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Abstract:

A desirable truncation of the SPRT would produce actual
error probabilities less than or equal to desired error
probabilities. We present such a truncation, as a function of
desired error probabilities and distribution parameters, when the
observations are IID Normal. This truncation is shown to be
" superior to others in the literature, particularly to Johnson's

working rule.
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Introduction:

Suppose we wish to test Hp: W = wy against Hj: W = w;, by
sequentially observing independent random variables X;, X,, ...,
X, vwith density fi(xi/wj)’ j=0, 1. Wald (7) proposed the SPRT,

truncated at point m, as follows:

Define the log-likelihood ratio at time i

and the log-likelihood ratio up to time n

n
Zy ¢ Z 2y -

i=1

Then,

1,2,...,m

reject Hy if Z 2 b for n

accept HO if Z < a for n 1,2,...,m

=n
and take one more observation if
a<Z <b for n=1,2,...,m-1.
If the experiment has not stopped at or before m observations
then
reject Hg if b >z >0

- m

and accept Hy if a <Z <0 . . . . . (1)

Then stopping bounds a and b are given by the approximation

d 1-4d
aZ 1n --’—B——--} and b= 1n {———/f---l (2)

where °‘d and /Bd are the desired error probabilities of type I and

type II respectively.

It is our objective to choose (in advance) the smallest



truncation point m such that the actual error probabilities «,
and ﬁ;, achieved by the test, are less than or equal to the
desired values «4 and Pd' In addition, we restrict ourselves to
using Wald's bounds (relation (2)), since they are easily
computable and well understood. We thus do not consider non-
constant bound techniques such as those in (1,2).

Wald (7) suggested setting m "large enough" such that the
effect of truncation on the actual error probabilities would be
minimal. (This tends to produce a conservative test, as we shall
see). In this spirit, Ghosh (4) and Johnson (6) give a working
rule for choosing a non-integer truncation point mj* when the
observations are independent and identically distributed Normal
random variables: set m:* = 3 Supy E[N/W], where E[N/W] is the

]

expected number of observations for the untruncated SPRT when W

is the true state of nature. The integer point mj** is then
obtained by rounding up mj* to the next higher integer. It will
be shown later that the mj** thus chosen tends to be
conservative. Aroian and Robison (3) showed that for small m,
actual error probabilities can be computed to any desired degree
of accuracy by . using numerical integration. Their method,
however, becomes tedious for large m as discussed by Golhar (5).
We present here a more efficient method, which produces (for IID

Normal random variables, and for the symmetric case, i.e., when

oy = Fd) a simple relationship between m* (the non-integer

truncation point), x4 = ﬁd and the distribution parameters. We
also show that the value of m* obtained through such a relation-

ship is superior to the one obtained by Johnson's working rule,

in the sense that the resulting truncated SPRT gives a smaller



E(N) for any desired error probability.

Computing the non-integer truncation point m*:

To find the operating characteristic function Lj = L(wj), we
n-1
need the probability demnsity of Z given {:1 a<Zy<b . Let

n-1
Pj(z,n) = Prob. {(En < z) ﬁ:& (a < 2, < b)’W=wj‘} and let pj(z,n) be

the derivative of Pj(z,n) with respect to z. Then successive
convolutions are required to calculate fj(z,n) namely

pj(z,n) = fl(z/wj)
b
pj(z,n) = 4{ pj(u,n-l) f(z-u/wj) du for n > 1

Using these relationships we can calculate the operating

characteristic function

m-1 a o
Ly = 5 [:{”pj(z,n) dz]+ _é pi(z,m) 4, ...(3)

The following procedure is used to obtain m* when fi(xi/wj)
is Normal with mean v (j=0,1) and variancea‘2
i) Given L= oy =/3d, compute Wald's stopping bounds a and
b from equation (2).
ii) For a given value of discrimination factor d = (wg~w;)/¢
use relationship (3) to compute o (m) (=;%(m)) =

Ll(m) for different values of m.

iii) Find m* by interpolation so that « (m) = o.

Results:
Values of « were varied between .0l and .2, and values of
d between .5 and 2. For each o, figure 1 shows 1ln(m¥*) vs.

In(d). An essentially linear relationship between ln(m*) and



1n(m*)
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Figure 1 - The relationship between in(m*) ana 1n(d)
for IID Normal random variables.



1n(d) is seen. Using a least squares procedure, a constant slope
of -2.09 is obtained for all fixed o between .01 and .2. This

suggests that m* and d have the following simple relationship:

In(m*) &% 1n[k(«x)] - 2.09 1n(d), (4)
k(«)
or, n* X -s----
4209

where In[k(x)] is the intercept at d=1, and depends upon the
value of «.
To obtain k(«), m* was plotted against for d=1 as shown in

figure 2, The curve is well fit by the equation:

]

k(o) & -79 + 72 (x)"-079 (5)
Using equation (5), relationship (4) can be written:
In(n*) = 1n[-79 + 72 ()™*979] - 2,09 1n(a) (6)
Thus there is a useful and simple linear relationship
(6) between m*, o and the discrimination factor d. We can obtain
the smallest integer m** by rounding up the solution to (6).
To show that the truncated SPRT using m** thus chosen gives
a smaller E(N) than the one obtained by using Johnson's working
rule it suffices to demonstrate that m¥* < mj* for different d
and «{. The solid lines in figure 3 show (linear) relationships
between 1n(m*) vs. 1n(d) for « = .01, .1, and .2. The dotted
lines correspond to 1n(m.*) vs. 1n(d) for the same values of x.

J

As can be seen, mj* is 15% to 50% higher than m*. Thus,
Johnson's rule gives a very conservative truncation point, giving

a value of E(N/W) greater than that obtained by using m¥*.

Conclusion:

We have established a simple relationship between a
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for IID Normal random variables.
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for IID Normal random variables.



useful truncation point m*%*, « and d for tests using Wald's
bounds. We have also shown that the SPRT using this truncation
point gives a smaller E(N/W) than using a truncation point
obtained from Johnson's working rule, yet still gives actual
error probabilities within desired limits.
In this paper we only analyzed the symmetric case (%, =/8d)’
and Normal observations. Work is in progress on the non-
symmetric case, and when the observations are exponentially

distributed.
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