Technical Note

THE THEORY OF ALGEBRAIC AUTOMATA I:
MORPHISMS AND REGULAR SYSTEMS

Yehoshafat Giv'on

ORA Projects 03105 and 05662

under contract with:

DEPARTMENT OF THE NAVY
OFFICE OF NAVAL RESEARCH
CONTRACT NO. Nonr-1224(21)
WASHINGTON, D.C.

and

U. S. ARMY RESEARCH OFFICE (DURHAM)
CONTRACT NO. DA-31-124-ARO(D)-0433
DURHAM, NORTH CAROLINA

administered through:

OFFICE OF RESEARCH ADMINISTRATION ANN ARBOR

January 1964
INTRODUCTION

This is a preliminary report on a study of an algebraic generalization of the concept of regular events. Among all the possible ways of generalization we chose the one suggested by the characterization of regular events by means of homomorphisms with finite ranges (cf. [RS] and [YG] 1963).

Following this suggestion, our attention is directed to the study of homomorphisms of monoids and their effect on subsets of monoids. Furthermore, we are able now to suggest a general algebraic framework in which several and various domains in the area of automata theory (like finite-state transductions, commutative machines, and context-free languages) can be studied and generalized uniformly.

In this report, we present the study of the basic and immediate properties of regular systems in monoids and the effect of homomorphisms on such systems.

I wish to thank J. W. Thatcher (now at the IBM Research Center in Yorktown Heights) and S. T. Hedetniemi of the Logic of Computers Group for their continuous interest and invaluable help.
1.1 ALGEBRAIC PRELIMINARIES AND NOTATIONS

Let W be any monoid (i.e., a semigroup with identity). A binary relation π defined in W is said to be algebraic in W iff it is compatible with the operation in W; i.e., iff

$$
(w_1, w_2) \in \pi \text{ implies } (ww_1, ww_2), (w_1, w_2 w) \in \pi
$$

for any $w, w_1, w_2 \in W$.

π is said to be a congruence (relation) in W iff π is an algebraic equivalence relation defined in W.

If π is a congruence in W, then an operation can be well defined in W/π by

$$
\pi(w_1) \cdot \pi(w_2) = df \pi(w_1 w_2)
$$

(where $\pi(w)$ denotes the equivalence class in W/π which contains w) and a mapping

$$
\hat{\pi} : W \rightarrow W/\pi
$$

by

$$
\hat{\pi}(w) = df \pi(w)
$$

As one can easily prove, $\hat{\pi}$ is a homomorphism and thus it is said to be the homomorphism (of W) induced by π.

On the other hand, for any homomorphism ϕ of W we denote by $\hat{\phi}$ the binary relation defined in W by

$$
(w_1, w_2) \in \hat{\phi} \text{ iff } df \phi(w_1) = \phi(w_2)
$$

As one can easily prove, $\hat{\phi}$ is a congruence in W (it is said to be the congruence induced by ϕ in W) and from $\phi = \hat{\pi}$ follows $\hat{\phi} = \pi$.

2
Studies of the relationship between the homomorphisms of \(W \) and the congruences in \(W \) can be found in the literature on monoids and semigroups ([CP], [JM]).

Since the relations \(\pi \leftrightarrow \hat{\pi} \) and \(\phi \leftrightarrow \hat{\phi} \) induce a certain duality within the context of this paper, and since the traditional distinction between the homomorphisms of \(W \) and the congruences induced by them in \(W \) can be easily proved to be unnecessary, we shall often identify the homomorphism \(\phi \) of \(W \) with the congruence \(\hat{\phi} \) induced by it in \(W \) and use the term morphism \(\hat{\phi} \) to denote simultaneously \(\phi \) and \(\hat{\phi} \). Moreover, we shall choose to use either the mapping notation or the relation notation for the morphisms according to the convenience of each notation in the specific context.

Let \(\phi \) be a morphism of \(W \) and let \(E \) be a subset of \(W \). The subset of \(W \), \(c_\phi (E) \), defined by

\[
c_\phi (E) = \{ \phi(w) : w \in E \}
\]

is said to be the \(\phi \)-closure of \(E \) and \(E \) is said to be \(\phi \)-closed iff \(c_\phi (E) = E \).

Clearly, the operation \(c_\phi \) on the subsets of \(W \) is a closure operation, i.e.:

(i) \(E \subseteq c_\phi (E) \),

(ii) \(E_1 \subseteq E_2 \) implies \(c_\phi (E_1) \subseteq c_\phi (E_2) \),

(iii) \(c_\phi (c_\phi (E)) = c_\phi (E) \).

We denote by \(C_\phi [W] \) the class of all subsets of \(W \) which are \(\phi \)-closed. For example, if \(I \) is the identity on \(W \) then \(C_I [W] \) is \(\mathcal{P}(W) \), the class of all subsets of \(W \).

As an immediate property of \(C_\phi [W] \) we have the following lemma:

Lemma 1: \(C_\phi [W] \) is a Boolean algebra of sets which is isomorphic to \(\mathcal{P}(W/\phi) \) under \(\phi^c \) (which is \(\phi \) as a mapping operating on the subsets of \(W \)).
REMARK: We shall denote both ϕ and ϕ^c and even ϕ^{cc} by "ϕ".

We shall be interested in the following three operations on morphisms:

The **direct product** of the morphisms ϕ_1 and ϕ_2 of W is denoted by $\phi_1 \otimes \phi_2$ and defined by

$$
\phi_1 \otimes \phi_2 = df \phi_1 \cap \phi_2.
$$

The **direct sum** of ϕ_1 and ϕ_2 is denoted by $\phi_1 \oplus \phi_2$ and is defined by

$$
\phi_1 \oplus \phi_2 = df (\phi_1 \cup \phi_2)^*.
$$

where π^* denotes the transitive-closure of π.

Obviously, these operations can be extended by induction to n-ary operations for any n. The following theorem summarizes the main properties of these operations.

THEOREM 2: Let ϕ_1, \ldots, ϕ_n be n morphisms of W, then:

(i) $\otimes_{i=1}^n \phi_i$ and $\oplus_{i=1}^n \phi_i$ are also morphisms of W;

(ii) $\otimes_{i=1}^n \phi_i$ is the maximal morphism of W which is included in all the ϕ_i, since $\otimes_{i=1}^n \phi_i = \bigcap_{i=1}^n \phi_i$;

(iii) $\oplus_{i=1}^n \phi_i$ is the minimal morphism of W which includes all the ϕ_i, and in fact, $\oplus_{i=1}^n \phi_i = (\bigcup_{i=1}^n \phi_i)^*$;

(iv) $\cap_{i=1}^n C_i [W] = \bigcap_{i=1}^n \cap_{i=1}^n C_i [W]$ where $\cap_{i=1}^n C_i$ denotes the class of the intersections $\bigcap_{i=1}^n E_i$ of all $E_i \in C_i$;
(v) \[\bigcap_{i=1}^{n} C_{\phi_i} [W] = \bigcap_{i=1}^{n} C_{\phi_i} [W]; \]

(vi) \(\otimes \) and \(\oplus \) are commutative and associative operations;

(vii) if \(W/\phi_i \) is finite for all \(1 \leq i \leq n \) then so are

\[\bigcap_{i=1}^{n} W/\phi_i \text{ and } \bigcap_{i=1}^{n} W/\phi_i. \]

The cartesian product of the morphisms \(\phi_1 \) and \(\phi_2 \) of \(W_1 \) and \(W_2 \)
respectively, is denoted by \(\phi_1 \times \phi_2 \) and defined to be a morphism of \(W_1 \times W_2 \) by

\[(\phi_1 \times \phi_2)(w_1, w_2) = \phi_1(w_1) \times \phi_2(w_2) \]

(where "\(\times \)" denotes the operation of the cartesian product of sets.)

Again this operation can be extended by induction.

Theorem 3: Let \(\phi_1, \ldots, \phi_n \) be morphisms of \(W_1, \ldots, W_n \) respectively, then:

(i) \(\times \phi_i \) is a morphism of \(\bigotimes_{i=1}^{n} W_i \);

(ii) \[\bigcap_{i=1}^{n} C_{\phi_i} [W_i] = \bigcap_{i=1}^{n} C_{\phi_i} [W_i] \text{ where } x^{E_i} \operatorname{C}_i \text{ denotes the class} \]
\[\times_{\phi_i} = \bigcup_{i=1}^{n} C_{\phi_i} [W_i] \text{ of the cartesian products } x_{E_i} \text{ of all } E_i \in C_i; \]

(iii) the cartesian product of morphisms is an associative
and essentially commutative operation;

(iv) if \(W_i/\phi_i \) is finite for any \(1 \leq i \leq n \), then so is

\[\bigotimes_{i=1}^{n} W_i/\phi_i \times \phi_i. \]
Finally, let \(\phi \) be a morphism of \(W \). A morphism \(\psi \) of \(W \) is said to be a morphism of \(\phi \) iff \(\psi \) is included in \(\phi \).

The significance of this relation is given in the following theorem:

THEOREM 4: If \(\psi \) is a morphism of the morphism \(\phi \) of \(W \) then the following diagram

\[
\begin{array}{ccc}
W & \xrightarrow{\psi} & W/\psi \\
\downarrow{\phi} & & \downarrow{\phi/\psi} \\
W/\phi & & \\
\end{array}
\]

can be completed by \(\phi/\psi: W/\psi \rightarrow W/\phi \) to be a commutative diagram, i.e.,

\[(\phi/\psi) \circ \psi = \phi,\]

in a unique way.

Furthermore, we have

\[C_{\phi/\psi}[W/\psi] = \psi C_{\phi}[W]\]

and in particular, for any \(F \subseteq W/\phi \)

\[(\phi/\psi)^{-1}(F) = \psi(\phi^{-1}(F)) .\]
1.2 REGULAR EVENTS IN MONOIDS

We wish to characterize a family of subsets of a monoid \(W \) in a fashion similar to the way the regular events are characterized as certain subsets of a finitely generated free monoid ([RS], [YG] 1963).

DEFINITION 1: A W-regular system is a system \(\mathcal{A} = \langle \rho, F \rangle \) where:

(i) \(\rho \) is a morphism of \(W \) with a finite range,

(ii) \(F \) is a subset of the range of \(\rho \).

The morphism \(\rho \) is said to be the structure of \(\mathcal{A} \) and \(T(\mathcal{A}) = df \rho^{-1}(F) = \bigcup F \) is the event generated by \(\mathcal{A} \). A subset \(E \) of \(W \) is said to be regular in \(W \) iff \(E \) is the event generated by some \(W \)-regular system.

We denote by \(R_W \) the class of all subsets of \(W \) which are regular in \(W \), that is,

\[
R_W = df \bigcup \{ C_W : W/\rho \text{ is finite} \} \, .
\]

As an immediate result of Df.1 we get:

LEMMA 5: \(R_W \) is closed under set complementation.

From the properties of the direct product of morphisms we derive the following construction of Boolean combinations of \(W \)-regular systems:

For any Boolean set function \(\beta_S \) we denote by \(\beta_p \) the corresponding Boolean proposition function which is isomorphic to \(\beta_S \) and thus the following relationship holds:

let \(\beta_S \) be a Boolean set function of \(n \) variables and let \(S_1, \ldots, S_n \) be any \(n \) subsets of \(S \), then

\[
\beta_S(S_1, \ldots, S_n) = \{ s \in S : \beta_p(s \in S_1, \ldots, s \in S_n) \} \, .
\]
Given \(n \) \(W \)-regular systems \(\mathcal{A}_1 = \langle \rho_1, F_1 \rangle \) and a Boolean set function \(\beta_S \) of \(n \) variables, we define:

\[
\beta(\mathcal{A}_1, \ldots, \mathcal{A}_n) = \text{df} \left\langle \bigwedge_{i=1}^n \rho_i, \beta^*(F_1, \ldots, F_n) \right\rangle
\]

where

\[
\beta^*(F_1, \ldots, F_n) = \text{df} \left\{ \left(\bigwedge_{i=1}^n \rho_i \right)(w) : \beta_p(\rho_1(w) \in F_1, \ldots, \rho_n(w) \in F_n) \right\}.
\]

Obviously,

\[
T(\beta(\mathcal{A}_1, \ldots, \mathcal{A}_n)) =
\]

\[
= \beta^*(F_1, \ldots, F_n),
\]

\[
= \{ w : \beta_p(w \in \bigcup F_1, \ldots, w \in \bigcup F_n) \},
\]

\[
= \beta_S(\bigcup F_1, \ldots, \bigcup F_n),
\]

\[
= \beta_S(T(\mathcal{A}_1), \ldots, T(\mathcal{A}_n)).
\]

Thus we have:

Theorem 6: \(R_W \) is a Boolean algebra of sets.

In the rest of this section we shall explore, with the expected results, the relationships between the following concepts:

(i) \(W \)-regular systems and \(R_W \);

(ii) right invariant relations in \(W \);

(iii) finite-state automata with \(W \) as their input;

(iv) non-deterministic finite-state automata with \(W \) as their input.

The methods used to establish the expected relationships are taken from the study of ordinary finite automata (cf. [RS], [RB], and [YC] 1960).
Let \hat{f} be an equivalence defined in W which is right-invariant (i.e., $(w_1, w_2) \in \hat{f}$ implies $(w_1 w, w_2) \in \hat{f}$ for any $w, w_1, w_2 \in W$). We associate with \hat{f} the following system $\mathcal{A}_f = <S, s_o, \tau_f>$ where:

(i) $S = W/\hat{f}$,

(ii) $s_o = \hat{f}(\lambda)$, where λ is the identity element of W,

(iii) $\tau_f : S \times W \rightarrow S$ is defined by $\tau_f(\hat{f}(w_1), w) =_{df} \hat{f}(w_1 w)$.

[Note that τ_f is well defined just because \hat{f} is right-invariant.]

Now, for any $S_F \subseteq S$ we have:

$T(\mathcal{A}_f, S_F) =_{df} \{ w \in W : \tau_f(s_o, w) \in S_F \}$,

$= \{ w \in W : \hat{f}(w) \in S_F \}$,

$= \bigcup S_F$.

Hence, if $E \subseteq W$ is a union of certain equivalence classes of a right-invariant equivalence \hat{f} defined in W, then E is defined by an automaton (which is finite state iff W/\hat{f} is finite), with W as its input (cf. [SG]) in a manner similar to that by which ordinary regular events are defined by Rabin-Scott finite automata.

On the other hand, let $\mathcal{A} = <S, s_o, \tau>$ be a system with:

(i) S is a set and $s_o \in S$,

(ii) $\tau : S \times W \rightarrow S$ is a mapping satisfying:

$\tau(s, \lambda) = s$ for all $s \in S$,

$\tau(s, w_1 w_2) = \tau(\tau(s, w_1), w_2)$ for all $s \in S, w_1, w_2 \in W$.
[(iii)-optional - for each \(s \in S \) there is \(w \in W \) such that

\[
\tau(s_0, w) = s.
\]

We define the binary relation \(\hat{\tau} \) in \(W \) by:

\[
(w_1, w_2) \in \hat{\tau} \iff \text{df } \tau(s_0, w_1) = \tau(s_0, w_2).
\]

Clearly, \(\hat{\tau} \) is an equivalence and the cardinality of \(W/\hat{\tau} \) is less than or equal to that of \(S \). If \(S \) is finite, then equality holds iff requirement (iii) is satisfied. Furthermore, \(\hat{\tau} \) is right-invariant.

Now let \(S_F \subseteq S \). The system \(< \mathcal{A}, S_F > \) is said to be a \(W \)-automaton (which is a finite-state \(W \)-automaton iff \(S \) is finite) with the structure \(\mathcal{A} \).

The set:

\[
T(\mathcal{A}, S_F) = \text{df } \{ w \in W : \tau(s_0, w) \in S_F \}
\]

is said to be the event defined by \(< \mathcal{A}, S_F > \).

Clearly, we have:

\[
T(\mathcal{A}, S_F) = \bigcup \{ \{ \tau(s_0, w_1) : \tau(s_0, w_1) = \tau(s_0, w) \} : \tau(s_0, w) \in S_F \}
\]

\[
= \bigcup \{ \hat{\tau}(w) : \tau(s_0, w) \in S_F \}
\]

\[
= \bigcup S_F \quad \text{where } S_F = \text{df } \{ \hat{\tau}(w) : \tau(s_0, w) \in S_F \}
\]

In conclusion we have:

Lemma 7: A subset \(E \) of \(W \) is a union of certain equivalence classes of a right-invariant equivalence (with a finite index) in \(W \), iff \(E \) is defined by some (finite-state) \(W \)-automaton.

The connection with \(W \)-regular systems is established by the following lemma:
Lemma 8: Let E be a subset of W, then E is regular in W iff E is defined by a finite-state W-automaton.

Proof: Let $<\mathcal{A}, S_F>$ be a finite-state W-automaton with $\mathcal{A} = <S, s_0, \tau>$. Define in W the binary relation ρ_τ by:

$$(w_1, w_2) \in \rho_\tau \iff \text{df for all } s \in S: \tau(s, w_1) = \tau(s, w_2)$$

Clearly, ρ_τ is a morphism of W with a finite range (which is less than or equal to the cardinality of $S \times S$) and ρ_τ is included in \hat{f}_τ, i.e.,

$$\rho_\tau(w_1) = \rho_\tau(w_2) \implies \tau(s_0, w_1) = \tau(s_0, w_2) \text{ for all } w_1, w_2 \in W.$$

Hence, if we define

$$F = \text{df} \{\rho_\tau(w) : \tau(s_0, w) \in S_F\},$$

we get a W-regular system $<\rho_\tau, F>$ which generates $T(\mathcal{A}, S_F)$.

The converse follows directly by Lemma 7.

Before we turn to establish the identity of the W-regular events and the events defined by non-deterministic W-automata, we wish to give an alternative proof of Lemma 8 by the means of the construction of the transition monoid $M(\mathcal{A})$ associated with the structure \mathcal{A} of W-automata. (For the case of the free monoid cf. [RB], [YG] 1960 and 1962.)

Let $\mathcal{A} = <S, s_0, \tau>$ be a structure of W-automata. We define $M(\mathcal{A})$ to be the set of all functions

$$\tau_w : S \rightarrow S$$

defined for any $w \in W$ (using the suffix notation for functions) by:
\[s_{w_1 w_2} = \text{df} \; \tau(s, w) \]

\[M(\mathcal{A}) \text{ is a monoid of functions since } \tau_\lambda \text{ (where } \lambda \text{ is the identity element of } W \text{) is the identity on } S \text{ and for any } w_1, w_2 \in W \text{ we have:} \]

\[s_{w_1 w_2} = s_{w_1} \cdot \tau_{w_2} \]

This implies the existence of a morphism \(\rho_\tau \) of \(W \) with \(W/\rho_\tau = M(\mathcal{A}) \) which is defined by:

\[\rho_\tau(w) = \text{df} \; \tau_w \]

Clearly, if \(S \) is finite then \(M(\mathcal{A}) \) is finite and for any \(S_F \subseteq S \) if we define

\[S_F^\tau = \text{df} \{ \tau_w : s_{o w} \in S_F \} \]

we get, for a finite \(S \), a \(W \)-regular system \(\langle \rho_\tau, S_F^\tau \rangle \) which generates \(T(\mathcal{A}, S_F) \).

Let us define a system \(\mathcal{N} = \langle S, \pi \rangle \) to be a structure of (finite-state) non-deterministic \(W \)-automata iff:

(i) \(S \) is a (finite) set,

(ii) \(\pi : S \times W \to \mathcal{P}(S) \) is a mapping from \(S \times W \) into the class of all subsets of \(S \), \(\mathcal{P}(S) \), satisfying

\[\pi(s, w_{1, 2}) = \bigcup \{ \pi(s', w) : s' \in \pi(s, w_1) \} \text{ for all } s \in S \text{ and } w_1, w_2 \in W. \]

We associate with \(\mathcal{N} \) the monoid \(M(\mathcal{N}) \) of the binary relations \(\pi_w \) defined in \(S \) for any \(w \in W \) by:

\[(s_1, s_2) \in \pi_w \text{ iff } s_2 \in \pi(s_1, w) \]

From requirement (ii) follows that for any \(w_1, w_2 \in W \) we have:

\[\pi_{w_1 w_2} = \pi_{w_1} \cdot \pi_{w_2} \]
and therefore $M(\mathcal{N})$ is closed under the complex-product of binary relations and π_{λ} is its identity element. Thus $M(\mathcal{N})$ is indeed a monoid of binary relations and it is the morphic image of W under ρ_π which is defined by:

$$\rho_\pi(w) = \text{df} \quad \pi_w.$$

For any $S_o, S_F \in S$ we say that the non-deterministic W-automaton $<S_o, \mathcal{N}, S_F>$ defines the event

$$T(S_o, \mathcal{N}, S_F) = \text{df} \{w \in W : \pi(s, w) \in S_F \text{ for some } s \in S_o\}.$$

Obviously, we get:

$$T(S_o, \mathcal{N}, S_F) = \{w \in W : \pi_w \land (S_o \times S_F) \neq \emptyset\}$$

$$= \{w \in W : \rho_\pi(w) \in [S_o, \pi, S_F]\}$$

where $[S_o, \pi, S_F] = \text{df} \{\pi(w) \in M(\mathcal{N}) : \pi(w) \land (S_o \times S_F) \neq \emptyset\}$.

Hence, if S if finite then $T(S_o, \mathcal{N}, S_F)$ is generated by the W-regular system $<\rho_\pi, [S_o, \pi, S_F]>$. Thus, similar to the "free" automata, we can regard the non-deterministic (finite-state) W-automata (as defined here) as a special case of W-regular systems where the range of their structure is a monoid of binary relations defined in a certain (finite) set.
1.3 THE EFFECT OF HOMOMORPHISMS ON W-REGULAR SYSTEMS

Theorem 4 leads us to the following definition:

DEFINITION 2: A morphism ψ of W is said to be a morphism of the W-regular system $\mathcal{A} = \langle \rho, F \rangle$ iff ψ is a morphism of ρ. In this case, the W-regular system $\langle \rho/\psi, F \rangle$ is said to be the morphic image of \mathcal{A} (under ψ), or alternatively, the ψ-image of \mathcal{A} and will be denoted by \mathcal{A}/ψ.

And it implies directly:

LEMMA 9: Let ψ be a morphism of the W-regular system $\mathcal{A} = \langle \rho, F \rangle$ and let $E \subseteq W$; then E is generated by \mathcal{A} iff $\psi(E)$ is generated by \mathcal{A}/ψ.

In this section we study the effects of the morphisms of W on R_W. Later we shall study the properties of the morphisms of W-regular systems.

Our main result is summarized by the following theorem:

THEOREM 10: Let ϕ be a morphism of W and let $E \subseteq W$. Then $\phi(E)$ is regular in W iff $c_\phi(E)$ is regular in W.

In particular we have:

(i) if E_2 is generated by the W/ϕ-regular system $\mathcal{A}' = \langle \rho', F \rangle$ then $\phi^{-1}(E_2) = c_{\phi}(\phi^{-1}(E_2))$ is generated by the W-regular system $\mathcal{A} = \langle \rho \circ \phi, F \rangle$;

(ii) if E is any subset of W such that $c_\phi(E)$ is generated by the W-regular system $\mathcal{A} = \langle \rho, F \rangle$ then $\phi(E) = \phi(c_\phi(E))$ is generated by the W/ϕ-regular system $\mathcal{A}' = \langle \phi/(\phi \circ \rho), (\rho/(\phi \circ \rho))(F) \rangle$.

PROOF: Immediate; for the proof of (ii) apply Theorem 4, Lemma 9 and Theorem 2 ((iii) & (v)).
As an immediate but important corollary we get:

COROLLARY 10.1: If W is a finitely generated monoid, say by V, and E is a subset of W then: E is regular in W iff $\phi^{-1}(E)$ is a ("free") regular event over V as an alphabet, where ϕ is the natural homomorphism of the free monoid generated by V onto W.

These results motivate us to consider the two classes of events introduced in the following two definitions.

DEFINITION 3: Let ϕ be a morphism of W; we denote by ϕ_{R_W} the class of the ϕ-images of the regular events in W. That is:

$$\phi_{R_W} = \{ \phi(E) : E \in R_W \}.$$

Clearly, Theorem 10 implies:

COROLLARY 10.2: If ϕ is a morphism of W then

$$R_{W/\phi} \subseteq \phi_{R_W}.$$

In Lemma 1 we noticed that ϕ^c, which is ϕ operating on the subsets of W, is a one-to-one correspondence between $C_{\phi}[W]$ and $\mathcal{G}(W/\phi)$. Now, from Theorem 10 we infer:

COROLLARY 10.3: If ϕ is a morphism of W then ϕ^c (restricted appropriately) is a one-to-one correspondence between $R_{\phi} \cap C_{\phi}[W]$ and $R_{W/\phi}$.

DEFINITION 4: Let ϕ be a morphism of W; we denote by $C_{\phi}(R_W)$ the class of all the ϕ-closures of the regular events in W. That is:

$$C_{\phi}(R_W) = \{ \phi(E) : E \in R_W \}.$$
Clearly, we have:

Lemma 11: If \(\phi \) is a morphism of \(W \) then \(\phi^e \) (restricted appropriately) is a one-to-one correspondence between \(C_\phi(R_W) \) and \(\phi R_W \).

Thus, we get the following conclusion of Theorem 10:

Theorem 12: Let \(\phi \) be a morphism of \(W \) then

\[
\phi R_W = R_W / \phi \quad \text{iff} \quad C_\phi(R_W) = R_W \quad ;
\]

that is, iff \(c_\phi \) is regularity-preserving in \(W \).

We can summarize these results by the following diagram:

\[
\begin{array}{ccc}
W & \xrightarrow{\phi} & W / \phi \\
\vdots & \downarrow & \downarrow \\
\varnothing(W) & \xrightarrow{\phi^e} & \varnothing(W / \phi) \\
i & \downarrow & \uparrow i \\
\varnothing(W) & \xrightarrow{c_\phi} & C_\phi[W] & \leftarrow & \varnothing(W / \phi) \\
\downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\
R_W & \xrightarrow{c_\phi} & C_\phi(R_W) & \leftarrow & \phi R_W \\
\downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\
R_W \cap C_\phi[W] & \leftarrow & \phi^e & \rightarrow & R_W / \phi
\end{array}
\]

where:

(i) \(\phi^e \) is \(\phi \) operating on the subsets of \(W \), i.e.,

\[
\phi^e(S) = \{ \phi(s) : s \in S \} \quad ;
\]

(ii) \(i \) is the identity on its contexts;

(iii) \(c_\phi \) is the operation of \(\phi \)-closure;

(iv) \(\leftrightarrow \) shows one-to-one correspondence.

DISTRIBUTION LIST
(One copy unless otherwise noted)

Assistant Secretary of Defense
for Research and Engineering 2
Information Office Library Branch
Pentagon Building
Washington 25, D.C.

Defense Documentation Center 10
Cameron Station
Alexandria, Virginia

Chief of Naval Research 2
Department of the Navy
Washington 25, D.C.

National Security Agency
Fort George G. Meade, Maryland
Attn: R-4, Howard Campagne

Director, Naval Research Labs. 6
Tech. Infor. Officer, Code 2000
Washington 25, D.C.

Commanding Officer 10
Office of Naval Research
Navy No. 100, Fleet Post Office
New York, New York

Commanding Officer, ONR Br. Office
346 Broadway
New York 13, New York

Commanding Officer, ONR Br. Office
495 Summer Street
Boston 10, Massachusetts

Chief of Naval Operations
OP-07T-12
Navy Department
Washington 25, D.C.

Bureau of Ships
Department of the Navy
Washington 25, D.C.
Attn: Code 607A, NTDS

Bureau of Naval Weapons
Department of the Navy
Washington 25, D.C.
Attn: RAAV, Avionics Division

Bureau of Ships
Department of the Navy
Washington 25, D.C.
Attn: Communications Br., Code 686

Naval Ordnance Laboratory
White Oaks
Silver Spring 19, Maryland
Attn: Technical Library

Massachusetts Institute of Technology
Research Laboratory of Electronics
Cambridge, Massachusetts
Attn: Professor W. McCulloch

David Taylor Model Basin
Washington 7, D.C.
Attn: Technical Library

Naval Electronics Laboratory
San Diego 52, California
Attn: Technical Library

University of Illinois
Control Systems Laboratory
Urbana, Illinois
Attn: D. Alpert

University of Illinois
Digital Computer Laboratory
Urbana, Illinois
Attn: Dr. J. E. Robertson
Dr. Stanley Winkler
IBM Corporation
Federal Systems Division
326 E. Montgomery Ave.
Rockville, Maryland

Post Office Department
Office of Research and Engineering
12th and Pennsylvania Ave.
Washington 25, D.C.
Attn: Mr. R. Kopp
Res. & Dev. Division

L. G. Hanscom Field
AF-CRL-GRBB
Bedford, Massachusetts
Attn: Dr. H. H. Zschirnt

Department of the Army
Office of the Chief of Res. & Dev.
Pentagon, Room 3D442
Washington 25, D.C.
Attn: Mr. L. H. Geiger

Bell Telephone Laboratories
Murray Hill Laboratory
Murray Hill, New Jersey
Attn: Dr. Edward F. Moore

National Biomedical Res. Found., Inc.
8600 16th St., Suite 310
Silver Spring, Maryland
Attn: Dr. R. S. Ledley

University of Pennsylvania
Moore School of Elec. Eng.
200 South 33rd St.
Philadelphia 4, Pennsylvania
Attn: Miss Anna Louise Campion

Division of Automational Data Processing /AOP/
Department of State
Washington 25, D.C.
Attn: F. P. Diblasi, 19A16

Auerbach Electronics Corp.
1634 Arch St.
Philadelphia 3, Pennsylvania

University of Pennsylvania
Mechanical Languages Projects
Moore School of Elec. Eng.
Philadelphia 4, Pennsylvania
Attn: Dr. Saul Gorn, Director

Applied Physics Laboratory
Johns Hopkins University
8621 Georgia Ave.
Silver Spring, Maryland
Attn: Document Library

Bureau of Supplies and Accounts, Chief
Navy Department
Washington, D.C.
Attn: Code W3

National Aeronautics & Space Admin.
Goddard Space Flight Center
Greenbelt, Maryland
Attn: Chief, Data Systems Div.

Federal Aviation Agency
Bureau of Research & Development
Washington 25, D.C.
Attn: RD-375, Mr. Harry Hayman

Mr. Donald F. Wilson
Naval Research Laboratory
Washington 25, D.C.
Attn: Code 5144

David Taylor Model Basin
Washington 7, D.C.
Attn: Aerodynamics Laboratory, Code 628
Miss Cravens

Lincoln Laboratory
Mass. Institute of Technology
Lexington 73, Massachusetts
Attn: Library

Dr. C. R. Porter
Psychology Department
Howard University
Washington 1, D.C.
Electronics Research Laboratory
University of California
Berkeley 4, California
Attn: Director

Institute for Defense Analysis
Communications Research Division
Von Neumann Hall
Princeton, New Jersey

Hebrew University
Jerusalem, Israel
Attn: Prof. Y. Bar-Hillel

National Physical Laboratory
Teddington, Middlesex
England
Attn: Dr. A. M. Uttley, Supt.
Autonomics Division