A STUDY OF CONTENTIOUS GATHERINGS IN
EARLY NINETEENTH-CENTURY GREAT BRITAIN*

Great Britain Study
Briefing Paper No. 8

R. A. Schweitzer**
University of Michigan
January 1980

*This working paper is reprinted from Historical Methods, Vol. 12, No. 3, Summer 1979.

**The author wishes to thank Steve Simmons, Debbie McKesson, John Boyd and Chris Lord for their help in preparing this material. Special thanks is given to Dr. Charles Tilly for his guidance and encouragement over the years and especially for suggesting the topic of the paper. The National Science Foundation supports the research herein described.
A Study of Contentious Gatherings in Early Nineteenth-Century Great Britain

R.A. Schweitzer
University of Michigan

Outline of the Study

For about 15 years, overlapping groups at the Center for Research on Social Organization, University of Michigan, and elsewhere have been studying patterns of conflict in Western Europe. Generally, the historians, sociologists, and other social scientists involved have been trying to learn how large-scale changes such as industrialization and statemaking influence the capacity and propensity for collective action of different segments of the population affected by those changes. Until recently, most of the analysis has dealt with strikes and collective violence in Italy, Germany, and France for periods between 1830 and 1968.

The newest effort is a National Science Foundation-funded study of conflicts in Great Britain between the years 1828 and 1834. This work differs from past explorations in that, along with collecting information on some strikes and many violent gatherings, it also takes into account non-violent assemblies. Britain, in the minds of students of modern Europe, is often thought of as the success story of the early nineteenth century—avoiding the revolutions which occurred in France, Germany, and elsewhere. A study of conflicts in Britain should give us the means to rethink that question as well as many others.

We are attempting to enumerate, describe, and analyze as many as possible of the “contentious gatherings” which occurred in England, Scotland, and Wales in the period 1828 through 1834. A “contentious gathering” (CG) is an occasion in which ten or more persons outside of government gather in the same place and make a visible claim which, if realized, would affect the interests of some specific person(s) or group(s) outside their own number.

One of the earliest problems was developing a system that would produce high-quality results in the reading of selected periodicals. Through a long trial period, we finally arrived at a system that trains student readers using a special set of detailed instructions listing the various types of contention we wish to enumerate, along with other helpful information to eliminate questions. Training also includes the reading of specially selected sections of newspapers (one, five, or ten days) in which we have already identified all the CGs to be found. Comparisons are made with the criterion sample, and readers are advised on how to improve their performance.

Our goal is to make the entire data file machine-readable without losing the richness of the textual data that comes with coding in numerical form. Once the periodicals have been read for mentions of gatherings that meet our criteria, all like accounts pertaining to a specific event are collated into a dossier. The average dossier normally contains approximately 3 articles from our sources (some contain as many as 100), plus a sheet detailing the qualifying information of the event: mention of ten or more people and a claim in a specific place. A coversheet is placed over this...
material which contains the unique identification number of the event, information on the type of event, location of action, and major issues. This dossier is then broken down into component parts called "formations" (the group involved in the event) and "action phases" (a scenario-style setting out of the action that takes place in the event).

Material is then ready to be coded. Our coding is not done by the standard numerical codesheet, but by a questionnaire that asks for answers in alphabetical form. Coding is divided into six sections:

- An EVENT section makes a general summary of the event as a whole. Questions concerning duration, major issues, location, and total participants are asked.

- A FORMATION section (one per formation) details information on each group in the event. Name of the formation, relationship to the CG, names of formation actors, and number of people in this formation are some of the questions asked.

- An ACTION PHASE section lists the formation involved in the action and lists the actions so as to enable anyone to reconstruct the general flow of the event from reading the general description. Also included is directly quoted information from the sources helping to detail the phases.

- A SOURCE section collects data on the sources used to enumerate this gathering. Name of source, type of report, and location of article within the source are some of the questions asked.

- Two final sections are available for comments either on specific sections of the coding or for general comments on the event as a whole and are given to the coder and enterer for use.

There are three forms for coding the data: (1) a long form which includes all the questions we wish to ask about any particular event; (2) a shorter form for less complex events which asks only the most difficult and time-consuming questions; and (3) an interactive entry system that allows the coder to sit at a visual-display terminal and be prompted by a prearranged program to answer the questions. In all cases, the data are eventually entered into the computer system via the terminal. Through this process, we have gradually changed the materials from emotion-filled newspaper accounts to an electronic format. In so doing, we have tried to lose as little of the historical richness as possible. This was done by not reducing any item to numerical form if it was not intrinsically a number in the periodical accounts.

Data Input

There are three major areas of the computing with which we were concerned: construction of the computerized data set, input of data, and analysis of data. The first problem we faced was how to acquire information about the choices of programs and equipment we needed. This was solved by hiring a systems programmer with considerable knowledge of the available soft and hardwares. Our needs were laid before the programmer, and he was asked to develop a program that would produce the types of data we sought.

In the case of the construction and analysis, we ended up making extensive use of two existing systems available at Michigan: MICRO (not an acronym) and MIDAS (Michigan Interactive Data Analysis System). MICRO is a database manager constructed and maintained by the Institute for Labor and Industrial Relations at the University of Michigan. Its aim is to read card images from a file and to create a data set from them. It is very efficient at creating subsets and supersets from existing data sets or sets it has just read. However, its facilities for statistical analysis are almost nonexistent. ILIR supports MICRO actively; good documentation is available, as is counseling.

Since MICRO has so limited an analytical capacity, we use MIDAS, sponsored by the Statistical Research Laboratory at Michigan, for running our analysis. MIDAS provides a tremendous facility for analyzing data. Most types of statistical analysis can be run through MIDAS. There is a simple MICRO/MIDAS interface that allows easy transfer of data into MIDAS for analysis. The system is also well documented and maintained by the laboratory.

For the input data program, we were not so fortunate in finding a ready-made program. Our programmer took the questionnaire we were using for events we wanted to code and worked out a compromise between what the social scientists wanted and what the computer could produce at a reasonable cost.

It is important to keep in mind that there is a distinct difference between the type of numerical coding done for a standard SPSS (Statistical Package for the Social Sciences) file and the type of coding we are doing. Our ultimate aim is to prepare a data set that is descriptive of the events without forcing the descriptions into a few pre-set categories or types. We try to use actual numbers whenever they are used as such in the accounts, but we do not try to categorize fields as is done in a standard SPSS format. For example, we have a field we call the summary name. This information is the title given to the groups we enumerate as being either the makers or the receivers of claims. It would be normal in SPSS simply to set up a list of categories to handle the summary names, i.e., police=47, inhabitants=38. It is our aim not to force these names into any special pre-made categories. We enter, in alphabetical form, the exact name of a formation in the accounts as the summary name (other names given to this formation are listed in another part of the data). Thus if the police are named "bobbies," or the inhabitants are named "the respectable and wealthy inhabitants of Bristol," we have that richness of information instead of a standard code for the category. Once we have a
full body of data we wish to analyze, we go back to the
summary name file and simply recode into more efficient
categories the names we have accumulated. Thus we have
allowed ourselves the luxury of using as much or as little
of the textual information as we wish in compiling our
analyses; and if someone wished to run a different style of
analysis for a particular field, they would not be strapped
to the categories or coder decisions made months or years
before without being able to see what was really said in
the accounts.

It has been our experience that a major part of enter-
ing incorrect data occurs because by the time someone is
punching numbers onto a card, the material is so abstract
that it is meaningless. Thus a 3 easily becomes a 4, etc.
We use the main computer and our MICRO data entry
program to allow the enterers to place in the data set
meaningful answers to all questions asked about the con-
tentious gathering. For example, they can answer the
question “On what day of the week did this event begin?”
by typing the day out in full or by typing an abbreviation
such as “Mon.” Or when we wish to know the location
of the gathering, the coder will be prompted for informa-
tion about the county, town, parish, and specific location
of the event. The coder then would answer by entering the
information contained in the newspaper or periodical ac-
counts, such as Middlesex, London, St. James, the Red
Lion Tavern.

We are now producing a data record that is somewhat
different from a standard card image. The differences are
sufficiently pronounced that we refer to it as an entry
image and not as a card image. The primary difference
lies in the storage of numerical data. In card image, if a
number that ranged from 0 to 99,999 were to be input, it
would be allocated five columns on the card. In the entry
image, the data is stored as a full word (2^64 bits), regard-
less of the actual number being stored. A dump of the file
does not give you a human-readable list (unless you are
fluent in hexadecimal), but it does allow a quicker
reading by the computer. A second difference is the stor-
age of variable length strings. This capacity is used for
fields where we wish to store alphabetic descriptions, such
as names of individuals present, or words describing nu-
merical or geographical extent of a formation; these may
be as short as a few characters or as long as 5,000 charac-
ters. Rather than allowing 5,000 columns in the entry
image, we use instead an external field. This is a separate
line file with numbered lines. When we wish to store some
item of text in an external field, the literal description is
stored on the line file. The number of that line is stored in
the entry image. When we read the record, the reading
system will go to that particular line in the line file and
print it out. This way we avoid making excessively long
records while still allowing for the longest possible case.
In addition, since we do not use punch cards, we are not
restricted to the standard eighty-column format. Our
present input files run approximately 250 columns, if we
can properly speak of a column under such a format.

Our programs provide a number of special functions.
Data are reduced in size for easier storage. For example,
our CG identification number, which takes up nine digits
in coding, is reduced to four bytes for storage, thus saving
over 50 percent in storage space. Another special function
is that certain data of varying length are stored in external
files, allowing unlimited space for textual data within each
record but not requiring it for all records.

We have incorporated some error-checking facilities in-
to our entry program to help eliminate as much of the
cleaning as possible at the source. There are two major
types: proper form and proper range. Proper form means
that the data being entered into the program are of a type
compatible with the field into which they must go. Thus
alphabetic characters are unacceptable to analytic fields
that will accept only numerical data, and vice versa. Prop-
er range means that the incoming data do not fall outside
the allowable values or lengths. Thus “14” is an unac-
ceptable month (value too high), and “001” is also un-
acceptable (too many digits). We also build in certain
checks of internal consistency: for example, before coding
begins in the Action Phase section, we ask the total num-
ber of phases to be coded. The entry program will then
automatically ask for information for that specific num-
ber of phases, insuring that all action data will be entered.

After our input programs have accepted the data as le-
gal, the data are written into a standard line file just as a
punch card would be. The advantage here is that all the
data are in proper column form for interpretation, and
thus many of the standard errors of card data have already
been removed. The system is not static, however; new
variables and information can be added through interac-
tion with Michigan Terminal Systems (MTS) so that new
material is added onto individual records and old records
are modified.

Data Analysis
At present, we have collated all the noted gatherings from
1828, 1829, and the first half of 1830. Most of this mater-
ial has also been enumerated, coded, and entered into the
computer system. Data cleaning is completed for 1828
and nearly complete for 1829. This represents only a frac-
tion of actual events to be enumerated, approximately
1,500 of a possible 20,000. We have done some crude anal-
alysis by hand for the 1828 period and have produced simi-
lar results via the computer. These results are mostly of a
descriptive nature so far. Such items as a list of contenti-
ous gatherings per hundred thousand persons by county or
a catalogue of noted gatherings by type or month have
been prepared. As you can see from the partial table here,
we can take basically nonnumerical data and turn it into
standard table form such as any card image line file data
could produce.

Much larger and more complex analyses are planned
when more data are placed on file. In addition, we are pre-
paring computer outline maps of Great Britain and its
counties that will be referenced to the British Ordnance
Breakdown of Contentious Gatherings by Month and Type: Great Britain, 1828

<table>
<thead>
<tr>
<th>Event</th>
<th>JAN</th>
<th>FEB</th>
<th>MAR</th>
<th>APR</th>
<th>MAY</th>
<th>JUN</th>
<th>JUL</th>
<th>AUG</th>
<th>SEP</th>
<th>OCT</th>
<th>NOV</th>
<th>DEC</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Poachers v. gamekeepers</td>
<td>4</td>
<td>1</td>
<td></td>
<td>20</td>
</tr>
<tr>
<td>2. Smugglers v. customs</td>
<td>1</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>3. Brawls in drinking places</td>
<td>2</td>
<td></td>
<td>1</td>
<td></td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>4. Other violent gatherings</td>
<td></td>
<td></td>
<td>2</td>
<td>6</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>4</td>
<td>2</td>
<td>1</td>
<td>9</td>
<td>7</td>
<td>5</td>
</tr>
<tr>
<td>5. Attacks on blacklegs and other unplanned gatherings</td>
<td></td>
<td>1</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>6. Market conflicts</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>7. Other unplanned gatherings</td>
<td>1</td>
<td></td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>8. Authorized celebrations</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>9. Delegations</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>10. Parades, demonstrations, rallies</td>
<td>1</td>
<td>10</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>4</td>
<td>4</td>
<td>2</td>
<td>14</td>
<td>46</td>
</tr>
</tbody>
</table>

Survey grid system. This will facilitate the plotting of specific locations of events on uniform maps for clear presentation. When all the data are finally entered into the files and clean tape versions of each year’s data are ready, they will be turned over to the Inter-University Consortium for Political and Social Research to be made available for other researchers.

Listed below are the currently available CRSO Working Papers pertaining to the Great Britain Study. They are available at cost. Inquiries should be directed to R.A. Schweitzer, Center for Research on Social Organization, University of Michigan, 330 Packard Street, Ann Arbor, Michigan 48109.

NOTE

1. In addition to Michigan, groups at Harvard University, in Westfälische Wilhelms-Universität (Münster), and the University of Toronto have at times played major parts in the research program. The research has proceeded under the general direction of Charles Tilly. Since 1969, the chief financial support for the work has come from the National Science Foundation. Some of the results are reported in Edward Shorter and Charles Tilly, Strikes in France, 1830-1968 (Cambridge, England: Cambridge University Press, 1974); Charles Tilly, Louise Tilly, and Richard Tilly, The Rebellious Century, 1830-1930 (Cambridge, Mass.: Harvard University Press, 1975); and Charles Tilly, From Mobilization to Revolution (Reading, Mass.: Addison-Wesley, 1978).
WORKING PAPERS OF THE
CENTER FOR RESEARCH ON SOCIAL ORGANIZATION

The Center for Research on Social Organization is a facility of the Department of Sociology, University of Michigan. Its primary mission is to support the research of faculty and students in the department's Social Organization graduate program. CRSO Working Papers report current research and reflection by affiliates of the Center; many of them are published later elsewhere after revision. Working Papers which are still in print are available from the Center for a fee of 50 cents plus the number of pages in the paper (97 cents for a 47-page paper, etc.). The Center will photocopy out-of-print papers at cost (approximately five cents per page). Recent Working Papers include:

Request copies of these papers, the complete list of Working Papers, or further information about Center activities from:

Center for Research on Social Organization
University of Michigan
330 Packard Street
Ann Arbor, Michigan 48109