2) the time lines, (3) the strain ellipses, are presented in Fig-
ure 32 in the same format as the experimentally determined kinematic var-
iables of the flowing real metal shown in Figure 9. Both the mathematic-
ally modeled and the experimentally determined deformation fields are
interpreted from a Lagrangian point of view. The entire kinematic effect
of a real metal steadily flowing with friction is represented by analy-

tical manifestations of the modeled deviations, A P
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Figure 32 Modeled real metal deformation field
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SLIP LINE GENERATED DEFORMATION FIELD

S1lip line field theory applies to non-homogeneous plane strain de-
formations of a rigid-perfectly plastic isotropic solid. A perfectly
plastic solid has a constant yield strength so clearly this theory does
not apply to the extrusion of the work hardening 6061-0 aluminum described
in this dissertation. However, the deformation field of a perfectly
plastic solid extruded through the die geometry defined in Figure 12 can
be compared to the real metal deformation field shown in Figure 9. This
comparison is analogous to the way the real metal is compared to a per-
fect fluid, and the deviations of the real metal path lines with respect
to the solid path lines could be modeled. The kinematical analysis of
the extrusion of a perfectly plastic solid is accomplished using slip
line theory. Slip line analysis for the extrusion of the perfectly plas-
tic solid is completed using the graphical cord methodﬁ43) The slip
line field and velocity hodograph are shown in Figure 33. From the slip
line field and the velocity hodograph, the path lines and time lines are
constructed. The starting time line is selected to correspond to the
starting time line of the perfect fluid and modeled real metal deforma-
tion fileds shown in Figures 23 and 32. Path lines and time lines for
the perfectly plastic solid are shown in Figure 34 where the selected
path line and time line increments correspond to the experimentally
selected path line and time line increments in Figure 9. The path lines
for the perfectly plastic solid shown in Figure 34 are continuous but do
not have continuous first derivatives due to discontinuous changes in
the velocity field.

It can be proposed that the real metal path lines would be modeled

by starting with the slip line field path lines and modeling the real
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5 Outlet to inlet
Reduction in area: R = 0.276 dimension ratio: H = 0.724

Semi-die angle: Yy = 22.

Figure 33 Slipline field and velocity hodograph

| T~ - L
\\\\K\ //////
\\\ B B | _{~]  DOWNSTREAM
\\k\>\~ ] »//’///
Semi~die angle: Yy = 22.5O Outlet to inlet
Reduction in area: R = 0.276 dimension ratio: H = 0.724

Figure 34 Deformation field of a perfectly plastic solid
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metal path line deviations relative to these lines. If this technique
were used to model smoothly changing real metal deformation fields as
exemplified by those shown in Figures 9, 10, and 11, at each location
of discontinuous change in velocity there would have to be an offsetting
change in the modeled deviations so that when slip line field path lines
were taken together with the modeled deviations, the results would be
smoothly changing. Modeling real metal path lines relative to perfectly
plastic solid path lines can be seen to introduce additional constraints
when compared to the modeling technique which employs a perfect fluid.
The generalized slip line problem statement developed from kinetical

(2)

considerations by Richmond can include a realistic material model.
The solution to this problem would result in smoothly changing path lines,

however, the detailed deformation history of the material still would be

required for a work hardening material model.



Chapter IV

COMPARISON AND DISCUSSION OF MODELED DEFORMATION
F1IELDS AND EXPERIMENTAL RESULTS

In Chapter III the real metal deformation field shown in Figure 9
is used as the basis for a mathematical model. 1In this chapter, this
modeling method is applied to the real metal deformation fields shown in
Figures 10 and 11. This method requires the comparison of the real metal
path lines with the perfect fluid path lines and then the deviations be-
tween these path lines are modeled. These deviations are interpreted to
be a Lagrangian measure of rotationality and from the modeled deviationms,
the modeled real metal path lines are defined. For this steady state
extrusion process, the modeled real metal velocity field is defined in
terms of the modeled real metal path lines. With the modeled velocities
as a function of the modeled real metal path lines, the modeled real
metal deformation field can now be determined from a Lagrangian point of
view.

The results are presented by making the following superimpositions
for comparative purposes. The perfect fluid deformation field, the modeled
real metal deformation field, and the slip line deformation field arve
superimposed on the real metal deformation field.

COMPARISON OF THE PERFECT FLUID DEFORMATION FIELDS WITH THE REAL METAL
DEFORMATION FIELDS

The real metal deformation fields shown in Figures 10 and 11 are
compared to corresponding perfect fluid deformation fields in Figures 35
and 36 respectively. As in Figure 24, the deviations between the real
metal path lines and the perfect fluid path lines are regular. On

traveling downstream the real metal path line first deviates toward the

88
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die wall and then deviates toward the center line before coming coinci-

dent with the perfect fluid path line once again.
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Figure 35 Perfect fluid deformation field superimposed on the
real metal deformation field. (Note that the real
metal has numbered ellipses.)
The real metal deformation fields are photographed using a copy
camera with Kodak metallographic plates. The copy camera assures the
orthogonality between the object photographed and the glass photographic

plate; the latter assures a minimum of distortion during development.

This photographic procedure is selected to minimize the distortions of
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geometric relations on the photographic negative and subsequent projec-

tions.
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Figure 36 Perfect fluid deformation field superimposed on the
real metal deformation field. (Note that the real
metal has numbered ellipses.)

To determine experimentally the value of the deviations indicated

in Figures 35 and 36, the image of the real metal deformation field is

projected on to an orthogonal curvilinear coordinate system, (See Ortho-

gonal Curvilinear Coordinate System Computation and Plot, Appendix D.)
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The orthogonal curvilinear coordinate system shown in Figure 37 is usecd
for analyzing the real metal deformation field shown in Figure 11. The
deviations between the real metal path lines and the perfect fluid path
lines are determined experimentally. By using this curvilinear coordi-
nate system, the Lagrangian measure of rotationality AP, is modeled in

terms of the coordinates defined in the complex potential plane p

<+
1 i
|
T
a |
|
1l /
t
!
;i% 1
Semi-die angle: Yy = 45° OQutlet to inlet
Reduction in area: R = 0.449 dimension ratio: H = 0.551

Figure 37 Orthogonal curvilinear coordinate system

The experimental points for determining the model coefficients for

the five representative interior path lines of the real metal deformation



92

field in Figure 10 are tabulated in Table VIII. The resulting coeffi-
cients A, a, o, B, b, and B from the nonlinear equation solving computer
program are tabulated in Table IX, when the selected skewed symmetry
terms have values,
= m = ki
< 2/ )r2+l and <, 2/ )r2+2.

The modeled coefficients are only a function of the real metal path line

ry. In Figure 38, cubic splines define the model coefficients for any
path line.
TABLE VIII
EXPERIMENTAL POINTS FOR DETERMINING MODEL COEFFICIENTS
R = 0.451
Die Geometry: H = 0.549
Y = 22.5°
Material: 6061-0 aluminum
Normalized Upstream Velocity: VA =1.0
Lubrication: (See Lubrication, Chapter IT1)
T2 APmax r, (APpay)  APmin r, (APnin) rl(l/3APmax) ry(1/3
APmin)
0.487 0.115 -0.946 -0.0783 -4.869 0.363 -6.032
1.018 0.175 -1.340 -0.1035 =4.731 0.056 -6.112
1.549 0.200 -1.594 -0.1035 -4.582 -0.154 -6.159
2.080 0.180 -1.785 -0.0810 ~4.413 -0.388 -6.201

2.611 0.109 -1.931 -0.0450 -4.263 -0.622 -6.225
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TABLE IX

MODEL COEFFICIENTS

Die Geometry:

Material:

Normalized Upstream Velocity:

Lubrication:

Experimental Points:

R = 0.451
H = 0.549
Y = 22.5°

6061-0 aluminum

VA =1.0

(See Lubrication, Chapter II)

(See Table VIII)

Skewed Symmetry Coefficients: c, = (Z/ﬂ)r2+l, c, = (2/“)r2+2
r, A a o B b B
0.487 0.187 1.538 -1.543 0.114 1.629 -4,296
1.018 0.264 1.422 -2.008 0.141 1.400 -4.070
1.549 0.283 1.376 -2.281 0.134 1.294 -3.868
2.080 0.248 1.398 -2.442 0.100 1.224 -3.652
2.611 0.147 1.462 -2.541 0.054 1.184 -3.471
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MODELED REAL METAL VELOCITY FIELD

Using Equation (76), the images of an array of modeled real metal
path lines in the modeled real metal velocity plane are calculated and

shown in Figure 39. The velocity at a particular position along a path

iv,
Vo e — TN
22,5°
{
1.000
1.821 v]

Semi~die angle: vy = 22.5O Reduction in area: R = 0.451
Outlet to inlet Material: 6061-0 aluminum
dimension ratio: H = 0.549 ¢, = (4/ﬂ)r2+l, c, = (4/ﬂ)r2+3

Figure 39 1Images of an array of modeled real metal path lines
in the modeled real metal velocity plane v

line is determined by the coordinate values of that point in this velo-
city plane as shown in Figure 39. The images of an array of modeled
real metal path lines in the perfect fluid velocity plane are shown in
Figure 40. The differences between Figures 39 and 40, and the diifer-
ences between the path lines in Figure 35 are the result of the rota-
tional character of the real metal flow field. The frictional effects
and those metallic properties that contribute to this rotational charac-
ter are kinemtaically modeled through the Lagrangian measure of rota-

tionality, Aan'
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lq2
ry = 2.607
r, = 2,072
q 72 = 1,538
S N o r, = 1.003
22.¥S° r, = 0.468
A q, D q,
1.000 |
1.8
0
Semi-die angle: Y = 22.5 Reduction in area: R = 0.451
Outlet to inlet Material: 6061-0 gluminum

dimension ratio: H = 0.549 = (4/ﬂ)r2+l, c, = (4/ﬂ)r2+3

‘1 2
Figure 40 1Image of an array of modeled real metal path lines in
the perfect fluid velocity plane q .

COMPARISON OF PERFECT FLUID DEFORMATION FIELDS WITH MODELED REAL METAL
DEFORMATION FIELDS

From the modeled path lines and velocities, the modeled real metal
deformation field is determined for the steadily flowing 6061-0 aluminum
shown in Figures 9 and 10. These modeled real metal deformation fields
are compared to corresponding perfect fluid deformation fields in Fig-
ures 41 and 42.

As in Figures 24 and 35, when the perfect fluid and real metal de-
formation fields are compared, the deviations between the modeled real
metal path lines and the perfect fluid path lines shown in Figures 41
and 42 are regular. On traveling downstream the modeled real metal path
line first deviates toward the die wall and then deviates toward the
center line before becoming coincident with the perfect fluid path line
once again. This modeled path line behavior is similar to the real

metal path line behavior. Additionally, deviations between the modeled
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time lines and the perfect fluid time lines in Figures 41 and 42 are
similar to the deviations between the real metal time lines and the per-

fect fluid time lines in Figures 24 and 35.
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Semi-die angle: Y =22.5° Reduction in area: R = 0.276
Outlet to inlet Material: 6061-0 gluminum

dimension ratio: H = 0.724

Figure 41 Perfect fluid deformation field superimposed on the
modeled real metal deformation field
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Semi-die angle: Yy = 22.5° Reduction in area: F = 0.451

Outlet to inlet Material: 6061-0 aluminum
dimension ratio: H = 0.549

Figure 42 Perfect fluid deformation field superimposed on the
modeled real metal deformation field

COMPARISON OF MODELED REAL METAL DEFORMATION FIELDS WITH REAL METAL
DEFORMATION FIELDS

The modeled real metal deformation fields are determined for the

steadily flowing 6061-0 aluminum shown in Figure 9 and 10. These mod-

eled deformation fields are compared to the corresponding real metal

deformation fields in Figures 43 and 44.

The experimental extrusion is conceived to be symmetric and two

dimensional. Actually, the billets become somewhat thicker as indicated
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by the foreshortening ratios in Table V. 1In Figure 43 the area be-
tween two sets of concentric ellipses is shaded. The smallest ellipse

in each set is the experimentally deformed strain ellipses while the

next larger is the modeled strain ellipse. The two modeled strain
ellipses are constructed symmetrically about the center line. From the
differences between the two shaded areas, the experimental extrusion is
seen to be asymmetrical. Upon inspection, the extrusion dies were found
to be slightly asymmetrical.

The modeled real metal deformation fields shown in Figures 43 and
44 are in error. Besides foreshortening, the errors are of two types:

1. errors in displacemnets from the original time line

2. errors in the relative displacements or strains.
Errors in displacements are differences in location between the modeled
strain ellipses and the corresponding experimental strain ellipses.
Errors in relative displacements are differences in shape and orienta-
tion between the modeled strain ellipse and the corresponding experi-
mental strain ellipse irrespective of errors in location. The errors
in displacements between symmetric modeled strain ellipses and the ox-
perimental strain in Figure 43 graphically point out the asymmecrical
character of the real metal deformation field. To the author, this
asymmetrical character is not obvious on first inspection of the flow
field in Figure 9. Somewhat finer distinctions with respect to real
metal flow fields appear to be possible when the real metal flow field

is compared to a modeled flow.
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Figure 43 Modeled real metal deformation field superimposed on
the real metal deformation field. (Note that real metal
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The selected differential radius & of the neighborhood of points
for which the strain is to be defined must be small with respect to the

characteristic radii of curvature of both the time lines and path lines,

if an ellipse is to accurately indicate the strain state. Additionally,
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Figure 44 Modeled real metal deformation field superimposed on

the real metal deformation field. (Note that real

metal has numbered ellipses.)
the differential radius & , must be small compared to these character-
istic radii of curvature for any displacement of the neighborhood of
points if an ellipse is to accurately represent the changing strain for
these displacements. The corners in the extrusion die walls which cor-
respond to points B and C in Figure 13 are singularities. The radius of
curvature for the path line at these corner points is zero. For path
lines that pass close to these corner points the strain ellipses that

result from neighborhoods defined by increasingly smaller differential
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radii more accurately represent the strains in these areas. This effect
is seen in the areas adjacent to the die wall corners in Figures 9, 10,

and 11.

COMPARISON OF SLIP LINE DEFORMATION FIELDS WITH REAL METAL DEFORMATION
FIELDS

The slip line modeled deformation fields, as determined for a per-
fectly olastic solid, are compared to the corresponding real metal de-

formation fields in Figures 45, 46, and 47.
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Figure 45 Slip line deformation field superimposed on the real
metal deformation field
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The flowing perfect fluid is described by Laplace's (an elliptic)
partial differential equation, whereas the flowing perfectly plastic
solid is described by a hyperbolic partial differential equation. The
comparison of the real metal deformation field with that of both the
perfect fluid and perfectly plastic solid indicates that the real metal
flow field is described by neither an elliptic nor a hyperbolic partial

differential equation. The hyperbolic equation of a flowing perfectly
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Figure 46 Slip line deformation field superimposed on the real
metal deformation field
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plastic solid confines the deformations to within the slip line field,
whereas the flowing perfect fluid as described by an elliptic equation
is disturbed in the limit both up and down stream from the tapered die
section. The real metal deformation zone can be seen to be greater than

that described for a perfect plastic solid but less than that of a per-

fect fluid.
DD
9000000000 0¢
00000009000
olelolofelolfofc Yo o))
@ S)E) S\ @@y/@ (D= )] @
> ) = m Nl ) G @
DA B
i Qv ﬁ
WL I
UM g\ ; DOWNSTREAM
el
YAl N
‘ .5 u_f, ONATA
‘ NN\ ¢ ,‘
@% Vi e Mgl
[ ETRL s !
AWLELE) %1#
LRIVl
Semi-die angle: Yy = 45" Reduction in area: R = 0.449
Outlet to inlet Material: 6060-0 aluminum

dimension ratio: H = 0.551

Figure 47 Slip line deformation field superimposed on the real
metal deformation field
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PERTURBATIONS OF THE DEVELOPED MODEL FOR THE REAL METAL DEFORMATION
FIELD

The model of the real metal deformation field developed in Chapter
IIT is created in an explicit manner; however, there are equally valid
alternatives to that modeling method. This section deals with two per-
turbations or small changes to the modeling method of Chapter III. The
first perturbated modeling method is based on alternate ways of extrapo-
lating the model coefficients, other than A and B, to the die wall.
(See page 72, Chapter III.) The second perturbated model is based on
alternate functional relations for the skewed symmetry coefficients c

1

and Cye

The five interior values of the model coefficients shown in Figure
48 are determined experimentally and have the same values as those co-
efficients shown in Figure 38. The values of the model coefficients in
Figure 48 are extrapolated in the same manner as those model coefficients
shown in Figure 38 except for the die wall values of o and B. In modi-
fication 1, the die wall values of o and B in Figure 48 are defined to
be equal to the first experimentally determined value adjacent to the
die wall. Interpolation by piece wise cubic splines completes the de-
finition of the model coefficients shown in Figure 48 so that any real
metal path line can be modeled.

In Figure 49, modification 1 of the modeled real metal deformation
field is superimposed on the modeled real metal deformation field devel-
oped in Chapter III. The effect of the modified model coefficients is
most readily seen in the deviations of the modeled time lines from the
experimental time lines on traveling down stream through the die adja-

cent to the die walls.
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Figure 49 Modeled deformation field based on Modification 1 super-
imposed on the modeled deformation field developed in
Chapter III
Modification 2 is created using new functions for the skewed symme-—
try coefficients. Table VIII, new model coefficients are calculated
when
c; = (6/ﬂ)r2+1 and c, = (6/ﬂ)r2+5.
The experimentally determined model coefficients are plotted in Figure
50. This model coefficient set is extrapolated in Figure 50 by the pro-
cedure of Chapter III. Interpolation by piecewise cubic splines com-
pletes the definition of the model coefficients.
The modeled real metal deformation field based on these new coeffi-
cients is superimposed in Figure 51 on the modeled real metal deforma-

tion field developed in Chapter III. The effect of the new coefficients
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is most readily seen in the deviation between the modeled time lines.
These deviations manifest themselves at a greater distance from the die

wall than those associated with modification 1.

———— Modification 2. O O O O O

—————— Model developed
in Chapter III

O,
(OIO

|\l )

Semi-die anglg:
Y = 22.5

(O]

Reduction in areca:
R = 0.276

DOWNSTREAM

OIOIO
IO

Outlet to inlet
dimension ratio:

O[O
IO

T OO O

6061-0 aluminun

O[O
1OIOIO

H = 0.724
Material: Q/ QQ
9

Figure 51 Modeled deformation field based on Modification 2 super-
imposed on the modeled deformation field developed in

Chapter III.

The two perturbations discussed in this section together with com-
binations of these changes, are available to the kinematic modeler of
real metal deformation fields. The model used in Chapter III, compared
to the modifications in Figures 49 and 51, is judged to be more effec-
tive. The perturbated techniques are presented to indicate ways of

creating the alternate choices a kinematic modeler requires to assay

goodness of fit.
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POTENTIAL FLOW AND PLANE-STRAIN EXTRUSION

Potential flow theory has been applied to plane-strain extrusion

(44)

by Shabaik, Kobayashi, and Thomsen and to axisymmetric extrusion by

Shabaik and Thomsen(as).

In each case the flow field developed from the
potential solution is compared to an actual flow as visualized by using

a split billet technique (grids are used but no circles). The similari-
ties and differences were noted. That the potentially derived flow field
is irrotation in character as compared to the rotational character of

the actual flow field was emphasized by Richmond and Devenpeck in their
discussion of the Shabaik, Kobayashi, and Thomsen paper. The technique
presented in this dissertation starts with the differences between the
flow fields and models these differences in terms of a curvilinear co-

ordinate system defined by the potential solution. The resulting modeled

flow is rotational in character.

CONCLUSIONS

1. The principal strains and directions are readily obtained
experimental data and modeled computer output.

2. The modeled real metal deformation field provides a base for
determination of experimentally related variations.

3. The perturbation techniques utilized in this study effectively
enhance the goodness of fit.

4. The modeled measure of rotationality, APm, minimizes error
magnification in determination of rotationality.

5. The Lagrangian measure of rotationality, APm, is influenced by
frictional effects and metallic properties.

6. The real metal deformation zone is greater than that for a

perfectly plastic solid, but less than that of a perfect fluid.
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7. The Lagrangian kinematic model is applicable to continuously

deformable materials without requiring a material model.

FUTURE APPLICATIONS

One of the strongest attributes of the techniques presented in this
dissertation is the ability to amass large amounts of numerical informa-
tion accompanying the kinematical relationships. Logically this leads
to the employment of this method for obtaining a better understanding
of the effects of strain history on product properties, perhaps result-
ing in improved material models.

In like manner property distributions within extrusions can be
determined which reasonably could lead to directly applicable correla-
tions between strain histories and deformation related properties.

Lubrication influence on extrusion and other processes is an area
to be studied in hopes of putting numerical values on lubricants and
frictional effects. The techniques presented are directly applicable.

Further, the work of this thesis should be extended to other die
geometries as well as axisymmetrical three-dimensional cases for

extrusions, indirect extrusions and drawing.



APPENDIX A

SELECTED PROPERTIES OF 6061-0 ALUMINUM

The 6061-0 aluminum is received in the T6511 temper (extruded and
stress-relieved stretched). The original bar stock of dimensions 1.0
inch by 2.5 inches in 12 foot lengths is completely annealed to bring it
to the "0" temper condition. The measured properties are compared to

typical properties as tabulated in the ASM Metals Handbook, Properties

15
and Selection, Volume l‘ ) in Table X.

TABLE X

SELECTED MECHANICAL PROPERTIES

6061-0 ALUMINUM

MEASURED TYPICAL
Yield Strength 6,650 psi* 8,000 psi
Tensile Strength 18,100 psi 18,000 psi
Elongation 31.2% 307%
Reduction in Area 74.42 e

*See TABLE XI
HARDNESS
Measured Hardness:
63RH* average of 5 readings, range 1 RH.
10 RE average of 4 readings, range 2 RE.
Typical Hardness:

60 - 75 RH

*
Rockwell Hardness

112
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YIELD STRENGTH VERSUS PERCENT COLD WORK

The 6061-0 aluminum is work hardenable. From information deter-
mined during a tensile test, the yield strength and percent cold work
are tabulated in Table XI. The yield strength of 6061-0 aluminum dou-
bles within 5 percent cold work. The cold work is defined in terms of

the changing cross sectional area.
TABLE XI

YIELD STRENGTH VERSUS PERCENT COLD WORK

Yield Strength Percent Cold Work
6780 psi 0.94
9180 psi 1.72
12600 psi 3.26
13850 psi 4,42

TENSILE BEHAVIOR

The plastic strain data is determined on the run, i.e., the diame-
ter data is taken while the test load is being applied. The modified
stress state due to the hour glass shape of the tensile specimen after
necking is not included as a correction. (See Figure 52.)

MODELED TENSILE BEHAVIOR

The tensile behavior of this metal is modeled,

0 = 29,500 (g)-2°2 psi, (88)

where 0 is the true stress and € is the true plastic strain.
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ANISOTROPIC BEHAVIOR

The aluminum behaves in an anisotropic manner during the tensile
test. The originally round tensile specimen cross section becomes ellip-
tical by the time of fracture. The minimum and maximum diameters at

fracture are

Dmin 0.255 inches,

and Dmax

0.310 inches.
An isotropic material would have had a circular cross section. The in-
formation used to create the true stress versus true strain graph in

Figure 52 results from measurement taken on the diameter.

50

O, TRUE STRESS (THOUSANDS PSI)

o
MATERIAL: £0E1-7 ALUMINUM
o EXPERIMENTAL TRUE STRESS VS,
O O O TRUE PLASTIC STRAIN
o = 29,500 € )0 25
Py B 1 1 f 1 L |
0.01 0.02 0.05 0.10 0.20 1.50 1.00

€, TRUE PLASTIC STRAIN

Figure 52 True stress versus true plastic strain



APPENDIX B

RAM LOADS AND VELOCITIES DURING THE
DIRECT COLD TWO DIMENSIONAL EXTRUSION PROCESS

The ram loads and velocities during the direct cold two dimensional

extrusion of 6061-0 aluminum are summarized in Figure 53.

o o)
o
2
=1
S
[V
S 60 | @
g ® &
3
3
£
2
(==
= 0 DA EXTRUSION |
= ® B3 exTRusIon 11
—O—O— EXTRUSION 111
0 1 1 1
0.0 1.0 2.0 3.0

RAM TRAVEL (INCHES)

SEMI-DIE REDUCTION  AVERAGE
EXTRUSION  ANGLE IN AREA VELOCITY

l 45° 0,449 0,352 IN/MIN

n BB 25 o1 0.351 IN/MIN

I —e—6e— 2.5° 0275 0.339 IN/MIN
(N) EXPERIMENTAL COMMENT NUMBER

Figure 53 Ram loads and velocities during the direct cold two
dimensional extrusion of 6061-0 aluminum

Experimental comments:
<:::> In extrusion I at this point, the extrusion machine was disassem-

bled and the split billet relubricated as shown in Figure 7 before

resumption of the extrusion process.
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In extrusion IT at this point, the extrusion process was halted
overnight and resumed the next morning.

The increasing rate of loading with ram travel was discovered to be
a manifestation of the formation of fins. The fins are formed when
the billet is extruded between the parting surfaces needed for the
disassembly of the extrusion machine, (See Table XII. ),

In extrusion II at this point, the maximum piston stroke was ex-
ceeded. A spacer block was added and the extrusion completed,

The billet in extrusion II was 1.,4% thinner than the billets used
in the other two experimental extrusions. The more gradual initial
increase in load with ram travel in this region is thought to be
associated with the initial deformation of the billet within the
container walls,

Extrusions I and II proceed in steps shown in Figure 53, In extru-
sion I, the standard deviation among the step velocities is 0.0204
inches per minute. In extrusion II, the standard deviation among
the step velocities is 0.0733 inches per minute. Extrusion III

was extruded continuously with load readings taken at equal time
intervals. Within the accuracy established in extrusions I and 11,
the ram travel distance at each time interval is calculated from
the average velocity in extrusion III,

The numbers next to the billet shown in Table XII were scribed
onto the billets before extrusion. These numbers correspond to
numbers on the extrusion machine. The parts of the extrusion
machine were numbered to assure that the machine is assembled in

the same way each time.
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8. The fins were removed before the photographs in Figures 9, 10, and

11 were taken.

TABLE XII

FIN THICKNESSES

Position

fin fin fin ;jﬁ;;in

\J\

*
Fin Thickness Semi-Die Reduction Fin Thickness
2 3 Angle in Area 1 4
*% o
0.007 0.011 45 0.449 0.005 C.0.3
kK o
n 0.009 22.5 0.451 n 0.009
n n 22.5O 0.276 n n

*
experimental, assuming thickness remains constant

%
inches

*kk
negligible



APPENDIX C

THE SCHWARZ CHRISTOFFEL TRANSFORMATION FOR THE GENERAL QUADRILATERAL WITH
TWO VERTICES EXTENDED, OF THE EXTENDED VERTICES, ONE CONTAINS A SOURCE
AND THE OTHER CONTAINS AN EQUAL SINK.

COMPLEX VARTIABLE NOTATION THAT IS PECULAR TO THIS WORK

The complex variable will be denoted by lower case Roman letters,
Py Qs « « o5 Xy ¥, Z,
where the real part and the imaginary part will be denoted by subscripts
1 and 2 respectively, for example,

w = w(wl,wz),

w = wl + 1w2,
or

w=r elew,
where

2 2.1/2

r = (wl + W, )
and

8 = tan_l(w [w, ).

™ 271

A specific complex point will be denoted by a capital Roman letter,
A, B, . .., L, M, N,
where the real part and the imaginary part will be denoted by subscripts
1 and 2 respectively, for example,

A=A+ iA

1 2

[l

or

A A(Al’AZ)’
If we have one or several conformal transformations, the image of a

specific point with respect to a variable can have the form when re-

quired, for example,
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or

A = A(

z Alz’AZZ)'

which refers to the image of the point A in the 2z plane.

The reasons for the subscripted complex notation are to economize
the symbolization and to facilitate the use of two dimensional tensor
or vector calculus when these techniques would seem useful.

THE SCHWARZ CHRISTOFFEL TRANSFORMATION

The general quadrilateral with the vertices extended is shown in

Figure 54. The Schwarz Christoffel transformation,

7 PLANE

(L im / q;
N N U N N N G N W A

AL
] // hw
ANALYTIC REGION ymr J
FOR CONFORMAL \\\ \ AN \
A TRANSFORMAT [ONS J N
C

S.M.P.Q

D

WHERE 0< h < 1

\\\/ -

B Z

Figure 54 Physical plane z

Or -
dz _ ¢ II (w-ak)(ﬂ l)
k=1

in general maps the interior of a polygon onto the upper half plane, the

w plane in this case. The Oy term represents the interior angle of the
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b

th . . t
of the K~ vertice, while the a, term represents the image of the K

k
vertice in the w plane.

The transformation is completed by integration,
fn (%k —1)
= - dw + 8
z =R g]i(w a,) wt T, (89)

where the constant Rt can be used to control the relative size and orien-
tation of the polygon in the z plane, and the constant Tt can be used to
translate the polygon in the z plane.

In general three vertices can be mapped arbitrarily whereas the
images of the remaining vertices must be uniquely determined,

For the quadrilateral in Figure 54 let,

1 A

a =0 = o =0 =
3 C TH, 4 D 0,

also let the images of the four vertices in the w plane have the follow-

ing values,

]

a, =A =0, a, =8B

1 v 9 - b where 0<b«<1,

a, = Cw =1, a, = Dw = the extended point.

The Schwarz Christoffel transformation for the quadrilateral in

Figure 54,
Y/

<%511§) (90)

will be rationalized by the following procedure. Let

dz _ Nt
dw w

m = Y/T, where 0<m<l,
When m is an irrational number, the rational fraction f/g will be used
to approximate m as closely as desired. Before completing the rational-

ization of this derivative the constants Rt and b will be determined.
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Point A will be considered a source and point D will be consideied

an equal sink. The complex potential function P for the flow in the w

half plane, Figure 55 is

- Q
P = T Log w,

where Log w is the principal value of log w.

"
2 W PLANE
ANALYTIC REGION
FOR CONFORMAL
TRANSFORMATIONS., SOURCE
2.8.p.q
NN\ N\ b1 N N\U\L
O O
A R4
A B c

Figure 55 The Schwarz Christoffel upper half plane.

Point D
is extended.

Let the real constant VA denote the velocity of the flow in the

limit far from the offset to the left in the physical plane, Figure 54

Let q be the velocity where,

- . dp _ dp
q complex conjugate dz dz
and

lim q = VA'
Re(z)— -0

Therefore the strength of the source on the left and of the sink on the

right in the physical plane, is then

Q=WA’
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and then
P = VALog w.

Figure 56 and 57 show the p plane and the q plane respectively.

P,

: P PLANE

v

AN NN NN NN NN NN

ANALYTIC REGION
FOR CONFORMAL
TRANSFORMAT IONS,
2.5.4.9

SONNNN 0 NNONONN NN

¢ 1

Figure 56 The complex potential plane, p, equal to a constant is
a streamline. Points A and D are extended.

iq2

q PLANE

ANALYTIC REGION
FOR CONFORMAL
TRANSFORMATIONS,

L.S.W.P

o NANANAN
B . _.__fii D q,

Figure 57 The velocity plane, q. Point C is extended.
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The complex velocity,

— _dp _ dp dw
9 dz

T (en) o

When w = 0, q = VA. Therefore,

\Y
v, = A m)t/e (92)
A R
t
VA
When w approaches point D , q = VD = E—-31nce Q = VA = hVD.
Therefore, from Equation (91),
Ya_ ',
h Rt
or
Rt = h, (93)
and from Equation (92),
f
b= m8E (94)

Now that constants Rt and b have been evaluated, the rationalization of
the Schwarz Christoffel transformation will be completed. This m~thod
of evaluating Rt and b is suggested by Churchill.(46)

The transformation from Equations (90), (93), and (94)

g=g<w-1 >f’g ,
dw w w—hg/f
can be rationalized by defining a new complex variable

£ <w_hg/f>f/g
S — .

“\w-1
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Now
[ w-n8/E\1/s
T \w-1 >
f
s& _ Etif/
w-1 ’
so that
g/f_ .8
vt s (95)
1 - sg
and so that
g
dz h l"s
4z _h __ . (96)
dw of <hg/f_sg>
isz
1/
h f 1 51
© O
: 7 S

ANALYTIC REGION
FOR CONFORMAL
TRANSFORMAT IONS,
ZH.P.q

S PLANE

Figure 58 The rationalizing plane, s, Point C is extended.

Writing the Schwarz Christoffel transformation between the z plane

and the s plane we get

dz _ dz dw , (97)



125

where from Equation (95)

dw _ gs g—ll:(hg/f_sg) _1 ]

ds 1- 82 (1 - s8 (98)

Combining Equations (96), (97), and (98)

dz _ ghsg—f—l 1 _ 1
d bl
° (l—sg) (hg/f~sg)

sgnf—lds sg_f_lds
z = ghf —-58 _ oy —7F s *tT,
(1 - s8) (8- s8y

From the algebra these fractions are expanded into partial fractions

and integrating

and integrated.

Now that the algorithm for the Schwarz Christoffel transformation
is complete, the reflection or symmetry principle(47)will allow the re-
sults to be interpreted as also applying to either physical system shownr
in Figure 59.

If = T/4 in Figure 54,
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a. Converging channel flow
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¢

CENTER LINE AND PLANE OF SYMMETRY \ \ \ \ \ \

AV ATV

b. Split and separated channel flow

Figure 59 Two additional equivalent physical configurations for
the Schwarz Christoffel transformation



APPENDIX D

COMPUTER AIDED ANALYSES AND PLOTTING PROGRAMS

The subroutine and function subprograms collected in the first sec-
tion of this appendix are used by the remaining programs. The presenta-
tion of these remaining programs is in the order in which they appeared
in the text of this dissertation. Comment cards are used to describe
the various sections of the longer functions, subroutines and programs.

GENERAL PURPOSE SUBPROGRAMS

Subprograms Brief Description
Real Function RM Given ) rzand the model coefficients

from subroutine DCONS, RM returns the
image of the real metal path line point
in the potential plane,

Real Function DT Given two path line points and the velo-
cities at these points, DT returns the
time increment based on the trapezoidal
rule between these points.

Complex Function RINT Given two vectors in complex form, the
times associated with these two vectors,
and an intermediate value of time, RINT
returns a vector in complex form that is
a linear interpolation with respect to
time between the two given vectors.

Complex Function SF Given a point in the potential plane, SF
returns a point in the rationalizing

plane.
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GENERAL PURPOSE SUBPROGRAMS,

Complex Function ZF

Complex Function QF

Complex Function VF

Subroutine DGCONS

Subroutine DGCP2

Subroutine PDPRM

Subroutine MINV

128

continued

Given a point in the rationalizing plane,
ZF returns a point in the physical plane.
Given a point in the rationalizing plane,
QF returns a point that is a complex con-
jugate of the point in the perfect fluid
velocity plane as defined in the text.

Given the image of ry» T in the perfect

2
fluid velocity plane, and the partial
derivatives from PDPRM, VF returns the
modeled real metal velocity vector in
complex form.

Given Iy, DGCONS returns the model co-
efficients and their derivatives with
respect to rjp.

Subroutine called by DGCONS for computa-
tional purposes,

Given a modeled real metal point, PDPPM
returns the partial derivatives of r,
with respect to Py and Py using the in-
formation from DCONS.

Matrix inversion using Gauss-Jordan re-
duction with a maximum pivot strategy.
This subroutine subprogram is only a
slightly modified form of the program
presented by Carnahan, Luther, and

(48)

Wilkes, and is not listed.
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GENERAL PURPOSE SUBPROGRAMS, continued

Subroutine MATVEC

Subroutine NLSYS

Subroutine AUXFCN

Multiplies a matrix and a vector, This
subroutine subprogram is only a slightly
modified form of the subroutine presented
. (48)

by Carnahan, Luther, and Wilkes, and
is not listed,
This subroutine solves a system of non-
linear equations, given a sufficiently
accurate initial estimate of the solution
and equations to be solved in Subroutine
AUXFCN. This subroutine is the same as

. (49) .
that of Brown and Conti and is not
listed.
This subroutine contains the equations to
be solved by NLSYS and is listed in the

Experimental Modeling and Coefficients

Computation section.
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GENERAL PURPOSE SUBPROGRAMS, continued

REAL FUNCTION RM%B{AALBB,GXX)

C eee THIS FUNCTION RETURNS RM, THE IMAGE OF A MODFLED REAL METAL PATH
C eee LINE POINT IN THE POTENTIAL PLANE, GIVEN THE MODELED PATH LINE
C eee POINT AND THE MODEL COEFFICIENTS.

IMPLICIT RFAL*B(A=H)

DOUBLE PRECISION AAGBRB,PT1,C1,C2
REAL*8 GXX(6A)

PI=3,14159265

C1=2.5

C2=C1+7

Al=(BB=GXX(3))%x%2
42==C1*(BB=-GXX(3))
A3=(BB~GXX(6)) %%
A4=C2*%(BR=GXX(K))

IF (A2.G7.70) A2=70

IF (A2.LT.=70) A2=-70

IF (A4.GT.70) A4=T70

IF (A4 LT.-70) A4=-70

HI=1.0D75

HBL=A1%#DLOG(GXX(2))

Bl=HI

[F (BBlelLTel74,0) Bl=GXX(2)%%Al
B2=DEXP(A2)

BB3=A3%DLOGIGXX(5))

B3=HI1

IF (BB3.LT«174.0) B3=GXX(5)%%A3
B4=DEXP (A4)
RM=GXX(1)/(B1+B2)-GXX(4)/{(B3+B4)+AA
RETURN

END

s s o o o %R Aok %o S o e A AR ok B B sk AR B o 3 % 3 % ok R 4 XA A R e e A R o SR K Xk SR R XX 3R o R sk ke e e ok X % X O e R R R Xk
REAL FUNCTION DT#B(AsB4CyD)

eee THIS FUNCTINN RETURNS THF TIMF INCREMENT DT USING THFE TRAPEZOIDAL
eee RULE, GIVEN TWO PATH LLINE POINTS A AND B, AND THFIR RESPFCTIVE
eee VELOCITIFES C AND D,

ol akel

COMPLEX*16 AaByCHWD
NT=0e5%(1/CHABS(C)+1/CNABS(DN))*CNDABS (BR=-A)
RETURN

FND

3 R A Sl S R TR e e s A R e e S X A e ol ode e s ole g v e o s T B T RO N2 AR IR R A 0N R RO R N R MR RO R R R X R K
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GENERAL PURPOSE SUBPROGRAMS, continued

C eae
C oo
C eae

COMPLEX FUNCTION RINT%16(72471+4T2,T14DDTHIT)

THIS FUNCTION RETURNS RINT, A VECTNR IN COMPLEX NOTATION THAT IS A
LINEAR INTERPOLATION WITH RESPECT T0O TIMF BETWEEN TWD GIVEN
VECTORS.

COMPLEX*16 21,22

DOUBLE PRECISION T,T1,72,DTT
T=1T7*DDT
RINT=((T=T1)/(T2-T1))*(22-21)+271
RETURN

END

o e X xR e o g 3 %ok ok N ok a3 o R 3 3 0 308 4 A o o e 3 X 3 e o 3k e sk e ok e sk s oK o % X ek sk R vk vk X sk vk ok K

InEal
.
.
.

o
.
.
.

RO RO Ik g

COMPLEX FUNCTION SF*16(AA,RBB,CC)

THIS FUNCTION RETURNS SF, A POINT IN THE RATIONALIZING PLANFE,
GIVEN A POINT IN THE POTENTIAL PLANF.

COMPLEX*16 Ab,AC,AA,CC,SSF
DOUBLE PRECISINN BB,BHAR

HBB=BB**8

AB=(AA=-HKBB)/(AA-CC)

AC=CDSORT(AR)

SSF=CDSORT(AC)

SF=CDSORT(SSF)

IF (AIMAG(SF).GT.0) SF=NCOUNJG(SF)
RETURN

FND

COMPLEX FUNCTINON ZF#1A(AA BB CC oD F o FALFHR)

THIS FUNCTION KETURNS 7F, A POINT IN THE PHYSTICAL PLANF GIVEN A
POINT IN THE RATIONALIZING PLANF.  THE SCHWART7 CHRISOFrFI
TRANSFORMATINON IS REOIIIRED T DEFINE 7F, (SEF APPENDTY (o)

COMPLEX=]6 ARGy ACG e ALIG ARGy ARGy AGE o 60 g AT Gy Nty ALy hil) s
LAF o i DG G ARG AT g Ah gl bk yF A kR

DOURELE SRECTSTON vKE,CC

HG=(FA+YAA) /LFB=LA)

LR=CDLIG (ARG

LOG={=Frn+ ALY/ (=FR=4A)

LC=COiG (ACH)

EDG=(Fr+bA)/FF=04)

AD=COHL S CANG)
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SUBPROGRAMS, continued

o530 % A

C oeoe
C eee

%3 % e

ocoo
.
.
.

AFG=(DL+AAN)/ (DTi=0D)

LE=CDLIG(AKG)

TF (ATMOGIAFG) PO U AN GREAL(ARG) 1. T40) AF=NDCON )G AF)
LAFG=(FA=RH+AA) / (FAxBR=AA)

LF=COLOGIAFG)

AGG=(=FHREBR+AA) /(=FB=RIS—AA)

AG=CDLOGEAGSH)

LHG=(FEXRB+AA) /(FE%XBR—AA)

AH=CDLNG(AHG)

ATG=(B3+AA)/(BB—-AA)

AL=COLOG(AIG)

IF (AIMAG(ATIG) e FOJOJANDGREALIAIG)JLTLO) AI=DCHONJG(AT)
/F=BBH(FR* AR-EAXAC-EFE*AD+AF )+ (~EB=LF+FAAG+FFAH~AT) +CC
RETURN

END

e Rp %o 2 B Aol A Tk Xe ke N Ak A B RN RO N R % A % e v 3R %o e g e e e e e e e e YR R SR ¥

TR ORCA ORI WA R

COMPLEX FUNCTION QFx16(AA,HBR,CC)

THIS FUNCTION RETURNS OF, A POINT IN THF CONJUGATE PFRFECT
FLUID VELOCITY PLANE GIVEN A POINT IN THE POTENTIAL PLANF, (THIS
IS THE COMPLEX CONJUGATE OF THE OF DEFINED IN THE TEXT.)

COMPLEX*16 AA
NDOUBLE PRECISINN BB,.,CC
OF=(BB/CC)I*AA
RETURN
END

R R R R R S R e R ]

COMPLEX FUNCTION VE®16(0,PDP1,PDP2)

THIS FUNCTION RETURNS VF, THE MODELED REAL METAL VFLOCITY VECTM®
IN COMPLEX FORM, GIVEN THE PARTIAL DFRIVATIVES FRNOM PDPRM AND [HE
IMAGE OF THE MODFLED REAL PATH LINF POINT IN THE PERFECT FLUID
VELOCITY PLANFE,

COMPLEX®16 O,CQ4EPF,FNPF
DOUBLE PRFCISINN VPF,RFPF,SEPF
CO=DCONIGIN)

VPE=CNARS(CQ)

EPF=CQ/VPF
REPF=NDBLF(REAL(EPF))
SEPF=DHLFE(AIMAG(EPF))
ENPE=DCMPLX( =SFPF,REPF)
VE=VPFx(PDP2xEPF=PNP1I%*ENPF)
RETURN

FND

SN % s % a0 AR RO R A 30RO R RO R ¥k X deoqe ke qe Xe X R e B gk % % ok 3 4 R X e ek e e ko3 ke ok e ok 3 %ok 3ok Rk %ok sk
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GENERAL PURPOSE SUBPROGRAMS, continued

OO0

C oo
C ees

SUBRDUTINE DGCONS (AA,GXX,DGXX)

THIS SUBROUTINE RETURNS GXX(lyeeeeb)y THE MODEL COFFFICTENTS AND
THEIR RESPECTIVE DERIVATIVES DGXX(lyeeasb) WITH RESPECT TO THE
MODELED REAL METAL PATH LINE.

IMPLICIT REAL*8(A-H)

DOUBLE PRECISION AA,PI,GC

REAL*8 GXX(6)yDPI(7),DGCXX{6)sGCCIEIT)oX(H69T)yY6,7)
INTEGER 1D(6)

COMMON GCCo4X,Y,1D

DO 1 I=1,.7
DPI(T)=X{1,1)
J=6

THE FOLLOWING CONDITIONAL STATEMENTS DETERMINE THE PRUPER INTERVAL
FOR THE SPLINE FITTED MODEL COEFICIENTS AND THE DERIVATIVES
WHICH ARE RETURNED BY DGCP2.

IF (AA.GELOPI(1).AND.AA.LT.DPI(2))
IF (AALGE.DPI(2)AND.AA.LT.DPI(3))
IF (AA.GE.DPI(3).AND.AA.LT.DPI(4))
IF (AA.GE.DPI(4) .AND.AALLT.DPI(5))
IF (AA.GE.DPI(5).AND.AA.LT.DPI(6))
NO 2 K=1,6

CALL DGCP2 (KyJyAA,GC,DGC)
GXX(K)=6C

DGXX(K)=DGC

RETURN

END

[ S S SR
woponogon
[S, 00 SR
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SUBROUTINE DGCP2 (K,JsAA,GC,DGC)

THIS SUBROUTINE USES THE INTERVAL DETERMINED BY DCNANS TO CALCULATF
THE SPLINE FITTED MODEL COFFFICIENTS AND THEIR DFRIVATIVES WITH
RESPECT TO THE REAL METAL PATH LINF, WHICH ARE RFTURNED T0O DCONS.

IMPLICIT REAL®=B(A=H)
REAL*%8 GCC(Ha7)sSIT)oX{60T) o XX{T)yY(H69T)aYY(T)yHH(T)
INTEGER 1D(6)

COMMON GCCoX4Y,1D
M=1D(K)

DO 1 I=1,.M

XX(T)=X(K,y1)
YY(I)=Y(K,y1)
S({1)=GCC(K, 1)

DO 2 11=1,6
HHOTT)=X(1,114+1)=X(1,11)
L=J

H=HH(L)
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3e

3¢

R

GC=(SIL)/(6H) )% (XX(L+1)=AA) %3+ (S(L+1)/(6%H) ) CAA=XX (L)) *=3+(YY (L
141) /H=HX(SOL+L)/A) )% LAA=XXIL))+(YY (L) /H=HE(S(L)/A))I%(XX(L+1)-AA)
BGC==(SL) /7 (2%=H) ) (XX OL+])—AA)Hx24+ (S(L+L1)/(2%H) )% (AA=XX (L) ) %2+ (YY
TOL+1)/H=Hx(S(L+1)/A))=(YY(L)/H=-H*X(S(L)/H))

RETURN

FND

N AR AR R A IR AR SR A A N R TR AT TR RO A K ol R S e S 0 Ne N R0 Sk R A A0 3O IR SR8 TR 5R N IR R R 30 TR S0 3R R S TR e XK SR AR R R K RO AOROR %

SUBRODUTINE PHDPRM (BB AAGXX3DGXX4PNOPL4PNP2)

GIVEN THF COORDINATES (F A MUODELFD RFAL METAL PATH LINE POINT,
THIS SUBROUTINE RFETURNS THE PARTIAL NFRIVATIVFS NF THE MODELFD
REAL METAL PATH LINE WITH RESPECT TN P1 AND P2 IN PDP1 AND PDP2
RESPECTIVELY.

IMPLICIT REAL*B{A=-H,(1=7)
RKEAL®B GXX{A)DGXX(A)
P1=3,14159265

C1l=2.5

C2=C1+7

C3=0.0

A=BRB=GXX(3)

Al=A#x%

£2==C1%A

R=BRB=GXX(6)

A3 =Ruxp

A4=(2%K

IF (A2.GT.70) A2=7C
[F (A2.LT.=70) A2=-70
IF (A6 GTLT0) A&4=T70
IF (A4 1. Te=70) A4=-70

RI=1.0NnT%
HBI=A1*DLUGIGXX (7))
rl=HI

[F (BB1.LT4174.,0) Bl=6GXX{(2)=%A]
R2=NFXP(42)

BB3=A3=ENDLNG(GXX(5))

K3=H]

ITF (BR3.LTel7640) RB3=GXX(5)%%A3
Ba4=NEXP (A4)

DHI=1.0047

Hl=K1+K?

DL =2=01_06(D1)

Hl=DHI

IF (DOD1el.Tel74.0) D1=K1+B2

N2 =H3+Ra

NDDZ=2x=D1.06G(H2)

H2=0DH1

TF (DD2.LTel176.0) D2=K3+K4
F1=23%020L0GIGXX(2))xK]

F2=C1%82

F3=23R20L ODGIGXX(5) )#Kr3

ra=( %R
Fl=rn2x(=(35A+C1%=DGXX(3))
F2=AlE(GXX (2 ) (AL=1) )=NGXX(2)=2%8 1O OG{GXX(2))%xa=NGXX(3)
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FB:A%*(&XX(S)**(AB—I))*Dﬂxx(S)-zﬁha*ﬂLﬂG(Gxx(5))*H*DGXX(S)

F4=Rex (C3%R~C2*DGXX(6))

(INE==C1®K2+2%xR1*NLOG(GXX(2) ) %A

TWH=C2%Ra42xK3XNDLOGIGXX (5 ) ) %R
PDP1=(GXX(l)*(HNF)/DI**Z—GXX(A)*(Twn)/n?**?)/(1—(—UGXX(1)/DI+DGXX(
IA)/DZ)—(CXX(1)*(F1+F2)/Dl**Z-GXX(A)*(F3+F4)/D?**2))
PDP?=1/(1+DGXX(1)/DI-GXX(1)*(F1+F2)/(Dl**2)—UGXX(«)/D?+GXX(4)*(F3+
1F4)/(D2%%2))

RETURN

FND

«:‘.:****::f;='s:.=#*:‘.=:‘5-1###**::f.:*#:‘;**:k#t
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ORTHOGONAL CURVILINEAR COORDINATE COMPUTATION AND PLOT

C
C
C

o0

o

s e

oo

THIS PROGRAM TOGETHER WITH *PLOTSYS (SFE REFERENCE 42) COMPUTES
AND GENFRATES THE PLOT DESCRIPTIONS FNR THE ORTHOGONAL CURVILINEAR
COORDINATE SYSTEM SHOWN IN THE RIGHT HAND SIDE 0OF FIGURE 12.

IMPLICIT REAL*8(A=H)

DOUBLE PRECISINN PILVEL,TH
COMPLEX*16 E+FeGoSFeZF 47 4GGyHH
DIMENSION X(4500), Y(4500)
DATA H/0.549/sVEL/1.0/+GG/(=e707114.70711)/4HH/(=.70711,=-.70711)/,
E/(1.0,0.0)/,F/(0.0,1.0)/
P1=3,16159265

C=P1/12

TB=0.41421

TAAA=2,.50

TBBR=10.50

TSS=1.095

TRN=2#(PI®*TSS+TAAA)
B==((1=-H)*P1)/T8

I IDENTIFIES THE STREAMLINE.

DO 1 I=1.25
C0=-(0.001838)*(1=-25)

IF (I.FQ.1) C0=0.0
A=((1-1)%P[)/24-CO

J IDENTIFIES THE POTENTIAL LINFE.

DO 1 J=1,50
D==6.870+(J-1)*C

IF DEFINFS THE POSITION OF A POINT (1,J) IN THE PHYSICAL PLANE,
2=ZF(SFICDEXPIDCMPLX(NGA)/VEL)sHeE)sHIBIEWF4GGyHH)

X AND Y ARF POSITIONS IN THE ABSOLUTE REFERENCE FRAME USED BY
HPLOTSYS.

X{(I=1)%50+J)=AIMAG(Z)*TSS+TAAA
YI(I=1)%50+J)=RFAL(Z)*TSS+TBBHB

THE NESTFD LOOPS TERMINATED AT STATFMENT NUMBER 2 CALCULATE THE
MIRROR IMAGE NEEDED FOR A PLOT SYMMETRICAL TO ITS CENTER LINE.

no 2 kK=1,25

Do 2 J=1,50
X{(K=1)%50+1250+J)==X((K=1)%50+J)+TRN
Y((K=1)%50+1250+J)=Y((K=1)%50+J)
LOOPS 3 AND &4 PLOT STREAMLINFES,

N 3 M=1,25



137

ORTHOGONAL CURVILINEAR COORDINATE COMPUTATION AND PLOT, continued

3 CALL PLINE (X((M=1)%50+1),Y((M=1)*%*50+1),50,1,0,0,0)
DO 4 L=1,24
4 CALL PLINE (X((L=1)*50+41251)sY((L-1)%5041251)4+5041,0,0,0)

C e.. LOOPS 5 AND 6 PLOT POTENTIAL LINES.

no 5 M=1,50
5 CALL PLINE (X(M),Y(M),25,50,0,0,0)
DO 6 L=1,50
6 CALL PLINE (X(1250+L)+Y{(12504L)+25+50,0,0,0)
CALL PLTEND
STOP
END

LR 2 RS S R RS R E R R R R R e R
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C oo THIS PROGRAM TOGETHER WITH *PLOTSYS (SEE REFERENCE 49 COMPUTES
C eee
C eee

AND GENERATES THE PLOT DESCRIPTIONS FOR THE SUPFRIMPOSED PERFECT
FLUID DEFOURMATION FIELD SHOWN IN FIGURE 35,

IMPLICIT REAL*B(A-H)

DOUBLE PRECISION PI,VELsTHsRM

INTEGER 10(h)41T(25,41)

REAL*¥8 GC(6425) 9 XX{65T)sYY{697)9GX(H)sDGX(H6)3T(25,41),06C(6425)

1 +DS(25)

COMPLEX*16 EsFyGySFyZFsQ0F ¢GGyHHaPyWsS42(25941) 404 VFoZ2(2)4VVI(2),
LZT(25441) oRINT W ZTTHyVTIT,VI(25441)9VT(25,41)yERM,ENRM,ZEBAV,EBAV
DIMENSION X(2400), Y(2400), XXX(2400), YYY(2400), XS(25), YS(25),
1XXS(25). YYS(25)

COMMON GC s XXaYY,ID

DATA H/0.569/4VEL/1e0/4GG/(=e707114.70711)/4HH/(=oeT70T7114=-.70711)7/,
1€/(1.0,0.0)/+,F/(0.0,1.0)/

DO 1 I=1,6

ID(I)=25

WRITE (6,27) (ID(I)y1=1,46)

READ (5,30) (DS(I),1=1,25)

WRITE (6,29) (DS(1),1=1,25)

PI1=3,14159265

(e942164) 1S THE FORESHORTENING CORRFCTION.

DDT=(PI/12)*(.942164)
C=P1/12

TB=0.41421

TAAA=2.50

TBRB=10.50

7$S=1.095
TRN=2%(P#TSS+TAAA)
SPI=SNGLI(PI)

RO IS THF SCALED RADIUS FOR THE UNDEFORMED CIRCLES.

RO=0.15*(SP1/1.2)%TSS/2.
RADIAN=180./SP1

I TDENTIFIES THE PERFECT FLUID PATH LINE.

DO 3 I=1,25
C0=-(,001838)*(1-25)
IF (I.FQ.1) CO=0.0
A=((I=1)=*P1)/24~-CO

-

22(1)=0
12(2)=
vvil)=
vvi2)=
)
1

-~ il c2c

"
<



139

PERFECT FLUID DEFORMATION FIELD COMPUTATION AND PLOT, continued

[aNe!

.

J IDENTIFIES POSITIONS ALONG THE PERFECT FLUID PATH LINE.

D0 3 J=1,41
B==((1-H)*P1)/T8

DS(I) IDENTIFIES THE TIME EQUALS ZFRM) TIME LINE.
D=DS(I)+(J=1)%*C

ZF IDENTIFIES A POSITION OF A POINT IN THE PHYSICAL PLANE,
Z(T4J)=2F(SF(CDEXP(DCMPLX(DyA)/VEL)sHsE) yHyBsE4F4GGyHH)

X AND Y ARE POSITIONS IN THE ABSOLUTE REFERENCE FRAME USED BY
#*PLOTSYS.

XOUI=1)*414J)=ATMAG(Z(T,J))*TSS+TAAA
Y((I=1)*%41+4J)=REAL(Z(T+J))*TSS+TBHHY

IF (14FEO.1.0R.T.EQ.25) GO TO 3
QO=0F(SF(CDEXP(DCMPLX(DyA)/VEL)syHyE)yVELyH)

VII,J) IS THE VELOCITY ASSOCTATED WITH EACH PERFFCT FLUID PATH
LINE POINT.

VI1,J)=DCONJG(O)
22(1)=22(2)
12(2)=2(1,J)
VV(il)=vvi(2)
Wi2)=V(1,J)

IF (J.EQ.1) GO TO 3

T(I,J) IS THE VALUE OF THE TIME FUNCTION ALONG THE PERFFCT FLUID
PATH LINE, WHICH IS DETERMINED BY SUMMING THE DT'S.

Ty ) =TIy d=1)+DTUZZ(1)9Z7(2)4VVIL1)sVVI2))
T(I,J) IS CONVERTED TO AN INTEGER.

ATT=T(14+J)/DDT
TT=SNGL(ATT)
ITCIsJ)=TFIX(TT)
CONTINUE

THE MIRROR IMAGE OF THF PATH LINES IS CALCULATED.

DD &4 K=1,24

o 4 J=1,41
X(IK=1)xa141025+J)==X((K=]1)*4]l+J)+TRM
YO(K=1)#4]141025+J)=Y((K=1)*k61+J)

LOOPS 5 AND A PLNOT THF PATH LINFS.

no 5 M=1,25,4

CALL PLINE (X((M=1)%41+1)yY((M=1)x41+41)34131,04+0,0)

DO 6 L=1,2144

CALL PLINE (X((L=1)=61+102A) Y (L=1)%41+102A)4341,1,0,0,0)

LOOPS THROUGH 10 HDETERMINE [F THFERF ARF 72FRMy ONF DR MORF TIMF
LINE POTINTS BETWEEN TWl PATH LINEF POINTS AND ASSUKRKES AN FOUAL
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C eee NUMBER OF TIME LINES FOR THE DEFORMATION FIELD. THE VELOCITY
C eee AT EACH TIME LINE PNODINT IS DFTERMINED,

DO 10 1=2,24
DO 10 J=2,41

F (1.EQ0s24.AND.JFO.41) GO TO 7
GO TO 8
7 R=IT(14J)
R=R/2.
KCH=IT(1,J)/2
KLAST=IT(1,J)
IF (ReGT.KCH) KLAST=KLAST-1
8 CONTINUF
IF (IT(LsM).EQLITILsWN)) GO TO 10
ITT=1IT(LWN)=TIT(LWM)
NO 9 KL=1,ITT
K=TIT(LsM)+KL
ZTT=RINT(Z(LyN)9Z(LyM)sT(LyN)9T(LsM)4DDT4K)
IT(I,K)=2ZTT
VIT=RINT(VILsN) 9 VILsM) 3 TILyN)3T(LsM),DDTHK)
9 VT (1,K)=VTT
10 CONTINUE
WRITE (6,28) KLAST

C ... THE MAJOR AND MINOR DIAMETERS AND THEIR ORIENTATINNS ARF
C ... DETERMINFED.,

DO 13 KR=1,2

DO 13 1=3,23,4

KLL=KLAST=-1

DO 13 K=1,KLLs2
BEE=CDARS(VT(I,K))
FRM=VT(1.K)/BEFE

ENRM=F%*ERM
LEBAV=ZT({I+14K)=2T(I-1,K)
EBAV=ZEBAV/CDARBS(ZEBAV)
FPEEL1=DKFAL(ERMENCONJIG(FBAV))
FPEF=DARCOS(FPEFL)
FEE=PI/2-FPEE
AEE=DTAN(FEF)

AEL1=1/BrEx%2

AE2=-AFF=AF]
AE3=(BEF**2+AEE*%2 /BFFx%2)

AAEL=(AEL1+AF3)
AAE2=DSORT((LAFL)%%2=4.)
HEL=(AAF1=AAF2)/2
HE2=(AAF1+AAF2) /2
DMM2=DSORT(1a/(BEL/(=AF4)))
NDMNZ=NSORT( L./ (BE2/(=AF4)))
BRG=2 0% AF2/ (AEL=AF3)
DUTHFT=(OATAN(AKG) )
DHETA=DUTHFT /2.
DTT=DTAN(DHFTA)
ONM=AR1+2 5 AF25DTT+AF3%DT TH% D
NCH1==AF 4 /ONM
DMO=NCHT% (14 +DTT#%2)
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PERFECT FLUID DEFORMATION FIELD COMPUTATION AND PLOT, continued

DCH=DSORT(DMNQ)
C oo« THE MAJUR DIAMETER DIRFCTION IS CHFCKFD AND CORRECTED I1F NEEDED.

IF (SNGL(DCH) .NEJSNGL(DMM2)) DHETA=PI/2.+DHETA
DROT1=DIMAG(ERM)

DROT2=DARSIN(DROTL)

ROT=SNGL(DRNT2)

TTHET=SPI1/2.-(SNGL(DHFTA)+ROT)
XO=AIMAG(ZT(1,K))*TSS+TAAA
YO=REAL(ZT(I+K))=TSS+TRBR

XALPHA=TTHFT*RADIAN

XAEE=SNGL (NMM2)

XBEE=SNGL (DMN2)

C «oe WHEN KR FQUALS TWO, THE SET OF ELLIPSES IN THE MIRROR IMAGE IS
C «es PLOTTED.

GO TO (12411}, KR
11 X0==-X0+TRN
XALPHA==-XALPHA

C <o THE STRAIN ELLIPSES ARE PLNOTTED.

12 CALL PELIPS (XO,YOyXAEE+XBEEsXALPHA4N.04360.0,0)
13 CONTINUE

C eee THE POSITIONS OF THE TIME LINE PODINTS IN THE ABSOLUTE RFFERENCE
C eee FRAME USED BY *¥PLOTSYS ARE DEFINED,

DO 14 L=1.KLAST

NO 14 M=2,24

XXX((L=1)%23+M=1)=AIMAG(ZT(M,L))*TSS+TAAA
14 YYY((L=1)%23+4M=1)=REAL(ZT(M,L))I*TSS+THBBR

C eee THE MIRROR IMAGE OF THF TIME LINE POINTS IS DFTERMINED.
DO 15 L=1,KLAST
DO 15 M=2,74
XXX{AL=14KLAST)*23+M=] ) ==XXX((L=1)%24+M=1)+TRN

15 YYY((L=L+KLAST)#23+M=]1)=YYY((L=-1)%23+M~])

C eee PLOT DESCRIPTIONS OF THE TIME LINFS aRE GENFRATED HERE.

DO 16 L=24KLAST.?

16 CALL PLINF (XXXE(L=1)%23+1),YYY((L=1)%23+41)42341+0,0,0)
DO 17 L=2+KLAST2
17 CALL PLINE (XXX(23%(L=1+KLAST)+1)aYYY(235%(L-1+4KLAST)+1)423,140,4,G,0

1)

C oeee PLOT DESCRIPTIONS (F THE TIME FOUAILS 7FRO LEVEL CURVE ARF
C oeee GENFRATFI HEKRE,

DO 18 1=7.264
XSET)=AIMAGI/ (T4 ))*TSS+TALA

X YSUL)=kbAL(/Z0Ta 1)) TS5+ InANR
No 19 1=2474
XXSEIV==XS([)+TRN

19 YYSil)=yS(ern)

CALL PLINE IXSE2)0YSI2)472331404040)
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PERFECT FLUID DEFORMATION FIELD COMPUTATION AND PLOT, continued

CALL PLINE (XXS(2),YYS(2)423,1,0,0,0)
CALL PLTEND

C eee SELECTED NUMERICAL OUTPUT IS PRINTED.

DO 20 J=1,41

20 WRITE (6423) (T(1,J)51=5,21,4)
PO 21 J=1,41
21 WRITE (6424) (IT(1,4)41=3,23,2)

WRITE (6,25)
N0 22 L=1,KLAST

22 WRITE (6426) (ZT(MyL)M=5,21,4)
GO 7O 2
STOP
23 FORMAT (5(2X.E13.6))
24 FORMAT (2X,11(2X,12))
25 FORMAT (2X, *THE LEVEL CURVES 0OF THE TIME FUNC. FOLLOW')
26 FORMAT (2X45(2X,FE1346))
27 FORMAT(2X, ' ID(T)y I=146 TS'3h(2Xs124',))
28 FORMAT(2X 4 *KLAST IS',2X,12)
29 FORMAT (1H .6F13.6)
30 FORMAT (4(2XsE13.6))
END

B A 3R 3ROOR ARG A RO Xk A0 AR % A 3 % A%k 3k %o 3o X A Xe 3 3 X d e % 30k 9 e v ook o e o8 o ok % ok e ok Xk e 3k Aok ko ok o o ook ke g
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PERFECT FLUID DEFORMATION FIELD COMPUTATION AND PLOT, continued

Selected values of the time function, T(I,J), are listed below in

the following format:

(5,1 ,T(9,1) ,T(13,1) ,T(17,1) ,T(21,1)

T(5,41),T7(9,41),T(13,41),T(17,41),T(21.41) .

0.0 0.0 0.0 0.0 0.0

0.299 0.272 0.253 0.242 0.235
0.608 0.543 0.502 0.478 0.465
0.923 0.808 0. 744 0.707 0.687
1.226 1.063 0.977 0.928 0.902
1.503 1.306 1.200 l.141 1.109
l1.754 1.534 1.413 1.344 1.307
1.981 1.746 1.613 1.538 1.496
2.189 1.944 1.803 1.721 1.677
2.380 2.128 1.980 1.895 1.848
2.555 2.299 2.147 2.059 2.010
2.718 2.459 2.304 2.214 2.163
2.868 2.607 2.451 2.360 2.308
3.008 2.746 2.588 24497 24446
3.136 2.874 2.717 24627 2.576
3.256 2.994 2.838 2.749 2.699
3.366 3.106 2.952 2.865 2.815
3.467 3.210 3.059 2.974 2.926
3.559 3.306 3.160 3.078 3.032
3.643 3.396 3.255 3.178 3.134
3.719 3,481 3.346 3.273 3.231
3.788 3.562 3.434 3,364 3.325
3.854 3.639 3.518 3.453 3.416
3.920 3.716 3.601 3,540 3.505
3.989 3.792 3.682 3.624 3.591
44,060 3.868 3.762 3,708 3.676
4.133 3.944 3.842 3.790 3.760
4.207 4.021 3.921 3.871 3.R8642
4.282 4,098 4,000 3.952 3.924
44359 44175 4,079 4,032 44,005
44435 4.253 4.158 4.112 44086
4.513 4,331 4,237 40192 4a16h6
4.590 44,410 4.316 4,271 4,246
4,668 4,488 44395 444351 44326
4,747 4.566 G474 44430 4.405
44825 4645 4.553 44,509 44,485
4.9G4 4724 44632 4.588 445604
4,982 4,402 4,711 bohAT 4eh4G3
5.061 4,8K] 4,790 4o lbb 4,722
5.139 44960 4e869 LoH25 44801
5.218 5.039 4,947 4 .904 4 GHR()
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Selected values of the time function after conversion to integers

are listed below in the following format:

IT(3,1) ,IT(5,1) , ... ,IT(21,1) ,IT(23,1)

IT(3,41),1IT(5,41). ... ,IT(21,41),IT(23,41)

0 0 0 (¢} 0 0 0 0 0 0 0
1 1 1 1 1 1 1 0 0 0 0
2 2 2 2 2 2 1 1 1 1 1
4 3 3 3 3 3 2 2 2 2 2
5 4 4 4 4 3 3 3 3 3 3
6 6 5 5 5 & 4 4 4 4 4
7 1 6 6 5 5 5 5 5 5 5
8 8 7 7 6 6 6 6 6 6 6
9 8 8 7 7 7 7 6 6 6 6
10 9 9 8 8 8 7 7 7 7 7
11 10 9 9 8 8 8 8 8 8 8
11 11 10 9 9 9 9 8 8 8 8
12 11 11 10 10 9 9 9 9 9 9
12 12 11 11 10 10 10 10 10 9 9
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PERFECT FLUID DEFORMATION FIELD COMPUTATION AND PLOT, continued

The points in the physical plane,
z(I,K) = zl(I,K) + i zz(I,K)
are on a time function level curve when K is constant, These points are

listed below in the following format:

21(5’1) )22(5,1) 921(9’1) ,22(9,1) )zl(l3al) 322(13’1) >
21(17,1) ,22(17,1) ,21(21,1) ,22(21,1)

. . . - . .

. . . . . .

zl(5,18) ,22(5,18) ,21(9,18) ,22(9,18) ,21(13,18) ,22(13,18)
zl(17,18) ,22(17,18),21(21,18),22(21,18) .

=4.127 0.535 =-4,110 1.093 -4.100 1.625
=4.100 2.139 -4,095 2.643
-3.900 0.553 -3,869 1.116 =3.847 le645
-3.841 2.1564 -3,831 2.651
-3.675 0.579 =-3,626 lel4s -=3,592 1.670
=3.577 2.171  -3.,563 2.660
-3.451 0.614 =-3,380 1.180 =-3,332 1.699
-3.308 2.192 -3.289 2.670
-3.226 0.660 -3.129 1.223 =3,066 1.734
-3.033 2.215 -3.009 2.682
=2.994 0.719 =-2.872 1.273 -2.793 1.773
=2.751 2.242 =2.721 2.696
=2.753 0.788 =-2.607 1.330 =-2.511 1.817
-2.459 2.272 =2.423 2.711
-2.501 0.864 =-2.330 1.394 -2.219 1.866
-24155 2.305 =-2.114 24727
-2.2356 0.948 =-2,040 le4bs  =-1,912 1.920
-1.8139 2.341 -1.791 24745
-1.957 1.039 =-1.736 1.539 =1.590 1.977
-1.507 2.379 =1.,454 2.764
-l.664 1.135 =-1.413 1.620 =-1.250 2.037
-l.156 2.418 -=1,098 2.783
-1.351 1.239 =-1,069 1.705 =0.886 2.099
-0.7K5 2.457 =0.,723 2.802
-1.016 1.350 =0.698 1.793 =0.496 2.15R
-0.390 2.492 -0.,327 2.818
~0.651 l.467 -0.2K9 l.#75 =-0.078 2.207
0.026 26521 0.088 2.R32
-0.237 1.588 0.156 1.933 0.360 24238
0.459 24539 0.518 2840
0.241 1.660 0.613 1.959 0.807 2.254
0.901 ZeH69 0.958 2 845
0.711 1.A76 1.067 l.9A8 1.256 24261
1.3467 o554 l.407 2.848
1.1%49 ookl 1.518 1.973 1.705 24265
1.749% 7eHh57 1.849 2.849
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EXPERIMENTAL MODELING COEFFICIENTS COMPUTATION

C «ee THIS PROGRAM SOLVES A SYSTFM 0OF 6 NONLINEAR EQUATIONS FR THF 6
C «ee MODFL COFFFICIENTS.,

REAL*8B X(6)4Y(6)432(6),C1lsCO4T2,P1

COMMON Y,Z2,C1

PI=3.14159265

Do 1 I=1,5

Jd=a4x]+1

CO=(,06872)%(1.-(4J)/25.)

T2=(PI/6)*1-CO

Cl=(6/P1)%T2+1

READ (5,2) XCL) 9 XU2)9X(3)9X(4)yX(5)4X(6)

READ (5,2) YOL)9aY(2)4Y(3) Y (4)yY(5),Y(6)

READ (5,2) Z(1)2ZU2)452(3)42(6)42(5),7(6)

WRITE (6,2) XE1)aX(2)9X(3)yX(4)9X(5),X(6)
WRITE (6,2) YOL)aY(2)0Y(3)aY(4)4Y(5),Y(6)
WRITE (6,2) ZU1)0Z2(2)42(3)42(6)42(5),2(6)
N=6

NUMSTG=3

MAXTIT=40

IPRINT=1

C eeo SEF RFFFRENCE 49 FOR SUBROUTINE NLSYS.

CALL NLSYS (N,NUMSIG,MAXIT,IPRINT,X)
WRITE (6,3)

WRITE (642) XU1)4XU2)9X(3)0X(4)4X(5),X(6)
WRITE (742) X(1)9X02)4X(3)4X(4)yX(5)yX(6)

1 CONTINUF

2 FORMAT (3(2X4F13.6)/3(2X,F13.6))

3 FORMAT(GXs " THF CALCULATED COFFFIFCENTS ARE ')
FND

S TR AR e N A R e e e % -‘-‘}‘*:{:=‘;>¢:X!*ﬁ*:;:***#»’6*3‘5#¢=.‘:>¥=?=#:;r='#4=#*“+#&::*&:**3‘;*****

oo THIS SUBROUTINE CAONTAINS THE A NONLINFAR EOUATIONS TO BF SOLVED.
eee INTEGFR CNNATANT KK WHICH CAN HAVE VALUES NF 1 THROUGH &
see DETERMINFS THF PERTINENT FOUATION.

nEaNel

SUBROUTINFE AUXFCN (XX 4FFyKK)
REAL*R FREOXXIA) oYY (h) 472 (A)0Cla(2
COMMON YY,Z77,C1
I=KK
(2=C1l+4
TE (LarO S R T kO LAY G TH )
rF:XX(l)/(XX(?J**((YY(I)-XX(1))**2)+UFXP(—L1*(YY(l)—XX‘6))))—XX(4)
!/(xxtH)w*((vv(l)-xxfﬁl)**?)+HPxP(L7*(VV(])—XX(A))))+77{I)
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EXPERIMENTAL MODELING COEFFICIENTS COMPUTATION, continued

G0 TO 2

1 FR==XX(1)® (2% (YY(T)=XX(3))xDLOGEXX(2))=XX(2)%=( (YY(T)=XX(3))*x%x2)-C
LL#DEXP(=CLl=(YY (D )=XX(3))) )/ (XX(2)#%((YY(T)=XX(3))*%2)+DEXP(=CL*(YY
2O =XX(3))))mx2+XX (&) % (2% (YY(1)=XX(A))=DLOGIXX(5))*XX(S5)%*x((YY(])-
B3XX(6))%%2)+C2%DEXP(C2% (YY(T)=XX(6))) )/ IXX(S) %% ((YY(I)=XX(6))*%2)+D
GEXPLC2%(YY(I)=XX(6))))*%2+4772 (1)

2 RETURN
END

X % % 3 A %7 Ao K A 3K 3 Ko % R Rs 4ok 3k K o e B 3 e Skop e sl Xk 4 o 0K K K X e RO A0 KR AT B R S AR IR 30 X0 KR S 30 R e 3636 X e e 4 YRR S AR OR
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EXPERIMENTAL FUNCTION DEFINITION USING A CUBIC SPLINE FIT

C eee THIS PRUGRAM DETERMINES A CUBIC SPLINF THROUGH THE EXTRAPOLATED
C eee SETS OF MODEL COEFFICIENTS.

IMPLICIT RFAL%B(A-H,0-7)
INTEGER ID(A)
DIMENSTUN S(50), A(50+50), Y(50), X(50)s B(50), H{50), GD(T,6), XX

1(7)
DO 1 I=1,6

1 ID(I)y=7
DO 2 1=2,6

2 READ (5,19) (GDI14J)yJd=1,6)
o 3 I=2,6

3 WRITFE (6419) (GD(1eJ)ed=14h)
PI=3.14159265
XX(1)=0.

DO &4 1=2,7

CO=(.06872)*(1le=(ax(I=1)+1)/25.)
4 XX{1)=PIl=(1-1)/6-C0O

HHH=XX{2)/ (XX(3)=XX(2))

C eee THE MODFL COEFFICIENTS ARE EXTRAPILATED.

GD(1,1)=0
GNDE142)=6D(242)
GDEL143)1=(6D(243)=GD(3,3))%HHH+GD(2,3)
GDI1,4)=0
GD(145)=6GD(2,5)
GDUL1,6)=(6N(2:6)=GD(3,A))XHHH+GD(2,6)
GD(T41)=0
GD(T74,2)=GD(K2)
GDI743)=GD(A,3)
GD(T44)=0
GDITe5)=GD(A5)
GOIT+6)=GDIALH)
DO 17 L=1,6
N=TD(1)
WRITE (6,20) N
DO 5 I=1.N
M= ]
TE (INCL)JFQOGH) M=T4+]

5 X(I)=XX (M)
WRITE (/,18) (X(1)eI=]4n)
WRITE (6421) (X(I)al=1,)
N0 6 I=1.N

M= ]
[F (IDCL)YaFN,5) M=]+1
6 YT )=GO(m,L)

RITE (/9 1R) (Y al=1,v)
WRITE (5,22)

NRITE (A21) (YOl )eI=)at)
SAX =N=)
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EXPERTMENTAL FUNCTION DEFINITION USING A CUBIC SPLINE FIT, continued

oo THF LINFAR DIFFFRENCE FNUATIONS ARF DFTFRMINED WITH TWO ADDITIONAL
vee CONDITIUNS RFING SFT ON THE PARTICULAR MODEL COEFFICIENT'S SECOND
veo DERIVATIVEVFS WITH RESPECT TN THE PATH LINE AT THE POINTS ADJACENT
eee TO THE NDIE WALL AND CENTER LINF.

(nNelakel

no 7 I=1,MAX
7 H(I)=X(T+1)=X(1)
BOLY=((Y(3)=Y(2))/H(2)=(Y(2)=Y(1))/H{1))/(05%(H(L1)+H(2)))
RENY=((YIN)=Y(N=1))/HIN=1)=(Y(N=1)=Y(N=2))/H(N=2))/(0.5%(H(N=-1)+H(
IN=2)))
IF (LeENG2) BLL)I=3x(Y(4)=2%Y(3)+Y(2))/H(3)*%2
NO K 1=2+MAX
8 BUI)=(6.0/HETI)%((Y(TI+1)=Y(I))/HIT)=(Y(T)=Y(I=1))/H(I=1))
A(l,1)=0.
A(1,2)=1.
N0 9 J=3,N
9 Al14J)=0.
MAX2=N=2
DO 10 J=1,MAX2
10 A(N,y,J)=0.
A(NyMAX)=1,
BA(NGN)Y=0,
NN 15 K=2,MAX
Kl=K=-1
I=K
K2=K+1
no 15 J=1,.N
IF (JJEQ.KY) G TH 11
IF (J.EDK) 6N TH 12
IF (JJFOJK2) GN TOH 13

GO TO 14
11 AlT+J)=HII=1)/H(T)
6N TO 15
12 ACTod)=2%(HOD)+H(T=1))/H(T)
GO TO 15
13 AlT,d)=1.
GO TO 15
14 AlT,J)=0.
15 CONT INUF

WRITE (A423)
DO 16 1=14N

14 WRITE (6421) (L01,0)e0=1sN)
FPS=0.1F=1Y

(( eee MINV INVFRTS THF [LINFAK DIFFERENCE MATRIX,.

CALL MIMV (NGFPS,ADETER)
WRITF (Aha24) DFTER

cee MATVFC DFTERMINFS THF HINKNOWN SFCOND DERIVATIVES THAT DFFINE
C eee THE SPLINES NSING THE OUTPUT OF MINV,

CALL MATVEG (AebBySeheN)
WwKRETF (95425)

WRITF (7421) (SCI)el=14N)
WRITE (AW21) (SCT)yI=1,40M)

17 CONT ITNUF

e} FORMLT {(6(2XF13.,F))
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EXPERIMENTAL FUNCTION DEFINITION USING A CUBIC SPLINE FIT, continued

19 FORMAT (3(2X,F13.6h))

20 FORMAT (I1HL 4 'N ISP, 2X,12//'THE X VECTOR IS'//)

21 FORKMAT (4(2XsF13.6))

22 FORMAT (1HOL'"THE Y VECTNR TSY/1H )

23 FORMAT(1HO, *THE LINFAR DIFFERENCE MATRIX IS'//)

24 FORMAT ( 1HO, *DETER 1S',2X,F13.6)

25 FORMAT(1HO, *THE SFCOND DERRIVATIVE VFCTINOR ISY//)
END

B s v ne o sl S A% sk Xe e 4 30l AR R0 e Ak & % g % % ok K % e R X d 3 % 3 30O XK 3 R X0RN N0 Sk Kk YRR AR RN X0 AR R 0 TR R R R R R AR
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EXPERIMENTAL FUNCTION DEFINITION USING A CUBIC SPLINE FIT, continued

The following output is needed to plot the spline fitted model co-
efficient A shown in Figure 48. The x vector contains values of ex-
perimentally selected real metal path lines, while the y vector con-
tains values of model coefficient A for these selected path lines. The
second derivative vector defines the cubic splines, and similar output

is generated for the remaining model coefficients.

N IS 7

THE X VECTOR IS
0.0 0.486839D 00 0.1017790 01 0.1548740 01
0.207969D 01 0.261064D 01 0.314159D 01

THE Y VECTOR IS

0.0 0.186677D 00 0.2637870 00 0.283377D 00
0.247806D 00 0.147152D0 00 0.0

THE LINEAR DIFFERENCE MATRIX IS

0.0 0.100000D 01 0.0 0.0

0.0 0.0 0.0

0.916919D 00 0.383384D 01 0.100000D0 01 0.0

0.0 0.0 0.0

0.0 0.100000D0 01 0.400000D O1 0.1000000 01
0.0 0.0 0.0

0.0 0.0 0.100000D0 01 0.4000000 01
0.1000000n 01 0.0 0.0

0.0 0.0 0.0 0.100000D 01
C.4000000 01 0.100000D O1 0.0

0.0 0.0 0.0 0.0
0.1000000 01 0.4000000 01 0.1000000n 01

0.0 0.0 0.0 0.0

0.0 0.1000000 O1 0.0

DETER IS 0.513475D 02

THE SECOND DERIVATIVE VECTOR IS

-0.8254380 00 -0.468107D 00 -0.140464D 00 -0.194264D 00
-0.2564970 00 =-0.1649400 00 ~0.733827D-01
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MODELED REAL METAL AND PERFECT FLUID VELOCITY HODOGRAPH PLOTS

C ees THIS PRUGRAM TOGETHER WITH *PLOTSYS COMPUTES AND GENERATES THE

C ece PLOT DESCRIPTIONS FOR THF MODELED REAL METAL VELOCITIES AND THE
C eee PERFECT FLUID VELOCITIES AS A FUNCTTON OF INCREMENTAL STEPS DOWN
C «ee THE MODFLED REAL METAL PATH LINF,

IMPLICIT REAL*8(A-H)

DOUBLFE PRFECISION PI,VEL,TH

INTEGER ID(6)

REAL %8 GCUATT) o XX (64T)sYY(hyT)yGXIA) W NGX(6)

COMPLEX*16 EvFsGaSFyZFy0F sGOaHH Py WS 47 40, VF,V

DIMENSTON X(1200), Y(1200), XXX(1200), YYY(1200)

COMMON GCyXX,YY, 1D

DATA H/O.72“/vVEL/1.0/VGG/(-.707110.70711)/QHH/(-.70711v_-70711)/v
LE/(14040.0)/4F/(0.0,1.0)/

PO 1 I=1,6

1 10(1)=7
WRITE (649) (ID(1)yI=1,h)
DO 2 I=1.6

READ (5,10) (XX(I4J)yd=1,7)
READ (5410) (YY(I4J)ed=1,7)
2 READ (5410) (GC(I1,J)yd=1,7)
ho 3 1I=1,6
3 WRITE (64a11) (XX(14J)sd=1,7)
DO 4 I=1,6
4 WRITE (A.11) (YY(I1,J)yJ=1,7)
no 5 I=1,.,6
5 WRITE (6411) (GC(1eJ)ad=1,7)
TAAA==-2
TAA=TAAA
TBRK=3
TB=13
TSS=x
P1=3,141592A%

Coeee T IDENTIFIES THE MODELFD RFAL METAL PATH LINF.
Do 6 1=3,11,7
CN=0406R8(2)5(1.0=1/13.)%(2h/25.)
A=((I=-1)xP]1)/17=Cl)

C oeee NCONS DETERMINES THE APPRUPRTATE MODFL COEFFIGCIFNTS AND THE IR
C o eee NERIVATIVFES,

CALL DOLOONS (AaGX 4 DGX )
Coeee J IDENTIFIES A POSTTIUN (IN A PATH LINE,
i) 6 J=1,81
IB=0.41471
sE=((1=1)=P])/TH

(=k1/24
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MODELED REAL METAL AND PERFECT FLUID VELOCITY HODOGRAPH PLOTS, continued

D==6.500+(J-1)%C

eee RM DETERMINES THE POSITION OF THE MUODELED REAL METAL PATH LINE
ees POINT IN THE POTENTIAL PLANE.

[alel

AA=RM(A,D,GX)
C eee OF DETERMINES THE PERFECT FLUID VELOCITY.
Q=0QF (SF(CDEXP(DCMPLX(DsAA)/VEL)syHsE),VEL,H)

ees PDPRM DETERMINFS THE PARTIAL DERIVATIVES REQUIRED TN CALCULATE
THE MODFLED REAL METAL VELOCITY.

a¥s)
.
.
.

CALL PDPRM (DsA+GXsDGX4PDPL14PDP2)
C oo VF DETERMINES THE MODELED REAL METAL VELOCITY.

V=VF(Q,PDP1,PDP2)
0=DCONJG(Q)

o
.
.
.

X AND Y ARE THE POSITIONS 0OF THE FRFE VECTOR TIP ASSOCIATED WITH
C «.. MODELEND REAL METAL VELUCITIES IN THE ABSOLUTE RFFERFNCF FRAME
C eoo *®PLOTSYS CAN USF.

X((I=1)#R1+J)=REAL(V)*TSS+TAAA
Y{I=1)*81+))=AIMAG(V)*TSS+TBRRB

. XXX AND YYY ARE PNOSITIONS ASSOCIATFND WITH THF PERFFCT FLUID
C eee VELOCITIES IN THE ABSOLUTE REFERENCF FRAME %PLDTSYS CAN USE.

)
.
.
.

XXX(EI=1)%81+J)=REAL(Q)*TSS+TAA
6 YYY((I=1)*BLI+J)=AIMAG(O)*TSS+TBB

C eee THE PLOT DESCRIPTIONS ARE GENFRATE HFRE,

CALL PENUP (A,043.0)
CALL PENDN (10.0,3.,0)
CALL PENUP (0.0,0.0)
NDO 7 M=3,11,2
7 CALL PLINE (X((M=1)#R1+1)sY((M=1)%R1+1),R1,1,0,0,0)
CALL PENUP (6.0,13,0)
CALL PENDN (10.0,13,0)
CALL PENUP (0.040.0)
NN 8 L=%.11,27
o] CALL PLINE (XXX((L=1)#RL1+1),YYY((L=-1)%R1+1),4R1,1,0,0,0)
CALL PLTFND

9 FORMAT (2240 V 10T )y I1=14h IS'4h(2Xy124" ")
10 FOKMAT (4(2X4F13.6))
1 FORMAT (7(2X4F13.61)
END
Fe o A % R R R R R R e e s
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MODELED REAL METAL DEFORMATION FIELD COMPUTATION AND PLOT

ees THIS PRUGRAM TOGETHER WITH *PLOTSYS CNMPUTES AND GENERATES THE
eee PLOT DESCRIPTIONS FOR THE MODELED REAL METAL DEFORMATION FIELDS
eee USING DASHED LINES,

OO0

IMPLICIT REAL*B(A=H)

DOUBLE PRECISION PI,VFLyTHsRM

INTEGER ID(6)+1T(25,41)

REAL*8 GC(byT) o XX(64T)sYY(64T)eGXIA)4DOX(6)3T(25,41)4,0DS(25)

COMPLEX*16 EsF oG ySFeZF sQF yGGyHH P oWy SeZ(25441)9Q4VFoZZ(2)4VVI(2),

LZTE25941) sRINTZZTT,VTT,V(25441)4VT(25,41)4,ERM,ENRM,7EBAV,EBAV

DIMENSTON X(2400), Y(2400), XXX{2400), YYY(2400), XS(25), YS(25),

LXXS(25), YYS(25)

COMMON GC 4 XXy YY,ID

DATA VFEL/140/+566/(=a707114e70711)/4yHH/ (=4T07114=o70711)/4E/(1,0,0.

10)/,F/(0.0,1.0)/

Do 1 I=1,6
1 Inery=7

WRITE (h433) (ID(I)sI=145h)
2 DO 3 I=1.6

READ (54,35) (XX(14J)ed=1+7)

READ (5435) (YY(I,J)sJd=1,T7)
3 READ (5435) (GC(I4J)4d=1,7)

READ (5,27) H,ADDT

READ (5,38) (DS(I)sI=1425)

o 4 I=1,6

4 WRITE (6436) (XX(14J)yd=1,7)
DO 5 I=1,6

5 WRITE (6436) (YY(I,J)eJd=1,7)
DO 6 1=1,6

6 WRITE (6436) (GC(I4J)yJd=147)

WRITF (6,28) H,ADDT
WRITE (6h437) (DS(I),1=1425)
PI=3.14159265

C eee ADDT IS THF FORFSHORTENING CORRECTION.

DDT=(PI/12)*ADDT
C=P1/12

TB=0.41421
TAAA=2,50
TB8B=10.50
TSS=1.1013
TRN=2x(PIRTSS+TAAA)
SPI=SNGL(PT)

C eee KO IS THF SCALEN RADIUS FOUOR THE UNDFEFNORMED CIRCLES.

RO=0415%(SPI/1e2)%TSS/2,
“ADIAN=]1RO./SP]

C eee [ IDENTIFIES THF MODFLFD RFAL MFTAL PATH LINE.
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MODELED REAL METAL DEFORMATION FIELD COMPUTATION AND PLOT, continued

C

[aNe

o

Y

e

cee

DO 7 1=1,25
C0=-(0.001R38)%([~-25)
IF (I.EQ.1) C0=0.0
A=((I-1)%PI)/24-CO

DCONS DETERMINES THE APPROPRIATE MODFL COEFFICIENTS AND THEIR
DERIVATIVES.

CALL DGCONS (A,GX,DGX)

7172(1)=0

12(2)=

Vvil)=

Vvi2)=

T(1,1)
1

0
0
0
IT(I,1)

0
=0
J IDENTIFIES THE POSITIONS ALONG THE MODELED REAL METAL PATH LINE.

DO 7 J=1,41
B==((1-H)%PT) /TR

DSCI) IDENTIFIES THE TIME EQUALS ZFR() TIME LINE.
D=DS{II+(U=-1)%C

RM DETERMINES THE POSITION OF THE MODELED RFAL MFTAL PATH LINE
POINT IN THE POTENTIAL PLANF.

AA=RM(A,DyGX)
IF (1eEOQ.1e0ReIEQa25) AA=A

ZF IDENTIFIES A POSITION OF A POINT IN THE PHYSICAL PLANF.
LU13J)=ZF(SFICNDEXPIDCMPLX (NG AA)/VEL) yHoF) gHy By EyFyBG0GyHH)

X AND Y ARE POSITIONS IN THF ABSOLUTFE REFERENCE FRAME USFI) BY
#PLOTSYS,.

XCOI=1)%641+J)=AIMAGIZ(T,J))*TSS+TAAA
YOUI=1)%41+0)=RFAL(Z2(T+J))=TSS+TRHR
IF (TeFQaleDOR.TEQG25) GO TO 7

OF DETEFRMINES THE PERFECT FLUID VELOCTTY.
G=OF CSFLCOEXPIOCMPLY (O AA)Y /VEL) sHoF ) o VFL yH)

POPRM DFTERMINES THE PARTIAL DFRIVATIVES RFOUIRFD T CALCULATF
THE MODFLED KEAL METAL VFLOCTTY.

CALL PDPRM (13 AyGX 4y NGX4PHPL,PDP2)

VIIed) IS THE VELOCITY ASSOCTATED WITH FACH MODFLFD REA| MFTAL
PATH LInk pirInT,

VITsJ)=VE(GaPDP T POPY)
/701 )1=4712)

/L) =01(014]))
VVI1)=vv(2)
VVIZ)=VIT,d)
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MODELED REAL METAL DEFORMATION FIELD COMPUTATION AND PLOT, continued

IF (J.EQ.1) GO TO 7

C eee T(I,4J) IS THE VALUE OF THE TIME FUNCTION ALONG THE MODELED REAL
C «co METAL PATH LINE, WHICH IS DETERMINED BY SUMMING THE DT'S,

TULed) =Tl 4 J=1)+DTUZZ(1)422(2)4VVI1),VV(2))
C eee T(I,J) IS CONVERTED TO AN INTEGER.
ATT=T(I1,J) /00T
TT=SNGL(ATT)
ITC(I ) =1FIX(TT)
7 CONTINUE
C «¢« THE MIRROR IMAGE OF THE PATH LINES IS CALCULATED,
DO 8 K=1,24
DO 8 J=1,41
X((K=1)%41+1025+J)==X((K=1)%41+J)+TRN
8 YU(K=1)%41+1025+J)=Y((K=1)%41+J)
C «ce LOOPS 9 AND 10 PLOT THE PATH LINES.

DD 9 M=1,25,4

9 CALL PDSHLN (XC(M=1)%41+1 ), Y((M=1)%4141)44141,0.08,0)

DO 10 L=1,21,4
10 CALL PDSHLN (X((L—l)*41+1026)vY((L-l)*41+1026)v41y1v0.08v0)
C «ee LOOPS THROUGH 14 DETERMINE IF THERE ARE ZERO, ONF OR MORE TIME
C eee LINE POINTS BETWEEN TWO PATH LINE POINTS AND ASSURFS AN EOQUAL
C eee NUMBER UF TIME LINES FOR THE DEFORMATION FIELD. THF VELOCITY
C eee AT EACH TIME LINE POINT IS DFTERMINED.

DO 14 1=2,24
DO 14 J=2,41

N=J
L=1I
M= -1
IF (1.EQ.24.AND.J.EQ.41) GO TO 11
GO T0O 12
11 R=IT(I,J)
R=R/2,

KCH=IT(14J)/2
KLAST=IT(1,4)
IF (R.GT.KCH) KLAST=KLAST~-1
12 CONTINUF
IF (IT(L M) FQLITI(LWN))Y GO TO 14
ITT=1IT(LN)=IT(L M)
DO 13 KL=14ITT
K=TT(L,M)+KL
ZTT=RINT(Z(LQN)vZ(LvM)vT(LvN)vT(LyM)QDDTQK)
LT(1,K)=2TT
VIT=RINT(VILIN) 9 VILaM) 3 TILAN) 9 T(LyM)4DDT4K)
13 VTI(I,K)=vTT
14 CONTINUE
WRITE (6434) KLAST

C eee THE MAJUR AND MINOR DIAMETERS AND THEIR ORIENTATIONS ARF
C o eee NETERMINKFD,
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MODELED REAL METAL DEFORMATION FIELD COMPUTATION AND PLOT, continued

D0 17 KR=1,2

DO 17 1=3,23,4

KLL=KLAST-1

DO 17 K=1,KLL,2
BEE=CDABS(VT(1,4K))
ERM=VT(1.K)/BEE

ENRM=F%*ERM
ZEBAV=ZT(I+1,K)=ZT(I-1,K)
EBAV=ZEBAV/CDABS(ZEBAV)
FPEE1=DREAL (ERM*DCONJG(EBAV))
FPEE=DARCOS(FPEEL)
FEE=P1/2~FPEE

AEE=DTAN(FEE)

AE1=1/BEE*%2

AE2=-AEE*AE]
AE3=(BEE**2+AEE**2 /BEE*%*2)
AE4=-RO%**2

AAE1=(AE1+AE3)
AAE2=DSQORT((AAE]L)*%2-4,)
BEl1=(AAF1-AAF2)/2
BE2=(AAE1+AAE2) /2
DMM2=DSORT(1./(BEL1/(~AE4)))
DMNZ2=DSQORT(1./(BE2/(=-AE4)))
ARG=2 . *AE2/(AE1-AE3)
DUTHET=(DATAN(ARG))
DHETA=DUTHET /2.
DTT=DTAN(DHETA)
DNM=AE1+2 . *AE2*DTT+AE3XDTT*%2
DCH1==AE4/DNM
DMO=DCHI*(1.+DTTx*2)
DCH=DSQRT(DMQ)

C «oo THE MAJOR DIAMETER DIRECTION IS CHFCKED AND CORRFCTED IF NEEDED.

IF (SNGL(DCH) «NEJSNGL(DMM2)) DHETA=PI/2.+DHETA
DROT1=DIMAG(ERM)

DROT2=DARSIN(DROTL)

ROT=SNGL(DROT2)

TTHET=SP1/2.-(SNGL(DHETA)+ROT)
XO=AIMAGIZT(I,K))*TSS+TAAA
YO=REAL(ZT(1,K))*TSS+TBABR

XALPHA=TTHFT*RADIAN

XAEE=SNGL (NHMM2)

XBEE=SNGL (DMN?2)

C ees WHEN KR FQUALS Tw0O, THF SET OF FLLIPSFS IN THE MIRROR [IMAGE IS
C eee PLOTTED.

GO TO (16415) KR
15 X0==X0O+TRN
XALPHA==XALPHA
C eee THE STRAIN FLLIPSES ARF PLOTTED,.

CALL PELIPS (XOysYOWXAEEZ,XBEE W XALPHA,D.0436040,0)
17 CONT INUF

C eee THE POSTITINNS OF THE TIME LINF POINTS IN THF ABSOLUTE RFFERENCF
C eee FRAME (SFED BY %=PLOTSYS ARF DFEFINFD,.
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MODELED REAL METAL DEFORMATION FIELD COMPUTATION AND PLOT, continued

D0 18 L=1+KLAST

DO 18 M=2,24

XXX((L=1)%23+4M=1)=AIMAG(ZT(M,L))*TSS+TAAA
18 YYY((L=1)%234M=1)=REAL(ZT(M,L))*TSS+TBBB

C «ee THE MIRROR IMAGE OF THE TIME LINE POINTS IS DETERMINED.
DO 19 L=1,KLAST
DO 19 M=2,24
XXX(AL=1+KLAST)#*23+M=1)==XXX{((L=1)%23+M=1)+TRN

19 YYY((L=1+KLAST)*23+M=]1)=YYY((L=1)%23+M=])

C «ee PLUT DESCRIPTIONS OF THE TIME LINES ARFE GENERATED HFRE.

DO 20 L=2,KLAST,2

20 CALL PDSHLN (XXX (({L=1)%23+1),YYY((L-1)%23+1),23,1,0.08,0)
DO 21 L=24KLAST,2

21 CALL PDSHLN (XXX(23%(L~1+KLAST)+1)sYYY(23%(L=-1+KLAST)+1),23,1,0.08
1.0)

C eoe PLOT DESCRIPTIONS OF THF TIME EQUALS 7FR0O LEVFL CURVE ARE
C eee GENERATFI) HFRE,

D0 22 1=2,24
XS(I)=AIMAG(Z(I,1))*TSS+TAAA

22 YSCI)=REAL(Z(141))%TSS+THHA
NO 23 [=2,24
XXS(I1)==XS(I)+TRN

23 YYS(I)=YS(I)
CALL PDSHLN (XS(2)4,YS(2)423,140.08,0)
CALL PDSHLN (XXS(2),YYS(2)42341+90.08,0)
CALL PLTEND

C eee SELFCTFD NUMFRICAL OUTPUT 1S PRINTED.

N0 26 J=1,41

24 WRITE (6429) (T(I14J)s1=5,2144)
DO 25 J=1,41
25 WRITE (6430) (IT(l1sJd)s1=2424)

WRITE (6,31)
DO 26 L=1,KLAST

26 WRITE (6432) (ZT(MyL)4M=5,21,4)
GO TO 2
STOP
21 FORMAT (2X4E13eh92XsF13.6)
28 FORMAT(LX g /o 'H IS' 91X F13664/91Xy"ADDT IS"y1X4EL13464/)
29 FOKMAT (5(2X,E1346))
30 FORMAT (2X423(2X,12))
31 FORMAT (2Xy *THE LEVEL CURVES 0OF THE TIME FUNC. FOLLOW')
37 FORMAT (2X+5(2X4E1l3.61)
33 FORMAT (2X4 "ID(T )y 12196 IS'4b6(2Xs124'4%))
34 FORMAT(2X 4 "KLAST [S*42Xs12)
35 FORMAT (4(2X,F13.6))
46 FORMAT (7(2X,F13.6))
EN FORMAT (1H +AF13,6)
3R FORMAT (4 (2X4F13.A))
END
P E R PP R e S  r L L L
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MODELED REAL METAL DEFORMATION FIELD COMPUTATION AND PLOT, continued

Selected values of the time function, T(I,J), used to determine
the modeled real metal deformation field shown in Figure 42 are listed

below in the following format:

T(5,1) ,T(9,1) ,T(13,1) ,T(17,1) ,T(21,1)

T(5,41),T(9,41),T(13,41),T(17,41),T(21.41)

0.0 0.0 0.0 0.0 0.0

0.271 0.258 0.254 0.248 0.247
0.552 0.518 0.506 0.494 0.490
0.841 0,775 0.7¢2 0.734 0.727
1.120 1.023 0.989 0.966 0.95R
1.377 1.259 1.213 1.189 1.1R0
1.614 1.480 l1.424 1.398 1.392
1.834 1.688 1.621 1.593 1.590
2.040 1.885 1.808 1.775 1.773
2.233 2.070 1.985 1.946 1.942
2.413 2.246 2.153 2.107 2.096
2.584 2.413 2.314 2.258 2.237
2,745 2.573 24466 2.400 24365
2.897 2.725 2.610 2.531 24481
3.043 2.869 2.745 24652 2.5R8
3.181 3.003 2.869 2.763 2.690
3.311 3.126 2,983 2.866 2.78B9
3.432 3,237 3.089 2.964 2.8R6
3.541 3.337 3.187 3.058 2.981
3.638 3.428 3.280 3.150 3.075
3.723 3.513 3.368 3.239 3.16R
3.799 3.593 3.454 3.326 3.259
3.870 3.670 3.537 3.411 3,348
3.939 3.746 3.618 3,495 3.435
4,009 3.822 3.699 3.579 3.521
4,081 3.R97 3.778 3.AA1 3.606
4.154 3.974 3.858 3,763 3.689
4,229 4,050 3.937 3.82¢ 3.772
44305 4,128 44016 3.904 3.853
4,381 4,205 4.095 3.985 3.934
4,458 4.283 bolT74 44,065 4,015
4.535 4.361 4.253 4alba 4.095
4.613 4.439 44332 bel224 4175
4,691 4,514 4o411 44,303 4,255
4,769 4,596 4,490 4e382 443364
4,848 4,675 44569 b ,bGh? bobl4
44926 4,753 4,648 4,561 44493
5.005 4.R32 4,726 4.h20 4,572
5,03 4.911 44805 4e699 4,651
5.162 4.990 4,880 4,778 4.730
5.241 5.068 4,963 GaKHT 4.R09
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MODELED REAL METAL DEFORMATION FIELD COMPUTATION AND PLOT, continued

The time function after conversion to integers used to determine
the modeled real metal deformation field shown in Figure 42 is listed

below in the following format:

IT(3,1) ,IT(5,1) , ... ,IT(21,1) ,IT(23,1)

. . LAY . .

IT(3,41),IT(5,41), ... ,IT(21,41),IT(23,41) .

0 0 o o0 o 0 O O O 0 o
1 1 1 1 1 1 1 1 1 1 1
2 2 2 2 2 2 2 2 1 1 1
3 3 3 3 3 3 3 2 2 2 2
4 4 4 4 4 4 3 3 3 3 3
5 5 5 5 4 4 4 4 4 4 4
6 6 6 5 5 5 5 5 5 5 5
T 1T 7T 6 6 6 6 6 6 6 6
8 8 7 7 1 1 1 1 1 1 7
S 9 8 8 8 8 7 1 1 1 7
10 9 9 9 8 8 8 8 8 8 8
10 10 10 9 9 9 9 9 9 9 9
11 11 10 10 10 9 9 9 9 9 9
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MODELED REAL METAL DEFORMATION FIELD COMPUTATION AND PLOT, continued

The points in the physical plane,
z(I,K) = zl(I,K) + i zz(I,K)
are on a time function level curve when K is a constant, in Figure 42.

These points are listed below in the following format:

2,5, ,2,65,1) ,2,(9,1) ,2,09,1) ,2,(13,1) ,2,(13,1) ,
z,(17,1) ,2,(17,1) ,z,(21,1) ,2,(21,1)

. . . . . .

. . . . . .

2, (5,18) .z,(5,18) ,2,(9,18) ,2,(9,18) ,2,(13,18),2,(13,18),
22(17,lu)122(17,18),21(21,18),22(21,18) .

-4.099 0.467 =-4,090 1.009 =-4.,095 1.546
~4.,104 2.081 -4.107 2.612
-3.846 0.476 -3.835 1.020 -3.843 1.555
-3.853 2.087 -3.858 2.615
-3.596 0.504 -3,580 1.046 -3,590 1.572
-3.601 2.097 -3.607 2.620
-3.349 0.554 =3,325 1.091 -3.333 1.603
-3.345 2.115 =-3,352 2.628
-3.103 0.626 =-3.067 1.156 =3.070 l.654
-3.083 2.145 -3,093 2.640
-2.854 0.715 -2.806 1.239 =-2.798 1.725
-2.809 2.192 -2.823 2.662
-2.600 0.810 -2.538 1.329 =2.517 1.805
-2.523 2.255 =-2.539 24695
~2.341 0.908 =2.263 le418 =2.228 1.887
-2.222 26324 =2.23%2 2.737
-2.074 1.006 -1.982 1.509 -1.931 1.973
-1.906 2.402 -1.894 2.789
-1.798 1.108 -1.695 1.605 =-1.627 2.068
-1.569 2.483 -1.510 2.837
-1.515 1.214  -1.404 1.708 ~-1.308 2.158
=1.195 2.535 -1.083 2.846
=1.227 1.325 -1.100 1.809 =-0,.,952 2.215
-0.778 2.538 -0.648 24835
-0.933 1.439 =-0.759 1.888 =0.550 2.230
=0.340 2.530 =-0,220 2.832
=0.620 1.548 -0.355 1.929 -0.116 2.234
0.101 24536 0.208 2.831
=0.252 l1.636 0.097 1.948 0e329 2244
04542 2.543 0.643 2eH42
0.203 l.h74 0.558 1.9A1 0.77R 2.255
0.9%7 2.951 1.085 2.H46
0.610 leAT8 1.013 1.9+8 1.227 7.261
1.433 24555 1.531 2.8648
1.127 1.681 1.464 1.972 leb77 2.264
1.881 2.557 1.978 2.849
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