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ABSTRACT

This dissertation presents a study of the inelastic behavior
of unbraced multistory building frames when subjected to earthquake
motion. A step-by-step numerical procedure which computes the response
of the structure to a horizontal component of ground motion parallel
to the plane of the frame is developed for use on a high-speed digital
computer. The columns are assumed to behave elastically while the
girders have a stable hysteresis behavior, characteristic of welded
steel frames, which supplies the energy dissipation. A Ramberg-Osgood
type moment-curvature relationship is assumed for the girders and a
special hysteresis law is defined to describe their transient response
during the lateral oscillation of the structure. In the later phase
of the study the procedure is modified to include a form of viscous
damping in the structure, the P-A effect and the axial deformation
of columns.

Test frames of 10, 25, and 40 stories are analyzed while
using a fairly wide range of structural parameters. Three accelerograms
with distinctly different spectrum characteristics are used. The re-
sults of these analyses lead to an evaluation of the influence of various
structural properties and the characteristics of ground motion upon the
inelastic response of multistory building frames of the particular type

investigated herein.






The following aspects of the results seem worthy of emphasis:
The assumption of elastic behavior of columns is well documented
by the inelastic response of the multistory frames subjected

to severe earthquakes.

The hysteresis behavior of girders can be a potential source of
energy dissipation in typical multistory structures during a
severe earthquake.

The elastic fundamental period of a multistory structure and
the general features of the elastic velocity response spectrum
of the earthguake have a marked influence upon the inelastic
response of the structure.

Height or the number of stories of typical structures does not
seem to be a very significant factor to influence the amount
and distribution of ductile deformations resulting from a
strong earthquake.

The P-A effect does not appear to have a significant influence
on the earthquake response of the structures analyzed. But

the axial deformation of columns may affect the response by

as much as 10 to 20 percent.

Interfloor viscous damping as small as one percent of critical
in the elastic fundamental mode of the structure can cause a
considered reduction in its inelastic response to a strong

earthquake.
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NOMENCLATURE

moment

curvature

characteristic moment and curvature in the Ramberg-Osgood

function

Ramberg-0Osgood exponent

absolute wvalue

number of stories

lumped mass of the i-th floor

acceleration of the i-th mass relative to base
restoring force on the i-th mass

ground acceleration

Joint-rotation

characteristic joint rotation corresponding to
incremental value of the argument

displacement of the i-th mass relative to base
elastic stiffness in flexure

bay width

girder stiffness

time step

elastic fundamental period in lateral vibration
story height

common stiffness factor

modulus of elasticity

moment of inertia of a member section about the
bending (major axis)

xii

axis of



Sx elastic section modulus about the major axis

Iy plastic section modulus about the major axis

d nominal depth of girder section

Oy nominal yield stress

Mmax maximum moment in a column

V) girder ductility ratio

@max maximum rotation of girder ends

€ excursion ratio

Sv maximum relative velocity response of an elastic undamped

single-degree~of-freedom system

IO spectrum intensity

P-A sidesway effect of gravity loads

v shear in columns

M;, M? end moments in columns

Vi vertical displacement of the i-th joint

A area of column cross-section

[Kix] lateral stiffness matrix

(D] damping matrix

(m] mass matrix

{k} vector of velocity of floor masses relative to base
B fraction of critical damping in the elastic fundamental mode
S damper force per unit velocity

xiii



CHAPTER 1

INTRODUCTION

Soon after the results of linear dynamic analysis of the
response of building structures subjected to strong motion earthquakes
were known, it became obvious that the linear elastic analysis overesti-
mates the response by as much as several hundred percent as compared
with the forces that the typical building codes specify for their de-
sign.<l’2) Yet the code specifications are favored by the fact that
they lead to economical designs which have successfully withstood severe

(3)

earthquakes in the past with little or no damage at all. This dis-
crepancy between the design forces as specified by the building codes and
those predicted by the linear elastic analyses cannot be reconciled
even with a relatively large amount of damping and the uncalculated
reserve strength of the structure.

Behavior of structures during a strong motion earthquake is
far from being linear. Structural and non-structural components of
common buildings can dissipate quite large amounts of energy through
inelastic deformations before failure. The survival of actual structures
during strong motion earthquakes is commonly explained by large amountg
of energy being dissipated through the inelastic deformation of the
structural and the non-structural components. In the low traditional
types of buildings heavy partition walls of concrete or masonry may claim
a significant share of the total dissipated energy, thereby reducing the

burden of inelastic deformation on the main load-carrying frame. But

in the modern tall and slender buildings, the non-structural elements

-1-



are greatly reduced for the obvious need of minimizing the dead loads.
This presents a great need for a more thorough understanding of the
inelastic dynamic behavior of tall building frames, as more and more
reliance has to be placed on thelr capacity to dissipate energy through
ductile deformations.

Code procedures and design specifications commonly are based
on the results of elastic analyses. By specifying reduced design forces
use is made (though implicity) of the capacity of structures to absorb
sufficient amounts of energy through damping and inelastic deformation.
But explicit recommendations in regard to the damping and ductility re-
quirements of structures and structural materials are lacking in the
building codes of today (1967). The reason seems to be the obvious lack
of enough experimental and analytical information regarding the exact
behavior of structural materials and elements under reversed cyclic load-
ing far into the inelastic range and their damping properties. This
together with the formidable amount of computational effort which is re-
quired for performing any non-linear earthquake analysis of a multistory
structure are sufficient reasons to explain why the building codes have
not been able to base their recommendations upon the results of more
realistic types of analyses.

A tall building excited into oscillation by earthquake ground
motion is an extremely complex problem. In an attempt to compute the
inelastic response of such a system two things are absolutely necessary--
& calculating machine and a knowledge of the force-deformation behavior
of the structural members. With the aid of modern electronic digital

computers several investigations (several on single-degree-of-freedom



-3-

systems and only a few on the multiple-degree-of-freedom systems) have
been made in the past to compute the inelastic response of structures

(4,5,6,7,8,9,10)

subjected to some past strong motion earthquakes. Among
other simplifying assumptions they used relatively simple and idealized
force-deformation hysteresis models such as elasto-plastic and bi-linear.
Currently wvery little is known about the actual hysteresis
behavior of structural members and connections under reversed cyclic
loading. Some recent experiments at the Univergity of California,
Berkeley, on welded steel beam-to-column connections have shown that
the hysteresis loops remain remarkably stable even under cyclic extreme-

(11)

fiber strains as large as 2 1/2 percent. The load-strain behavior
is neither elasto-plastic nor bi-linear--rather it is curvilinear which
gradually deviates from linearity and leans toward the plastic branch

as the strains become large. This behavior can be expressed by a simple
mathematical function of the Ramberg-Osgood type in either the force-
displacement or the moment-curvature terms. This type of hysteresis

1z
model in force-displacement terms has been used by Jennings ) and

Berg(IB) in their studies of single-degree-of-freedom systems.

The present study employs this curvilinear type of hysteresis
behavior for the members of multistory building frames when subjected
to earthquake motion. The objective was to evaluate the inelastic
response of a class of multistory structures while studying more
thoroughly the influence of various significant structural parameters
and characteristics of ground motion. The structures considered in

this investigation were unbraced, open moment-resisting frame type of

multistory buildings.
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This research work was divided into two phases:

The first phase began with the development of an analytical
procedure for computing the response of a multistory building frame sub-
Jected to a prescribed ground motion utilizing a high-speed electronic
digital computer. The columns of the frame were assumed to behave
elastically while energy dissipation was permitted in the girders, whose
moment-curvature behavior was expressed by a Ramberg-Osgood function. An
extensive parameter variation was then scheduled in order to obtain a
wide range of results. The development and results of this phase of
study are described in Chapters 2, 3, and 4.

In the second phase, several factors were investigated which
were not included in the analyses performed in the first phase. These
factors were the overturning effect of gravity loads acting through the
sidesway displacements (commonly called the P- A effect), axial de-
formation of columns, and damping. The method developed in the first
phase was modified to include these factors with the viccous damping
introduced as interfloor dashpots providing a specified percentage of
critical demping in the elastic fundamental mode. A good number of
analyses were performed with relevant modifications made in the proce-
dure. A comparison of the new results with the corresponding response
results taken from the first phase leads to an evaluation of the in-
fluence of these factors. This information is presented in Chapter 5.

Finally, in Chapter 6 a summary of the entire study together

with the significant conclusions derived therefrom is presented.



CHAPTER 2

METHOD OF ANALYSIS

2.1 General

A multistory building responding to an earthquake type ground
motion is an extremely complex system. An attempt to compute the
earthquake response of such a system, especially when the inelastic
behavior of structural members has to be considered, is an exceedingly
difficult problem involving huge computational effort, With the
development of modern powerful and large capacity digital computers
some recent efforts have been made to evaluate the inelastic earth-
quake response of multistory structures. They employ idealized
elasto-plastic or bilinear type hysteresis behavior for the frame
members, along with other assumptions to convert the actual structure
into a sultable mathematical model which can be conveniently handled
by available numerical techniques.

This chapter presents a numerical procedure which was
developed to compute the inelastic dynamic response of a multistory
building frame subjected to an arbitrary base motion. Accelerograms
of some past earthquake records were used for the base motion and the
computations were performed on the IBM 7090 computer available at
the University of Michigan Computing Laboratory. The procedure
employs a curvilinear hysteresis behavior which is typical of the
structural steel members, In spite of all precision used in the
computation it must be remembered that the results represent only the

response of an idealized mathematical model.

-5-



2.2 Assumptions

The development of the method of analysis, which is described

in the subsequent sections of this chapter, was based upon the following

assumptions:

1.

An actual structure can be ideally represented as an
equivalent single-bay, multistory, rigid-jecinted frame
which is symmetrical about its vertical center line.
This conversion is eguivalent to assuming that all
joints at one floor level of the original structure
deflect and rotate by equal amounts at all times during
the response.

The mass of the structure is lumped at the floor levels,
each story mass representing the entire mass of the
floor and half the mass of the walls and columns in

the stories immediately above and below. Also, only
the lateral response of the structure to the horizontal
component of ground acceleration parallel to the plane
of the frame is considered. Thus the number of degrees
of freedom is reduced to N , the number of stories in
the frame.

The girders follow the non-linear moment-curvature
behavior as defined by the Ramberg-0Osgood function of

the form

g o.M o,
7 My{l )Myi}

My 5 ¢y and r being the characteristic parameters

of the function.
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L. The columns behave elastically. This assumption is
partly based upon the results of earlier bi-linear

(10)

studies, which showed that columns of typical
bullding frames under a strong earthquake motion do
remain elastic except in a few top stories in some
cases.

5. Only the flexural resistance of the bare frame members
is considered. Damping resistance - structural or
non-structural, effects of shear and axial strains,
and the P-A effect have not been considered in the
analysis for the first phase of the study. However,

the effect of some of these factors is described in

Chapter 5.

2.3 Outline of Procedure

The method of analysis, which was developed for use on a
high-speed digital computer, in essence is a step-by-step numerical
solution of a set of simultaneous differential equations of lateral
motion of the form,

mX; +Q = -myy (2.1)

where,

2]
I

mass of the ith floor

bk
I

acceleration of the ith mass relative to bage

restoring force at the ith mass

T
i

and &

I

ground acceleration.
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The number of such equations will be equal to N , where N is the
number of story masses. These differential equations were solved
by the Gill's version of the fourth-order Runge-Kutta numerical
(14)

procedure using a finite increment of time. The conditions

at the end of a time step are found as a superposition of the conditions
at the beginning of the step and the changes occurring during that

Time step. The restoring force, Q; » at each floor level is found
from the column end-moments which exist at the beginning of each
sub-step of the Runge-Kutta sub-routine.

The essential steps in the sequence of computation are as

follows:

1. The incremental lateral displacements of the floor masses
relative to the base, Ax's , occurring in a time
interval are computed by the Runge-Kutta sub-routine.

2. By a static stiffness-matrix analysis the incremental
joint rotations, AS's , at the ends of the girders
are computed from the known values of Ax's . This
involves computation of the girder stiffnesses relevant
to the time interval. This 1s explained in a subsequent
section. Because the columns are assumed to behave
elastically, their stiffnesses are computed only once,
whereas the girder stiffnesses vary in each time
interval., Because the single-bay frame is assumed to
be symmetrical about its vertical axis, the slopes and
moments at the two ends of each girder will be equal

at all times,



_9_

3. The incremental moments, AM's , at the ends of all
members are computed from the known values of incremental
Jjoint deformations, Ax's and /AG's , using appropriate
stiffness factors. The incremental restoring forces,
AQ's , at the floor levels are then computed from the
incremental moments at the column ends,.

. The forces and deformations in the frame members at the
end of the time interval are obtained by adding the
changes during this time interval to the corresponding
beginning values.

A repetition of this cycle of computations gives a progressive numerical
solution of the dynamic problem. The method of analysis implicitly

assumes a stable hysteresis behavior of the girders,

2.4 Ramberg-Osgood Hysteresis Model

The non-linear behavior of girders i1s represented by a
three-parameter Ramberg-Osgood function in moment-curvature terms as
given in Equation (2.2).

g _ M Loyt
Ty {1 [Myl } (2.2)

My s ¢y and r are the three characteristic parameters of the function.
Equation (2.2) in dimensionless form is graphically shown in Figure
2.1(a). For given values of My and ¢y , it is the exponent

that governs the sharpness of the break away from the elastic branch
(straight line tangential to the curves at the origin Q). The Ramberg-
Osgood function includes as special limiting cases the linear case,
Cbtained by setting r = 1 , and the conventional elasto-plastic cacge,

which is obtained as r tends to infinity.
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Equation (2.2) expresses the M—¢ relation only for the curves
originating from the origin O , i.e., the curves of first loading. Such
a curve is called the skeleton curve or the virgin curve. The former
term is used here for the curve given by Equation (2.2). Suppose on
the first loading of the cross-section of a member a point P has
been reached on the skeleton curve, the reversed loading will follow
the descending branch curve given by

g - 9y M- M I IM - Mg[r—l}
By Ay 2y
where <¢O , ¥2>
Py oy

are the coordinates of P , the point of origin of the descending

branch curve. See Figure 2.1(b).

An examination of Equation (2.3) will reveal that this is a
curve which is twice as large as the skeleton curve (Egquation (2.2))
with the point of origin shifted from the origin O to the point P .
Also, the descending branch curve has the property that it becomes
tangential to the descending skeleton curve 0§ at the point @
which is the symmetrically opposite point to P . Let the coordinates

of the point Q be
fom

where @1 = - ¢ and M) = - M, A further reversal at point @
will generate the ascending branch curve which again can be given by
Equation (2.3) if the coordinates of point @ are substituted in
place of those of P . Thus, the equation for the ascending branch

curve becomes
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g-¢ M- M

of, T o, 1 lgMy

(2.4)

Tt is therefore clear that Equation (2.3) serves equally well for

ascending or descending branch curve where

O MO
(g— —)

By~ My
are recognized as the coordinates of the starting or the originating
point of the curve. It can easily be seen that the ascending curve of
Equation (2.4) will become tangential to the original skeleton curve
at the point P , thus closing the hysteresis loop which started at
the same point.

A hysteresis loop obtained by the two branch curves, as
shown in Figure 2.1(b), describes the moment-curvature hysteresis
behavior of a member cross-section in a steady-state vibration of a
constant amplitude, But structural vibrations due to an earthquake
type excitation are far from being steady-state. Hence a more general
type of law, which can be applied to any random type of vibration,
was needed for the study reported here. Such a general hysteresis
law, which was developed by Berg for his single-degree-of-freedom
studies,(IB) is given in the Appendix. This hysteresis law was used
in the present stduy to describe the hysteresis behavior of the
girders of a multistory bullding frame responding to an earthquake
motion,

This type of Ramberg-Osgood function, as expressed by
Equations (2.2) and (2.3), gave a very close mathematical fit(13>

to the remarkably stable experimental hysteresis loops obtained
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by Popov on welded steel beam-to-column connections.(ll) The slope
at the point of origin for the skeleton as well as the branch curves,
My/¢y , was taken as the elastic stiffness of the member corss-section

and the parameter My was assumed to be equal to its fully plastic
moment.<15> Thus,

- BT (2.5)

g

where E is the modulus of elasticity and I the moment of inertia
of the cross-section about the axis of bending. Thus the value of the
two parameters My and ¢y in the Ramberg-Osgood function was fixed,
while the exponent r was given a standard value of 10 which was the
most representative value obtained from the experimental curves.
Equation (2.3), with the parameters M, , gy and r
fixed as above, gives a very close fit to the branch curves of the
experimental hysteresis loops. But the virgin loading curve was not
well represented by the skeleton curve of Equation (2.2) with the same
values of the parameters.<13> It is the author's opinion that the
virgin loading curve would show a sharper transition from the
elastic to the elasto-plastic branch than would be predicted by the
skeleton curve of Equation (2.2) because of the lack of Bauschinger
effect in the first loading. However, since the deformations grow
rather gradually in the earthquake excited structural vibrations the
effect of the first few oscillatins would perhaps make the skeleton
curve look more like the one of BEquation (2.2) for the gradually
developing hysteresis loops. This was seen in the hysterssis loops

for copper and mild steel under progressively increasing or de-

creasing amplitude as reported by Popov.(l6)
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Tt may, therefore, be observed that the Ramberg-Osgood formula-
tion is a very realistic and convenient model to represent the actual
hysteresis behavior of structural steel members subjected to large

cyclic bending strains.

2.5 Ramberg-Osgood Girder Stiffness

Since the single-bay frame is assumed to be symmetrical about
its vertical axis, the girders will have equal moments and rotations
at both ends, so that the point of inflexion will be located at center
span of each girder. Let the bending moment, curvature and the bent
axis of such an antisymmetrical girder be shown in Figure 2.2. M,
¢ and © are the moment, curvature and slope at the ends of this
girder., M and ¢ will satisfy the Ramberg-Osgood relationship --
Equation (2.2) or (2,3) depending upon whether the loading is on the
skeleton curve or a branch curve. For the following discussion let
the girder be considered to be loaded the first time, i.e., the moment

and curvature at every cross-section are given by

o.M 1y MTh (2.2)
Py My

The relation between the end-moment M and the end-slope © of the
girder can be derived from the moment-area principle as follows.

At a section a distance x from the center

X
My = M- o (2.6)

and from Equation (2.2)

1+ 2FY (2.7)

b - B 7

x
My
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Figure 2.2. Ramberg-Osgood girder.
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Substituting Equation (2.6} into (2.7) gives

M X

¢x=¢y'MN§'£§§ {1+ IM—y'm|r~l}

M X M r-1, x \r-1
¢ =0, - =— - (==) {1+~ (=75) (2.8)
Xy My, L/2 { My‘ L/2 }
Now, from the relation
2
dy a7y 4
. = — dx
dx I dx?
one gets
o - __l_ [L/g QSX © oy dx (2_9)

72

Combining Equations (2.8) and (2.9), we get the expression

Moy (X2 gy, (X TL M Tl 2.10
My-) ( //2/ { + L/2> l } X ( )

Let x/(L/2) =y , so that Equation (2.10) can be written as

1 -1
L Y e L R
O

PO
Q;

When the integral is evaluated, the expression for the end-moment and

end-slope takes the form

o (frly M 1.3 pTTh (2.11)
6 M, T+2 My,

The term (¢y'L)/6 can be recognized as the end-rotation at M = Myt
if the member were elastic. TLet this elastic rotation be denoted as

©_ . Thus,
¥y

9, = ?KE (2.12)
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and the M-8 relation takes the form

° M BET SN 0,1
op My B> [My j )

Comparing Equations (2.2) and (2.13) it will be noticed that the two
have essentially the same form except for an additional factor 3/(r+2)
in the latter which in the M-@ relation (2.2) is equal to 1.
Equation (2,13), therefore, describes the moment-rotation behavior
at the ends of the girder whose cross-sections follow the Ramberg-
Osgood moment-curvature behavior - Equation (2.2) for the skeleton
curve. The M-0 skeleton curve, as defined by Equation (2.13), is
shown in Figure 2.3.

A similar analysis for the branch curves of the M—¢
hysteresis loops as defined by

$-fo_ M-M M - My -l
°f, 2, o [_EET—_J J (230

Yy
will show that the expression for the corresponding branch curve in
M-8 terms can be written as

o - 9,
26y

M- M, 3 M - Mg r-l
T TNy L+ T2 | o (2.1%)

My
where (85, My) are the coordinates of the point of origin of the
branch curve on the M-8 plot. Thus, a complete hysteresis
behavior at the ends of a Ramberg-Osgood girder can be expressed
by Equations (2.13) and (2.1%4).

An expressinn for the stiffness coefficient can be obtained
by differentiating, with respect to © , Egquations (2.13) and (2.1k4)

for the skeleton and the branch curves respectively. Thus, for
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(— Skelton |Curve (Eq. 2.13)

/ +5
o, . I=Z
/ )

Figure 2.3. Moment-Rotation skeleton curve.



-19-

skeleton curve

€ - L
r+2 My
and for a branch curve,
Y 1 ;
Ky =— . (2.16)
1 -
@y M- M r-1

e £ |—2] }

r+2 EMy

Equations (2.15) and (2.16) represent the slope of the tangent at a
point on the M-6 curves., The stiffness given by these two equations
will, therefore, be valid only if the incremental rotation A® at the
ends of a girder in a time interval is positive for ascending and
negative for descending the M-8 curves. If a reversal occurs at
a point P on an M-8 curve (Figure 2.3), the girder stiffness
at that instant will be given by the slope of the skeleton M-06
curve at the origin. Thus, the stiffness K, abt a point of reversal
is given by

My

Ko = 5 (2.17)

y

The point P then becomes the origin of the new branch curve.
Since the direction of joint rotations at a floor, which

in turn determines the appropriate girder stiffness to be used in
a time interval, can not be predicted at the beginning of the step,
an iteration has to be performed in each time interval. At the
beginning of each step it is assumed that the direction of joint

rotation is the same as it was in the previous time interval., Girder
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stiffnesses are thus determined from Equation (2.15) or (2.16), as the
case may be, and the computations are performed. A check at the end

of step (2) of the procedure is made to see if the sign of A0 at

each floor is consistent with the assumed direction of movement on

the respective M-8 curve, In case a reversal is detected by this check
at one or more floor levels, the girder stiffnesses at these levels

are changes to K, and new values of AB8's are computed by repeating
the computations involved in the step (2). This iteration is complete
when a set of A9 values has been obtained which are consistent with

the girder stiffnesses used in that time interval. Control is then

switched over to step (3) of the procedure.

2,6 Size of the Time Interval

The procedure, as outlined in the preceding sections, will
give exact results only if the size of the time interval in the
numerical process is of an infinitesimal order. But in actual
computations the interval will have to be of a finite size. Hence
the claim on the exactness of the solution is lost. In order to
compute the changes occurring in a time interval the conditions
(including the stiffness of the girders) at the beginning of the time
step are used. This will no longer lead to exact results since the
stiffness of the girders is not actually constant during a finite size
of the time interval because of the curvilinear nature of the M—¢ or
the M-8 curves. Thus, in step (3) of the sequence of computations
when AM's at the ends of the girders are computed from the known
A9 values, the points along the ascending branches of the
hysteresis loops will always lie above the corresponding theoretical

curves as given by Equations (2.13) and (2.14). This is shown in
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Figure 2.4(a). The opposite will be true for the descending branches
of the M-8 curves. What is worst about this discrepancy is the fact
that the departure from the theoretical M-8 curves will go on
increasing unitl the next point of reversal. Moreover, since the
M-8 points generated by the numerical procedure lie away from the
theoretical curves given by Equations (2.13) and (2.1%), the points
of reversals as predicted by the analysis will not be the true ones,
Thus, the hysteresis loops consisting of several straight line
segments as generated by the numerical procedure will satisfy
equilibrium but not the Ramberg-Osgood M- equations.

The above mentioned discrepancy is a direct consequence
of the finite size of time step used in the numerical solution.
Obviously, one could think of minimizing the error simply by
reducing the step size. This technique was tried in a few trial
runs of the program and it was found that the gain in accuracy
of the resulls was discouragingly slow as compared with the increase
in the computation time involved. In order to obtain results of
an acceptable accuracy with reasonable machine time required a
method of modifying the girder stiffnesses in each time interval
was devised., This scheme of stiffness modification, which produced
excellent results, is illustrated in Figure 2.4(b) and the explana-
tion follows.

At the beginning of a time step, which involves no reversal,
let the M-8 values for a girder correspond to a point P in
Figure 2.4(b). P' is the point on the true M-0 curve for the
moment M and the end rotation is ©' which satisfies the Equation

(2.13) or (2.14), as the case may be. Using the girder stiffness K ,



-22-

‘UOTIBOTITPOW SSSUIFTIS puB AdoudaIosSTP 68-] ‘g SansTd

UOTIBOTITPON SSSUIITIS °q £ouedsaosTq O-W °®B

16V
o a7 0
RHE o
]
d
AV ¢
Py
A", SAIN) /-] SNy,
S
.mnﬁ\ Nm
ta b _ -
J
dAIN) O~ onIf,




-23-

which is the slope of the tangent to the M-0 curve at the point P' ,
compute the Ax's and A@'s from steps (1) and (2). At this stage
the girder stiffness K is modified to K' by multiplying it by

the ratio

A9 - (9" - ©
NG )}

and the control transferred to step (2) again. The new values of AS'
and AM' as computed this time from steps (2) and (3) by using the
modified K' wvalues will be closer to the theoretical M-8 curve,.
This ig a very simple device which pulls the moment-rotation
points nearer to the theoretical M-8 curves as the solution proceeds
and keeps the discrepancy between the two from growing out of practical
bounds. It should be noted that this modification of girder stiffness
is applied only to those floors where no reversal of moment is detected
in that time interval by the relevant test which was described in
Section 2.5. This is because at such floors the stiffness had already
been modified to K, when the reversal was detected and since at the
point of reversal © and ©' take the same value the multiplying
factor becomes equal to unity.
In the same procedure, after modifying the girder stiffnesses
to K' , if the control is transferred to step (1) instead of step
(2) and fresh values of Ax's , A9's and AM's are computed with
the modified stiffnesses better results should be expected. This
was done in a trial case, but the improvement in the results was so
little that it did not warrant the necessity of re-entering the Runge-

Kutta subroutine in the same time interval. Rather, the earlier scheme
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of bypassing step (1) after stiffness modification was used which resulted
in a saving of about 25 percent of the total machine time required for
one analysis at the cost of a nearly negligible loss of accuracy.

The actual size of the time interval to be chosen for the
numerical procedure as described in this chapter should be a function
of the fundamental period of -ibration T of the structure. Also the
hysteresis curves of the Ramberg-Osgood function show a sharper transition
from the elastic to the plastic zones for larger values of the exponent
r (Figure 2.1(a)). Thus, a smaller time step would be required for
large values of r 1in order to traverse the theoretical hysteresis
curves with reasonable closeness., An increase in the number of stories
N of the structure would increase the influence of the higher modes
on the total response. So the time interval should be smaller for a
taller structure having more stories in it. These factors helped in the
choice of a suitable size of the time interval At for the Ramberg-

Osgood analyses. The following empirical formula was used:

J S — (2.18)

(8 + 0.27)N

The value of At as given by Equation (2.18) was used as the normal size
of the time step. However, a smaller calue had to be used whenever a
peak on the accelerogram (which consisted of straight line segments)

was encountered within a normal length of the time step. The Runge-
Kutta method used for the numerical intergation of the differential
equations of motion provides an excellent facility to vary the length

of the time interval as the solution proceeds.
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2.7 Check on Accuracy

As a check on the accuracy of the method of analysis and the
results obtained therefrom, the following three tests can be applied
at any instant during the computations.

1. The conditions of static eqguilibrium of the deformed

structure must be satisfied at every instant of time,

2. The energy input to the structure at any instant can be
computed by intergrating the product of base shear and
the ground velocity. This must check with the sum of
the dissipated energy up to that instant plus the
recoverable strain energy and the kinetic energy present
in the structure at that instant of time.

3. The girders must generate the true M-6 hysteresis
loops as defined by Egquations (2.13) and (2.1k4).

The first of these tests is a check on the statics involved
in the analysis and was applied in the initial testing of the computer
program. The other two tests were used throughout all computations.
The energy test proved to be a very versatile check and helped in
detecting errors in the procedure which could not have been detected
by the static test. The procedure, using the size of the time
interval as given by Equation (2.18), gave results so that the energy
balance was within one percent and the generated M-6 curves were
reasonably close to the corresponding theoretical curves. A typical

girder response obtained from one of the analyses is shown in Figure 2.5.
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2.8 Flastic and Flasto-Plastic Girders

The evaluation of the effect of the inelastic behavior of
girders upon the earthquake response of multistory structures was an
important feature of the study. This involved the comparison of the
response of a structure to a given earthquake when the degree of
plasticity on the girders ranged from nil, i.e., elastic to the fully
elasto-plastic case. The Ramberg-Osgood girders with r =5 or 10
represent the cases of intermediate degree of plasticity and perhaps the
more realistic ones. The Ramberg-Osgood function covers all these cases
if the exponent r 1is considered as a variable, the strength and
stiffness being fixed by the other two parameters My and ¢y
(Figure 2.1(a)). But the case of real elastic girders is obtained by
setting r = 1 and multiplying the resulting linear stiffness by two.
The factor of two 1s necessary because the real elastic case has stiff-
ness equal to twice that obtained for r = 1 (Figure 2.1(a)).

Thus, the computer program written for analyzing a multistory
frame with Ramberg-Osgood girders could as well have been used for the
elastic and the elasto-plastic cases. But the case of elastic girders
needs the girder stiffnesses to be computed only once in the
analysis and the simulation of elasto-plastic girders by putting a
very large value of r din the Ramberg-Osgood analysis involved
numerical problems. Therefore, for convenience and better efficiency a
separate program was written for these two cases. This program was
obviously simpler than the general Ramberg-Osgood program and required
less computation time than required for the same cases to be analyzed

as special cases by the general Ramberg-Osgood program.
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An elasto-plastic girder has a special problem of sharp kink
in the hysteresis loops when a negative or a positive plastic hinge
forms at the two ends of the member., Before the formation of such
a hinge a girder is assumed to have its elastic stiffness and the
step-by-step elastic analysis proceeds until the absolute value of
the end moment in a girder exceeds its M_y value at the end of any
time interval. The analysis then goes back to the beginning of that
interval and the computations performed with a smaller time interval
which was taken equal to one-tenth of the normal size. The next
time such an excess in the end moment is encountered the stiffness
of that member is set to zero, the moment set to its yield moment
My , the time interval restored to its normal value and the analysis
continues. Reversal in the end rotation of a girder is detected in
the same manner as was explained before in Section 2.5. The girder
stiffness is restored to its elastic value if it was zero before
the reversal was detected. The same program was used for the case of
elastic girders by omitting the portions relevant to the appearance or
disappearance of a plastic hinge. A normal size of the time interval
equal to T/BO and T/lOO was used for the 10- and 25- story frames
respectively and the first two tests as given in Section 2.7 were applied
to maintain the same degree of accuracy of the results as for the

3%@berg—0sgood analyses.



CHAPTER 3

PROGRAM OF INVESTIGATION

3.1 General

The importance of energy absorption through inelastic ductile
deformations in limiting the earthquake response of buildings has been
recognized for several years, but attempts to evaluate quantitatively
the inelastic response of multistory buildings have been very few and
recent. The knowledge of the expected amount and distribution of in-
elastic deformation and the energy dissipation in multistory structures
during strong motion earthquakes is still inadequate. Analyses for this
investigation were scheduled to yield some informatiocon on this basic
question and to evaluate the influence of various significant structural
properties and characteristics of ground motion upon the inelastic re-
sponse.

This chapter describes the types of structural models and their
variable parameters, the maximum response parameters recorded, and the
types of earthquake records used in the present study. The variables
were selected to cover a fairly wide, practical range of values, but the
number of analyses made was limited in order to keep the total machine

computation time within a reasonable limit.

3.2 Structures Considered

This study deals with regular, rectangular buildings only.
Any irregularities, such as setbacks, eccentricities, appendages or
discontinuities were not considered because the primary purpose was to

study the influence of the basic structural parameters upon the

-29-
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earthquake behavior of multistory buildings. The basic types of struc-
tures analyzed were typical, open, moment-resistant frames. In addition,
two 10- and 25- story frames,having uniform girder and column properties,
were also analyzed in order to compare their response with that of the
corresponding standard frames having normal stiffness-strength taper for

the same earthgquake motion.

3.3 Mathematical Models of the Test Frames

For the purpose of response computation, an actual structure
was approximated by a single-bay frame symmetrical about its vertical
center line, having the same number of stories as in the real structure.
As was mentioned in Chapter 2, this approximation can be justified on
the assumption that the lateral deflections and rotations of all joints
at one floor level in the actual structure are identical at all times.
A replacement of a typical three-bay structure by a one-bay frame is
shown in Figure 3.1. It may be noted that the single-bay frame has
column stiffnesses equal to that of the outer columns of the three-
bay structure, the girder stiffnesses remaining the same.

A model of such a 4O-story, symmetrical, single-bay frame was
developed with the following data:

Story Height: 13.5 feet (uniform)

Bay Width: 20.0 feet

Frame Spacing: 20.0 feet

Story Weight: U4.0 kips ( @ 110 psf--Dead load of the
finished structure per story)

Girder and Column Stiffness Ratios:
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Ratio of top to bottom column stiffness--1:15

(Linearly tapering in steps of two stories).

Ratio of top to bottom girder stiffness--2:11

(Linearly tapering in steps of five stories).

For columns 14 WF sections both with and without cover plates
were used. The sections for girders started with a nominal size of
18 WF at the top and were increased by three inches in nominal depth in
steps of 5 stories up to a maximum of 36 inches. The columns were as-
sumed to have infinite stiffness in a length equal to the depth of the
girder at each connection. But the girders, however, were assumed to
have uniform stiffness from center to center of the columns. The same
assumption was incorporated in the response computation procedure
(described in Chapter 2), where the maximum moments and shears in the
columns were recorded at the ends of these rigid stubs.

The value of the common stiffness factor EIL, was computed
for a selected value of 3.0 seconds for the elastic fundamental period
of lateral vibration, T , using the above data. Selecting the elastic
modulus for steel, E , as 29000 ksi, the required values of the moments
of inertia, IX , for various members were computed. Empirical Equa-
tions (3.1) and (3.2) (Figures 3.2 and 3.3) were established using the
data from the Handbook of Structural Steel Sections for sections with the

nominal sizes selected above.

I I
_tx o 1 x
8, = = (1 3 108 =5 ) (3.1)
7., = x (3.2)
x 459 )
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Figure 3.3, Iy vs. Zy for 18WF-36WF girder sections.
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3

where, S, = elastic section modulus for 14 WF sections, in.

Zy = plastic section modulus for girder sections 18 WF - 36 WF,

in.3
I, = moment of inertia of the cross section, in?
and d = the nominal size of the girder section in inches.

Equations (3.1) and (3.2) were used to establish the values
of elastic section modulii for column sections and plastic section
modulii for the girder sections from their moment of inertia values.
The proportions of the standard 40-story model, as generated by this
procedure, are given in Table 3.1. The values of the required section
modulii for various members appear reasonable and lie well within the
range provided by their respective nominal sizes, except for columns
in the lower half of the structure. Here the 14 WF core needs cover
plates, but this is a normal situation in the design of such tall
frames. It was further assumed that the My parameter for a Ramberg-
Osgood WF beam section could be approximated by its fully plastic

(15)

moment taken as 36 ksi in this

for a nominal yield stress Ty s
standard case. Since the columns were assumed to behave as linearly
elastic, their maximum moments were recorded as ratios totheir respec-
tive initial yield moments, (ay- 5y)

After the model of the 4O-story standard frame was proportioned ,
the top 10 and 25 stories of this frame were used as standard models
of 10- and 25-story frames. The fundamental period for the 10-story
frame was computed as 1.25 seconds and that for the 25-story frame as

2.27 seconds. In order to study the effect of a variation in stiffness

upon the response of these structures, analyses were made of similar
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TABLE 3.1

MEMBER PROPERTIES, STANDARD LO-STORY FRAME

Story Weight = 4L kips; Story Height = 13.5 feet

N =40, T = 3.0 secs.

Stories ‘ Columns Girders
I, in." | 8y, in.S| Nom. Size | I, in Z,, in.3 | Nom. Size
| 39-40 gss.22 | 130.20 | k|
37-38 1507.97 280.92 1736.45 21k .37 18 WF
- 35-36 2147.71 281.85 =
33-3k 2787 .46 350.77 2852. 7k 301.88 21 WF
31-32 | 3bor.e0 | hi6.6e
- 29-30 4066 .9k 480.00 b wF I
2728 | Ww06.69 | .28 399:02 | 36751 e
25-26 5346.43 600.77 E
- 23-2h 5986.17 658.65 1 5085.31 118.55 27 WF
21-22 6625.92 715.13 R )
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8 1013 | L079.90 | 8434.18 520.63 36 WF
| 5-6 11743.87 1128.52 =
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1-2 13023.36 1223.61 . 040 209:94 o
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structures having the same dimensions and weights, but with their stiff-
nesses altered to produce variations in their fundamental periods accord-
ing to the following schedule:

Number of Stories

10 25 Lo
T, seconds = 0.50 X
125 (x) x
2.27 x @ x

The circled values of T correspond to the three standard models 10 ,
25 , and 4C stories high.

The influence of the height of the structure was studied by
comparing the response of the three standard models as well as that
of the three models having a common fundamental period of 2.27 seconds.
The earthquake motion was the same in each comparison. This general
scheme also provided an additional basis for comparing the response of
a smaller frame with that of the corresponding top portion of a taller
one subjected to the same ground motion. It was partly for this purpose
that the story height was kept uniform.

In addition to the above standard models in which the member
stiffnesses have a typical taper, two uniform stiffness-strength models
of 10 and 25 stories were also generated. The nominal size for columns
was still kept at 14 WF while the girders were 21 WF in 10-story and
27 WF in the 25-story model. The stiffness ratio, EI/EIO , for columns

was 1 and that for girders 2 in both frames. Other dimensions and the
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story weights were the same as for the standard taper models. The
common stiffness factor EI, was then adjusted to give the standard
fundamental period of 1.25 seconds for the 10-story and 2.27 seconds

in the 25-story structure. The cross-sectional properties of the frame-

members of these two uniform models are shown in Table 3.2 below.

TABLE 3.2

MEMBER PROPERTIES, UNIFORM MODELS

N Columns Girders

Nom. Size I, in.u S in.3  Nom. Size L in.LL Zys in.>
10 14 WF 1539.26 211.97 21 WF 3078.52 325.77
25 14 WF 2793.0h 350.21 27 WF 5586.08 459.76

It may be noted that all the above models of multistory
structures were proportioned to have lumped masses equivalent to the
full dead load of the finished structure per story and assuming that
the fire-proofing concrete around columns, floor slabs and other non-
structural elements do not contribute to their lateral strength or
stiffness. This was assumed because during a strong earthquake motion
the contribution of such elements to the strength and stiffness would
probably deteriorate rapidly. The fundmental period of the basic 40-
story frame, which was the controlling factor in the design of the test
frame by the described procedure, was chosen from the consideration
that all the needed stiffness and strength was provided by the bare

frame alone. The fundamental periods of 1.25, 2.27 and 3.0 seconds for the
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10-, 25-, and LO-story standard frames were kept longer than the observed
periods of buildings of comparable heights, because earlier investiga-

. (17,18,19) L .
tions have shown that for small vibrations the computed period

of a bare steel frame could be as much as 25 to 100 percent greater than

the observed period of the finished structure.

3.4 Response Parameters

The following significant parameters were chosen to character-
ize the maximum earthquake response of the test structures as obtained
from the computer analyses:

1. Maximum lateral displacement of the floors relative to

base.

2. Maximum relative story displacements.

3. Maximum absolute acceleration of the floor masses--

recorded as fractions of gravity.

-

Maximum shear force in the columns of a story--recorded

as fraction of the total weight of the structure.

5. Column ductility ratio--defined as the ratio of the
maximum column moment in a story to its initial yield
moment My . The analysis treats the columns to behave
as linearly elastic so that this ratio is the same as
the ratio of maximum curvature to the initial yield
curvature. Therefore, this ratio does not imply any
inelastic behavior of the columns.

6. Girder Ductility Ratio, u

There can be more than one possible definition for

the ductility ratio of a member having a curvilinear
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moment-rotation behavior as adopted in this study. No
definition claims any special merit over the others. In

the absence of any standard definition, the girder ductility
ratio has been defined as the maximum absolute Jjoint rota-
tion divided by the yield rotation. This definition has
been used more frequently than any other and is denoted

by p . Thus, p 1is given by the expression

U = ngax

¥
The yield rotation @y corresponds to the parameter ¢y
in the Ramberg-Osgood moment-curvature relationship.
Excursion Ratio, ¢
The excursion ratio for a Ramberg-Osgood girder is defined
as the sum of all joint rotations in the yield regions

during the entire response divided by © This para-

y
meter is chosen to express the total plastic deformation
suffered by each girder. In the Ramberg-Osgood curvilinear
hysteresis model there is no distinct yield point; hence,
there is no single definition for the yileld region. The
yield criterion used in this study is illustrated in

Figure 3.4(c). A parallel criterion was used for an
elastic or elasto-plastic moment-rotation behavior as
illustrated in Figures 3.4(a) and 3.4(b) respectively.
Hysteresis energy dissipated at each floor.

The total energy dissipated by each girder at the end of

the earthquake is a singificant parameter which was
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recorded for the inelastic response of the structure.
This was normalized by dividing it by the factor My'Q
for the respective girder section. This ratio is exactly
equal to 2e¢ in the elasto-plastic hysteresis case but
not for the Ramberg-Osgood case.

9. Maximum Input Energy
The maximum energy input to the structure is a parameter
which characterizes the magnitude of its entire earthquake
response. This was recorded and expressed as the energy

per unit of total mass of the structure.

A1l of these maximum response parameters will be referred to
simply as response parameters in order to avoid an excessive retitition

of the word maximum.

3.5 Ground Motion Characteristics

In addition to the influence of various structural parameters,
like the height and stiffness of the structure and the inelastic action
of the girders, the influence of the characteristics of earthquake ground
motion upon the structural response was an important aspect of the study.
The most significant characteristics, which also governed the choice

of the earthquake records to be used in the study, are given below.

(i) Period Characteristics and Intensity

The period characteristic of an accelerogram, as it is reflect-
ed in its velocity response spectrum, was an important factor in selecting
suitable earthquake records for this investigation. The N-S component

of E1 Centro, California, 1940 earthquake was chosen as a standard
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accelerogram because it has almost uniform velocity-spectrum peaks over
the range of the fundamental periods of various test frames. As it was
decided to use a stronger earthquake than the ones recorded to date,
the acceleration ordinates of the EL Centro record were multiplied by
a factor of 1.5.

Two other accelerograms, one having spectrum peaks in the
short period range (0.5-1.0 second) and the other in the longer period
range (2.0-3.0 seconds), were also selected. These were Taft, Califor-
nia, July 1992, S21°W component and Alameda Park, Mexico, May 11, 1962,
N10°46'W component. The spectrum intensity defined as the area under
the undamped velocity spectrum between 0.5 and 3.0 seconds, was used

(20)

as a measure of the earthquake intensity. In order to make the
spectrum intensity of these two accelerograms nearly equal to that of
the E1 Centro by 1.5, the acceleration ordinates of the Taft recorded
were multiplied by a factor of 3.0 and those of Alameda Park by 2.4.
The three accelerograms used in the analysis are, therefore;
(a) EL Centro, California, 1940, N-S component by 1.5
(b) Taft, California, July 1952, S21°W component by 3.0
(c) Alameda Park, Mexico, May 11, 1962, N1O°46'W component
by 2.4.
These modified accelerograms are shown in Figure 3.5 and their undamped
velocity spectra are given in Figure 3.6. Table 3.3 shows the values

3.0

of the spectrum intensity, IO = f SV dT , of these accelerograms
0.5

before and after multiplying by the corresponding factors.
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TABLE 3.3

VALUES OF I_, INCHES

El Centro, 1940  Taft, 1952  Alameda Park, 1962
(N-5) (s21°w) (NLO°L6'W)
Original 109.50 53.83 68 .43
Modified 164 .25 161 .49 164.23
(ii) Duration

The first two accelerograms are 30 seconds long and the last

record is 60 seconds long.

The full length of these accelerograms was

used in the analyses and the response of each model was recorded at

five-second intervals to investigate the effect of duration of the

ground motion upon some of the significant response parameters.



CHAPTER 4

DISCUSSION OF RESULTS

4.1 General
The results obtained from the computer analyses described
earlier are presented and discussed in this chapter. The various
structural and ground motion characteristics whose influence upon
the structural response was investigated are as follows:
1. 1Inelastic Behavior of Girders.
2. Fundamental Period of Structure vs. the Period
Characteristics of Ground Motion.
3., Duration of Ground Motion.
Lk, Height of the Frame
a. Number of Stories.
b. DPortion of Structure.
5. Stiffness-Strength Taper.

6. Strength of Members.

Yy,2 Tnelastic Behavior of Girders

As memtioned earlier in Chapter 2, the sharpness of the
transition from elastic to plastic range depends upon the value
of the Ramberg-Osgood exponent r in the M—¢ relation. For the
standard Ramberg-Osgood models, a value of ten has been used for r ,
which is a representative Value<13> of some experimental results.<ll)
In this section the regponse of 10- and 25- story models having

Ramberg-0sgood girders is compared with the corresponding elastic

and elasto-plastic cases.

_47_
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Four 10-story models with the standard fundamental period of
1.25 seconds and having elastic, Ramberg-Osgood r =5 , r = 10 and
elasto-plastic (which is the same as Ramberg-Osgood with r = )
girders were analyzed for the Taft accelerogram, The resulting maximum
response parameters, as plotted against the story level, are shown in
Figure 4.1, A similar analysis was made with 25 story models,

T = 2.27 seconds, except that the case of r =5 was dropped. The
remaining three models, 1.e., with elastic, Ramberg-Osgood r = 10

and elasto-plastic girders were analyzed for the El Centro accelerogram
and the response parameters are compared in Figure L4.2.

A study of these figures shows that the elastic response in
general is markedly higher than any of fthe inelastic cases. The
inelastic action of girders alone is responsible for lowering the
response by aboutb 50 percent as compared with the corresponding elastic
response. In Figure 4.1 although there is little difference between the
response of the three inelastic cases, it can be noticed that the
response of the model with r = 10 lies almost in between that of the
r =5 and the elasto-plastic model. Similarly the elasto-plastic
(r = w) response of the 25-story model is a little higher than the
response of the standard Ramberg-Osgood (r = 10) case (Figure 4.2).
Thus the inelastic response parameters show a gradual increase with
increasing value of r in the Ramberg-Osgood M—¢ relation. A very
important item to note in Figures 4.1(d) and 4.2(d) is that the column
ductility ratios in the inelastic models are generally less than one,

thus justifying the assumption of elastic column behavior,
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The elastic and the inelastic (R-0 , r = 10) displacement-
time response of some floors of the 10-story model are presented for
comparison in Figure 4.3 and similarly for the 25-story model in
Figure L4.4. The amplitude of lateral displacements of the inelastic
models is considerably lower than that of the corresponding elastic
model as a result of energy dissipation. It should also be noted that
the elastic fundamental mode of vibration of the structure dominates
the inelastic response.

The energy vs. time relationship for the elastic and the Ramberg-
Osgood (r = 10) versions of the 10-story model are shown in Figure
L.5. Similar curves for the 25-story model subjected to the EL Centro
accelerogram are presented in Figure 4.6. A comparison of the toal
input energy curves for the elastic and inelastic versions in both
cases will show that the average growth of energy with time is at
similar rates. However, the elastic models show wide fluctuations in
the input energy which are very much damped out in the inelastic response.
An important feature of the inelastic response, as revealed by Figures
4,5 and 4.6, is that the total energy dissipated by the girders through
inelastic hysteresis behavior is a major part (about 80-90 percent) of
the total input energy. Therefore, at any instant, the stored energy
in the elastic structure is much larger than that in the corresponding
inelastic model,

An interesting comparison of the response of the standard
Ramberg-Osgood (r = 10) and the elasto-plastic version of the
25-story model subjected to the E1l Centro accelerogram is presented

in Figure 4.7. 1In Figure L4.7(a) the input energy and the total



-50-

dissipated energy per unit mass vs. time for the two models are given.
A close examination of these two sets of curves will show that the
stored energy in the elasto-plastic model at any instant is higher
than that in the Ramberg-0Osgood case. The displacement-time curves
for the top floor of the above two models are shown in Figure 4.7(b).
It can be seen that the amplitude of lateral oscillation of the
elasto-plastic model is considerably higher than that of the Ramberg-
Osgood frame, accounting for the higher stored energy in the former,
The shift of the equilibrium position of oscillation from the zero
position is much more marked in the elasto-plastic model. This means that
larger permanent lateral distortion of the structure may be expected
with the assumption of the elasto-plastic hysteresis model than would
occur with the Ramberg-Osgood type hysteresis behavior. This has been
demonstrated earlier by Berg in his study of Ramberg-Osgood single
degree of freedom systems.<l3) This observation may be attributed to
the fact that an elasto-plastic system will dissipate energy only at
amplitudes larger than the yield amplitude whereas in the Ramberg-
Osgood type hysteresis some energy is dissipated even at low
amplitudes.,

It may therefore be sald that the inelastic hysteresis
behavior of the girders alone in a multistory structure provides a
major source of energy dissipation and thus can cause a considerable
reduction of its response to a severe earthquake as compared with the
results of elastic analysis. The assumption of the elastic column
behavior seems to be very well documented by these results. The

assumption of the elasto-plastic hysteresis behavior appears to
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over-estimate the response as compared with the choice of a Ramberg-
Osgood type hysteresis which is fairly typical of steel flexual
members.

Il,3  Fundamental Period of Structure Versus Period Characteristics
of Ground Motion

The fundamental period of a structure is perhaps the most
significant parameter which is commonly referred to in the evaluation
of the elastic dynamic response of the structure to a particular
earthquake motion. In the present study an attempt was made to
evaluate the influence of the elastic fundamental period (or elastic
stiffness) of the structure upon its inelastic response. The
evaluation of this effect was made by giving appropriate consideration
to the period characteristics of the earthquake motion, as reflected
through the general features of its undamped velocity spectrum.

This section, therefore, presents a study of the combined influence
of the elastic fundamental period of the structure and the period
characteristics of the earthquake motion,

The sitffness of the 10-story standard Ramberg-Osgood model
(r = 10) was adjusted to produce three models having the fundamental
periods of 0.5, 1.25 and 2.27 seconds. All other properties (including
the My - values for the members) remeained unchanged. A similar
treatment was given to the 25-story frame to produce three models
with periods 1.25, 2.27 and 3.0 seconds. These six models were then
analyzed for each of the three accelerograms with the exception that
the analysis of the 25-story short period model for the Alameda Park
earthquake was dropped because of the excessive computation time needed

for this case. The results of these analyses are presented in Figures

4L.8 -1
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Figures 4.8 and 4.9 show the response parameters of the
10- and 25- story models respectively, subjected to the Taft accelero-
gram which has velocity spectrum peaks in the short period range
(0.5 - 1.0 second). The story displacements and the relative story-
to-story displacements increase with the period - a characteristic
feature of the displacement spectrum. The absolute floor accelerations
also show a tendency of increasing with the period but not as
distinctly as the displacements. The response of the columns and girders
show a definite trend to decrease with the increasing fundamental
period - faithfully following the velocity spectrum.

Response results similar to above for the Alameda Park
accelerogram are presented in Figures 4.10 and 4.,11. The displacements
and accelerations again show a tendency to increase with the increasing
period of the structure. But the column and girder response increases
with increasing period for the range 0.5 - 2.27 seconds in 10-story
models (Figure 4.10(d) - (h)),whereas the columns and girders of the
3.0 second 25-story frame are affected less than those of the 2.27
second model (Figure 4.11(d) - (h}). This is again in accordance
with the shape of the velocity spectrum of this accelerogram which has
a marked peak zone around 2.5 seconds followed by low spectrum values
on either side.

In the case of the El Centro earthquake, the response resulis
(Figures 4.12 and 4.13) show that the displacments do increase with
the increasing fundamental period of the structure, but all other
response parameters show a mixed trend. This is perhaps due to the
fact that the velocity specturm for this accelerogram has peaks in the

short period as well as the long range upto 3.0 seconds. Thus, the
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forces and deformations in the frame members seem to be very much
influenced by the shape of the velocity spectrum of the ground
motion,

The fundamental elastic period has the dominating influence
upon the inelastic response of the structure. However, the important
contribution of the higher modes can also be seen in some of these
results. This contribution of the higher modes causes an accentuated
response near the top of the structure, commonly referred to as the
"whiplash" effect.<lo> This effect can be clearly observed in the response
of the longer period models to Taft and El Centro earthquakes. It
is absent from the response of 0.5 second period 10-story model to
these two earthquakes and almost all the cases subjected to the
Alameda Park accelerogram.

The explanation is simply based upon the different features
of the velocity spectra of these three accelerograms. The Taft and
El Centro both have spectrum peaks in the short period range (0.5 -
1.0 second) so that the longer period structures will have second
or higher mode periods occurring in this region, thus contributing
significantly to the total response. The 0.5 second period 10-story
model has higher modal periods which lie in the region of very low
spectrum values, resulting in almost negligible contribution of the
higher modes., Similarly, the Alameda Park accelerogram has a very
pronounced but narrow width of spectrum peak region around 2.5
seconds, with low values on both sides. The structures considered
here have their fundamental periods ranging from 0.5 to 3.0 seconds
so that no model has higher modes whose period would be located in

the peak zone of the velocity spectrum. This accounts for the absence
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of the "whiplash'" effect or of any significant contributions of the
higher modes to the total response to that earthquake.

In Table 4.1 are given the values of the maximum input
energy per unit mass for the three 10-story Ramberg-Osgood models
analyzed for each of the three accelerograms. Also tabulated therein
are the values of elastic spectral energy per unit mass (1/2 Svg)
for those periods. These values represent the maximum input energy
per unit mass for an elastic single-degree-of-freedom system of that
natural period of vibration subjected to the given earthquake.

Similar energy values are tabulated in Table 4.2 for the three
25-story models.

A comparison of the elastic and inelastic input energy values
in each case shows a reasonable correspondence. What is more interest-
ing is that the maximum input energy values for each accelerogram follow
the same pattern of variation over the range of periods considered as
do the elastic spectral energy values, 1/2 Sv2 . Furthermore, the
inelastic energy values are generally lower than the elastic spectral
values -- a characteristic feature of the spectra for energy dissipative
systems. The general resemblance in the pattern of the maximum input
energy values for the inelastic multistory structures and the elastic
spectral values of these accelerograms again seems to support the
observation that the elastic fundamental period of the structure and
the general shape of the elastic velocity response spectrum of the

earthquake have a great bearing upon the inelastic response of the

structure,
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TABLE 4.1

MAXIMUM INPUT ENERGY, 10-STORY MODELS

Accelerogram

Max. Input Energy
per unit mass

Fundamental Period (seconds)

(inch®--sec™?) 0.5 1.25 2.27
(a) El Centro Elastic (1/2 5,°) 1965 1800 2380
Inelastic, r = 10 2200 1545 2101
(b) Taft Elastic (1/2 svg) 6660 1890 545
Inelastic, r = 10 2063 1929 772
(c) Alameda Park Elastic (1/2 svg) 17 1460 9700
Inelastic, r = 10 348 555 TOk6

TABLE 4.2

MAXIMUM INPUT ENERGY, 25-STORY MODELS

Accelerogram

Max. Input Energy
per unit masg

Fundamental Périod (seconds)

(inch®--sec™ ) 1.25 2.27 3.0
(a) E1 Centro Elastic (1/2 sv2) 1800 2380 1005
Inelastic, r = 10 1477 1871 2490
(b) Taft Flastic (1/2 8,°) 1890 545 612
Inelastic, r = 10 1582 1119 966
(c) Alameda Park Elastic (1/2 5.°) 1460 9700 1458
Inelastic, r = 10  -- 5028 1236
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4.4 Duration of Ground Motion

In order to study the influence of the duration of ground
motion upon the response of structures, the various response parameters
were recorded at a regular interval of five seconds. Since the input
energy per unit mass is the single parameter which gives the best
indication of the entire structural reponse in general, its variation
with time is presented here to show the general growth of the structural
response with the duration of ground motion. In Figures 4,14 and k4.15
are plotted the envelopes of the local maximum input energy per unit
mass in each five-second interval for the 10-story and 25-story analyses,
respectively, as reported in Section 4.3.

Both figures show that for the El Centro earthquake the
growth of energy and consequently the maximum response occurs the
earliest and that the Alameda Park earthquake produces the slowest
energy growth of any of the three earthquake motions. The interaction
between the fundamental period of the structure and the perid characteristics
of ground motion, as was discussed in Section 4.3, can be very clearly

noticed from these energy curves,

4.5 Height of Frame

The influence of the height or the number of stories of a
multistory building frame upon its response to earthquake was an
important feature of the study. The study of the influence of this
important parameter was made in three ways. First, the three
standard Ramberg-Osgood (r = 10) models, 10, 25, and 40 stories
high with fundamental periods, T = 1.25, 2.27 and 3.0 seconds,

respectively, were considered., As was mentioned earlier in Chapter 3,
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the 10~ and 25- story standard models were identical with the top

10 and 25 stories of the standard L4O-story frame. Their fundamental
periods were determined on this basis. These three standard models

of different heights and different fundamental periods but having the

same stiffriess and strength of the members were analysed for each of the
three accelerograms. The results are presented in Figures L4.16 - 4,18,
This was intended to represent a normal situation where a ftaller structure
has a longer period than a shorter structure.

Next, the stiffness of the standard 10- and L4O-story frames
was adjusted to a common fundamental period of 2.27 seconds, same as
that of the standard 25-story model. The response of these three models
to the E1 Centro earthquake is shown in Figure 4.19. The idea of
this comparison was to study the effect of height by eliminating the
difference of peériod. It may be noted that in accomplishing this the
shorter structure becomes less stiff and the taller stiffer as compared
with their respective standard models.

In the third comparison the response of top 10 stories of
the standard 25- and L4O- story models is plotted against the response
of the standard 10-story frame., This is again done for each of the
three accelerograms and the results are shown in Figures 4.20 - 4,22,
This, therefore, becomes a basis to study how the same structural
assemblage (10 stories here) will respond to the same earthquake
when it forms the top part of a taller structure as compared with
its behavior as a complete structure based directly on the moving
ground.

A discussion of these results is given in the following

paragraphs:
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h,5,1 Standard Models

The response of the three standard models to the El Centro,
Taft and Alameda Park earthquakes is shown in Figures 4.16, 4.17 and
.18 respectively. The various response parameters are plotted against
vertical position in the structure, expressed as percent of height.
A few interesting observations can be made from a study of these
figures. The lateral displacements show a tendency to increase with
increasing height (or period) except for the Taft and Alameda Park
earthquakes, where the 25- and 40- story frames have similar displace-
ments, This can again be correlated with the spectrum features of these
accelerograms. El1 Centro has a steadily increasing displacement
spectrum whereas the displacement spectrum values for Taft beyond
0.6 second and those for Alameda Park beyond about 2.5 seconds are
nearly constant because of the downward slope of their velocity
spectra in these regions. However, the LO-story model shows more
accentuated displacements near the top than the 25-story model,
because of the greater contribution of the higher modes in the
former. This effect can be seen, to a larger or smaller extent,
in almost all of these figures for the 4O-story model, but is not
as pronounced . for the Alameda Park earthquake as for the other two.
The floor accelerations, story shears per unit weight of
the structure, and the ductility ratio in the columns decrease with
increasing height. The girder response shows a rather mixed trend for
the E1 Centro earthquake, being largest for the 10-story model in
the Taft earthquake and for the 25-story model in the Alameda Park

earthquake, This again shows that the girder response is more
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influenced by the features of the velocity spectrum of the earthquake
and the fundamental period of the structure than by the height of

the structure.

h,5.2 Constant Period Models

Figure 4.19 shows the response of the three 10- , 25- and
LO- story models of the same period, 2.27 seconds, subjected to
the E1 Centro earthquake, The lateral displacements and acclerations
of the floor masses are almost the same for the 25- and 40- story frames,
those for the 10-story model being a little higher. But the difference
is not very significant. Story shears per unit weight of the structure
and the column ductility ratios are definitely lower as the structure
becomes taller. On the other hand the girder response shows a definite
increase with the height of the frame. When this i1s compared with the
relatively mixed trend of the girder response of the three standard
models to the same El Centro earthquake (Figure 4.16(f) - (h)) the
difference in the behavior appears to be due to the increased stiffness
of the 4O-story and the reduced stiffness of the 10-story frame as

compared with the stiffnesses of their respective standard versions.

,5,3 Portion of Structure

Figures 4.20, 4,21 and 4.22 compare the response of the top
10 stories of the standard 10-, 25- and LO- story frames for the
three earthquakes. The response of these top 10 stories (which are
the identical structural assemblage in every case) to the Taft and
El Centro earthquakes does not seem to be significantly affected by
the fact that they form the upper parts of the structures of different

heights. The velocity spectrum for the Taft earthquake has peaks in
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the short period range so that the 10-story frame should have greater
response than the same members forming the top of 25- and 4O- story
frames of longer periods. But higher modes become more significant
in the latter cases so that the response of these 10-story members is
similar. In Figure 4,22 for the Alameda Park earthquake the response
of the 10 stories of the 25-story frame is distinctly higher than the
other two cases., This again indicates that for the Alameda Park
earthquake the influence of the fundamental period of the structure
is more predominant and the higher modes are less significant in the
response of the top portions of tall frames.

All the above discussion of results presented in this section
leads to the significant conclusion that the inelastic response of a
multistory structure is predominantly controlled by its fundamental
period and by the spectrum features of the earthquake motion rather
than by the height of the structure or its number of stories. How-
ever, the column moments and the seismic base shear coefficients can
be expected to be smaller in taller structures. The accentuation
of the response in the upper portion of the structures, the "whiplash"
effect, seems to depend upon the velocity spectrum values of the
earthquake in the region of the first few higher modal periods of

the structure.

h,6 Stiffness - Strength Taper

In this section a comparison is made between the inelastic
response of the standard taper 10- and 25- story frames and that of
the corresponding models having equal fundamental periods and uniform

stiffness and strength. As was mentioned in Chapter 3, the uniform
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models have mefmber size and strength corresponding to the middle portion
of the respective standard model. The 10-story frames were analyzed

for the Taft and the 25-story frames for the El Centro earthquake

with the results presented in Figuresk.23 and 4.24 respectively.

It can be seen from the two figures that the lateral displace-
ments are generally larger for the uniform models whereas the accelera-
tions and the story shears are not affected by the stiffness distribution.
The column and girder responses in the uniform models are larger near
the bottom with a very sharp taper upwards, while those for the standard
models are relatively more uniformly distributed. Calculations show
that in both instances the uniform and the standard models dissipated
almost equal amounts of the total energy but in the uniform models
the concentration of ductile deformations was at the lower levels.

The "whiplash'! effect, of course, is absent from the response of the

uniform structures. The columns in every case behave elastically.

h.7 vYield Strength of Members

In this section a comparison in made between the response of
two 25-story Ramberg-Osgood (r = 10) frames -- one with the member
yield moments for Gy = 36 ksi and the other for which the member
Strength was set to Oy = 18 ksi . The accelerogram used was the
El Centro and the resﬁlts are shown in Figure 4,25,

The weaker frame has smaller lateral displacements and floor
accelerations. The shears in the columns are cut down almost in pro-

portion to the reduction in strength. The column ductility ratios

have increased in the weaker frame but not in inverse proportion to
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the strength, so that the column moments are less in the weaker structure -
a consequence of weaker girders. The columns, however, behaved elastically
even though the yield level was reduced by one-half. The girder ductility
ratios in the weaker frame are about double and the yield excursion ratios
about four times those of the stronger frame. The total energy dissipated
1s smaller in the weaker frame but it makes up a larger fraction of the
total input energy, being 0.97 for the weaker and 0.94% for the stronger
frame. The maximum input energy for the weaker frame was 4514 kip inches
and that for the stronger one 5330 kip-inches. It would be quite reason-
able to expect greater input energy in a stronger structure because an
elastic structure represents the one of infinite yield strength and

suffers the maximum energy input from the same earthquake motion.

This observation for the multistory structures also agrees with the
results of the earlier studies of single-degree-of-freedom elasto-

(8)

plastic systems.
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CHAPTER 5

SOME ADDITTIONAL CONSIDERATIONS

5.1 General

The program of investigation, as described in the foregoing
chapters, was designed to lead to a better understanding of the inelastic
behavior of multistory building frames, and to explore the significance
of energy dissipation through ductile deformation of the girders. The
schedule of analyses was also intended to evaluate the influence of
other significant structural properties and characteristics of earth-
quake motion upon the resulting inelastic response. Damping and secon-
dary effects such as the P-A effect and the effect of shear and axial
strains in the frame members, were not included in the analysis in order
to maintain simplicity of the procedure and convenience in interpreting
results. It is the purpose of this chapter to describe the additional re-
search which was undertaken to estimate the nature and order of magni-
tude of the influence of some of these factors.

The overturning effect of gravity loads acting through the
sidesway displacements (commonly called the P-A effect) and the
effect of axial deformation of columns are some of the factors which
have generally been ignored in the past dynamic analyses of multistory
structures. Their influence upon the structural response is believed
to be of secondary significance and their inclusion, especially in the
nonlinear dynamic analysis, increases the complexity of the procedure
considerably. But the first of these, the P-A effect, has been a
matter of recent concern in some of the static(gl’gg) and dynamic(gg)

Studies which lead to stability questions.
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The effect of axial deformation of columns on the elastic
modal periods and mode shapes of an 18-story structure was evaluated
by Rubinstein. ;M) The increase in the fundamental period was computed
to be of the order of ten percent which decreased rapidly in the
higher modes. The method of analysis, as described in Chapter 2, was
modified to include these two factors so that their separate as well as
combined influence upon the inelastic behavior of the 10- and 25-story
models could be studied.

Very little information is available, at present, about the
true nature and amount of structural and nonstructural damping in
buildings. However, it is believed that the structural damping is of
a very small magnitude in steel framed structures and the major part
of the total damping is provided by the nonstructural elements. These
elements are being minimized in the modern trend of building taller
and lighter structures. The result is that the nonstructural energy
dissipative power of modern tall buildings is much less than for the
traditional types of buildings.

The big question of which form and how much damping is
reasonable to introduce into these structures for a dynamic analysis
must be answered. Some attempts to answer this question<l8’l9) have
been made in recent years. These results indicate that the coefficient
of damping in a multistory structure may range from 0.5 to 5 percent
of critical. Nielsen's ! representation of damping in steel framed

buildings by interfloor dashpots was used in this study to evaluate

the effect of introducing a small amount of viscous damping on the
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inelastic response of a 10-story model. In this study the amount of
damping was varied from 1 to 5 percent of critical in the fundamental

mode .

5.0 Sidesway Effect of Gravity Loads, the P-A Effect

5.2.1 Procedure
To illustrate the P-A effect in frames, let a single story
symmetrical portal be considered, which is shown in Figure 5.1. Let A
be the lateral displacement of the floor. If the static load on each
column is P , then there will be a sidesway moment equal to P<A in each
column due to the loads P acting through the sidesway A . This sidesway
moment requires an additional shear, V' , in each column which is given by

1 - PA
Vo= 5 (5.1)

where H 1is the story height.
Let Ml and M? be the end moments in each column. The net

shear V in each column will be
V=20 oy (5.2)
From Equations (5.1) and (5.2) the expression for V becomes
V= (M + M+ PA)/E (5.3)
The restoring force, @ , on the floor mass becomes

a=- %0t +1F + po) (5.14)

Thus, the effect of the P.A moment is to modify the
column shears which in turn affect the restoring force on the

floor mass as given in Equations (5.3) and (5.4).
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It may be noted that the girder shears will introduce tension in one
column and compression in the other, which are egqual because the frame
is symmetrical about its centerline. These equal tension and compres-
sion forces in the columns will produce equal and opposite sidesway
moments with the result of no net change in the story shear. Hence, for
the purpose of computing the P-A effect in a symmetrical frame it is
only necessary to consider the static dead loads carried by the columns.
To illustrate the P-A effect in multistory structures, let
the i-th story of a single-bay frame be shown in Figure 5.2. The net

shear in each column of this story is given by
2
Vi = {Mi HM Py (e - oxg g )p/H (5.5)

where suffix 1 denotes the story number and <Xi - Xi—l) is the
lateral displacement of the i-th floor relative to the (i-1)-th floor.

Shear in the columns of the (i+l)-th story is given, in the same manner,

by
\ —-{Ml M+ P (x4, - x;)}/H (5.6)
i+ T Wiy P M Py By - Xy '
The net restoring force, @Q; , on the i-th floor mass is given by
Q; = 2(Vsyy - V) (5.7)

The modification required to include the P-A effect in the
analysis, therefore, appears in the addition of the last term in Equation
(5.5) and (5.6). The column shears and the restoring forces on story
masses were computed from Equations (5.5) and (5.7) in each sub-step

of' the Runge-Kutta procedure for solving the differential equations of
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motion,

my ¥yt Q= -mg § (2.1)

It may be noted further that the effect of axial column loads on their
stiffness was not considered either in the original analysis or in the

modification of the procedure to include the P-A effect.

5.2.2 Results

With this modified analysis the effect of P-A was evaluated
in the 10-story elastic frame subjected to the Taft 1952, S21°W componen
with acceleration ordinates multiplied by the factor of 3, as was done
before. A comparison of some significant response parameters with
earlier results (where P-A was ignored) is shown in Figure 5.3. The
maximum floor displacements have increased by about 10 percent due to
the P-A effect whereas the maximum absolute floor accelerations are
generally less, indicating that the system has become softer due to
the P-A effect. The column moments and the ductile deformation of
girders are larger when P-A 1s included.

Next, the standard 10-story frame with Ramberg-Osgood girders
(r = 10) was analyzed for the same Taft accelerogram. A comparison of
the results with and without the P-A effect is presented in Figure
5.4. Contrary to intuition, the floor displacements are less with
P-A  effect included. But the difference in the lower stories is so
small that it is not even seen in the figure, while in the upper half
of the frame the difference is of the order of one percent or less.

The other three response parameters show a mixed trend of being less
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in some stories and more in the others. A comparison of Figures 5.3 and
5el4 shows that the effect of P-A 1is more pronounced in the elastic
frame than in the inelastic model.

A comparison of the energy versus time curves for the elastic
and the Ramberg-Osgood models with and without the P-A effect is
shown in Figure 5.5. A similar comparison of the displacement versus
time curves for the 10-th story mass is presented in Figure 5.6. The
response curves with P-A included tend to oscillate about those with-
out P-A . But the fluctuations in the elastic case are more than in
the inelastic frame. In Figure 5.6(a), a slight increase in the period
of lateral vibration can also be seen due to the P-A effect, which is
much less pronounced in the inelastic response. A close examination of
the input energy curves of Figures 5.5(a) and (b) also shows that the
increase or decrease in energy due to the P-A is similarly distributed
with time for the elastic and the inelastic cases. Similar observation
can be made in Figures 5.6(a) and (b) for the lateral displacements.

The 10- and 25-story standard Ramberg-Osgood frames were
analyzed for the El Centro 1940, N-S corﬁponent by 1.5. The comparison
of these results with the corresponding earlier results without the
P-A effect is presented in Figures 5.7 and 5.8, respectively. The
change in the maximum response parameters due to the P-A effect is
generally of the order of one percent or so and shows a mixed trend of
increase and decrease.

On the basis of these results it appears that in typical
multistory frames the P-A effect influences the elastic response by

as much as 10 percent, whereas its effect on the inelastic response is
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less significant, being of the order of one percent or so. Also, the
magnitude of the change seems to be unaffected by the height of the

structure or the type of the earthquake.

5.3 Axial Deformation of Columns

5.3.1 Procedure

During lateral vibration of multistory frames axial forces are
induced in columns which give rise to vertical displacements of the
girder ends. The effect of the axial deformation of columns is general-
ly ignored in dynamic analyses of multistory structures. In other
words, the columns are assumed to be infinitely rigid against axial
loads. This approach was used during the first phase of this investiga-
tion and now the axial deformations of the columns will be considered
in order to evaluate their influence upon the inelastic response.

In Step (2) of the analysis, which was described in Section
2.3, the incremental joint rotations, A®'s , are computed from the known
values of the Ax's . Including the vertical deformation of the joints
increases the size of the stiffness matrix so that the stiffness matrix

equation of the structure takes the form

Taal T T ]
N e I d
4AML = Ko ! Koo Koy {A@ ¢ (5.8)
;AVj _ny: Ky@ Kyy EAY—

In the computation of lateral response of the frame the vector

|
\J'LAVFZ {o} (5.9)
|
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so that the second sub-matrix equation of Equation (5.8) can be written

as

K K., K ;;’A@}
{o} = ox {n} + KQQ K@yi‘gA
K .
yx | yo YY) yJ
This can also be rewritten as
K@x‘ K@@ K@y (AQ}
- {rx} = % (5.10)
_ny Kyo  Kyy | &V

This matrix equation has to be solved in Step (2) of the compu-
tational procedure for the incremental joint rotations and vertical
displacements, AO's and Ay's , respectively. For a symmetrical single-
bay frame of N stories (as considered in this investigation) Equation
(5.10) represents a set of 2N simultaneous linear equations of equili-
brium. All the sub-matrices in this equation are of order N x N . Also,
it turns out that the sub-matrices K@g and Kyy are symmetrical tri-
diagonal matrices and Kgy (= Ky@) is a diagonal matrix. The sub-matrix
Koy 1s also a tri-diagonal matrix involving the stiffness coefficients
of the columns only, while ny is a null matrix.

The 2N x 2N stiffness matrix on the right hand side of
Equation (5.10) can be transformed into a symmetrical pentadiagonal
form by rearranging the rows and columns. The entire Equation (5.10),
transformed in this manner, was solved by a recursion scheme which
turned out to be very efficient.

The rotations and the vertical displacements at the two ends

of each girder are equal in magnitude because of the symmetry of the
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frame. Therefore, the girders can still be treated as antisymmetrical
in bending. This is shown in Figure 5.9. The Ramberg-Osgood M-©

relations (2.13) and (2.14) are still valid in the following modified

form:
r-1
o _ M S M
oy My 11+ 253 lMyl } (2132)
0'-0,  M-M M-M_ 7L
o _ 0 1 43 |l—2| (2.14a)
20 EMy r+2 2My
where,

9" =0 - (2y)/L (5.11)

© is the total joint rotation taken positive if clockwise and y is
the vertical displacement at the left end of the girder, considered
positive upwards. The incremental joint rotations, ©'s, as obtained
from the solution of the matrix Equation (5.10) are modified by making

use of Equation (5.11) in incremental form as
N9 = N0 - (2°Ay)/L (5.12)

These AO's are the increments in the ©''s satisfying the Ramberg-

Osgood hysteresis behavior defined by Equations (2.13a) and (2.1ka).
These are the modifications which were needed to make the

analysis include the effect of axial deformation of columns. It may

be noted that the computation of stiffness sub-matrices Kgy, K and

yo
Kyy in Equation (5.10) requires the areas of the column sections in

addition to the flexural stiffness properties of the columns and girders.

The areas, A, for the 14 WF sections from the Handbook of Steel Sections
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Figure 5.9. Girder bending with vertical
Joint displacements.
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were plotted against their moment of inertia, I, , values on a log-log
graph. A straight line was then fitted through these points, whose

equation is

X

) (5.13)

A= 50 in.g————————E
2100 in.

This empirical equation was used to derive the areas of the column sec-
tions from their I, wvalues, which for the standard LO-story frame were
tabulated in Table 3.1. The lengths of the columns equal to the depths

of the girders at the connections were treated as rigid stubs in axial
deformation also, as was done before in flexure. The deformable length

of columns in the i-th story was, therefore, taken equal to (Hi—di) 5
where H. 1is the height of the story from center to center of the girders,

1

and dy is the depth of the girder in the i-th story.

5.3.2 Results

The effect of the axial deformation of columns was first
evaluated on the 10-story standard Ramberg-Osgood frame subjected to
the Taft 1952 accelerogram. The results of this analysis are presented
in Figure 11, where a comparison is also made with the corresponding
response parameters previously determined without this effect. The
story displacements have increased by about three percent whereas the
column moments and girder ductility ratios are less by as much as 10
to 20 percent . As is commonly understood, the effect of axial deforma-
tion of columns is to make the system softer. This tendency can be

clearly seen in these results.
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In Figure 5.12 are shown the maximum vertical displacements
of the Joints and the maximum compressive forces in the columns as ob-
tained from the above analysis. The maximum vertical displacement of
the top floor joint is 0.226 inch and the maximum total column load
(static + dynamic) in the bottom story is 783.7 kips which is about
three and one half times greater than the static load in that column.

It appears, therefore, that a dynamic magnification of this order can
be expected in the column loads of multistory buildings when subjected
to severe earthquakes, such as the one considered here.

The influence of the axial deformations on the inelastic re-
sponse of this 10-story model seems to be much larger than that of the
P-A effect, as can be seen from Figures 5.11 and 5.% . What happens
if the two effects are taken together? The 10-story frame was again
analyzed for the same Taft accelerogram, but this time including the
P-A as well as the axial deformation of columns in the analysis. The
results are shown in Figure 5.13 and compared with the results when
neither of these two effects were considered. The results show a predom-
inance of the axial strain effect in the combined influence of the two
effects. This again confirms the insignificant influence of the P-A
effect on the inelastic response of multistory frames.

It is logical to believe, from the analysis as well as the
results (Figure 5.11), that the effect of axial deformation of columns
is to make the structure softer by reducing its lateral stiffness. The
elastic modal periods of this 10-story frame were computed by including
the effect of vertical joint displacements. This involves determination

of the lateral stiffness matrix, X;, , from Equations (5.8) and (5.9).
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The expression for K%x can be written as

_— ]
K
. K ‘ . TRy ox
[Kpd = [Byped = [Kyg : Koy { (5.14)

Ko Koy | K

If the matrix inversion involved in Equation (5.14) is performed on the
full 2N x 2N matrix, errors may develop because of the large differ-
ence in the order of the flexural and axial deformation stiffness values.
This was pointed out by Rubinstein.(gu) To avoid this difficulty the
inversion was performed by partitioning the matrix as shown in Equation
(5.14). 1Inversion by this technique involves inverting smaller N x N
matrices each having elements of the same order of magnitude.

The fundamental period of the frame computed by using the
stiffness matrix 'x from Equation (5.1&) was 1.45 seconds as compared
with the previous value of 1.25 seconds. Thus, the axial deformation of
columns increased the elastic fundamental period of the 10-story frame
by 16 percent. It would be interesting to see if this period change
could predict the change in the response that was caused by including
the axial deformation of the columns. Thus, the stiffness of the 10-
story model neglecting the axial deformation of the columns was propor-
tionately reduced to make its elastic fundamental period equal to 1.45
seconds.

This was done to simulate the effect of axial deformation
of columns on the elastic stiffness of the frame. The newlO-story
Ramberg-Osgood model, with T = 1.45 seconds but the M, -values of

the members remaining unchanged, was analyzed by the old procedure of

Chapter 2 for the same Taft accelerogram. The results are shown in



-130-

Figure 5.14 through 5.16 along with their comparison with the results
previously shown in Figure 5.11. A study of the Figure 5.14 shows that
change in the inelastic response caused by this period change is about twice
what was caused by permitting the axial deformation of columns in the ori-
ginal structure. But the trend of these two changes on the response results
is similar although their magnitudes are different. Figure 5.15 shows the
energy~-time curves from these three analyses, while the displacement-time
curves of the 10-th story-mass are shown in Figure 5.16. These response
parameters have quite different time variations. These results seem to
indicate that the effect of axial deformation of columns on the inelastic
response of a structure may not be predicted by an equivalent change in its

elastic stiffness.

5.4  Damping

5.4.1 Procedure

A good representation of damping for our multistory models

having equal floor weights appeared to be interfloor viscous dashpots
of equal magnitude in each story as shown in Figure 5.17. This repre-
sentation has the additional advantage of simplifying the analysis.
The value of the damping force per unit velocity, S , was determined
to provide a specified percentage of critical damping, B , in the
elastic fundamental mode of the 10-story frame. The determination of
P involves the dominant complex eigenvalues of an unsymmetrical matrix
which is obtained from the mass, damping and the stiffness matrices of
the structure. The method, which was earlier used by Berg,<7) was em-
ployed for this purpose. For our models the mass matrix is a diagonal

matrix and the damping matrix, D , for the dampers, as shown in Figure

5.17, takes the form,
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2 -5 =
-5 25 -5 ©

(D] = -8 28 | (5.15)
; . 28 -s;

- 8 Sipxnw

The value of S for P = 5 percent of critical damping in the
fund amental mode of the 10-story frame was computed to be 2.24 kip—sec/in.
This same aamping force gives 1.61 percent of critical damping in the
fundamental mode of the 25-story frame. For a different value of B ,

S5 could be computed by simple linear proportioning.

To incorporate this form of damping in the analysis of the

structural response, the differential equations similar to Equation

(2.1) are

m{x} + [D{z} +{q} = - [m]¥ (5.16)

These equations of, motion were then solved by using the Runge-Kutta
procedure as before, with the other elements in the analysis remaining

unchanged.

5.4.2 Results
Analyses with interfloor viscous damping were performed on the
10-story standard Ramberg-Osgood frame subjected to the Taft 1952, S21°W
x 3.0 accelerogram. The damping force was varied to give values of
B=1,2, 31/2, and 5 percent. The results are presented in Figures

5.18 through 5.22.
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Figure 5.18 shows a comparison of some of the significant
response parameters for the three cases, i.e., with B = 0, 1, and 5
percent. A small fraction 1 percent of critical damping in the funda-
mental mode does not affect the displacements as much as it reduces: the
story shears, column moments and the girder ductility ratios. A five
percent damping, which is a rather high figure, affects the displacements
quite significantly while reducing the other three parameters by as
much as 50 percent in some floors. Another significant point worth
noticing in this figure is that even one percent damping is sufficient
to eliminate the accentuation of response near the top, i.e., the "whip-
lash" effect.

The input and the dissipated energy versus time curves for the
case of no damping and B = 1 percent are shown in Figure 5.19(a) and (b),
respectively. A similar comparison of the displacements of the third
and the tenth floor is presented in Figure 5.20. The small value of
damping, B = 1 percent, has an insignificant effect upon these curves
in general. 3But it can be clearly noticed that this amount of damping
is sufficient enough to eliminate the contribution of higher modes in
the response after about 10 or 15 seconds. This appears as smoothing
of small wiggles in the input energy and the displacement curves for
the damped case.

The total dissipated energy in the damped case (Figure 5.19)
shows a more steady increase and seems to pass through the upper tips
of the steps of the corresponding curve in the undamped case. The result
i1s that the stored energy in the damped model is in general less than

that in the undamped case. Figure 5.19(b) also shows the individual
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shares of the damping and the inelastic action in the total dissipated
energy at any instant of time. In the first ten seconds of response

the share of the inelastic action is more than the damping. But after
this time the inelastic energy remains more or less constant whereas

the damping energy grows steadily with time. It appears in this case
that the energy dissipation through inelastic deformation is more signi-
ficant in the beginning of the response after which almost all the dis-
Sipation of energy is through viscous damping. The same observation was
made for higher damping ratios also, the results of which are shown in
Figure 5.22.

The effect of duration of the earthquake upon the individual
shares of inelastic action and damping in the total dissipated energy
for damping ratios ranging from O to 5 percent can be seen in Figure
5.21. Here the two energy ratios, i.e., inelastic/total dissipated
and damping/total dissipated for all values of B , are plotted at 10,
20 and 30 seconds of the response. It is clear from these curves that
for all values of damping the share of the inelastic energy in the total
dissipated energy is higher at 10 seconds response and decreases gradually
as the duration of the earthquake increases.

In Figure 5.22 three energy ratios, i.e., damping/input, in-
elastic/input, and total dissipated/input were plotted at the end of the
30 seconds of response to the Taft accelerogram for the cases, B = 0,
1, 2, 3.5 and 5 percent. These points were joined by three smooth
curves. The first two ratios show an increase and an exponential decrease
respectively, with increasing damping. The ratio of the total dissi-

pated energy/the total input energy shows a slight decrease in the
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beginning followed by an increase for higher damping ratios. It was
also found that the total input energy varied with damping similarly
as the above ratio of the total dissipated energy to the total input
energy.

On the basis of these very limited analyses i1t can be said
that even one percent of critical damping in the fundamental mode can
cause a considerable reduction in the inelastic response of a multistory
structure. This reduction is much more pronounced near the top storiles
indicating that the contribution from higher modes i1s more sensitive
to damping than that from the lower modes. This is perhaps due to the
fact that the fraction of critical damping is higher in the higher modes
for the interfloor dashpot model used. For the Taft earthquake most of
the inelastic deformation occurs in the first few seconds and thereafter

the damping is primarily responsible for the additional energy dissipa-

tion.



CHAPTER 6

SUMMARY AND CONCLUSIONS

This dissertation presents a study of the inelastic behavior
of unbraced multistory building frames when subjected to earthquake
ground motion. A basic assumption made in the analysis was that the
columns would behave elastically while all the energy dissipation of
the structure would be provided by girders having stable hysteresis
loops. A Ramberg-0Osgood type moment-curvature relationship was
assumed for the girders. The lateral strength of the structure was
proveded by the flexural resistance of the frame members only. The
effect of shear and axial strains, the sidesway effect of the
gravity loads (P-A effect) , and non-structural or material damping
were not included in the analysis for the first phase of the study.
However, the P-A effect, the effect of axial deformation of
columns, and the effect of viscous damping in the form of inter-
floor dashpots were studied in the later phase of the work.

A description of the method of analysis, which was
developed for use on a high-speed digital computer, was given in
Chapter 2. The equations of motion for the multistory building frame,
treated as a lumped mass system, were solved by a Runge-Kutta fourth
order numerical procedure. Bach lumped mass was assumed to have
only one degree of freedom, i.e., in lateral translation only.

The response of the frame to the horizontal component of ground
motion parallel to the frame was computed by an incremental technique,
A special hysteresis law was defined for the transient hysteresis

behavior of the girders during the lateral vibration of the structure.

-1hk-
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The program of investigation, including the generation of
the mathematical models of test frames, the choice of earthquake
records, and the schedule of structural parameters whose influence
upon the response was to be studied, were presented in Chapter 3.

A wide range of significant structural parameters was selected.
Three accelerograms, whose acceleration ordinates were multiplied
by appropriate factors to give equal spectrum intensities for each
eartnguake, were selected because they have distinctly different
elastic velocity response spectrum characteristics. In Chapter 4
the results of the scheduled computer analyses for the first phase
were presented along with the discussion and the observations
derived therefrom.

The second phase of the work consisted of modifying the
method of analysis described in Chapter 2 to include the sidesway
effect of gravity loads (the P-A effect), the axial deformation
of columns, and interfloor viscous damping. Analyses were performed
on 10-story models and on a 25-story model, This study gave an
evaluation of the influence of these effects (considered separately)
upon the inelastic response of the frames. The earthquakes considered
in this part of the research were Taft 19952 and El Centro 1940,

This phase of the work was described in Chapter 5.

The results, as presented in the foregoing chapters and
the observations based upon them under the limitations of the
assumptions made in the analysis, are strictly applicable to the
types of structures and the earthquakes considered in the study.
Summarized below are some important aspects of the results which

need emphasis:
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The assumption of elastic columns is well documented by
the results for earthquakes as severe as 1.5 times the
intensity of El Centro 1940 or 3.0 times that of Taft
1952 with the behavior of members determined on the
basis of a yield level as low as 18 ksi. Thus, it
appears feasible that the columns of multistory steel
buildings may be designed as elastic even for earthquakes
as severe as the ones considered here.

The inelastic action of girders tends to decrease the
response by as much as 50 percent as compared with the
results of the undamped elastic analysis. Thus, the
hysteresis behavior of girders alone can be a potential
source of energy dissipation in typical high-rise
buildings during earthquake excited oscillation.

The assumption of the elasto-plasic hysteresis behavior
tends to overestimate the response as compared with that
of a Ramberg-Osgood type hysteresis behavior which is
fairly typical of steel flexural members. An elasto-
plastic structure may also be expected to show larger
permanent distortion.

The elastic fundamental period of a multistory structure
and the general features of the elastic velocity response
spectrum of the earthquake have a marked influence upon
the inelastic response of the structure and can provide

significant information about the expected results.
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Thus, an earthquake having spectrum peaks in the short
period range may be expected to produce greater forces
and deformations in the short-period, lower structures,
and an earthquake having spectrum peaks in the long-
period range will have greater effect upon the taller
structures having their fundamental periods in that
region of the velocity spectrum.

The accentuation of the response near the top of a
normal stiffness-tapered multistory structure, commonly
referred to as the 'whiplash'" effect, may be recognized
as the contribution from the first few higher modes.
This, therefore, is greatly influenced by the velocity
spectrum values of the earthquake in the short-period
region.

Height or the number of stories does not seem to be a
very significant factor to influence the response,
except for the fact that a taller structure would
normally have a longer period so that more higher

modal periods would lie on the significant portion of
the velocity spectrum of the earthquake, thus, resulting
in an increased contribution from the higher modes.
However, the column moments and the seismic base shear
coefficient may be expected to be smaller in a taller
structure than in a short one, irrespective of their

fundamental periods.
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11.
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A uniform stiffness structure shows slightly increased
lateral displacements as compared with those of a normal
stiffness-tapered frame of the same period. The ductile
deformations and forces in the members in the uniform struc-
ture are larger near the bottom, diminishing sharply
toward the top, whereas the stiffness-tapered frame has
relatively uniform distribution. The "whiplash" effect
is absent in the response of the uniform structure.

A reduction in the yield strength of members cuts down
the lateral displacements and the moments and shears in
the columns. But the ductile deformations are increased
in the girders.

The P-A effect influences the elastic response by as
much as ten percent, whereas its effect on the inelastic
response igs insignificant, the change being of the order
of one percent or so. Also, the magnitude of the change
seems to be unaffected by the height of the structure

or the type of the earthquake.

The effect of axial deformation of columns is to make the
structure softer so that the columns and girders response
can be affected by as much as 10 to 20 percent. This
effect may not be predicted by an equivalent change

in the elastic stiffness of the structure.

The maximum axial loads in the columns of a multistory
structure subjected to a severe earthquake can be as

high as three and one-half times the static loads.
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12. Interfloor viscous damping as small as one percent of
critical in the first mode can cause a considerable
reduction in the inelastic response. The reduction
is much more pronounced in the upper few stories
indicating that the contribution of higher modes -
the "whiplash" effect, is very sensitive to damping
as provided by interfloor viscous dashpots of equal
magnitude in each story.

13. For the Taft 1952 earthquake most of the inelastic
deformation of a structure occurs in the first few
seconds, thereafter, the damping is primarily

responsible for the additional energy dissipation.

The investigation was designed to cover a falrly wide range
of structural and ground motion characteristics in order to study
he inelastic behavlior of multistory building
frames, The results and the observations based upon them are strictly
valid for the types of structures and the earthquakes considered in
this study. Care must be taken not to draw too broad and general
conclusions. Nevertheless, the author feels that some aspects of the
results are very significant and contribute to an overall improved
understanding of the inelastic behavior of high-rise buildings
during strong motion earthquakes, thus, fulfilling the basic objective

of this dissertation.



APPENDIX

*
HYSTERESIS LAW

Any procedure for the computation of inelastic response
of a system subjected to random vibration needs a suitable law
which would control the hysteresis loops as the system vibrates.
Such a law takes a very simple form for the conventional elasto-
plastic or bilinear hysteresis models. But for a curvilinear shape,
as is the Ramberg-Osgood model considered here, the problem of
defining a suitable hysteresis law is rather complex. A simple
and convenient law, which was used in the present study, is illustrated
in Figure A and explained below,

Let the moment-curvature property of a structural member
be given by the Ramberg-Osgood relationships as shown in Figure 2.1(b).
In the first installment of loading let the point P; be reached
on the skeleton curve Co . Bquation (2.2) will control the M-
behavior so far. On reversal at point Py the descending branch
C1 will be generated which will be described by the Equation (2.3)
with Pl as its point of origin. If the descent along C; is

continued beyond the point Pl' , point symmetrically opposite to

Pl , the branch curve Cl will slip on to the descending skeleton

*
This formulation of the general hysteresis behavior was developed

and used in force-deflection terms by Professor G. V. Berg for his
study of single-degree-of-freedom systems.(13) The hysteresis law,
as presented here, was used in the present analysis to describe the
moment-rotation hysteresis behavior of the girders of multistory
frames subjected to earthquake motion.

-150-
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Figure A. General hysteresis behavior
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curve POPl' , the Eguation (2.2) coming into action until the next
point of reversal. Let this point be Pl” , the new maximum on the
skeleton curve Cg .

A fresh branch curve Cl' will now emerge from Pl” controlled

by Equation (2.3), which will be valid up to P,'", & point mirror
image of P1” . If the motion reverses before the curve C; extends
up to Pl'”, a descending branch curve C, will emerge from the point
of reversal P, as shown in the figure. This branch curve will pass
through Py (by the closure property of these curves)(12> and then
slip on to the skeleton curve POPl’Pl” unless the motion reverses
before reaching P7" . Let the point of reversal on C, be Py
which will form the originating point for a new ascending branch
curve C3 .

Let the curve 03 define the motion until it reverses at
PM before reaching its closrue point Pp . Cy will be the new curve
descending from PA up to the next point of reversal P5 . The
ascending branch curve C5 will describe the motion up to the point
Py , point of origin for the previous descending branch Cj and the
point of closure of the loop C4C5 . If the amplitude tends to
increase further, the point Py will act as terminus for the curve
05 beyond which the previous ascending branch C3 will carry the
motion up to Ps , the terminus for C3 . If the ascent still
continues, the curve Cy' will take over from C3 beyond Po ,
which will remain valid if the reversal does not occur before P1™,
the terminus for the curve C;" . The curve C,' beyond this point

1

will then slip on to the original ascending skeleton curve Cg, ,
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the reversal on which will mark a fresh point of maximum deformation
Pl””, on the curve C, and the beginning of a fresh descending curve
Cl” as before, In other words, whenever a point of maxima is exceeded
in any direction on the skeleton curve, a whole new set of branch
curves will be generated until a similar thing occurs again.

The scheme as illustrated in Figure A and explained above
is a fairly simple one which can be easily programmed for a numerical
solution., Tt is believed that this law will very closely predict the
actual hysteresis loops which a structural steel member would
generate under a similar deformation history. The points of reversals
of all the branch curves after the most recent point of maxima on the
skeleton curve was reached, of course, have to be retained for guiding
the new branch curves, until the previous absolute maximum on the

skeleton curve is exceeded in either direction of loading.
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