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INTRODUCTION

Regular events are characterized by various means: Regular expressions,
congruence relations or homomorphisms, deterministic and non-deterministic finite
automata, Blchi's monadic algebras, etc. Naturally, each characterization carries
with it its specific "intuition-space" of mathematical insight and concepts. In
addition to these, each characterization suggests natural generalizations.

The Kleenean theory of regular events suggests the definition of a class
Kw which is the smallest class of subsets of a monoid W such that it contains the
finite subsets of W and it is closed under the complex-product of subsets of W
and under the submonoid-generating operation in W (McKnight 1960-a, 1960-b).

The homomorphic theory of regular events suggests the definition of a
class Rw of the W-regular events which are the subsets E of W such that E =5°-%P(E)
for some homomorphism ¥ of W with a finite range (Rabin and Scott 1959, Give'on
1963 an :l,\"'!.ﬁ“,('l,'V'(\.f'i_(‘.\{ 1958),

Rabin-Scott's theory of finite automata suggests the definition of finite-
state automata with W as the set of input-tapes. The internal mechanism of these
W-automata follows Ginsburg's studies (Ginsburg 1960) with analogous modifications
which modify sequential automata into Rabin-Scott finite automata. Here, of course,
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it is possible to define both deterministic and non-deterministic W-automata in

a natural way.

Blichi's theory of finite automata within the framework of the theory of

monadic algebras (Blichi 1960, Thatcher 1963) suggests the following definition

of (pure) W-monadic algebra: a (pure) W-monadic algebra is a system

where
, . . @
(i) A is a set, the carrier of (i
(ii) Ny A —> A for any w ¢ W with the condition that the operation

in W will be compatible with the compositions of the a@, the operators of é&

i.e., that for any Wy, Wy ¢ W, using the suffix-notation, we shall have:

I choose to base my theory on the homomorphic characterization of regular
events. I think that it is still premature to justify this starting point though

I have the following arguments to support my choice:



(a) It seems to me that the study of automata via the study of monoids
and monoid-homomorphisms brings automata closer to the main stream of algebra
than any other study. Furthermore, in this way, the basic theorems of the ordi-
nary theory of (Rabin-Scott) finite automata. become immediate results of the
basic theorems of algebra.

(b) Given the vocabulary and the basic concepts of contemporary mathe-
matics, the definition of RW is still the most compact explicit definition of
regular events (in the case where W is a free monoid). Furthermore, assuming
that one of the current important trends in algebra is that of category theory,
the natural way to tie the theory of regular events with it is by means of
homomorphisms.

(c) Certain classes of event-automata, i.g. systems which define sets
of tapes, like finite-state transductions and permutation-closures of regular
events, fall directly under Ry-theory. Even context-free languages can be intro-
duced in a fruitful manner in Rw-theory using additional combinations which are
still of an algebraic nature (Chomsky and Miller 1963) .

These arguments are still open to debate and in the course of the presen-

tation several points of criticism will be discussed. Only a further and successful



development of the theory, along the lines suggested here, will be ‘a possible
conclusive justification of the theory in toto. However, in this stage of the
research, only a few parts of the theory have been established, while most of it
is still open to study and inquiry. Those sections which suggest‘directions of
development, discuss open problems, or state conjectures, will be enclosed by

asterisks.

1. FINITE AUTOMATA AS REGULAR SYSTEMS

In their well-known paper, Rabin and Scott already notice the relationship
between finite-range homomorphisms of the free monoid and the regular events which

are defined by finite automata.

Following this, we define (Give'on 1963) a W-regular system, where now

W is a free monoid generated by a finite alphabet say V, to be a system 04 = <p, F>
where:

(i) ©» is a homomorphism of W Qith a finite range, g;is said to be the
structure of JQ;

(ii) F is any subset of the range of O, the designated set Ofc)d.

A -
TC?G), the event defined byﬁfq, is p l(F).




The definition of direct-product of structures of W-regular systems fol-

lows naturally. Clearly the direct product of any finite number of structures
is also a structure, i.e. it is also a homomorphism of W with a finite range. A
theorem of Birkhoff (Birkhoff 1935) yields as an immediate result the well-known
fact (cf. Rabin and Scott 1959) that RW’ the class of all events defined by W-
regular systems, is a Boolean algebra of sets. This property of Rw is achieved
by specifying an effective procedure of constructing a system which defines the
given Boolean combination of the events generated by the given systems. Further-
more a good estimate for the necessary number of states of the combined system is
derived. *%— We wish to discuss this estimate together with the problem of mini-
mal W-regular systems following J. Myhill and A. Nerode (as presented in Rabin
and Scott 1959)., — *

Following the study of the application of Boolean matrices to finite auto-
mata and of the properties of the algebra of lattice-matrices (Giye'on 1960, 1962),
we find an isomorphism between the algebra of binary relations generated by the
right translations of a finite monoid and the power-algebra (the algebra of sub-
sets) of the monoid. Thus the power-algebra of the range of the structure of a

given W-regular system serves effectively for the solution of the basic decision



problems concerning the event defined by the given system.

%— There are still many directions of development which we ﬁish to fol-
low even in the ordinary case of the theory (i.e., for free monoids). Some of
them are problems of translation from available studies of automata theory in
other formulations. In particular, concerning the problem of compositions and
decompositions of W-regular systems, we wish to follow Hartmanis's work on
decomposition of machines (Hartmanis 1960), Krohn and Rhodes's application of
Wreath-products (Krohn and Rhodes 1962) and to suggest a general framework based
on the étudy of extensions in group theory. Holland's theory of locally effective
embeddings of finite-state éequential machines in embedding spaces (Holland 1964)
can serve as a machine-oriented conscience for the applicability of my aléebraic
approach, —%

Additional properties of RW’ like ﬁhe closure under the Kleenean opera-

~tions, will be discussed in the general study of regular events <in monoids.



2. ALGEBRAIC INTERMEZZO

The basic algebraic theory which underlies our approach is that of mon-
oids (i.e. semigroups with identity element). Most of the algebraic material
needed for our study has been developed in one way or another but not always
within the context of monoid theory itself. Here I would like to present a
special algebraic framework for a theory of automata which will fit my approach.
This algebraic presentation will give rise to certain purely algebraic problems
as well,

2.1 THE MORPHIC THEORY OF MONOIDS

In monoid theory, due to the existence of the identity element, we can
take advantage of the strong relationship which exists between congruence rela-
tions and homomorphisms.

Let % be a homomorphism of a monoid W onto #(W). Denote by ﬂ? the

equivalence relation determined by ¥ in W. Since %, is a congruence relation,

¥

an operation can be defined in W/jqr_ in such a way that the natural mapping f-.
¥ y R

of W onto W/W? becomes a homomorphism, Furthermore, the equation

i) = £, (1)

defines an isomorphism ip from (W) onto W/ﬂ&,and thus we get a commutative

£
{
~
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diagram of homomorphisms:

W
\
¥ trg
/ iso \ |
N
P) ¢ ZW/Rg,
i.i
®

Because of my specific interest in homomorphisms as mappings which define
certain subsets of their domain, I can identify homomorphisms which induce the
same congruence relation., Furthermore, in most cases I find that I do not have
to keep the distinction between ¥ and 72“50. I shall use the term ambimorphism
whenever this intentional ambiguity is used.

We can, of course, introduce this notion in a rigorous way. For example,
if we denote by [50] the class of all homomorphisms of W which have the same
induced congruence relation (as a subset of W x W) like Wso, then [50] U {7150} is
said to be the ambimorphism ¢ of W.

Since @ and 7750 are identified, both mapping and relation notations can
be used according to the specific context. The right interpretation of my notation
will be the only one which will make sense at all.

Let us denote by ,.(/t)S the set of all subsets of S, for any set S. Then,
by our convention, if § is an ambimorphism of W then, in particular, it can be
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represented by a mapping ¥ of W into @W with W/ as its range. Thus we have
W/p < (OW and we use the diagram
w___‘ia.w/so

Furthermore, we define the mapping

eplB) =g U{PW) : weE]
(') is regarded as a mapping from G)@W onto @W which associates with any
collection of subsets of W its union.)
For any mapping £ : S—T we define /Pf : Ps— Pt by PE(E) =df {f(s): s € E%
Thus, if ¥ is an ambimorphism of W we have

P W—W/PE PN ,

and

Re : Pw— Pl ¢ PPw
The following properties of o and QSD are derived in a straight forward

manner:
(1) cp=U Py

(2) ¢, is a closure operation in /Pw
P

(3) P =P,

=

(4) @gp preserves the complex-product (which is in fact the "@ of" the
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multiplication of W); i.e. v@?(El“EZ) = @?(El) ° @S@(Ez)
Let C@[Wj denote the set of the fixed points of Cop e
(5) C?EW] is a Boolean algebra of sets which is generated by means
of unrestricted set-unions from W/@ .
(6) 3)9[C§I?] s Cp[W]-é GD(W/QO is an isomorphism of Boolean algebras
of sets, If we define an operation <¥) in C@Dﬂ] by
B <PE) =qf cg(B"Ey) ’
then we have also, for any Eps E2 € C@[W]
PIELDEY) = Po(E) - DO(E,)
Thus\gjg’ restricted to C?[W] is an isomorphism of the Boolean
structure and {®) of C@[W] onto the Boolean structure and the

complex product of GD(W/QD.

Consider a (coinitial) pair of ambimorphisms gi and ga of W as presented

in the diagram:

%

7% /%

W&
/go1
is said to be a morphism of iff ¢ € (as subsets of W x W),
2 morphism of P It & = ¥
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Clearly §E is a morphism of qa iff the diagram can be completed into a
commutative diagram. Since this completion is unique and it satisfies the

equation & ° 9; = 9% for £, it is natural to introduce the notation

This notation is compatible with our ambimorphic convention which implies that

gi/gi : W/g%-——» w/qi
means

Wig = WY@ IP)
1 I 172
In addition to this we keep the form that any -—morphisn1/3 of a structure &

determines a quotient-structuretﬁég of the same type as Ol.

On the other hand, consider a (coterminal) pair of ambimorphisms 93 and

®, of Wy and W, respectively, with W = wl/gz = W2/9% as presented in the diagram:
& “~

2

7

. 1

ACTIR

AW
2

. 4 ., A
31 is said to be a comorphism of 91 iff 31 G 8; (as set theoretic binary
relations).

Again we have that?%’is a comorphism of ga iff the diagram can be completed
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into a commutative diagram. In this case we denote the completing ambimorphism

by 924\9?1 and we have sz' (SOZJ\(‘?Q.) = g)l . Furthermore, if we extend our morphic
notation to binary relations we get the equation

7 P |
which makes sense. Our morphic convention is still satisfied., We ha\}e for

any suitable ambimorphisms o(,ﬁand ¥

(W/ (A0 /= W/ (- B\e)) y

and in our case we have

AP ’
and

W /g =W =Wy /% )

Wy = W/ @N\O) )
and thus

Wl/gi = (Wl/(‘pa,\cvol))/gpg

Note that the relations morphism-of and comorphism-of, being defined
by set-inclusion, are transitive and we get, for suitable ambifiorphisms 0(,,/gand
Z‘, the following equations:

(1) if 0(,/3 and J* are coinitial and dgﬁ,g Y then L € It and

WP = R
: , -1 1, 4t 1 .
(2) 1if 0(,/3 and Y* are coterminal and (X Q/f) < DA then & = Z‘ and
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(D‘YA) y (/@\0(-) = 2\t
Note that SPl/gz and g’z\@l can be both meaningful iff W/Q’l and w1g72
are isomorphic to submonoids of W. That is, in the traditional terminology,

iff we deal with endomorphisms.

For the introduction of products and sums of ambimorphisms, as well as
for the discussion of general algebraic automata we introduce the concept of
morphic diagram as follows:

A morphic diagram (of monoids) is a system

O =Wy

where:

(i) 2/3 is an ordered collection of monoids Wi with i € I and an index
set I;

(ii) /{ is a mapping with domain DSA) I x I which assigns to any
(i,3) € D(/A) an amblmorphlsm/li W —>W ///

g@) =3¢ <1 Ds/«)) is said to be the graph of@. Clearly,/( can be
extended to be a mapping/u’f of the set of all directed paths D*s/.() of g(a@)
which assigns to any path x ¢ D*Sa) which starts at 1 and ends at j, a unique

ambxmorphism/( : w —>W //“x c WJ . The definition of/t(* is given by the
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following recursion:

¥
VLo AT

Py M

A morphic diagram i} =(2/07A} is said to be commutative iff for any

X, y & D*Sﬂ) if x and y are coinitial and coterminal theﬁ/u: =/A§ . éD is

said to be strongly commutative iff<j) is commutative and for any cycle z € D”gu),

/u: is the identity of W(

zy )

Letcz>1 and ;Z% be two morphic diagrams, the relation iDl < JZE of

inclusion is naturally defined. 2)1 is said to be subcommutative iff there is

a commutative morphic diagram 2)2 which includes i)l'
Let j} =()vﬁ;u> be a morphic diagram with index set I and let Wj efLVO.

A morphic diagram i)'

<)/'?k'> is said to be a turn-extension ofcz> from

Wi iff:

il

I U‘{j}, where j ¢ I, as an index set, and 1Vﬁ = )/“k;{w,g

(i) ;& ' has J ;

where W, is any monoid.
J
i - "
ii) D(U') = D(w) \U S D(u), where S* D(x) is derived from D by
( (p (4 5 P40 i DY o
substituting j for i;

(iii) /u"D(/u) - M

In particular we say that i)' is a turn extension of 1) from W, to W,

Now a diagram¢é> = (}V/;g> is said to be universal around Ei (for W, E!)V())
-14-



iff for any monoid Wj and any turn-extension.i}' of¢23 from wi to Wj there is

an ambimorphism

o c
P, Wy =W, /P, € W

which completeszé)' to be a commutative diagram.

é) is said to be couniversal around Ei iff for any monoid Wj and any

. O . . ,
turn-extension 1)' ochD from W, to W, there is an ambimorphism
1 J

Lt W W, Cw
gﬁl i 3/931 i

J

which'completescz)' to be a commutative diagram.

Now we define compositions of ambimorphisms. Consider a coinitial pair

of ambimorphisms § and &

1 of W as presented in the diagram:

W+
-~ /I\ Mo
/’ ] N
4 ! N
kx \ . \\
AP N LR/}
\\ : r/
\\ { /,
N vk
Vg, x4

We define:

(1) the direct product g% X g& of 31 and 92 by

G, x @ 4 Max X : JQ/maIQ/A]

(2) the direct sum %L +%P: of fﬁl and (‘PZ‘ by
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50L +50?v =df Min{a‘: ﬂa“/yi & ]a‘/ya} ;
where TV and 0~ vary over the ambimorphisms of W and thus '""Max" and ''Min" regard
them as set-theoretic binary relations; and "BO’/ﬁ" means/é} is a morphism of X.
As an immediate result we get that the diagram above is universal around

W/ng; + 502 and around W/gi X 9?2'

As for the effect of these relations and compositions of ambimorphisms

we get the following results:
(1) 1f ?2, is a morphism of ‘(Pl then
Cp o LW/B) = PPgc L]
Q¢ 2 2 @
1% 1
(2) (Birkhoff 1935) For any two ambimorphisms Qﬂl and goa of W:

(1)

—S

= = (P ]
% 502, 501(\5%, and therefore W/(§ x %) = (J U){W/g,o1 , w/%%
(ii) S(i +S‘f’2 is the transitive-closure of 601 U ff‘:i and therefore

W/(g +P) = W) O WG
(iii) For any two ambimorphisms ?ﬁ and 502 and any subset of E of W
iff

we have SOZ(E) €C <o (E) € C
2

(¢, + @Z)/g%[w] soiwlfw-]

% — The characterization of direct products and direct sums of coinitial
ambimorphisms by means of universal diagrams suggests a definition of codirect product
urd sums of coterminal ambimorphisms by means of couniversal diagrams. —s
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% — 1 wish to study the formal properties of the algebra of ambimorphisms
determined by the operations and relations which were suggested here (i.e., direct
sums and products, morphism, codirect sums and products and comorphism). My
attention is drawn to a pdssible relation between this algebra and other systems
which were introduced in different contexts, for example the categorical gram-
mars suggested by K. Ajdukiewicz (Ajdukiewicz 1935) and studies by Y. Bar-Hillel,
Ch. Gaifman and E. Shamir (Bar-Hillel et al. 1960) have similar structure. The

same holds for J. Lambek's work on syntactic types (Lambek 1958, 1961). —

2.2 POWER ALGEBRAS

My study of regular systems as applied to finite automata (Give'on 1963)
led me to consider the power algebra.determined by the subset-construction as
applied to finite monoids. At the same time, the morphic theory of monoids,
as presented in the previous section, led us to introduce operations and relations
in order to study their effect on subsets of monoids.

Thus we consider the various power algebras (this term was suggested

by J. W. Thatcher) which can be associated with a given monoid.

-
First of all we consider U“w , the complex power algebra which is defined by

= ”")-.) A % ‘,‘ \
= ( .J/ w’ 2 E, {'_,“'?\' >



where:

63 of the multi-

(i) ~» 1is the complex-product in §3w, i.e., o is the
plication in W;
(ii) * is the submonoid-generating operation infﬁ)w, i.e., E* is the
sub-monoid of W generated by E;
(iii) j@ is a class of Boolean operations in P,
Note that in particular 563w,v> is a monoid with = i&ﬁ as an identity
element., The distributivity of o over the set union
makes QDW an interesting structure which deserves special study.
Now with any ambimorphism § of W we can associate the system
@J{W,@> =dfiﬂﬁW’ CstQP>
As we shall see later, such systems will play an important role in the discus-
sion of regular events in monoids.
#%—— Since I am interested first in event-automata, a studz of such
power-systems is necessary for the algebraic framework of my theory. In parti-

cular, I should consider diagrams in which power systems appear as components

and also study the effect of the various power-associations on diagrams. —%
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2.3 EXTENSION THEORY AND COMPOSITIONS

% — Extension theory is developed especially in group theory and
recently it was translated to the general framework of category theory (cf,
MacLane 1963). It is still an open problem, how much of it can be maintained
in monoid theory. The relévance of extensions to automata theory is implied
by the fact that they can be suitably interpreted as compositions. Thus the
study of Krohn and Rhodes applies Wreath-products to derive compositions of
sequential machines (Krohn and Rhodes 1962). This study suggests the hope
that transformation-automata can also be studied under the same algebraic
approach as that of event automata.

Appropriate notions of homomorphisms of morphic diagrams will lead to
a theory of compositions of morphic diagrams as well. The general concept of:
composition of diagrams seems now to me to be defined as a quotient of a
direct product of diagrams determined by an equivalence relation which is
defined across the components of the given diagrams. However, in order to
get a fruitful and interesting theory of compositions of morphic diagrams, certain
restrictions should be imposed on the structure of the diagrams. Here, both
category theory and the present studies of compositions of sequential machines
seem to be insightful sources for such a development., — g
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3. REGULAR SYSTEMS OF MONOIDS

Let W be any arbitrary monoid. A W-regular system is a systenlﬁq ={p ,F >

where:
(i) e is an ambimorphism of W with a finite range (P is said to be the
structure oféﬁ );
(ii) F is a subset of the range of P (it is said to be the designated
set of A).

Rw, the class of regular events in W is defined by

- ‘)}'c Wl - Wo is finite!
RW df \. Vol { f
A subset E of W is said to be generated by the W-regular system ,F) iff

E = ¢f4(F); and in this case we write E = TQ;@).

The direct product construction for arbitrary monoids yields the expected

result that Rw is a Boolean algebra of sets.,

The problem of determining minimal W-regular systems (with respect to
the size of the range of their structure) is relevant here. + — I plan to

discuss it after the study of the relationships between the following systems:
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(1) W-regular systems and Rw,
(ii) right invariant relations in W,
(iii) finite-state automata with W as input,
(iv) non-deterministic finite-state automata with W as input,
(v) monadic algebras and relational systems with operators

related to Wi — %

The well-known methods employed in the theory of finite automata can
be applied to these general structures with the expected results (Mezei 1962;
Give'on 1964). Namely, these systems are weakly equivalent; some of them are
equivalent even in certain strong senses which can be specified as certain
isomorphisms of structures.

I feel that some words should be said éoncerning the notion of "structure"
used in the literature of automata theory. Some formulations of automata yield
a transparent distinction between "structure" and "behavior'" which agrees with
the '"machine" oriented intuition. It is obvious that W-regular systems do not
have behavior in any dynamic sense. On the other hand, though © is said to be

"machine"

the structure of ({F» by definition, it is not a structure in the

sense but in the mathematical sense. To some extent, the notion of structure

and behavior are diffused in the W-regular terminology.
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In spite of the equivalence between these generalizations of (free)
finite automata, we find that certain properties of regular events get lost
in the generalization. For example, by means of certain constructions of non-
deterministic finite automata it is proven that the complex-product of regular
events and the submonoid generated by a regular event are regular events.
This does not hold in Rw in general, not even with the help of the equivalence
of W-regular systems with non-deterministic W-automata,

Except for the free monoids only the finite monoids and the groups are
known to be classes of monoids for which the classes of the regular events in
them are closed under the operations mentioned above. Let us say that a monoid

W is a Kleenean monoid iff Rw is closed under complex-products and the sub-

monoid-generating operation. (In the terminology introduced in section 2.2 we
get that W is Kleenean iff (Rw, o, *,3%) is a subalgebra of QDW).

A close study of the proof that free monoids are Kleenean suggests the
following approach:

(i) In order to define non-deterministic W-automata we have to modify
Rabin-Scott's definition (of non-deterministic automata). If we adopt . their
definition as it stands we get:

-22-



Let B be a minimal set of generators for W. A system 6L. {S, Y 1is

a basic structure of non-deterministic W-automata iff

S is any set,
Ty sk B‘“ﬁf;gs is any mapping.
We wish now to extend j7 to be a mapping
(Ps)x W —>Ps
by the following recursion:
*(Ty,A) = T for any T € §
(%)
A (20 w,) = Uf sy m) s € suH(T, )
Contrary to the case of free monoids, the existence of v* is not always
guaranteed. # — Apparently, a certain property of the factorization of the
elements of W is necessary for the existence of 7*e — %
If n* exists then of course {S,qﬂ> is a structure of non-deterministic
W-automata as defined and discussed in (Give'on 1964),

(ii) Following the construction used for defining a (non-deterministic)
finite automaton which accepts the complex-product of events accepted by given
automata we construct the following system:

Let %. and 0 be two ambimorphisms of W and let F be a subset of W/pi .

&

We define the mapping
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P Fey W= ) x Pae)

by

(B FR > () =q5 <P(W), @pgl((g‘lF)\ _
where v

b

S \w =df %WZ : wjw, = w for some wy ¢ S %

Clearly, if Q and Q are structures of W-regular systems then<Q%F@;
has a finite range. Furthermore, if it is also a homomorphism of W then (EﬁFﬁ%}
is a structure of non-deterministic W-automata. In this case, for any F2 = W/Qb
we get a W-automaton which defines

{v:i KeFRy @), NF, 4 B = (pidF)O(p;:iF)

Only iﬁ/special cases 1is <P13Q:> a homomorphism of W. & -— Again a
certain structure, similar to the one suggested by (i) with regard to the
factorization of elements in W, seems to be sufficient for (piF@? to be a
homomorphism of W, —— 4

(iii) Following these discussions, we are led to introduce the follow-
ing property of monoids.

Let W be a monoid and w ¢ W, then we define:

& = | . A w =

that is, gw(w) is the set of all pair-factorizations of w in W.

If we regard S&(W) as a subset of W x W, then for any u,v € W the
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expressions (u,v) xfgw(w) and<gw(w) X (u,v) are meaningful.
A monoid W is said to be sequential iff for any wl,w2 & W we have
S vy) = Sy x (L) U ) x ywy)

Thus, sequential monoids are monoids in which the pair-factorization
of any element is retrievable from any of its factorizations. Clearly the
free monoids are sequential and as one can prove, if W is a group then for
any wy,w, EW:

Sty = (a2 x dy(ey) = Iy(u) x (wy)

which shows that groups are sequential monoids.

One cannot expect that only sequential monoids will be Kleenean. The
finite monoids are Kleenean and yet some of them are not sequential. & — As
a conjecture, I would like to suggest that sequential monoids are Kleenean and
for sequential monoids 7* and{ﬁﬁuﬁﬁa>, as defined in (i) and (ii), yield homo-
morphisms of W. —

The definition of (plFF37 deserves special attention since it determines
a certain product of W/EL and Wﬁg . ¢ — Our study of the problem of Kleenean

monoids is connected therefore with the study of cross-products of monoids. — 4
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L, HOMOMORPHISMS OF REGULAR SYSTEMS

The morphism relation between ambimorphisms was introduced because of the
following observations.

Let 94 = <p, F> be a W-regular system and let \\) be any ambimorphism of W,
We want an appropriate definition of ;?«/q) as an image of JQ under \P

It is clear that if the diagram of P and \¥ can be completed into a com-

mutative diagram, then the structure of ﬂ/k!) can be defined naturally. Thus

W ¢ /Y

7

P A

if \P is a morphism of P we define

As we noticed already in section 2, we get the following equality of relations
-1 -1

Y-t - (p/¥)
and so, for any F € W/P we have

1(A/P) = Phaa))

/|
where T(C‘/Q) denotes the event generated by J\{ .
\
If, however, ¥ is not a morphism of £ then (p\b(T(ﬂ )) is not necessarily

a regular event in W/\‘) . Obviously, if ") is any ambimorphism of W and E is any
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regular event in W/qJ then q/'-l(E) is regular in W, In particular, as the follow-

ing diagram shows, if E is generated by 94 =<p, >

P

v

™~

then \{)_l(E) is generated by _l(JQ) =ar <(:>\P , F>.

On the other hand, let yq = <P, F> be a W-regular system and let 4) be
any ambimorphism of W then for any E & W such that cq}(E) is regular in W we get
that (PP(E) is regular in W/\.

In order to show this, we notice that c\P(E) is regular in W iff
CKP(E) € Cp[W] for some ambimorphism @ of W with a finite range. Clearly
c\p(E) € c\!j [W] and therefore

c\i)(E) € CP[W] n C\i)[W] = CpHP[W]
which implies (by our results of section 2) that
PYE € o, g pM/e1
Since (e + W)/\,/ has a finite range, namely W/( o+ u[)), @‘-P(E) is regular in
w/\P. In particular if c\p(E) is generated by&Q = <p, F> then @q;(E) is
generated by
bA) = <p + V1P, Plip + $)/e)m)>
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Combining these results we get the following theorem:

Let ¥ be an ambimorphism of W:

(1) Rijy DPYR,

(i) for any E €W : (PY(E) is regular in W/ iff e (E) is regular in W;
(152) Ry = PPYR, iff QCA)(RW)C—;RW :

i.e., Y preserves regularity (from W to W/\) iff ckv preserves regularity in W,
*¥ — Analogous results should be pursued in the context of comorphisms, — *

Our method can be generalized by defining the following relat ion between
ambimorphisms.

Let EP]_ and (f)g be ambimorphisms of Wl and W2 (resp.). We say that SPQ
reflects Spl iff there exist ambimorphisms gl and %2 which complete the follow-
ing diagram into a commutative

©
N

L > wl/gpl

I
N € |
) ‘?12 ! g2

|

I

: N
Vv N
W N w2/ Cfg

no
Q)

2

diagram; that is, such that 92 ?—“l = &;2 {pl . Symbolically we shall denote this by
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<ty &P FL— @

and the expression fPl —> 392 will denote that 502 reflects ?l'
Note that < &, §2> : $; — P, holds iff the ambimorphism
@12 =af ;2 (:Pl = 872 gl has the following properties:
(i) @12 is a morphism of QPl ,
(ii) $, is a comorphism of &, .
Thus @) —> @, iff there exists an ambimorphism @12 of W, such that

P, is a morphism of QDl and 502 is a comorphism of 5012 (hence Wl/ SPlE = we/gag).

Moreover, note that morphisms and comorphisms are special instances of

or &

= is the identity mapping. Another

reflection; namely, for which either %l

special instance is the case where 'SPl and $P2 are successive ambimorphisms (i.e.,

such that the range of ¥

, is the domain of @, : W, = wl/gol). In this case

we have

i.e.,, the following diagram

Sol
Wl > W2
gol g,
Vv v
s @ > We/ e
2
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is of course commutative.
Comparing the diagram <§l, 52> : Cpl —_ €P2 with the diagram of the
definition of ;l X S”l we find that there exists an ambimorphism
Yor o Wm/(E X P S,

which completes the following diagram into a

wl/gpl & wl S Wl/ C_pl
((1 x &) / Py [ B x 7 1 £1 e £o
1/ y/ . .
W /(% x P)e——— W > T W/®
1 1 1 2 2l V2
( 1 X SP l) / 502
SGTE p
N s

commutative diagram,

In particular, we always have:

<%, (; x /P> f—>

YV

x®)eE
-
for any coinitial ambimorphisms é'\'», and ¢,
/
Note that for any appropriate ambimorphisms X, /9, Y{ and é :

<o, B> I R L IR PR S S R

since the following two schematic diagrams are in.fact identical,

-30-



A4

Y

* <

A4

* — The implications of these discussions which are relevant to the
various power algebras induced by the ambimorphisms under consideration, are

quite straightforward. In particular, if f>l and fé)are structures of W_.- and

1

Wguregular systems (resp.) then.<1§1, /§2> : P1_““f’f92 may be congidered

as a general form of homomorphisms of structures of regular systems, — *
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5. REPRESENTATIONS OF EVENTS BY MEANS OF REGULAR EXPRESSIONS

, Qur results of the previous sections led us to consider various classes
of subsets of monoids. Some of these classes have been defined before and the
rest are defined in the following complete list:

(1) CqlW) = (cp(®) : B € W)= ff)cg,(Pw) ,

(ii) RW is the class of regular events in W .

(iii)‘ ?Eg(Rw) - {(PPE) : Ee R;), which is usually denoted by
SU(RW) Since CPQ (restricted to Rw) is a homomorphism of the multiplicative
(monoid) structure of Ry» We can use the notation of ambimorphisms, that is

R/Pp = Por,) .

(iv) /:f.cgv(Rw) = {cg,(E) : B¢ Rw}', this is the class of the subsets
in CSO [W] which are derived from the regular events in W by means of the closure
operation cp -

¢ : s .
(v) Ry =g¢ (E € Ry [PS(—"(E) € RW/Cp }, this is the®class of those
regular events in W which remain regular under fp\g) .

Our results can be represented in the following diagram, Note that we
labeled certain arrows by ?g’p and cop without designating that we refer to the
2

appropriate restrictions of J”@ and Cop The dotted lines appear in those cases
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where the lower class of events is included in the upper class. The double
arrows show our main results, i.e., they represent the cases in which the appro-
priate restrictions of'oagj yileld one-to-one correspondences.

Note also that our algebraic results imply that

P cplil —> @ W/P)

and

QDSP: R, N CSO[W] —-—>Rw/87

yield isomorphisms of the Boolean structures of Ccp[w] and of RW n C@[W],

W ¢ > W/e
@'w Pe > P/9)

Ry ’:
i ‘o ~ (e PRy < P
| Pe | -
Rvsf i 7 /g
\\ S =
RW N C%[W]
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We proceed now to discuss some interpretations of the l‘a:iguage of regular
expressions (Kleene 1956) by which certain classes of events can be described.

Let V be a finite alphabet and let @ be a set of any four symbols which
do not belong to V, say O, 1, U, and *. We denote by g\ﬁv the class of finite
expressions over V.U & U {( , ). . defined inductively by:

0, 1e éa, »,l
Ve &y
if o, 3 ¢ Gy then (AU B), kB, ()* € Gy -

Any o € ';’:V is said to be a regular expression over the alphabet V,

Regular expressions are employed in automata theory to denote certain
subsets of V¥ (the free monoid generated by V). This is defined as an interpret-
ation function e : é'}V - (PV* s which will be referred to as the free inter-
pretation and is defined inductively by the following ligt of equations:

(1) e(0) =@ (the empty event)

I = {A) (the silent event) where A is the identity element

—~
o
=

~
]

~~
=

~
]

of V¥*;

(iii) for any o e V : e(0) = {07}
v

(iv) e((k U B)) = e(at) U e(B)

for any o, B & &
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(v) e(@B) = () o ()

(vi) e((al)*) = (e(a))* (the submonoid of V¥ generated by e(ol)).

Kleene's theorem of finite automata states that e is a homomorphism of the
syntactical structure of éV onto the (power) algebraic structure of RV* .

In general we can define general free interpretations of 5V as homo-

morphisms of the syntactical structure of 5V onto an algebra of subsets of V¥ ,
An important class of general free interpretations of $V can be associated with
the class of all ambimorphisms of V¥ in the following manner,

Let ¥ be any ambimorphism of V¥, we define

eso; : EV — ([)CCP(RV*)
by
eq,(ot) =ar c?(e(oL)) S

In words we shall say that eSD(OL) is the P-closed event derived from X .

Kleene's theorem implies that eg) maps E’?V onto (F)c EP(RV*) while our
discussions in section 2 show that € p maps the syﬁtactical structure of SV
onto an algebraic structure of Cf)cg,(RV*) Thus ep is a general free inter-
pretation of év In the next section we shall discuss the permutative events
which are described by means of ;such an interpretation of regular expressions

(Laing, Wright 1962).



So far we have been interested in interpretations of gﬁv into! PV,

Given any ambimorphism ¢ of V¥ with W = V¥/Pp , we define

eSO : 5V —-A;(JDW

inductively by:

(i) eP)=¢ ;
(i1) e¥P (1) = I (the identity element of PW)
(113) foray o eV i eF(0) = (P())

foranyot,pJ 6£V:
(iv) e®((tu B)) = e (o) Ue®(p)
(v) OL/% P (o) ) o eP(B)

(vi) ego((ot)*) = (eso(OL))* (the submonoid of W generated by eSO(O&)).

This definition and Kleene's theorem imply that
Pe¥ (G ) = R/ Py
and since (@S")e - ¥ , e¥is a homomorphism of the‘ syntactical structure of
‘CKZV onto the algebraic structure of RV*/@g) .

He‘nce we can use the language of regular expressions to denote events in
homomorphic images of V¥*; that is, in finitely generated monoids., In the next
sections we shall also discusg examples of these types of interpretations,

Note that we can associate with any ambimorphism <P of V¥ the following
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commutative diagram.
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6. EXAMPLES AND APPLICATIONS

6.1 COMMUTATIVE MACHINES (Laing & Wright 1962)

Let V be a finite alphabet, V* the free monoid, and AV the abelian

free monoid generated by V. Denote by

7T W > Ay
the natural homomorphism of V¥ onto.sz C%?arly CTT is the closure operation
which extends any subset E of‘V¥ by includingifor any x € E¥ all the permu-
tations of letter-tokens in x.

Our main interest.here'is_ﬁo study GDC?T(RV*)’ the clg?s Qf_permutative
events which are derived from regular events.

First we note that U and CTY do not preserve regularity (provided that
the alphabet V contains at least two letters). For, let a, b e V, then the
, -closure of (ab)¥ intersecting with a¥b* yields the event (" : n 20}
which is not regular (Rabin & Scott 1959).

Applying our results of section 5, we can use the interpretation functions
ex and e™ to denote the events Of'gDCWT(RV*) and of Rv*/i)TK (respectively).

Thus, while regular expressions usually refer also to their free interpretations

(;.g., (ab)* and a¥b* in #ne*Previous example) eT[(CX) will refer to the qn;closure
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of e(ol) (e.q., e7(((ab)*) is the set of all words over {a, b} with an equal
number of occurrences. of a and b) and e () will denofe the image of e(oX)
under o (e.g., e’T((ab)*) is {ab" : n 20} as a subset of AV);

Ogr proof that a particular event infgbcqt(RV*) is not regular can be

géneraiized as follows:

Let V = {al, cee, an); then for any E € Cr[V*] : E is regular in V¥
iff E ﬂ}(a{ e ag) is regular in V* (Give'on 1963).
Thus we have a ca.nOnical form for the permutative events, Namely, if

% * . g¥
we qhoose for any E € qu[V ] the set E p E_Q (al ces ah), we have the

T Ta
following:

(i) E%:E'ln, iff E'=E"

(ii) E is regular iff E7Y is regular
(iii) Ep » viewed as a subset of Ay, is in fact C;)ﬁKE) .
Furthermore, as presented_in the work of Laing and Wright (Laing & Wright

1962), a partial characterization of (E E € gaﬁj(RV*)} is achieved by

,J-E :

associating sentences in Presburger's language (Presburger 1930) with a class of

subséts of a¥ « ,,, ¢« a¥
1 n

In particular, for any regular expression ¢ there is a Presburger formula

Q(xl, cee, Xn) such that
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I .
87 eee t B € (eq‘-(%))j-t iff Q(ml, ceey mh)
Laing & Wright 1962).

¥ =~ It is still unknown whether this charaqterization is complete., In

particular, the problem whether for any O(l, 6(2 € QEV there exists a /g_e E?V

such that ej\((O(._L) N e’iT(O(E) = eﬂ’(ﬁ)’ is still open. — *

Another problem which is assééiated with thi$"¢ontext is that of the
word problem foraabélian monoids., M,0. Rabin, by means ?f combining the methods
used to prove the solvability of the word problem for abelian groups with methbds
taken from automata theory, proved the solvability of the word problem for
abelian monoids (Rabin 1964), % — Since the methods employed in the solution
‘of the general word problem for abelian groups, namely that of the linear algebra
over the ring of integers, were found to be useful for.the study of AV and of
permutative events derived frqm regular expressions, they open new directiqns for
the study of permutative events., — %

6.2 DIRECT POWERS OF V*

The direct powers of V¥ (and their submonoids) are in frequent use in

automata theory. This is because direct powers algebraically represent the notion

of independence of channels.
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Note that we have implicitly discussed a certain submonoid of the n-th

power of V¥, though not as a representation of a channel. Namely, AV’ the abelian

n

free monoid generated by V, is obviously isomorphic to i§ af and, of course; to

the n-th direct power of d*.

We denote by DKKV*) £he k-th direct power of V. I.e;; bk(V*)vis the
monéid‘whose carrier is theméet of all k-tuples over V¥ and whose operation is
the componenf-wise concaténation.

Clearly‘Dk(V*) is finitely generated and has a basis consisting of the

"unit-vectors" (i.e., those vectors over V¥ whose entries are all A except for

one which contains a letter). Let us denote by V&k) the basis of Dk(v*)"and S0
we have a natural homomorphism’
- Kooy
d o Vy —> D(V)

of the free monoid V?kj generated by V(k) 6nto'Dk(V*).'

=41 -



A submonoid of Dk(V*) is said to be rectangulaf iff 81l its elements
have components with an equal length., A special case of fﬁiﬁ rectangular sub-
monoids of Dk(V*) is that of the submonoids generated by subsets of V(k), the
k-th cartesian power of V. x — The complete characterization of the family
of submonoids of Dk(V*) is still open-gnd it deserves a special study. — x

As we shall see in the follqwing examples the study of regular systems
and their images under homomorphisms from and to submonoids of Dk(V*), seems

to be a fruitful unifying framework for the study of automata which are closely

related to finite automata.

6.3 REMARK ON EVENT AND TRANSMISSION AUTOMATA
Finite automata, and automata in general, are viewed in the theoretical

framework in a twofold manner. _As event automata they are regarded as systems

which define certain subsets of the input domain (e.g., finite automata as

 defining regular events). In a different way, automata sometimes are regarded

as transmission automata, that is, as systems which define certain functions
from an input domain to an output domain (e.g., Turing machines as systems which
define computable functions).

Finite automata enjoy a particular property, that in a special case these

oo



twe points of view. are equivalent, and the general situation does net seem to

be essentially different frem.this special case which will be discussed presently.
With any finite autematen Jq over the alphabet V, we can associate the

following three functiens:

(i) Event functien

%ﬁq : V¥ —> {0, 1}, which is the characteristic function

.of T((?q ) ‘

(ii) Finitary-transmission function

(X)* : V¥ — {0, 1}* which is the "right extension" of 'X/Jq

determined inductively by:

(?\)=?\ )
’)C(;\ A |

%*(xa‘) = ')C*(x)%dq (g) for all g~ ¢ V and x € V¥

A A

(iii) @ -transmission functien

o :
%@Q v —> {0, l}w, (where s@ denotes the set of all infinite

sequences. over §) which is defined by:
A WN® - Xy W)
A oA
(where E(l) is the i-th element in %)

The relationship between these three functions asseciated with &q is
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obvious. Any one of them determines the other two effectively. Such'a neat situ-
ation does not prevail throughout other domains of automata theory. In fact some
students of finite automata theory maintain that the study of event finite automata
‘is not sufficient for the study of transmission finite automata if their output
alphabet is larger than a binary alphabet,

Since we are interested in systems operating on DK(V*) we note that such
systems can be viewed in the twofold manner (of event-and-transmission automata)

k k

L) to 1 &

in a more natural way. Trivially, any binary relation from D V)

can be defined as a subset of

On the other hand, any subset E € Dk(V*) can be interpreted as a binary relation

k k

from D l(V*) to D 2(V*) for any kl,and K, such’ that k) +k, =k This double

interpretation will be employed in our study of regular systems related to Dk(V*).
6.4 - SEQUENCE GENERATORS (Burks & Wright 1962)

The basic concept of sequence generator is introduced as a suggested
generalization of the concepts of digital computers, finite automata and other
information-processing systems (Burks & Wright 1962). Here we shall show'how

certain features of sequence generatérs, though being transmission automata, can

_445



be studied by means of the theory of regular systems,

An algebraic sequence generator is defined to be any regular system in a

'

rectangular submonoid of Dk(V*) generated by a subset ofv{(vl, ""'Vk) PV, e V}.

Obviously the theory of regular systems in free monoids is applicable here

since such submeonoids of Dk(V*) are finitely generated free monoids.

Several constructs, as various types of "behavior," are associated with

sequence generators. However, since they are all determined by the "finitary

1

behavior," we shall discuss mainly this one.

The.finitary‘behavior, QBIXI“) , of an algebraic sequence‘genefator f1 is a

subset of T([") derived by means of an operation intreduced and studied by I. T.
Medvedev (the so called "fundamental operation (t)t‘P" in Medvedev, 1958):

Let W be any monoid and let E € W, We define:

P

E =df{weE: W= WW, = wleE} .

That isJEf) is the set of all elements of E for which E contains also all their

prefixes.

We define now:

P
B =4 (2(M)) .

P

Since © preserves regularity in free monoids (MEdvedev 1958), the finitary

behavior of any sequence generator K is a.regular event in the rectangular menoid
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of r]. The converse does not hold, since not every regular event is in the range
of P . There is, however, an effective procedure by which it can be determined
whether or not any given regular system generates an event which is the finitary
behavior of an algebraic sequence generator.

Most of the properties of sequence generators now follow from this :
reduction to regular systems in free monoids. Still, the particular structure of
the generators of the monoids, in which sequence generators are defined as regular
systems, suggests several problems which are related to other classes of events
in DK(V*) to be introduced in the next subsection.

6.5 FINITE-STATE TRANSDUCTIONS (Elgot and Mezei 1963)

A k-transduction system is a regular system in V?k) and the k-transduction

defined by the k-transduction system dﬂ is

) = DA

Any E € Dk(V*) is a (k-)transduction iff E = quﬂ) for some (k-)transduction system.

Our results of section 5 imply directly the following statementsi
(i) The class of k-transductions is completely (and effectively) repre-
d
sented by e;V' through e,
(k)

(ii) The class of k—transductionéis therefore the minimal class of subsets

of Dk(V*)Awhich contains the finite k-ary relations in V¥ and is closed under set-
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union, complex-product, and the submonoid generating operation in 'Dk(V*).

Another class of events in Dk(V*) is introduced by the following intuitive

description:

Imagine a Rabin-Scott automaton over the alphabet'%e =V U {/3} where
/3 ¢ V. This automaton is reading a k-multiple input channel, which is loaded
with words over the alphabet V, by means of a reading head with the following
behavior. This head feeds the main automaton with the letters of the input. First
the first letter of each one‘of the k words is. fed into the main autématon and then
the second and so on, according to a fixed order of the channels. Whenever the
head reads a blank space (after passing through one of the words) it transmits a
/3 to the main automaton. The head stops the operation of the system when it
passes the end of the largest word among the k input words without changing the
internal state of the main automaton. The k-tuple of the input words is accepted
iff the main automaton, starting its operation with the initial state, ends it in
a designated final state.

Formally, we have the following situation:

S (®)

E

()

©

Clearly there exists a natural monomorphism

Let us denote by the cartesian k-th power of WG ; l.e.,

= {(vl, vee Vk) tov, € V/Sj .
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which is similar to d.

Both Dk(V*) and Dk( A %) are submonoids of Dk(vz) but Dk(V*) - Dk(

£

their complex-product, is obviously not closed under the multiplication in Dk(V*),

Now, R € Dk(V*) is said to be a fad (for Wfinite automaton definable")

k-ary relation iff there is a regular event E in (V(k))* such that:

P
(1) forall FeE : §(E) € Dk(V*)’ . Dk(/a?*) )

for

(ii) R = [(535')(E) : Dk(/S*)] where [Sl t 8] =3¢ (x Poxy € Sl

some y & 82} .

This definition can be simplified as a result of the following observations:

1. There exists a monomofphism §' such that the following diagram is

commutative.
(7)) e s oE(ee )
Y | ) A
§ o
\ S
/
A

Hence for every regular event E in (Vig))* there is a regular event E' in (38)?k)

such that (P §)(®) = (Pa) (&),
2. If E satisfies requirement (i) then we have
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[(PEOHE v = Pep)BPOE

where k Kk
D (V% ) —> D (V%)

7
is the homomorphism of Dk(zé ) which amounts to the erasure of/3 -
3, There exists a homomérphisnl €' (which is similar to 873 ) such
that the following diagram is commutative,

S -
() sy B o

(Va)* — 5 D (V¥

I
S ! | d d

(Vg )% (x) E}s > )

Hence, for any fad k-ary relation R there is a regular event E" in VTk) for

which R = (GDd)(E"). Therefore, every fad k-ary relation is a k-transduction,

Obviously, R ﬁg)d is a proper subclass of the class of fad k-ary
*

(v®))
relations; namely those which are "length-preserving," that is, rectangular.
Thus we have the following decreasing sequence of classes of events in
D (V¥):
1. Rv?_k)/@d, the class of k-transductions;

2. the class of fad k-ary relations;

3. R( (k)> /QDd; the class of rectangular fad k-ary relations;
A\ *
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4, the class of finitary behaviors of sequence generators.

x — As for R , 1 do not know where it is located relative to this

Dk(V*)

sequence, It is quite possible that it is incomparable with any class in this

sequence (except for the class of k-transductions. — x

6.6 TRANSDUCTIONS AS GRAMMARS

Let us define

by

M Oﬁj ceey Xk) = X Xpe eee o Xy
This function can be used to interpret systems defining events in Dk(V*) as
grammars for languages over V. In particular we can apply'/4 to R /&Dd and

)

get the class of k-multiple finite-state languages.

Note, however, that the k-multiple finite-state languages can be defined
by means of a generalization of finite-state grammars (Bar-Hillgl & Shamir 1960)
like the following:

Let V.. C V; a k-production rule is an ordered pair (v, E;) where

ft.l

ve (V- Vﬁ})(k) and E;e Dk(V*)° It is a finite-state k-production rule iff

k) Koo
ge(V-VT)( .D(VT)
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A k-multiple finite-state grammar is a system g = <vo, ' > where
v

o ¢ (V - V,E)(k) and T is a finite set of finite-state k-production rules.

The definition of k-multiple finite-state languages now follows naturally.
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