WORKING PAPERS FOR
THE CENTER FOR RESEARCH ON SOCTIAL ORGANIZATION

UNIVERSITY OF MICHIGAN
DEPARTMENT OF SOCIOLOGY

Paper #78 Copies available through:
August 1972

The Center for Research
On Social Organization
University of Michigan-
330 Packard  #214

Ann Arbor, Michigan 48104




ESTIMATING AN EQUATION
WITH MULTIPLICATIVE AND ADDITIVE TERMS,
WITH AN APPLICATION TO ANALYSIS OF WAGE DIFFERENTIALS
BETWEEN MEN AND WOMEN IN 1960.%*

Ross M. Stolzenberg

University of Michigan

*This paper benefited from several discussions between the author
and Paul M. Siegel and from comments by Robert Hauser on an earlier
draft. Paula Hudis Snyder was kind enough to make available the
data used herein. This research was supported by Manpower. Disser-
tation Grant No. 91-26-72-24 from the U.S. Department of Labor.

The author retains all responsibility for remaining shortcomings.




This paper presents a method of obtaining regression-like
A
estimators for the parameters of equations of the form
XN e 24

gl i3
We will attempt to demonstrate that such equatlons ‘are useful as

Y = b E

causal models when independent variables are hypothe51zed to be

both additive and non-additive in produc1ng_effects on a dependent
variable. Our plan is to first present a brief summary of currently
available methods for estimating non-additive stochastic models,

to present our method, to test the method with computer-~generated
data of known distribution, and, finally, to apply the method to

a very brief anelysis of earnings differentials between men and
women in 1960.

I. Currently available methods for analysis of
data according to non-additive models

Probably the 81mplest way to handle non-additive relatlon—
j

ShlpS among explanatory variables 1is to postulate a model of the
form
(1) Y=>b &KX
where the bi are parameters and is a random error term. When
logarithms of Y and the expression on the right side of the equa-
tion ere taken, we obtain a new equation (1%*) which can be estimated

in a straightforward manner using ordinary least squares regression.

(1%) Log Y = Log bo + E bi Log Xi + Log &



i=ptainly there are situations in which equation (1) is a useful %»-i
widel, but some reflection on the theoretical‘implications of the
mmdelimay make one hesitant to use it very often: the model implies
| that £he effect of every causal variable on the dependent variable
Y is a function of virtually every other causal variable in the
nodel.  (Mathematically, this is observed by noting that the par-
tial ?erivative of Y with respect to any of the Xi_is a func%ion
of all of the other Xi.) Theory does not often suggest modeis in
which?this sort of interdependence of causal effects occurs, since
it améunts to requiring "interaction effects" among all variables.
An alternative to using models of the form of equatioﬁ‘klf
is toldefine a new variable Z=Xi . Xj , Where Xi and Xj are two
variables which are believed to have joint non-additive effects
on Y. Equation (2) represents such a model, and one can clearly
see that it is amenable to straightforward regression analysis.
(2) Y=a+ZbiXi+cZ+E.. A
Examples of equations of this form can be found in Lane (1968),
Thurow (1967), and Blalock (1965). The problem with models bépre—
sented by equation (2) is that they provide the analyst with no
straightforward measure of the relative contribution of each of
the "?nteracting" variables to their joint effect on Y. further,
it is: possible for the product Z= XiA- Xj to be highly correlated

with Xi and only barely correlated with Xj purely as an artifact

of the difference between the ratio of the standard deviation of

¢



Xi divided by the mean of Xi and the ratio of the standard devia-
tion of Xj divided by the mean of Xj. To see this, consider the
case where Xi and Xj are normally distributed, uncorrelated, and
have unit standard deviations. But let Xi have a mean of 200 and
let Xj have a mean of 2. Accordingly, we can see that a change
in X; from 188 to 201, a change of .two standard deviations, will
increase Z by a trifling amount -- less than one per cent, assum-
ing that Xj has remained constant. But a change in Xj from one
standard deviation below its mean to one standard deviation above
produces a change in Z of'300 per cent, assuming that Xi remains
constant. Z would be so highly correlated with Xj that it would
add only insignificantly to a regression equation already contain-
ing Xj’ simply as an artifacf of the means and standard deviations
of Xi and Xj' So, under certain circumsténces there may be draw-
backs to using a simple product of two variables to account for a
joint, non-additive relationship between them in determining the
value of a dependent variable.®

Other least squares techniques which permit joint, non-
additive effects of predictor variables on the dependent variable
are dummy variable regression analysis and its derivative, Multiple

Classification Analysis (MCA). 1In both MCA and dummy variable re-

® This is not to say that inclusion of a product term is never
appropriate or useful. We merely point out that under certain cir-
cumstances ‘a product term may be a poor indicator of a non-additive
relationship between two predictor variables.



gression, the distribution of two variables which are suspected
of having non-additive effects, Xi and Xj, are partitibned into
m and n intervals respectively. m+n dummy variables are defined
such that dummy variable Ipq equals one for a given data case if
that data case takes on values falling into the pth interval of
Xi and the qth interval of Xj; the dummy variables are set equal
to zero otherwise. The dependent variable is then regressed on
all but one of thé dummy variables, as well as other variables of
interest. (MCA involves further machinations which are unimportant
for present purposes.) The only real drawback to using MCA or
dummy variable regression‘is that both techniques produce a fairly
large number of coefficients. The large number of coefficients
which supposedly make clear the joint effect of Xj and Xi on the
dependént variable can obscure rather than reveal the pattern of
causality, and the analyst often finds himself falling back on no-
tions of variance explained rather than the pattern of causation.®
In short, what MCA and dummy variable regression techniques lack
is a means of summarizing the causal effects of "interacting"
variables.

Finally, there are iterative least squares methods of esti-

mating the parameters of stochastic models. These methods ("hill

* It is possible that Xj and Xj have non-additive effects in only
one or a few regions of their joint distribution. In such cases,
the analyst need not include the full complement of m.n-2 dummy
variables, but can include Xj, X4 and a dummy for each of the re-
gions in which the interaction e%fect is suspected. 1In such cases
the number of coefficients may well be small enough to allow easy
interpretation of the results. '



climbihg," steepest descent, etc.) can be used to fit the parame-
ters of virtually any model to a set of data; ‘they are quite impres—
sive in this respect. But these methods are spectacularly eipensive
to'use'because each iteration requires a separate pass over the
Jdata. Further, parameter estimates do not always converge as the
lterctions prcceed, and while convergence may obtain using one
method, there is no guarantee that it will obtain with another mé—
thod used to estimate the same model with the same data.

To sum up, fhere are a number of methods of handling non-
additivity among causal variables in least squares statisticai
énalysis. MCA and dummy variable regression analysis avoid some
of the problems of certain other methods discussed here, but pre-
sent too many coefficients to provide easy interpretatioh.and no
means of assessing the relative contribution of each "interacting"
variable to their joint effect on the dependent variable.

IT. The proposed method

Equation (3) is a model which allows for non-additiv¢ rela-
tions among some causal variables, the(SXiE;; but which also allows
othér causal variables, theézzig , to be additive in their effects
on Y. |

bi

= it + I z +
(3) Y b0 El R Xi 2 c, 2, 52

1 and o are random error terms; the c; and bi are parameters.

Notice that equation (3) provides a separate parameter for each

of the "multiplicative" variables, plus an additional coefficient
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b, fo; their total joint effect; we will show how the presence 6f
separ;te parameters for the multiplicative variables allows &t
leastisome assessment of their relative importance in determining
their joint effect on Y. More will be said about the interpre-
tation of these parameters and about the existence of two erron
terms, but we will first explicate a method by which to estimate

the parameters of equation (3).

Estimating equation (3). The first step in estimating equa-

tion (3) is to follow the same procedure used to handle non-
additive effects in MCA and dummy variable regression: the distri-
butions of the members of ZXi} are partitioned jointly and a set
of dummy variables £11% indicating "membership" in a given c%ll
of the joint partition is defined. Next, Y is regressed.on all
but oﬁe of these dﬁmmy variables and the {Zig according to equa-=
tion (4).
’ k I
(4) k Y =do+ kL d I, +2
There are L + 1 cells in the joint partition of the?ixig .

Ci Zi + 52

This first regression analyéis has three.purposes: First, it pro-
vides estimates for the coefficients cy net of the effects of the
members of}fziz on Y through their correlation‘with the members

of gké-g. Second, we can use this first regression analysis to
test whether or not the variables in X; add significantly to the
variance in Y explained by the members of gzi? . The test is

performed by first regressing Y on only the members oijZig , and



then performing the regression analysis indicated by equation (4).
Follo&ing Lane (1968) we note that

2 2
Ri - R2 . N-L-K-1

Rz
1 -R; L

is distributed as F with N-L-K-1 degrees of freedom in the deno-
minator and L degrees of freedom in the numerator, where L is the
number of dummy variables representing the joint partition of the

{in}»which are entered into regression equation (4), N is the sam-

ple size, R2 is the R2

1

dummy variables {193, and Rg is the R2 for the regression analysis

for the regression analysis including the

in wh%ch Y is regressed only on the (Ziz . O0f course, the test

is informative of the explanatory power of the{/Xi? only insofar
as thé partition of the Xi captures the variance of its consti-
tuent variables. The third purpose of estimating equation (4) is
that it provides a set of values for the adjusted mean of Y in
each cell of the joint partition of the<{Xi} .  The cell means are
adjusted in the sense that they are net of the contribution of
the (éiz to the value of Y. These adjusted means are obtained
according to equation (5), where Mj represents the adjuéted mean

in the jth cell of the joint partition of the {Xi} , and the{!dii

are the coefficients in equation (4).
- . M, =d +4d,
(5) - 5 o j

Having obtained adjusted cell means for the partition of the

Xi's, it is a straightforward matter to obtain estimates of the
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paraméters bi for equation (3): Corresponding tbjgach'celi'iﬁ the
joint%partition is a range of values for each of the Xi's. A mean

L .
for each range of values is obtained, so that for each cell we

have é mean value for each member of {Xi} and a mean value for Y

net of the effects of the {Zi} . According to our model, equation
(37,

. 1 bl
(3%) ) Y% = b0 El i ¥

whereEY* is the value of Y adjusted (in the sense we have beén using
the térm) for the effects of the (Zi} . Clearly, then, the %itua-
tion éas reduced to the common and easily-solved problem of esti-
matiné an equation of the form of equation (1) with grouped data.
The légarithm of equation (3%) is taken, giving us

(3:':='=)> Log Y* = Log b_ + E b, Log X, + Log Ei

which is estimated by a weighted ordinary least squares regression
analyéis in which the weights are the number of cases in each cell
of th% partition and the data points are defined by the set of
adjus%ed cell means of Y and the corresponding means of the Xi's.
Thus,%we obtain the parameters {bi, Ci} in equation‘(35.

Strictly speaking, there are two points which should be men-
tioned: first, there is the problem of the additive error term 2
which has not been subfracted from equation (3) to produce (3%),
but which we have neverfheless not included in (3%). The reason

that we have not included this error term is that equation (3%)

is estimated on grouped data using mean values of Y adjusted for



the effects of the Xi' As the number of cases in each group in-
creases, the mean of gz tends increasingly toward zero. So if the
number of cases in the cells of the partition of the Xi is suffi-
cientl& large, we may disregard the error term,gzn The second
point which we should mention concerns the problem of estimating
equations of the forﬁ of equation (1) using grouped data. Esti-
‘mation procedires require knowledge of the means of the logs of
the X; and Y in the various intervals. The mean of the log of a
varia£le in an interval cannot be obtained from the mean, except
under:exceptional circumstances, so we are faced with a problem
which;requires some simplifying assumptions for its solution. One
such assumption is that the log of the mean of the variable iﬁ
question is equal to the mean of its_log. This is a common pro-

ceduré and we have followed it in our computations, though some

inaccuracy is introduced as a result.®

ofs
kl

One might also assume that the Xj have a certain distribution
in the intervals. If this distribution has a density function f
(X), and if the interval is (a,b), a theorem in probability gives
the following result: the expectation of X (i.e. the probability
limit of the mean of log X) is

5 .
E [X] ﬁog X f X) dX
So, for example, if X is ‘assumed to have a rectangular distribu-
tion in (a,b) (i.e. X is "evenly" distributed over the interval),
the mean of the log of X when X is in (a,b) 1is
b. 1 _ 1 N
{ j Log X 5=y dX = 5o (X Log X - x)-! .
K (blogb-b - aloga+ a)

1
. b-a .
However, one is still left with the problem of obtaining the mean
of log Y, and we can suggest no better method than to approximate
the mean of the log by the log of the mean.
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We will now test our method using computer-geherated data of
known distribution. We will explicate certain properties of the
parameter estimates produced by the method in subsequent discussion.

Testing the method with computer-generated data. In order to

provide at least a weak test of our method, we have used a computer
to generate ¢ data set zomposed of four normaily distributed vari.-
ables Xl’ X2, X3, §: anl a variable Y which is defined by equation

(6) below

0.3 _0.6
(6) = * .
Y = 0.5 Xl X2 + 0.3 X3 4+ &

There are 1092 cases in the computer-generated dataset. Correla-

tions means and standard deviations of X X and X, are given

12 ©2°? 3
in table l.;gphas a mean of zero, a standard deviation of 0.2, and

is uncorrelated with the other variables.

Table 1 -- Correlations, means and standard
deviations of computer-generated variables

Xy Xg .. %y

X, .1249 1.0 .0385
Xq .0087 .0385 1.0
mean  49.95 50.03 49.97
s.d. 1.02 0.89 0.95

Xl and X, are each partitioned into 5 intervals, jointly defining

25 dummy variables, 24 of which were entered into the first re-

gression analysis of Y on the dummies and X The R2 for this

3.

regression is 0.774. The analysis produces an estimate of 0.302
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for the coefficient of X3; the standard error for this estimate
is 0.007. Since the estimate for this parameter is less than

three-tenths of a standard error from the true value of 0.3, we
feel safe in concluding that the method has been successful in

recovering the coefficient of X " Performing the secondary regres-

3
sion on the results of the first analysis, we-obtain the results

bPresented in table 2 below. The R2 for the secondary regression

is 0.947,
Table 2 -- Secondary regression analysis
parameter estimates compared to true parameter
values
Parameter True value Estimated Standard True value-estimate
: value " error standard error
a)
Loge bo -.693147 -.712869 .185943 .09
bl 0.3 0.3162 0.0336 LU49 -
b2 0.6 0.5871 0.0336 . . . _ .38

a) This is the loge of the parameter; the parameter b has a true
value of 0.5, the log of which is -.6931u47.

Note that the parameter estimates are all quite c¢lose. to the true
values. Indeed, if the difference between the estimated and true
values of the parameters is divided by the standard errors for the
estimates (see the far-right'column of .table 2), we see that the
estimate for the log of bo is less than a tenth of a standard error

“from the true value, and that b and-b2 are less than a half_énd

1

under two-fifths of a standard error from their respective true

values. At even 25 per cent levels of confidence we could not re-
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ject the null hypotheses that the parameter estimates are not
different from their respective true values. So we conclude that
our, method  has been successful in recovering the parameters.of a
model. of the form given by equation (3). We will now proceed. to
apply the method to "natural" data. .
III. An illustrative application of the method:

In this section we very briefly apply our method to an analy-
sis of earnings differentials between male and female workers in
the United States in 1959-60. We will present theoretical reasons
for choosing a model of the form of equation (3). The model will
then be estimated separately for men and for women,.and the results
will be given to interpretation of the various coefficients.

The choice of an earnings model. Following Lester Thurow

(1967), we hypothesize that the relationship between education and
work experience in determining earnings is multiplicative, not
additive. According to this hypothesis, employers not only offer
higher starting wages to better-educated candidates for a. job, but
take years of schooling completed as an indicator of learning
ability and make higher training investments in more-educated-
workers than in less-educated members of the labor force.®* These
higher training investments presumably make the experience (mea-

sured in time) gained by a better-educated worker more valuable

* This last point is supported by Doeringer and Piore's. (1966)
interview study.of personnel practices, in manufacturing firms.
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than that gained by a less-educated worker, at least in terms of
the increases in skill that come with on the job learning, result-
ing in a higher wage return to experience for more educated workers.
So we wish to use an earnings model which captures this multipli-
cative relationship between education and experience.

Follo&ing Duncan (1968) we will include: occupational attain-
ment as a determinant of earnings by using the occupational prestige
of the indiQidual's 1969 U.S. Census detailed occupation category
as an additive variable in the earnings model. The prestige score
we use 1is Siegel's (1971).

It is well-known that the level of money earnings (though not.
necessarily the level of real earhings)’is lower in the South and
higher in the West than in the rest of the United States. We-are
hesitant to use a model in which a variable indicating region of
residence multiplies the experience and' education variables; we
doubt that the rate of return to educational attainment and- ex-
perience differs. across regions of the country once we have held
4constant occupational attainment. Multiplying education and ex-
perience by a region variable would imply such a differencevin.these
rates of return.

Because earnings are distributed log normally over about 65

per cent of the U.S. experienced civilian labor force in 1960 ,%

* This distribution is suggested by Cramer (1971,68). The figure.
of 65 per cent was obtained by the author after plotting the log
earnings distribution on normal probability graph paper and obser-
ving the region in which the plotted points conformed to the expec-
ted straight line  pattern.
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we use loge earnings of individuals in 1960 as our.dependent vari-
able. The use of log earnings rather than actual earnings means
that absolute differences in the dependent variable are indicative
of proportional differences in actual earnings.

Equation (7) preéents a model which allows for a multipli-
cative relationship between years of experience in the labor force
and educational attainment in determiﬁing an individuél's log
earnings, while allowing only for additive effects of occupational
achievement and residence in different regions of the nation. §
represents loge earnings; P = the occupational prestige of the in-
dividual's 1960 Census detailed occupation; N = 1 if the individual
resided in the northeast or north-central regions of the nation and

N 0 otherwisey; W = 1 if the individual resided in the West and

W

O otherwisej; Ed = the individual's years of schooling completed;
Ex = the individual's potential years of experience in the labor
force. Ex is computed by subtracting the individual's years of
schooling and the number 5 from his or her age. Caution is needed
in interpretation of the experience variable, especially in making
comparisons between men and women; we will discuss this issue later

on. E?l and EZ are error terms.

_ bl _ b2
(7) : $—boEd Ex £l+b3P+b4N+b5w+§2

The data set used to perform the analysis is a subsample of the

1960 U.S. Census of Population 0.1 per cent public use sample.

The subsample was drawn from persons aged 25 to 64 years old, who
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were employed during the "census week" in 1960 and who reported
earnings in excess of one dollar in 1959. The primary ( ox dummy.
variable) regression analysis was performed after. partioning age
and education into four and five intervals respectively, jointly
defining 20 mutually exclusive categories. Table 4 shows the
classification. Since experience (as presently defined) is a funec-
tion of age and‘educatian, the partition into age-education cate-
gories also provides a set of mutually exclusive experience-
education categories. Mean education and age within a given
interval are taken to be the midpoint of the interval represented,
except for the open-ended education interval, "college, four years
or more," .-for which 16 years was used as the mean.

Dummy variables representing 19 of fhese categories were
entered into separate regression analyses for women and men,
according to education (7%), where the Di are the dummy variables,
K is a constant term, and all other variables and their parameters
are identical to those in equation (7).

(7%) $=K+i§jcini+b3p+b41\1 + b W
Results of the regression analyses are shown in table 3 below. We

add the constant term K to each of the D.'s to obtain a value for

1
the mean of $ in the corresponding education-experience category
adjusted for the effects of region residence and occupational

prestige. The adjusted mean for the category corresponding to the

dummy variable left out of the regression equation (7%®) is just
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the constant term. Table 4 presents the adjusted means for each
category, the number of individuals in the category and the cor-
responding mean education and experience, by sex.

Table 3 --"Results of Primary Regression
Analyses for Men and Women

a)

Females Males
Variable Coefficient Std Error Coefflclent Std. Error
Constant 8.5830 3.8323 8.9950 2.605Y4
D 1 -.67437 .65466 -.69892 21437
D -.54973 .25658 -.12430 .15830
D 3 -.29012 . .26694 -.0494 .16259
D 4 .06131 .33384 -.21103 .20523
D 5 -.18722 .33891 -.14724 .19451
D 6 -.79095 .38112 -.59846 .17782
D 7 -.42538 .22786 -.15343 .14956
D 8 -.41410 .22989 .13358 .15782
D 9 .18189 .32957 .00510 .20792
D 10 .29259 .32u456 44583 .18687
D 11 -.49953 .283900 -.35342 .139077
D 12 -.04249 .24130 -.12753 . 14953
D 14 .13986. .27022 .15851 .23904
D 15 L43071 .4384u2 .37381 .21175
D 16 -.3686Y4 .43700 -.42213 .18888
D 17 -. 08650 .25147 -.27967 .16213
D 18 .27039 .37502 L4590 .22600
D 19 .0072 .37826 -.11383 .24681
D 20 .52947 . 48151 .28181 .28163
Prestige .01265 .00398 .01281 .00223
North .48756 .12406 .16169 .06753
West .33254 .16328 .16699 .09186
R2 for males: 0.23Y4 R2 for females: 0.223
a) Variables Dl, D2, . . ., D20 are the dummy variables repre-

senting cells in the joint partition of Education and Experience.
Variable Di represents the ith cell.
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Table 4 -- Adjusted means of $§ for categories
. of the joint partition of Ed and Ex

Dummy Educa-

Vari- tion Age Number in Adjusted
able Interval Inter- Mean Mean Mean Category mean
Index (Years) val Age Ex Ed Men Women Men Women
1 0-7 25-34 30 20 5 17 2 7.199 6.299
2 8-11 25-3Y4 30 15 10 53 22 7.778 6.u24
3 12 25-3Y4 30 13 12 46 19 7.853 6.683
4 13-15 25-34 30 11 14 19 10 7.691 7.035
5 16 25-34 30 9 16 23 7 7.755 6.786
6 0-7 35-44 4o 30 '5 3u 36 7.304 6.182
7 8-11 35-44 40 25 10 73 36 7.749 6.548
8 12 35-44 40 23 12 53 36 3.036 6.559
9 13-15 35-44 40 21 14 18 10 7.907 7.155
10 16 35-44 40 19 16 27 11 8.348 7.266
11 0-7 45-54 50 Lo 5 25 15 7.549 6.931
12 8-11 45-54 50 35 10 74 28 7.775 6.931
13 12 45-54 50 33 12 32 25 7.902 6.973
14 13-15 4L5-54 50 31 14 12 19 8.061 7.113
15 16 45-54 50 29 16 18 5 8.276 7.u0u
16 0-7 55-64 60 50 5 25 5 7.480 6.605
17 8-11 55-64 60 45 10 46 24 7.623 6.887
18 12 55-64 60 43 12 14 7 8.359 7.2u4h
19 13-15 55-64 60 41 14 11 7 7.789 6.966
20 16 55-64 60 39 16 8 b4 8.184 7.503

* Dummy variable 13 was excluded from the regression analyses.
Logs of mean education, mean experience, and the adjusted mean of
iog earnings are taken and the secondary regression analysis de-
fined by equation (7%%) is performed using the number of individ-

uals in each category of the joint partition as weights.

S '
(7%%) Log $ = Log b0 + bi Log Ed + b2 Log Ex

The results of the secondary regression analyses are as follows;

standard errors for coefficients are given in parentheses.

. 1.796 .0871 .0171 2 = 711
(.0136)

For males $ =e Ed E R

*(.0105)
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el.449 .1235 .0529

2
Ed( 0218) ®*(.o148) ® = :669

For females $ =

Thus, we have estimates of all the parameters for equation (7);
the estimated form of the earnings model, given separately by

sex, 1s as follows:

For men:

(8) | s = 6.025 Bd"O871 gx"0171 4 0128 P + .1617 N + .1670 @
For women:

(9) $ = 4.258 Ed" 2% £x"05%% & 0126 P + .4876 N + .3325 W

In order to obtain some check on whethgr or not these results are
reasonable, we substitute the mean values for Ed, Ex, N, W, and P
for men into equation (8) and compare the values $ obtained fo the
arithmetic mean of $. We note that while ordinary addiﬁive re-
gression analysis is constrained to repréduce the arithmetic mean
of the dependent variable when the arithmetic means of the inde-
pendent variables are‘"plugged into" the estimated regression |
equation, regression estimation of an equation of the form of
equation (1) by taking the logs of all variables is constrained .
to reproduce the geometric mean of the dependent variable when
the geometric means of independent variables are "plﬁgged in" --
there is no guarantee that our method will reproduce either the
geometric or the arithmetic mean when appropriate vélﬁes are
plugged in. The observed arithmetic mean of $ for men is 8.u425

for men; the value of $ obtained from equation (8) and the arith-.

metic means of relevant variables is 8.468. So the results of
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our analysis seem reasonable in terms of the ability of the model
to approximate the observed arithmetic mean of $ from the observed
arithmetic means of the independent variables.

Interpretation of the results. We must bear in mind a number

of limitations of the present analysis: First, we have used
cross-sectional data to estimate the parameters of a time-related
process. Second, we have too few women in our sample to be very
comfortable with the reéults of the secondary regression analysis
on females: seven of the dummy variables for women represent cate-
gories containing fewer than 10 members of the sample. And,
finally; the experience variable is undoubtedly a much weaker
indicator of labor force experience for women than it is for men.
.Howeyer, the purpose of this analysis is to illustrate the use of
a technique, and our analyses can serve this purpose in spite of
the limitations just discussed.

We will attempt to show how our analyses can shed light on
two questions: 1) Is eduéation more or less important than ex-
perience in determining their joint impact on log earnings? And
2) What are the differences between the way education and exper-
ience joiﬁtly affect the attainment of log earnings by men and
women?

Since Ed and Ex are both in the same metric (years) we can
compare their separate relative contributions to their joint -

effect on $ simply by comparing their exponents b, and b2. Note

1
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that for both women and men, the exponent of Ed is larger than that
of Ex.

In comparing the way education and experience affect the attain-
ment of log earnings of men to the way they affect the log earnings
éf women, we might first note that the exponents for both educa-
tion and for experience are larger for women than for men. This
indicates that at a given level of education and experience, a
marginal increase in thé education or experience of a woman worker

will increase her joint "return" to education and experience by a

larger Eropoftion than a similar increase in the education or ex-
perience of a man would increase his joint return to education and
experience. Graph 1 presents the magnitude of the size of the
joint experience-education contribution to § at different levels
of experience and education, according to equations (8) and (9).
Note that while the joint effect of Ed and Ex for women is more
sensitive to changes in Ex than it is for men, the size of the
joint contribution is substantially less for females than it is
for males. When we consider that the parameter bO is almost 50
per cent larger for men than it is for women (6.025 vs. 4.258),
this result is not surprising.

Finally, suppose that our experience variable is terribly
inaccurate and that working women are, on the average; obtaining
only half as much employment experience as men in the first 15

years after they complete their schooling. What would Graph 1
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look like if we adjusted the women's experience accordingly? The
slope of the curves for women would be twice as steep as they are
presently over the range of one to 15 years of experience, since
the X axis would be collapsed without commensurate change in the Y
axis. In other words, our results would be changed in degree, but
not in substance: the joint contribution of education and exper-
ience to log earnings would be even more sensitive to changes in
experience for women than for men, and the size of the contribution
would remain lower for women than for men.
Conclusions

We have presented a method for estimating equations which are
useful in certain circumstances when an "interaction effect" or
multiplicative relationship between two or more causal variables
is hypothesized and purely additive effects of other causal vari-
ables are believed to occur. The method has been tésted on
computer-generated data‘and has been found to reproduce with ade-
quate accuracy the parameters of the equation which was used to
generafe thé data. The method has been applied to analysis of
differences in the attainment of annual earnings by men and women,
and the parameter éstimates obtained appear to be quite reasonable.
We certainly do not claim to have presented an answer to all or
even many of the problems ihvolved in handling multiplicative and
qdditive relationships among causal variables simultaneously. How-
ever, we do believe that the method we have presented is useful in
certain circumstances, and we have attempted to show very briefly

some of the insights that can be obtained by using it.
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