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This paper presents a method of obtaining regression-like 
3 

estimators for the parameters of equations of-the form 

We will attempt to demon~t~ate that such equations are useful as 

causal models when independent variables are hypothesized to be 

both additive and non-additive in producing effects on a dependent 

variable. Our plan is to first present a brief summary of currently 

available methods for estimating non-additive stochastic models, 

to present our method, to test the method with computer-genera-?ed 

data of known distribution, and, finally, to apply the method to 

a very brief analysis of earnings differentials between men and 

women in 1960. 

I. Currently available methods for analysis of 
data according to non-a9ditive models 

Probably the simplest way to handle non-additive relation- 
i 

ships among explanatory variables is to postulate a model of the 

form 

where-the bi are parameters and is a random error term. When 

logarithms of Y and the expression on the right side of the equa- 

tion are taken, we obtain a new equation (1>k) which can be estimated 

in a straightforward manner using ordinary-least squares regression. 

(1%':) Log Y = Log bo + L bi Log Xi + Log 5 
i 



. . 

i :c-=:~tai-nly t h e r e  a r e  s i t u a t i o n s  i n  which e q u a t i o n  (1) i s  a  u s e f u l  . .  i .  

.11ti . )c .Ie1~ !3ut some r e f l e c t i o n  on t h e  t h e o r e t i c a l  i m p l i c a t i o n s  o f  t h e  

m ~ - ~ d e l  may mzke one h e s i - t a n t  t o  u s e  it very  o f t e n :  t h e  model i m p l i e s  

-i:hat t h e  e f f e c t  of  e v e r y  causal:  v a r i a b l e  on t h e  dependent  v a r i a b l e  

Y 7  ' 
J, :.s a  f u n c t i o n  o f  v i r t u a l l y  e v e r y  o t h e r  c a u s a l  v a r i a b l e  i n  t h e  

:nodc.?l. ( M a t l ~ e m a t i c a l l y ,  t h i s  i s  obse rved  by n o t i n g  t h a t  t h e  p a r -  

t i a l  d e r i v a t i \ : e  of Y wi?h  r e s p e c t  t o  any of  t h e  X .  i s  a  f u n c t i o n  
f I 

o f  a l l  - o f  t h e  o t h e r  Xiel Theory d o e s  n o t  o f t e n  s u g g e s t  models i n  

w h i c h : ' t h i s  s o r t  o f  i n t e r d e p e n d e n c e  o f  c a u s a l  e f f e c t s  o c c u r s ,  s A n c e  

it ampunts t o  r e q u i r i n g  " i n t e r a c t i o n  e f f e c t s "  among a l l  v a r i a b l e s .  

An a l t e r n a t i v e  t o  u s i n g  models  o f  t h e  form o f  e q u a t i o n  (1)- 

i s  t o  d e f i n e  a  new v a r i a b l e  Z = X  a X , where X .  and X .  a r e  two i 
t j 1 I 

v a r i a b l e s  which a r e  b e l i e v e d  t o  have  j o i n t  non-addi t i -ve  e f f e c t s  

on Y. Equa t ion  ( 2 )  r e p r e s e n t s  s u c h  a model,  and one can  c l e a r l y  

s e e  t h a t  it i s  amenable t o  s t r a i g h t f o r w a r d  ? e g r e s s i o n  analysi-s . 

( 2 )  Y = a + C b . X  1 - c Z + <  I 

1 i 

Examples o f  e q u a t i o n s  of  t h i s  form c a n  be found i n  Lane (19Eg) ,  

~ h u r o w  (19671,  and Bla lock  ( 1 9 6 5 ) .  The problem wLth models k e p r e -  
, 

s e n t e a  by e q u a t i o n  (21  i s  t h a t  t h e y  p r o v i d e  t h e  a n a l y s t  w i t h - n o  

. s t r a i g h t f o r w a r d  measure o f  t h e  r e l a t i v e  c o n t r i b u t i o n  o f  each o f  

t h e  " ? n t e r a c t i n g l '  v a r i a b l e s  t o  t h e i r  j o i n t  e f f e c t  on Y .  F u r t h e r ,  
i 

it is: p o s s i b l e  f o r  t h e  p r o d u c t  Z =  X .  1 X. t o  be h i g h l y  c o r r e - l a t e d  
I 

w i t h  Xi and o n l y  b a r e l y  c o r r e l a t e d  w i t h  X p u r e l y  as a n  a r t i f a c t  
j  

o f  t h e  d i f f e r e n c e  between t h e  r a t i o  of t h e  s t a n d a r d  d e v i a t i o n  of  



Xi  d i v i d e d  by t h e  mean o f  Xi and t h e  r a t i o  o f  t h e  s t a n d a r d  d e v i a -  

t i o n  of X d i v i d e d  by t h e  mean o f  X 
j  j *  

To s e e  t h i s , .  c o n s i d e r  t h e  

c a s e  where X and X a r e  normal ly  d i s t r i b u t e d ,  u n c o r r e l a t e d ,  and i j  

have  u n i t  s t a n d a r d  d e v i a t i o n s .  But l e t  Xi have a mean of 2 0 0  and 

9 , . .  l e t  X .  have  a  mean o f  2 .  A c c o r d i n g l y ,  we c a n  s e e  t h a t  a change 
3 

i n  Xi from 199 t o  2 0 1 ,  a change o f  t w o  s t a n d a r d  d e v i a t i o n s ,  w i l l  

i n c r e a s e  Z by a t r i f l i n g  amount -- less t h a n  one p e r  c e n t ,  assum- 

i n g  t h a t  X h a s  remained c o n s t a n t .  But a change i n  X f rom one 
j j  

s t a n d a r d  d e v i a t i o n  below i t s  mean t o  one s t a n d a r d  d e v i a t i o n  above 

p roduces  a  change i n  Z o f  300 p e r  c e n t ,  assuming t h a t  X .  r emains  
1' 

c o n s t a n t .  Z would be s o  h i g h l y  c o r r e l a t e d  w i t h  X t h a t  it would 
j 

add o n l y  i n s i g n i f i c a n t l y  t o  a r e g r e s s i o n  e q u a t i o n  a l r e a d y  c o n t a i n -  

i n g  X . ,  s imply  as a n  a r t i f a c t  o f  t h e  means and s t a n d a r d  d e v i a t i o n s  
3 

o f  Xi and X 
j  

So,  under  c e r t a i n  c i r . cums tances  t h e r e  may be draw- 

backs  t o  u s i n g  a  s i m p l e  p r o d u c t  o f  two v a r i a b l e s  t o  a c c o u n t  f o r  a 

j o i n t ,  n o n - a d d i t i v e  r e l a t i o n s h i p  betw.een them i n  d e t e r m i n i n g  t h e  

v a l u e  o f  a dependent  . v a r i a b l e  .$k 

Other  l e a s t  s q u a r e s  t e c h n i q u e s  which p e r m i t  j o i n t ,  non- 

a d d i t i v e  e f f e c t s  o f  p r e d i c t o r  v a r i a b l e s  on t h e  dependent  v a r i a b l e  

a r e  dummy v a r i a b l e  r e g r e s s i o n  a n a l y s i s  a n d  i t s  d e r i v a t i v e ,  MulTiple 

C l a s s i f i c a t i o n  A n a l y s i s  ( M C A ) .  I n  b o t h  MCA and dummy v a r i a b l e  r e -  

* T h i s  i s  n o t  t o  s a y  t h a t  i n c l u s i o n  of  a  p r o d u c t  t e r m  i s  n e v e r  
a p p r o p r i a t e  o r  u s e f u l .  We mere ly  p o i n t  o u t  t h a t  under  c e r t a i n  c i r -  
cumstances  a  p r o d u c t  t e r m  may be a poor  i n d i c a t o r  o f  a  n o n - a d d i t i v e  
r e l a t i o n s h i p  between two p r e d i c t o r  v a r i a b l e s .  



gression, the distribution of two variables which are suspected 

of having non-additive effects, Xi and X are partitioned into 
j' 

m and n intervals respectively. men dummy variables are defined 

such that dummy variable I equals one for a given data case if 
P9 

that data case takes on values falling into the pth interval of 

Xi and the qth interval of X the dummy variables are set equal 
j' 

to zero otherwise. The dependent variable is then regressed on . 

all but one of the dummy variables, as well as other variables of 

interest. (MCA involves further machinations which are unimportant 

for present purposes.) The only real drawback to using MCA or 

dummy variable regression is that both techniques produce a fairly 

large number of coefficients. The large number of coefficients 

which supposedly make clear the joint effect of X and Xi on the 
j 

dependent variable can obscure rather than reveal the pattern of 

causality, and the analyst often finds himself falling back on no- 

tions of variance explained rather than the pattern of causation.* 

In short, what MCA and dummy variable regression techniques lack 

is a means of summarizing the causal effects of "interacting" 

variables. 

Finally, there are iterative least squares methods of esti- 

mating the parameters of stochastic models. These methods (''hill fi It is possible that Xi qnd Xj have non-additive effects in only 
one or a few regions of their joint distribution. In such cases, 
the analyst need not include the full complement of men-2 dummy 
variables, but can include Xi, X. and a dummy for each of the re- 
gions in which the interaction e$fect is suspected. In such cases 
the number of coefficients may well be small enough to allow easy 
interpretation of the results. 



climbing," steepest descent, etc.) can be used to fit the parame- 

ters of virtually any model to a set of data; .they.are quite impres- 

sive in this respect. But these methods are spectacularly expensive 

to use because each iteration requires a separate pass over the 

. . <.I e! , ~ d .  . - - Further, parameter estimates do not always converge as the 

iter=.tions prcceed, and while convergence may obtain using one 

method, there .i-s no guarantee that it will obtain with another me- 

thod used to estimate the szme model with the same data. 

To sum up, there are a number of methods of handling non- 

additivity among causal variables in least squares statistical 

analysis. MCA and dummy variable regression analysis avoid some 

of the problems of certain other methods discussed here, but pre- 

sent too many coefficients to provide easy interpretation. and no 

means of assessing the relative contribution of each "interacting" 

variable to their joint effect on the dependent variable. 

11. The proposed method 

Equation ( 3 )  is a model which allows for non-additive rela- 

tions among some causal variables, the 'xi<, 0 but which also allows 

other causal variables, the[zi3 , to be additive in their effects 
on Y. 1 

1 and 2 are random error terms; the ci and bi are parameters. 

Notice that equation ( 3 )  provides a separate parameter for each 

of the "multiplicative" variables, plus an additional coefficient 



bo for their total joint effect; we will show how the presence n f  
1 

separate parameters for the multiplicative variables allows ?.t 

least some assessment of their relative importance in deterrn?.nj.ng 

their joint effect on Y. More will be said about the interp??c- 

tation of these parameters and about the existence of two el?. ?o:i 

terms, but we will first explicate a method by which to estimate 

the parameters of equation ( 3 ) .  

Estimating - equation ( 3 ) .  The first step in estimating equa- 

tion ( 3 )  is to follow the same procedure used to handle non- 

additive effects in MCA and dummy variable regression: the distri- 

butions of the members of are partitioned jointly and a set 

8 of dummy variables (1~5 indicating "membership" in a given c ~ l l  
of the joint partition is defined. Next, Y is regressed on all 

but one of these dummy variables and the {zij according to equaA 

There are L + 1 cells in the joint partition of the$ Xij . - 

This first regression analysis has three purposes: First, it pro- 

vides estimates for the coefficients ci net of the effects of the 

members of Lzi3 on Y through their correlation with the members 
of CX:. 9 . Second, we can use this first regression analysis to 

1 

test whether or not the variables in X. add significantly to the 
1 

variance in Y explained by the members of ( z .?  . The test is 
1 

performed by first regressing Y on only the members of<zi3 , and 



then performing the regression analysis indicated 'by equation (4). 

Following Lane (1968) we note that 

is distributed as F with N-L-K-1 degrees of freedom in the deno- 

minator and L degrees of freedom in the numerator, where L is the 

number of dummy variables representing the joint partition of the 

[xi3 which are entered into regression equation (41 ,  N is the sam- 

2 2 ple size, R1 is the R for the regression analysis including the 

2 dummy -variables [I*? , and R2 is the R~ for the regression analysis 
in which Y is regressed only on the (zi) . Of course, the test 

is informative of the explanatory power of the(xi] only insofar 

as the partition of the Xi captures the variance of its consti- 

tuent variables. The third purpose of estimating equation ( 4 )  is 

that it provides a set of values for the adjusted mean of Y in 

each cell of the joint partition of the {xi] . The cell means are 

adjusted in the sense that they are net of the contribution'of 

the (Zij to the value of Y. These adjusted means are obtained 

according to equation (51, where M represents the adjusted mean 
j 

in the jth cell of the joint partition of the {xi] , and the(di\ 

are the coefficients in equation (4). 

('5 ) 1 . M  = d  + d  
j o j  

Having obtained adjusted cell means for the partition of the 

Xi's, it.is a straightforward matter to obtain estimates of the 



. a . - . 
parameters b for equatlon (3): Corresponding to each cell in the i . 
jointrpartition is a range of values for each of the Xi's. A mean 

L 
for each range of values is obtained, so that for each cell we 

have a mean value for each member of (xi) and a mean value for Y 

net of the effects of the (~i) . According to our model, equation 

where*Yf: is the value of Y adjusted (in the sense we have been using 

the term) for the effects of the [zi) . Clearly, then, the situa- 

tion has reduced to the common and easily-solved problem of esti- 

mating an equation of the form of equation (1) with grouped data. 

The logarithm of equation (3f:) is taken, giving us 

( 3 9: c: ) Log Y* = Log b + b .  Log Xi + L o g  ti o i i  

which is estimated by a weighted ordinary least squares regression 

analysis in which the weights are the number of cases in eacA cell 

of the partition and the data points are defined by the set of 

adjusted cell means of Y and the corresponding means of the X.'s. 
3. 

Thus, we obtain the parameters (bi, till in equation (3 j . 
strictly speaking, there are two points which should be rnen- 

tioned: first, there is the problem of the additive error term 

which has not been subtracted from equation (3 to produce ( 3 f t ) ,  

but which we have nevertheless not included in (3$:). The reason 

that we have not included this error term is that equation ( 3 > ? )  

is estimated on grouped data using mean values of Y adjusted for 



the effects of the Xi. As the number of cases in each group in- 

tends increasingly toward zero. So if the creases, the mean of 

number of cases in the cells of the partition of the Xi is suffi- 

cientl; large, we may disregard the error term 2; The second 

point which we should mention concerns the problem of estimating 

equations of the form of equation (1) using grouped data. Esti- 

.mation procedl-res requi.le knowledge of the means of the 1c;gs of 

the Xi and Y in the var-',ous intervals. T11e mean of the log of a 

variable in an interval cannot be obtained from the mean, except 

under.exceptiona1 circumstances, so we are faced with a problem 

which requires some simplifying assumptions for its solution. One 

such assumption is that the log of the mean of the variable in 

question is equal to the mean of its log. This is a common pro- 

cedure and we have followed it in our computations, though some 

inaccuracy is introduced as a result.:: 

One might also assume that the Xi have a certain distribution 
in the intervals. If this distribution has a density function f 
(XI, and if the interval is (a,b), a theorem in probability gives 
the following result: the expectation of X (i.e. the probability 
limit of the mean of log X) is 

E [XI = C B g  X f O[) d X 

So, for example, if X is %ssumed to have a rectangular distribu- 
tion %n (a,b) (i.e. X is "evenly" distributed over the interval), 
the mean of the log of X when X is in (a,b) is 

1 1 dX = - b 
Log .X b-a 

J b -  
b -a (x Log x - XI/ a 

= 1 (b Log b - b - a Log a + a) - 
b-a 

However, one is still left with the problem of obtaining the mean 
of log Y, and we can suggest no better method than to approximate 
the mean of the log by the log of the mean. 



We will -now test our method using computer-generated data of 

known distribution. We will explicate certain properties of the . . : ";. . . 

parameter estimates produced by the method in subsequent discussion. 

Testing the .method with computer-gener'ate'd' .d'ata. In order to 

provide at least a weak test of our method, we have used a computer 

to generate data' set ..:omposed of four normally distributed vasj.- 

, ables XI, X2, X3, e, anl a variable Y which is defined by equation 
( 6  1 below 

There are 1092 cases in the computer-generated dataset. Correla- 

tions means and standard deviations of X1, X2, and Xj are given 

in table 1. ;c has a mean of zero, a standard devj-ation of 0.2, and 
is uncorrelated with the other variables. 

Table 1 -- Correlations', means and standard 
deviations of computer-generated variables 

mean 49.95 50.03 49.97 

X1 and X2 are each partitioned into 5 intervals, jointly defining 

25 dummy variables, 24 of which were entered into the first re- 

gression analysis of Y on the dummies and X3. The R~ for this 

regression is 0.774. The analysis produces an estimate of 0.302 



for the coefficient of X3; the. standard error for this estimate 

is 0.007. Since the estimate for this parameter is less than 

three-tenths of a standard error from the true value of 0.3, we 

*eel safe in concluding that the method has been successful in 

recovering the coefficient of X 
3 Performing the secondary regres- 

sion on the results of the first analysis, we.obtain the results 

2 presented in table 2 below. The R for the secondary regression 

Table 2 -- Secondary regression analysis 
parameter estimates compared to true parameter 
values 

Parameter True value Estimated Standard True value-estimate 
value . . . . . .  errbr s-tand'ard 'err.or 

a 1 
Loge bo -. 693147 -. 712869 .185943 .09 

bl 0.3 0.3162 0.0336 .49 . 

b2 0.6 0.5871 0;0336. . . . .  . .38. 

a) This is the loge of the parameter; the parameter b6 has a true 
value of 0.5, the loge of which is -0693147. 

Note that the parameter estimates,are all quite close.to the true 

' values. ,Indeed, if the difference between the estimated and,true 

values of the parameters is divided by the standard errors for the 

estimates (see the far-right. column of:table 21, we.see that the 

estimate for the log of bo is less than a tenth of a standard error 

from the true value, and that bl and b2 are less than a half and 

under two-fifths of a standard error from their respective true 

values. At,even 25 per cent levels of confidence we could .not re- 



ject the null hypotheses that the parameter estimates are not 

different from their respective true values. So we conclude that 

our.method.has been successful in recovering the parameters.of a 

model. of the form given by equation (3). We ,will now proceed. ,to 

apply the method to "natural" data. 

111. An illustrative application of the method: 

In this section we very briefly apply our method to an analy- 

sis of earnings differentials between male and female workers in 

the United States in 1959-60. We will present theoretical reasons 

for choosing a model of the form of equation (3). The model will 

then be estimated separately for men and for women, and the results 

will be gi-ven to interpretation of the various coefficients. 

The choice of an earnings model. Following Lester Thurow 

(19671, we hypothesize that the relationship between educat.ion and 

work experience in determining earnings is multiplicative, not 

additive. According to this hypothesis, employers not only offer 

higher starting wages to better-educated candidates for a.job, but 

take years of schooling completed as an indicator of.learning 

ability and make higher training investments in more-educated 

workers than in less-educated members of the labor force.?< These 

higher training investments presumably make the experience (mea- 

sured in time) gained by a better-educated worker more valuable 

. This last point is supported by Doeringer and Piorets.(1966) 
interview study. of personnel practices,in manufacturing firms. 



than that gained by a less-educated worker, at least in terms of 

the increases in skill that come with on the.job learning, result- 

ing in a higher wage return to experience for more educated workers. 

So we wish to use an earnings model which captures this multipli- 

cative relationship between education and experience. 

Following Duncan (1969) we will include occupational attain- 

ment as a determinant of earnings by using the occupational prestige 

of the individual's 1969 U.S. Census detailed occupation category 

as an additive variable in the earnings.mode1. The prestige score 

we use is Siegel.'~ (1971). 

It is well-known that the level of money earnings (though not. 

necessarily the level of real earnings) is lower in the South and 

higher in the West than in the rest of the United States. We-are 

hesitant to use a model in which a variable indicating.region of 

residence multiplies the experience and, education variables; we 

doubt that the rate of return to educational attainment and.ex- 

pergence differs.across regions of the-country once we have held 

constant occupational attainment. Multiplying education. and ex- 

perience by a region variable would imply such a difference in.these 

rates of return. 

Because earnings are distributed log normally over about 65 

per.cent of the U;S. experienced civilian labor force in 1960,e 

This distribution is suggested by Cramer (1971,681. The figure 
of 65 per cent was obtained by the author after plotting the log 
earnings distribution on normal probability graph paper and'obser- 
ving the region in which the plotted points conformed to the expec- 
ted straight line pattern. 



we use log earnings of individuals 'in 1960 as our dependent vari- e 

able. The use of log earnings rather than actual earnings means 

that absolute differences in the dependent variable are indi~at~ve 

of proportional differences in actual earnings. 

Equation ( 7 )  presents a model which allows for a multipli- 

cati\:e relationship between years of experience in the labor force 

and educational attainment in determining an individual's log 

earnings, while allowing only for additive effects of occupational 

achievement and residence in different regions of the nation. $ 

represents loge earnings; P = the occupational prestige of the in- 

dividual 's 196 0 Census detailed occupation ; N = 1 if the j.ndiv?dual 

resided in the northeast or north-central regions of the nation and 

N 0 otherwise; W = 1 if the individual resided in the West and 

W = 0 otherwise; Ed = the individual's years of schooling completed; 

Ex = the individual's'potential years of experience in the labor 

force. Ex is computed by subtracting the individual's years of 

schooling and the number 5 from his or her age. Caution is needed 
I 
in interpretation of the experience variable, especially in making 

comparisons between men and women; we will discuss this issue later 

on. r1 and are error terms. 

The data set used to perform the analysis is a subsample of the 

1960 U.S. Census of Population 0.1 per cent public use sample. 

The subsample was drawn from persons aged 25 to 64 years old, who 



were employed during the "census week" in 1960 and who ~eported 

earnings in excess of one dollar in 1959. The pr~?ma.ry i o? iiuminy 

variable) regression analysis was performed after. partioning age 

and education into four and five intervals respectively, jointly 

defining 20 mutually exclusive categories. Table 4 shows the 

classification. Since experience (as presently defined) j.s a func- 

tion of age a ~ ~ d  educati.311, the partition into age-education cate- 

gories also provides a set of mutually exclusive experience- 

education categories. Mean education and age within a given 

interval are taken to be the midpoint of the interva.1 represented, 

except for the open-ended education interval, "college, four years 

or more,",for which 16 years was used as the mean. 

Dummy variables representing 19 of these categories. wepe 

entered into separate regression analyses for women and men, 

according to education (7*), where the Di are the dummy variables, 

K is a constant term, and all other variables and their parameters 

are identical to those in equation (7). 

Results of the regression analyses are shown in table 3 below. We 

add the constant term K to each of the Dl's to obtain a value for 

the mean of $ in the corresponding education-experience category 

adjusted for the effects of region residence and occupational 

prestige. The adjusted'mean for the category corresponding to the 

dummy variable left out of the regression equation (7::) is just 



the constant term. Table 4 presents the adjusted means for each 

category, the number of individuals in the category and the cor- 

resppnding mean education and experience, by sex. 

Table 3 --'Results of Primary Regression 
Analyses for Men and Women 

Females Males 
Variable Coefficient Std Error Coefficient Std. Error 

a)~onstant 
D 1 
D 2 
D 3 
D 4 
D 5 
D 6 
D 7 
D 8 
D 9 
D 10 
D 11 
D 12 
D 14 
D 15 
D 16 
D 17 
D 18 
D 19 
D 20 

Prestige 
North 
West 

2 R for males: 0.234 2 R for females: 0.223 

a) Variables Dl, D2, . . ., D20 are the dummy variables repre- 
senting cells in the joint partition of Education and Experience. 
Variable .Qi represents the ith cell. 



Dummy 
Vari- 
able 
Index 

Educa- 
tion 

Interval 
(Years 

0-7 
8-11 
12 

13-15 
16 

0-7 
8-11 
12 

13-15 
16 

0-7 
8-11 
12 

13-15 
16 

0-7 
8-11 
12 

13-15 
16 

Table 4 -- Adjusted means of $ for categories 
of the joint partition of Ed and Ex 

Age 
Inter- 
val 

25-34 
25-34 
25-34 
25-34 
25-34 
35-44 
35-44 
35-44 
35-44 
35-44 
45-54 
45-54 
45-54 
45-54 
45-54 
55-64 
55-64 
55-64 
55-64 
55-64 

Mean Mean Mean 
Age Ex Ed - -- - 
30 20 5 
30 15 10 
30 13 12 
30 11. 14 
30 9 16 
40 30 5 
40 25 10 
40 23 12 
40 21 14 
40 19 16 
50 40 5 
50 35 10 
50 33 12 
50 31 14 
50 29 16 
60 50 5 
60 45 10 
60 43 12 
60 41 14 
60 39 16 

Number in 
Category 

Men Women 

~ d j  usted 
mean 

Men - lilomen --- 
7.199 6.299 
7.778 6.4211 
7.853 6.633 
7.691 7.035 
7.755 6.786 
7.304 6.1.82 
'7. 7119 6 .  5113 
3.036 6.559 
7.907 7.155 
8.348 7.266 
7.5119 6. 931 
7.775 6.931 
7.902 6.973 
0.061 7.113 
8.276 7.1!0@ 
7.480 6.605 
7.623 6.887 
8.359 7.244 
7.789 6.966 
8.184 7.503 

' Dummy variable 13 was excluded from the regression analyses. 
Logs of mean education, mean experience, and the adjusted mean of 

log earnings are taken and the secondary regression analysis de- 

fined by equation (7f:+:) is performed using the number of individ- 

uals in each category of the joint partition as weights. 

A 
Log $ = Log bo + b .  Log Ed -t b2 Log Ex 

1 

The results of the secondary regression analyses are as follows; 

standard errors for coefficients are given in parentheses. 

For males 



i For females 

Thus, we have estimates of all the parameters for equation ( 7 ) ;  

the estimated form of the earnings model, given separately by 

sex, is as follows: 

For men: 

( 8 )  $ = 6.025 Ed 
.0871 Ex. + .0128 P + .I617 N + .I670 @ 

For women : 

( 9 )  $ = 4.25.8 Ed 
.I235 Ex. 0529 + .0126 P + .4876 N + .3325 W 

In order to obtain some check on whether or not these results are 

reasonable, we substitute the mean values for Ed, Ex, N, W, and P 

for men into equation (8) and compare the values $ obtained to the 

arithmetic mean of $. We note that while ordinary additive re- 

gression analysis is constrained to reproduce the arithmetic mean 

of the dependent variable when the arithmetic means of the inde- 

pendent variables are "plugged into" the estimated regression 

equation, regression estimation of an equation of the for~n of 

equation (1) by taking the logs of all variables is constrained . 

to reproduce the geometric mean of the dependent variable when 

the geometric means of independent variables are "plugged in" -- 
there is no guarantee that our method will reproduce either the - - 
geometric or the arithmetic'mean when appropriate values are 

plugged in. The observed arithmetic mean of $ for men is 8.425 

for men; the value of $ obtained from equation (8) and the arith-. 

metic means of relevant variables is 8.468. So the results of 



our analysis seem reasonable in terms of the ability of the model 

to approximate the observed arithmetic mean of $ from the observed 

arithmetic means of the independent variables. 

Interpretation of the results. We must bear in mind a number 

of limitations of the present analysis: First, we have used . 

cross-sectional data to estimate the parameters of a time-related 

process. Second, we have too few women in our sample to be very 

comfortable with the results of the secondary regression analysis 

on females: seven of the dummy variables for women represent cate- 

gories containing fewer than 10 members of the sample. And, 

finally, the experience variable is undoubtedly a much weaker 

indicator of labor force experience for women than it is for men. 

However, the purpose of this analysis is to illustrate the use of 

a technique, and our analyses can serve this purpose in spite of 

the limitations just discussed. 

We will attempt to show how our analyses can shed light on 

two questions: 1) Is education more or less important than ex- 

perience in determining their joint impact on log earnings? And 

2) What are the differences between the way education and exper- 

ience jointly affect the attainment of log earnings by men and 

women? 

Since Ed and Ex are both in the same metric (years) we can 

compare their separate relative contributions to their joint, 

effect on $ simply by comparing their exponents b and be. Note 1 





t h a t  f o r  b o t h  women and men, t h e  exponent  o f  Ed i s  l a r g e r  t h a n  t h a t  

o f  Ex. 

I n  comparing t h e  way e d u c a t i o n  and e x p e r i e n c e  a f f e c t  t h e  a t t a i n -  

ment o f  l o g  e a r n i n g s  o f  men t& t h e  way t h e y  a f f e c t  t h e  l o g  e a r n i n g s  

o f  women, w e  might  f i r s t  n o t e  t h a t  t h e  exponen t s  f o r  b o t h  educa-  

t i o n  and f o r  e x p e r i e n c e  a r e  l a r g e r  f o r  women t h a n  f o r  men. T h i s  

i n d i c a t e s  t h a t  a t  a  g i v e n  l e v e l  o f  e d u c a t i o n  and e x p e r i e n c e ,  a  

m a r g i n a l  i n c r e a s e  i n  t h e  e d u c a t i o n  o r  e x p e r i e n c e  o f  a woman worker  

w i l l  i n c r e a s e  h e r  j o i n t  " r e t u r n "  t o  e d u c a t i o n  and e x p e r i e n c e  by a  

l a r g e r  p r o p o r t i o n  t h a n  a s i m i l a r  i n c r e a s e  i n  t h e  e d u c a t i o n  o r  ex- 

p e r i e n c e  of a man would i n c r e a s e  h i s  j o i n t  r e t u r n  t o  e d u c a t i o n  and 

e x p e r i e n c e .  Graph 1 p r e s e n t s  t h e  magni tude  o f  t h e  s i z e  o f  t h e  

j o i n t  e x p e r i e n c e - e d u c a t i o n  c o n t r i b u t i o n  t o  $ a t  d i f f e r e n t  l e v e l s  

o f  e x p e r i e n c e  and e d u c a t i o n ,  a c c o r d i n g  t o  e q u a t i o n s  ( 8 )  and ( 9 ) .  

Note t h a t  w h i l e  t h e  j o i n t  e f f e c t  o f  Ed and Ex f o r  women i s  more 

s e n s i t i v e  t o  changes  i n  Ex t h a n  it  i s  f o r  men, t h e  s i z e  o f  t h e  

j o i n t  c o n t r i b u t i o n  i s  s u b s t a n t i a l l y  less  f o r  f e m a l e s  t h a n  it i s  

f o r  m a l e s .  When we c o n s i d e r  t h a t  t h e  p a r a m e t e r  b  i s  a l m o s t  50 
0 

p e r  c e n t  l a r g e r  f o r  men t h a n  it i s  f o r  women (6.025 v s .  4 . 2 5 8 ) ,  - 
t h i s  r e s u l t  i s  n o t  s u r p r i s i n g .  

F i n a l l y ,  suppose  t h a t  o u r  e x p e r i e n c e  v a r i a b l e  i s  t e r r i b l y  

i n a c c u r a t e  and t h a t  working women a r e ,  on t h e  a v e r a g e ,  o b t a i n i n g  

o n l y  h a l f  a s  much employment e x p e r i e n c e  a s  men i n  t h e  f i r s t  15  

y e a r s  a f t e r  t h e y  comple te  t h e i r  s c h o o l i n g .  What would Graph 1 



look like if we adjusted the women's experience accordingly? The 

slope of the curves for women would be twice as steep as they are 

presently over the range of one to 15 years of experience, since 

the X axis would be collapsed without commensurate change in the Y 

axis. In other words, our results would be changed in degree, but 

not in substance: the joint contribution of education and exper- 

ience to log earnings would be even more sensitive to changes in 

experience for women than for men, and the size of the contribution 

would remain lower for women than for men. 

Conclusions 

We have presented a method for estimating equations which are 

useful in certain circumstances when an "interaction effect" or 

multiplicative relationship between two or more causal variables 

is hypothesized and purely additive effects of other causal vari- 

ables are believed to occur. The method has been tested on 

computer-generated data and has been found to reproduce with ade- 

quate accuracy the parameters of the equation which was used to 

generate the data. The method has been applied to analysis of 

differences in the attainment'of annual earnings by men and women, 

and the parameter estimates obtained appear to be quite reasonable. 

We certainly do not claim to have presented an answer to all or 

even many of the problems involved in handling multiplicative and 

additive r.elationships among causal variables simultaneously. How- 

ever, we do believe that the method we have presented is useful in 

certain circumstances, and we have attempted to show very briefly . 

some of the insights that can be obtained by using it. 
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