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INTRODUCTION

This is a preliminary report on a study of an algebraic gener-
alization of the concept of regular events. Among all the possible ways
of generalization we chose the one suggested by the characterization of
regular events by means of homomorphisms with finite ranges (cf. [RS]
and [YG] 1963).

Following this suggestion, our attention is directed to the study
of homomorphisms of monoids and their effect on subsets of monoids.
Furthermore, we are able now to suggest a general algebraic framework in
which several and various domains in the area of automata theory (like
finite-state transductions, commutative machines, and context-free languages)
can be studied and generalized uniformly,

In this report, we present the study of the basic and immediate
properties of regular systems in monoids and the effect of homomorphisms
on such systems,

I wish to thank J. W, Thatcher (now at the IBM Research Center in
Yorktown Heights) and S. T. Hedetniemi of the Logic of Computers Group

for their continuous interest and invaluable help,



1.1 ALGEBRAIC PRELIMINARIES AND NOTATIONS

Let W be any monoid (i.e., a semigroup with identity). A binary
relation v defined in W is said to be algebraic in W iff it is compatible
with the operation in W; i.e,, iff

(wl, wz) € 7 implies (wwl, Wz)’ (wlw, wzw) e

for any w, wl, wz e W,

n is said to be a congruence (relation) in W iff = is an algebraic equivalence
relation defined in W, |
If = is a congruence in W, then an operation can be well defined in
W/= by
UCORICRILFPR ICAS R
(where w(w) denotes the equivalence class in W/m which contains w) and a
mapping
T W+ Wa
by
;(w) =4f (W)
As one can easily prove, 7 is a homomorphism and thus it is said to

be the homomorphism (of W) induced by =.

On the other hand, for any homomorphism ¢ of W we denote by ; the

binary relation defined in W by

(s W) € iffge () = 4(v)

As one can easily prove, ¢ is a congruence in W (it is said to be

the congruence induced by ¢ in W) and from ¢ = ; follows ¢ = =,




Studies of the relationship between the homomorphisms of W and the
congruences in W can be found in the literature on monoids and semigroups
([cr], [IMD).

Since the relations m +> ; and ¢ <> ¢ induce a certain duality within
the context of this paper, and since the traditional distinction between
the homomorphisms of W and the congruences induced by them in W can be
easily proved to be unnecessary, we shall often identify the homomorphism ¢
of W with the congruence $ induced by it in W and use the term morBhism ¢_to
denote simultaneously ¢ and $. Moreover, we shall choose to use either the
mapping notation or the relation notation for the morphisms according to
the convenience of each notation in the specific context.

Let ¢ be a morphism of W and let E be a subset of W. The subset of
W, _(:._¢(_l§_), defined by

¢y (B) =g U{s(w):w ¢ E}
is said to be the ¢-closure gf'g'and E is said to be ¢-closed iff c¢(E) = E,

Clearly, the operation cg On the subsets of W is a closure operation,

(i) EE€ c¢(E).
(ii) E1 15 E2 implies c¢(El) € c¢(E2),
(iii) c¢(c¢(E)) = c¢(E).
We denote by §¢lﬂl the class of all subsets of W which are ¢-closed.
For example, if I is the identity on W then CI[W] is (P(W), the class of all
subsets of W,
As an immediate property of C¢[W] we have the following lemma:

LEMMA 1: C¢[W] is a Boolean algebra of sets which is isomorphic to (P(W/¢)

under ¢ (which is ¢ as a mapping operating on the subsets of W).



REMARK: We shall denote both ¢ and ¢% and even ¢€ by "¢".

We shall be interested in the following three operations on morphisms:

The direct product of the morphisms ¢1 and ¢2 of W is denoted by

¢1 "] ¢2 and defined by

¢1ﬂ¢2?d ¢1ﬂ¢ .

f 2

The direct sum of ¢1 and ¢2 is denoted by ¢l @ ¢2 and is defined by
® = *
¢1 ¢2 df (¢1 v ¢2)

where m* denotes the transitive-closure of m.

Obviously, these operations can be extended by induction to n-ary
operations for any n. The following theorem summarizes the main properties

of these operations.

THEOREM 2: Let ¢1,.... Ons be n morphisms of W, then:

n n
(1) & ¢ and @ ¢, are also morphisms of W;
i=1 i=1
n
(ii) @ ¢; is the maximal morphism of W which is included in
i=1
n n
all the ¢,, since & ¢. = () 053
1 i=1 i=1
n
(iii) @ ¢, is the minimal morphism of W which includes all the
i=1
n n
¢., and in fact, @ ¢, = (U9.)*;
1 . 1 . 1
i=1 i=l

n
(iv) Cn [W] = Ne€C [W] where {'\eci denotes the class of
@ ¢, i=1 % i

i=1

the intersections (\‘Ei of all Ei € Ci;
i
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v)

(vi)

(vii)

n
Cn [W] = (NC [W];
® b, i=1 %

j=1 !

@ and ® are commutative and associative operations;

if W/¢; is finite for all 1 2 i $ n then so are

n n
W/ @ ¢, and W/ @ 95 o
i=11 i=1

The cartesian product of the morphisms ¢1 and ¢2 of W1 and W2

respectively, is denoted by ¢ X ¢ and defined to be a morphism of
L2

W W b
1 2 y

(¢1 X ¢2)(w1. wz) =if ¢1(w1) b ¢2(w2)

(where "x" denotes the operation of the cartesian product of sets.)

Again this operation can be extended by induction.

THEOREM 3: Let ¢1,..., ¢, be morphisms of Wl,..., W, respectively, then:

(1)

(i)

(iii)

(iv)

n n
X ¢4 is a morphism of & W; 3
i=1 i=1
n n
Cn [®&W,]= x8, [W.] where xtC; denotes the class
. T YR | R |
X ¢i i=1 i=1 "i i
i=1

of the cartesian products xE, of all E; € Ci;
i

the cartesian product of morphisms is an associative
and essentially commutative operation;
if W./¢; is finite for any 1 £ i £ n, then so is

n

n
R W./ X ¢..
j=1 Y i=1 *



Finally, let ¢ be a morphism of W, A morphism y of W is said to be
a morphism of ¢ iff ¥ is included in ¢,

The significance of this relation is given in the following theorem:

THEOREM 4: If ¢ is a morphism of the morphism ¢ of W then the following

diagram

Lk

W/¢
can be completed by ¢/y:W/¥ -~ W/¢ to be a commutative diagram, i.e.,
(o/v)ov = ¢,
in a unique way,
Furthermore, we have
C W = yC W
WAULERAU
and in particular, for any F € W/¢

OB GERICIM G



1,2 REGULAR EVENTS IN MONOIDS

a
We wish to characterize a family of subsets of{monoid W in a fashion

similar to the way the regular events are characterized as certain subsets

of a finitely generated free monoid ([RS], [YG] 1963).

DEFINITION 1: A W-regular system is a system 7\ = <p, F> where:

(i) p is a morphism of W with a finite range,
(ii) F is a subset of the range of o.
The morphism p is said to be the structure gf__?i and T()Q) =1f o~ 1(F) = Ur

is the event generated EY.A’ A subset E of W is said to be regular in W

iff E is the event generated by some W-regular system.
We denote by Rw the class of all subsets of W which are regular in
W, that is,

Rw =4f lJ{Cp[W]:W/p is finite} .

As an immediate result of Df.1 we get:

LEMMA 5: Rw is closed under set complementation,

C—————

From the properties of the direct product of morphisms we derive
the following construction of Boolean combinations of W-regular systems:

For any Boolean set function BS we denote by BP the corresponding
Boolean proposition fﬁnction which is isomorphic to BS and thus the following
relationship holds:

let BS be a Boolean set function of n variables and let Sl,..., Sh
be any n subsets of S, then

BS(Sl"'°’ Sn) = {s ¢ S:Bp(s € Sl,..., S € Sn)} .



Given n W-regular systems 741 = <pi, Fi> and a Boolean set function
BS of n variables, we define:

n
B(AID“" An) =df <iflpi’ 8*(F1’ac., Fn)>

where
n

B*(Fl,.... F) =4¢ {(iflpi)(w) - Bp(pl(w) € Fl,..., (W) € F )} .

Obviously,

TE(A eees A =

B*(Flv-u Fn) ’

n

{w: gp(we LJFI,..., W e k)Fn)} R

B (UF e, UR)

b (TCA Do TA D

Thus we have:

THEOREM 6: Rw is a Boolean algebra of sets.

In the rest of this section we shall explore, with the expected results,
the relationships between the following concepts:
(i) W-regular systems and RW;
(i1) right invariant relations in W;
(iii) finite-state automata with W as their input;
(iv) non-deterministic finite-state automata with W as their
input,
The methods used to establish the expected relationships are taken from the

study of ordinary finite automata (cf. [RS], [RB], and [YG] 1960).



Let f be an equivalence defined in W which is right-invariant (i.e.,

(wl, wz) e £ implies (wlw, wzw) e f for any w, wl, w2 e W). We associate

with £ the following system «2& = <5, s, T¢> where:
(1) S =Wk,
(ii) S, = %(A), where A is the identity element of W,
(iii) et S x W+ S is defined by rf(f(wl), W) =4f f(wlw) .
[Note that 1. is well defined just because £ is right-invariant,]
f

Now, for any Sg € S we have:

T(q%é, SF) =g WeEW: rf(so, W) € SF} ,

=q{w e W: %(w) € SF} ’

= USF N

Hence, if E € W is a union of certain equivalence classes of a right-
invariant equivalence f defined in W, then E is defined by an automaton (which
is finite state iff W/f is finite), with W as its input (cf., [SG]) in a manner
similar to that by which ordinary regular events are defined by Rabin-Scott

finite automata,
On the other hand, let a= <S, so, > be a system with:
(1) S is a set and S, € S ,

(ii) v : S x W+ S is a mapping satisfying:
(s, A\) = s forall s e S,
(s, ww) = 1(t(s, W W) forall seS, w, w €W;
(s, . 2) (t(s, 1). 2) s W W,

9



[(iii)-optional - for each s € S there is w e W such that

1(50, w) = s].

We define the binary relation fT in W by:

(wl, wz) € fT 1ffdf T(So, wl) = r(so, wz) .

Clearly, %1 is an equivalence and the cardinality of W/%T is less than
or equal to that of S, If S is finite, then equality holds iff requirement

(M) is satisfied, Furthermore, fT is right-invariant,

Now let SF € S, The systenm <¢Z SF> is said to be a W-automaton

(which is a finite-state W-automaton iff S is finite) with the structure da.

The set:
T(Q, Sp =4¢ fweW:t(s,w e sF}

is said to be the event defined by <d, SF>.

Clearly, we have:

(@, 8p) = Ullnlsg, W) & tlsgy ) = 1(s5, W} & T(sg, W) e Sl
= ULE (W) @ t(s, W) € S)

= L}SF where SF =i {fw) : T(So, W) € SF} .

In conclusion we have:
LEMMA 7: A subset E of W is a union of certain equivalence classes of a
right-invariant equivalence (with a finite index) in W, iff E is defined by

some (finite-state) W-automaton,

The connection with W-regular systems is established by the following

lemma:

10



LEMMA 8: Let E be a subset of W, then E is regular in W iff E is defined

by a finite-state W-automaton.

PROOF: Let <{J, SF> be a finite-state W-automaton with -é%= <5, s5 T2,

Define in W the binary relation e by :

(wl, wz) €0, iffdf for all s € S : 1(s, wl) = 1(s, wz) .

Clearly, P is a morphism of W with a finite range (which is less than
or equal to the cardinality of S x S,) and o, is included in fT , 1.€4,

- . - 1 .
pT(Wl) pT(wz) implies T(So, wl) r(so, wz) for all wl, w2 e W

Hence, if we define

F =if {DT(W) : T(So, W) € SF}

we get a W-regular system <pT, F> which generates T(QZ, SF).

The converse follows directly by Lemma 7,

Before we turn to establish the identity of the W-regular events and
the events defined by non-deterministic W-automata, we wish to give an
alternative proof of Lemma 8 by the means of the construction of the transition

monoid M({J,) associated with the structure _Q, of W-automata, (For the case

of the free monoid cf. [RB], [YG] 1960 and 1962,)

Let @%= <S, Sgr T be a structure of W-automata, We define M({) to
be the set of all functions

T :+S-+8
W

defined for any w ¢ W (using the suffix notation for functions) by:

11



ST, =df (s, w) .

M({Q) is a monoid of functions since T (where A is the identity

element of W) is the identity on S and for any wl, w ¢ W we have:
2

S‘twlw2= S‘tw£ W,
This implies the existence of a morphism p_ of W with W/p, = M(&)
which is defined by:

pT(w) =4f Ty .
Clearly, if S is finite then M(@) is finite and for any S € § if we define

T o .
SF daf {‘l‘w H SoTw € SF}

we get, for a finite S, a W-regular system <P S;> which generates (4, SF).

Let us define a system ) = <S, 7> to be a structure of (finite-state)

non-deterministic W-automata iff:

(i) S is a (finite) set,
(ii) ‘7 : S x W+ @(S) is a mapping from S x W into the class

~ of all subsets of S, (P(S), satisfying

n(s, wlwz) Uln(s! w) : s' e n(s, wl)} for all s € S

and w, w €W,
1 2

We associate with Jl the monoid M(})) of the bimary relations L defined
in S for any w ¢ W by:

s, S iff
(1. 2)5“

W df 52 € w(sl, w) .

From requirement (ii) follows that for any wl, w2 e W we have:
= .

i1 o ! [}
W, W W,

12



and therefore M({}) is closed under the complex-product of binary relations

and m is its identity element, Thus M(P) is indeed a monoid of binary

relations and it is the morphic image of W under o which is defined by:

OW(W) “df " )

For any So’ S_ & S we say that the non-deterministic W-automaton

F
<SO,ZZ , SF> defines the event

T(Sys 0L 8.) =df {wel: (s, w) eS_ for some s ¢ 5.}

Obviously, we get:

T(so,n, S = {welltm n (S xS) #0)
={welW:p (We [So,n, SF]}
where [S, m, SF] =if {n(W) e M(M) : m(w) N (S X Sp) # 0} .

Hence, if S if finite then T(SO,ﬂL , Sp) is generated by the W-regular
system <p_, [So’ T, SF]>. Thus, similar to the "free' automata, we can regard
the non-deterministic (finite-state) W-automata (as defined here) as a special
case of W-regular systems where the range of their structure is a monoid of

binary relations defined in a certain (finite) set.

13



1,3 THE EFFECT OF HOMOMORPHISMS ON W-REGULAR SYSTEMS

Theorem 4 leads us to the following definition:

DEFINITION 2: A morphism § of W is said to be a morphism of the W-regular

system A = <p, F> iff § is a morphism of p, In this case, the W-regular

system <p/y, F> is said to be the morphic image _q£ _7\; (under §), or alter-

natively, the y-image _g_f:_?l and will be denoted by A/y.

And it implies directly:
LEMMA 9: Let ¥ be a morphism of the W-regular system ?Q = <p, F> and let

E € W; then E is generated by A iff y(E) is generated by % /y.

In this section we study the effects of the morphisms of W on RW. Later

we shall study the properties of the morphisms of W-regular systems,

Our main result is summarized by the following theorem:
THEOREM 10: Let ¢ be a morphism of W and let E € W, Then ¢(E) is regular
in W/¢ iff c4(E) is regular in W,

In particular we have:

(1) if 52 is generated by the W/¢-regular system At = <p , F> then
¢'1(E2) = c¢(¢'1(E2)) is generated by the W-regular system N = <p°¢, F >;

(i1) if E is any subset of W such that c¢(E) is generated by the W-regular
system 7\ = <p, F> then ¢ (E) = <b(cqb (E)) is generated by the W/¢-regular

system A' = <0/($ @ 0), (p/(¢ © 0))(F)>.

PROOF: Immediate; for the proof of (ii) apply Theorem 4, Lemma 9 and Theorem

2 ((ii1) & (v)).

1k



As an immediate but important corollary we get:

COROLLARY 10,1: If W is a finitely generated monoid, say by V, and E is a

subset of W then: E is regular in W iff ¢~1(E) is a ("free") regular event
over V as an alphabet, where ¢ is the natural homomorphism of the free monoid

generated by V onto W.

These results motivate us to consider the two classes of events introduced

in the following two definitions,

DEFINITION 3: Let ¢ be a morphism of W; we denote by ¢Rw the class of the

¢-images of the regular events in W, That is:

oRy =a¢ {6(E) : E e Ry) .

Clearly, Theorem 10 implies:

COROLLARY 10,2: If ¢ is a morphism of W then

RW/¢ € ¢RW )

In Lemma 1 we noticed that ¢%, which is ¢ operating on the subsets of
W, is a one-to-one correspondence between C¢[W] and Q(W/¢). Now, from

Theorem 10 we infer:

COROLLARY 10,3: If ¢ is a morphism of W then ¢€ (restricted appropriately)

is a one-to-one correspondence between R, 0 C¢[W] and RW/¢ .

DEFINITION 4: Let ¢ be a morphism of W; we denote by C¢(Rw) the class of

all the ¢-closures of the regular events in W, That is:

15



Clearly, we have:
LEMMA 11: If ¢ is a morphism of I then ¢¢ (restricted appropriately) is a
one-to-one correspondence between C¢(RW) and ¢RP'
Thus, we get the following conclusion of Theorem 10:
THEOREM 12: Let ¢ be a morphism of W then
¢RW = RW/¢ iff C¢(RW) = RW ;

that is, iff 4 is regularity-preserving in W,

We can summarize these results by the following diagram:

)
W > W/¢
; ¢€ v
@ (W) — § (W/¢)
c o€
@(W)——l»cq’[W] < > GO (W/¢)
Ul ]} v]]
c¢ o€
IHV-—————+> C¢(Rw) B ———— @RW
W vl o v

Ry 0 CyW] = >Ry
where:
(i) ¢° is ¢ operating on the subsets of W, i.e.,
98 (8) =4¢ {0(s) : s € S} ;
(ii) i is the identity on its contexts;
(1ii) C4 is the operation of ¢-closure;

(iv) <«—> shows one-to-one correspondence.

16
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