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THE APPLICATION OF A HIGH SPEED COMPUTER
TO THE DEFINITION AND SOLUTION OF THE
VEHICULAR TRAFFIC PROBLEM

Harry H. Goode

Introduction

The implications of the title of this paper will be Jjustified as
follows: Operations researchers have a fairly well developed and agreed
upon methodology. This methodology stresses the use of mathematical models
which are central to both the statement of the problem and evaluation of its
proposed solution. These models are classifiable according to whether they
are analytic or numerical and whether they are deterministic or stochastic.
Bach of these types of models has been applied by some investigator to the
vehicular traffic problem. The numerical stochastic type is best used with
the aid of a large scale digital computer. This has been done notably by
Gerlough at the University of California at Los Angeles and by the present
author and others at the University of Michigan. By the latter, the methodo-
logy of the operations researcher, referred to previously, has been applied
in detail. The computer, then, furnishes a model by means of which the
entire definition and solution of the problem may be attacked.

In what follows, each of the parts of this argument is covered in
some detail. Further, a comparison is made of the analytic model with the
numerical one on one hand, and the use of trial and error as opposed to the
use of a model at all on the other hand. Further, on the basis of the work
at Michigan, a guide to the selection of particular computers for this type
of problem is derived.

Operations Research and the Model

It is true, as Bridgemanl says, that "there are as many scientific
methods as there are individual scientists." But there are similarities
among these methods. However permissible it may be for the individual sci=-
entist, working alone, to avoid discussion of his methods with his fellows,
the team worker can afford no such hermitic independence. The operations
researcher and the system engineer are frequently team workers. They can
and do describe the steps of their method of problem attack. In a large
measure they have reached some agreement on the methods to be used.

My notes show the following ordering (with no source) of the steps
used by the operations researcher.



"
°

. a background study of the general nature of the
problem and the people and things which impinge on it; choice
of one or more measures of effectiveness; set up of a mathex
matical model to represent the system under study; gathering
of data; application of logical techniques to the solution of
the modgl; search for solutions to the problem in the light of
the measures of effectiveness; and if appropriate evaluation
of the resulting changes."

The position of the mathematical model in this description is central; and
with good reason.

To emphasize this last point and to provide the ground work on which
to base the attack on the specific vehicular traffic problem, these steps are
expanded somewhat in the following paragra,phsa2 Of course. each operations re-
searcher will want to modify these statements to his own thinking; which just
underlines the truth of Bridgeman's statement.

Figure 1 presents a dilagrammatic representation of the relationships
among the steps in the operations researcher's methodology. The statement of
the problem is made up of several parts:

_ (a) An examination of the enviromment including establishment of
,the Jargon to be used in describing the problem and the people and things
which are associated with the problem.

(b) The viewpoint from which the problem is to be attacked. It is
trivially obvious that in a game between two opponents the problem is the same
for both but the solution is quite different because of the differing viewpoint
of each. In the problems with which we are concerned, the viéwpoint of pedes-
trian and driver differ. There are other viewpoints invdlved.

(¢) The choice of a measure of effectiveness with which solutions
to the problem are to be evaluated.

(d) A statement of the permissible areas of solution. (This is
what is usually implied in the remark that the statement of the problem is 80
percent of it solution. The areas of permissible solutions, when clearly de-
fined, will largely determine the nature of the mathematical modgel. )

The mathematical model is the attempt to restate the problem quan-
titatively. It implies a certain functional form, and a knowledge of the .~
constants which must be inserted into the resulting functional form. Neither
of the latter two objects is available without experiment and this produces
naturally the third box of the diagram labeled design and analysis of experi-
ment. The implication of the appearance of analysis prior to the conduct of
experiment is that the method of analysis should be predetermined. After the
experiment has been well defined, its conduct leads to measurements. The re=-
sulting estimates of the functional forms of the relationships governing the
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variables involved, and of the numerical values of the constants in these forms,
are fed back to make the model complete.

It is through the model that the statement of the problem is connected
with its solution. The actual problem solution is the process of devising al-
ternatives. This part of the problem requires ingenuity and innovation. Heving
selected alternatives, it is necessary to evaluate them as proposed solutions
. for the problem. It is here that the process connects up again with the mathe-
matical model.. Presumably, after an evaluation has been made, a choice can also
be made. This choice implies an implementation of the proposed solution which
in turn affects the mathematical model which then starts the process over again.

Thus the model is central to the methodology of the operations re-
searcher. The model offers understanding of the process; it makes possible the
evaluation of the effects of a change of one variable on all other variables;
it provides a skeleton for the intuitive kind of thinking that leads to the
choices of alternatives; and finally, when solutions are suggested, it provides
a means of evaluating them.

Classification of Models

We turn now to an examination of the various types of mathematical
models which may be used. Figure 2 shows a two-by-two-fold dichotomy of
mathematical models in-use at the present time. These models are either analy-
tical or numerical, deterministic or stochastic. The engineer and scientist
both have occasion to use all of the types represented here. For example,

F = Ma as shown in the anglytical deterministic example expresses a relation-
ship among F, M, and a, such that for any values assigned to two, the third
is completely determined. No deviation from this relationship is permitted.
In the analytic stochastic case, the example, that of the Poisson distribution,
expresses the statistical statement that on the average @ certain number of
events will occur in a given interval of time (or alternatively, a number of
outcomes in a given region of space). It says nothing about any particular
occurrence., Both of these have the charaécteristic that one must know theé:
process underlying the phenomenon being described in some detail. The result
is an expression in closed form, mathematically. In the case of the numeri-
cal model it is not necessary to know the mathematical relationship whieh
describes the result of the process. As shown in the figure, for .numerical
integration as used by, say, the chemical engineer, the integral of the func-
tion is obtained by dividing the function into a set of rectangles with small
enough base to make the error reasonably small, and adding up the resulting
areas. The function so integrated may even be empirical in nature. All that
is required is a numerical representation of the function in question. '

The numerical integration is still completely deterministic. The
model represents a one-to-one relationship between the function and its inte-
gral. For a given base line increment, the same result will always be ob-
tained. Consider the lower right box in the figure. Here the function is
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again represented dlagrammatically. However, in this case the scale is so
chosen that the entire portion of interest of the function to be integrated
lies inside the unit square. We can obtain an estimate of the integral of
this function in the following fashion: From a table of random numbers lying
in the interval O to 1 choose pairs of such numbers repeatedly. Plot a point
in Figure 4 with each pair of random numbers as coordinates. Do this repeat-
edly until a large number of points have been plotted. Then count the number
of points falling between the graph of the function and the x-axis. The ratio
of this number to the total represents an estimate of the fraction which the
integral is of unity. Thus a stochastic process has been used to examine a
perfectly definite value of the integral. Of course, this could have been
done much more quickly with a planimeter. However, in the case of five or
six variables the method may have some utility. It is used here only for
illustrative purposes.

The examples of the various classes of mathematical models have
been chosen to illustrate the way they are used by engineers and physicists.
The operations researcher (and the system engineer) has a version of each of
these types. Like the engineer he has, in the past, leaned on the analytical
approach, but unlike the engineer, he has stressed the stochastic model. And
this is as it should be since the amount of uncertainty in the problems with
which he deals is greater than in most cases dealt with by the engineer.
Neither has put much emphasis on the numerical stochastic model, its useful-
ness being limited by available computational speeds. This paper emphasizes
“the numerical stochastic model used with a digital computer for the investi-
gation of traffic. Before going into this matter, however, we examine models
of the various classes as they have been used in traffic,

Traffic Models

A simple example of an analytic deterministic model for traffic is
that developed by Professor R. B. Morrison of the Aeronautical Engineering
Department of the University of Michigan (unpublished notes). In this model
we are interested in car spacing on an open road, single lane, and its re-
lationship to speed. Let p be the density of cars per mile. Then

5280
L+L

where / 1s the length of a car and L is a fixed spacing between cars, both in
feet. The number of cars passing a point per hour will be given by

m = Qv

where v is the speed of the line of cars in miles per hour and m is in cars
per hour,
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Suppose that each driver follows a rule which makes him keep a
distance L behind the car in front, such that, with a braking deceleration a
he is just able to stop his car bafore hltting the one in front. Then

Now a maximum flow will be obtained if v is chosen such that the
derivative of m with respect to v is zero. The execution of this step yields

v —-«/ 280
and consequently, g = L.

From this extremely simple analytical model we are able to see that,
under the rules, the best spacing for maximum flow is obtained when a car
length is kept between cars. Further, the "capacity" of a road under this
rule may be estimated and the effect of braking deceleration on the mass flow
of cars is available. This model has been extended by Professor Morrison to
include the "wave'velocity of the starting action introduced when a light
turns suddenly green, and each car accelerates as soon as a reaction time has
elapsed. F&rther extensions of this type of approach are contained in
Lighthill's > work.

We illustrate next an analytic stochastic model. It is taken from
Kendalla6 In this model we are interested in the flow of traffic in a single
lane through a toll booth on a bridge. If C, represents a car which has just
been served and Cq the next car, we employ the following notationg

Tl = time between instant after C, service starts and the
instant after Cl leaves booth.

r= number of arrivals to the waiting line, if any, in
time Tl o

n_ = number of cars on the waiting line the instant after
Co leaves.,

ny = number of cars on the waiting line the instant after
C, leaves.
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m = average number of cars arriving per unit time
(1/m then equals average time between arrivals).

A = average number of services per unit time (l/k
therefore = average time per service).
p = m/)\ (assumed less than 1).

In case there is a waiting line when C_ ends his service, the instant
after he leaves will coiuncide with the instant after Cl begins service. If no
line waits, these times will be distinct.

If & is taken as 1 when n, = 0, and O when n  does not = 0, we have

Dy =0y + Ty - 1+59,

E(3)

it

probability of finding line empty,

1 =2p
independently of probability distributions of arrivals or services.

In similar fashion, with some further manipulation, Kendall shows
that

E(n) =p +

if the car arrival distribution is Poisson. If further, the service time dis-
tribution is exponential with mean l/k then with v = waiting time and T = ser-
vice time,

2, m  Om2
E (H) Q - U
2f(1 - p)

1t

B(v) o (122 0d)
E(T)  2(1 - p)

Kendall points out that the ratio of the expected waiting time to
the expected service time is in a sehise a measure of the goodness of the
service process. If this is accepted, then in case the arrival distribution
is exponentially distributed (i.e., services end at essentially a random
time), this ratio becomes p/{ - p)) If one is able to iron out his services
so that a constant time is taken for each (i.e., the service time variance
is zero), :
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then the ratio is cut in half and becomes p/2(1 - p). Thus one may, by means
of such a magdel, examine various conditions and investigate changes in the
model. The rigidity even for such an unsophisticated model is obvious. Only
one lane is being handled, the introduction of various distributions requires
that they be mathematically tractable, and the measure of effectiveness must
be built into the mathematical expression so that it may be examined.

Further models of this type have been built byNewell7 of Brown
University and others. Considering the channel described as a traffic light
instead of a toll gate, Newell has added to the model a red and green cycle
which is controllable. Perusal of his paper shows the complication of handling
even such a minor bit of realism as the introduction of the lighting cycle.

As in other branches of science and engineering, in traffic it is
possible to introduce a numerical deterministic model that is sometimes useful.
In connection with the determination of pathways for new highways, it has been
a practice in the traffic engineering business to conduct what i known as an
origin/and destination survey. At the points of interest for measuring, the
traffic engineer halts cars and asks of the driver his origin, destination and
proposed route. These are plotted out on a map and depending upon the density
of pathways over the various routes, the availability of land, the various
political facets of the problem (and other considerations no doubt), choices
" are made of routes for new highways. I believe that recently, in Chicago, a
group doing an origin-destination study used a digital computer to plot out
the results of the study. A computer can, of course, be used to investigate
various arrangements of routes to see what the resulting traffic burden would
be assuming that there are no changes in driver desire. (This latter assumption
is as usual an extremely shaky one.)

Finally we come to the numerical stochastic model to which we will
give detailed attention. Such models were first investigated, relgtive to
traffic, at the University of Michigan by Goode, Polmar and Wright™ and at
the University of California at Los Angeles by Gerlough,9

Gerlough investigated the problem of representing the flow of cars
on a freeway with a digital computer. His model represented the two=-lane
freeway linear geometry by registers in the SWAC compﬁtere A one corresponded
to a car at a particular position, a zero to an empty space. The same geo-
graphical position was represented in several registers each of which corres-
ponded to a particular speed of actual motion and a desired speed on the part
of the driver. An algebra of car motion (multiplication, extraction and addi-
tion) was developed to make the model "run!. The movement of any car de-
pended on its position relative to cars in front, at its side, its actual
speed, and its driver's desired speed. The model provides a method of exami-
ning capacities under various actual and desired speed distributions.

The model created by Goode, Polmar and Wright was intended as a

first step in the creation of an overall simulated model for investigation on
a digital computer. Although considerations concerned representation of an
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entire city, only enough effort was available to represent a single intersection
of a simple type. The idea behind the model was to allow for the representation
of individual cars in the model, the movement of these cars to be determined
according to the conditions surrounding the car at any particular moment. Pro=-
vision was made for the origination of cars at points entering lanes approaching
the intersection in question, and for a stochastic machine for determination of
the direction of travel of any particular car entering the intersection (i.eo,
right, straight shead, or left). At the outset two possible methods of handling
the problem presented themselves; 1in one, a number is recorded in the digital
computer representing the car's present position, its direction of motion, its
speed, its desired destination, etc., etc. Then by operations on this number,
the car is made to "move" in the model. This would be done for every car at

the end of small time intervals. An easier mode, but perhaps not quite as
flexible, is to break up the geographical model into positions which may be
occupied by cars. This model would then be scanned for every small instant of
time (finite intervals) to determine whether or not each gebgraphical position
in the model was occupied by a car. If the position were odcupied, then the

car would be handled according to the conditions surrounding it at theé moments
and the rules created to govern such conditions. To make a car move forward,
the present position would be emptied and the next position filled. The

latter method was chosen as the simpler and therefore more readily demonstrable
~approach.

A representation of this model is shown in Figure 3. Each of the
positions in the line approaching the intersection are represented by x's.
Positions in the right turn are represented by ¢ blocks; straight ahead posi-
tions are represented by o blocks. The left turn is represented.by‘L:]blocksn
It is immediately evident that the flexibility of the model is limited by the
fact that speeds are determined by the choices of the lengthg of the intervals.
All cars traveling through a given position travel at the same speed. This
would not be so in the first suggested method but this speed assumption is
tenable for a first demonstrativn.

It merely remains now to choose a logically consistent set of opera-
tions on these positions to produce a model of the movement of cars through an
intersection. Although no great detail can be given here, it is worth indi-
cating some of the notions. Every approach to the intersection, north, east,
south and west, has a similar layout of points to that shown in the figure.
Each point represents a block 11 feet long. Since cars were assumed to be
18 feet long, any car arrested with its front bumper at the initial point
of one block would stretch back into the block following for a distance of
7 feet. This would leave 4 feet between it and the front bumper of a car
immediately behind. Provision was made for storage in the computer of the
following information: whether or not a car block was occupied--this was
done by a register of the digital computer being filled with one's and zero's
according to whether or not a car was or was not present in the corresponding
bit-block arrangement; whether the light was presently green or red in a given
direction and the amount of time it had been so; information for the generation
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of a Poisson distributed origin of cars at a point some 20 car positions back
from the intersection in each direction; a similar random number routine asso-
ciated with turns at the intersection.

In operation, each position in the model was examined to see whether
a car was present. If there was one present, it was moved in accordance with
the conditions around it at the moment. These conditions were determined by a
set of logical rules. For example, a car which was behind a car not moving
could not move to within fewer than four feet of the car in front. However,
it could move only to within 26 feet (2 blocks plus 4 feet) of a moving care
If the car were at X 1 (that is, just entering the intersection), a set of
logical rules and random numbers would determine whether it moved into the
intersection and in which direction it would turn. Similarly, in each time
interval, the decision as to whether or not to generate a car was determined
by a set of random numbers., This was done for each point of origin of cars.
Provision was made for the cars to backlog into a point outside the entering
lane. With all of these rules, it was possible to vary the rate of arrival of
traffic, the cycling of the light, the proportion of the light cycle which was
red, and the fraction of cars which would make a turn in each direction at the
intersection.

With such a model it becomes possible to create more and more com-
plicated situations by making the output of one intersection, which in the
_present model merely disappears, the input to another intersection as shown
in Figure 4. This situatiord has been worked on sporadically during the past
year. A progress report is being given in another section.

The outcome of running this model is shown in Figure 5. The measure
of the effectiveness chosen was the average delay per car. Other measures of
effectiveness could be used equally well, For example, the number of cars in
and out of a region, or the number of cars through an intersection per unit
time, or the length of time from one point in a city to another are other
possibilities. The computer calculates these measures equally well from the
same model., The figures in the graphs show a reasgonable agreement with real
intersections as measured by traffic engineers. However, since no particular
intersection was in,mind at the time this model was created, no real compari-
son is possible.

Of major importance in connection with such a model is the length
of time required by the computer to represent a given situation and the amount
of fast storage taken by the machine. Because of the mode of representation
used here, the amount of storage required on MIDAC, the aigital computer used
at the University of Michigan, was relatively limited. However, the time
taken for the computation was 3.2 x real time. This means that if ten minutes
of traffic flow was simulated for this particular model, the computer took
32 minutes to make the necessary calculations to "run" the model and to deter-
mine the measure of effectiveness; in this case, average delay.



Estimates of Computer Capability

This model was a relatively simple one. It made no provision for a
parking regime, two-lane traffic in one direction, more intersections, etc.
‘There are a whole host of extensions of this model which are possible and it
then becomes important to consider whether a digital computer can continue to
handle in a reasonable time the important problems of calculation which are
set up thereby. To investigate this problem, Figure 6 shows a rough plot of
the speeds of the various computer classes in terms of multiplications per
second. The actual position of any particular computer should be taken with
a grain of salt. Sometimes the multiplication speed is not defined unless
the particular multiplication is explicitly stated. In other cases the source
of information was not completely accurate. The purpose is not to compare the
computers so much as to get an idea of capabilities of computers in general
for this type of problem. The figure shows a plot of multiplication time versus
words of fast storage. The number of words of fast storage are the only things
of interest since to go outside of the computer to a subsidiary mode of storage
as, for example, cards or punched tape or in the case of a high-speed computer
to a drum takes an excessive amount of time, Time ag has been noted is of the
essence in such a problem.

The size of a practical problem on the computer may be estimated as
follows: In the model discussed above some 25 words (registers) of information
storage will be required to keep account of cars, condition of light, etc. In
addition there were some 150 words of instruction, but in any computer these
may be handled in various ways and in connection with the problem we are inter-
ested in here, extensions of intersections, routines, etc., do not increase the
required storage of instructions rapidly since the routines are repeated. Thus
we need consider only storage of information. To store several lanes would
probably double the number of required words to 50. To store parking and pedes-
trians would probably triple to 75. To allow speed changes might make thig
100 as a requirement per intersection. As for time, the MIDAC required 3.2
times real time as noted above. When extending the problem we may use a faster
computer either to go faster, or to handle a larger problem. Therefore inter-
polation on the figure must be used as required for the particular extension
at hand. Some of the resulting points are marked off in the diagram.

It is noteworthy that each piece of information that is used in the
computer, as for example the position of a particular car, is used in the same
order each time the model is traversed. This makes it possible to consider
relatively slow methods of storage, such as magnetic drums, and to store in
such a fashion that as a piece of information is required it comes up on the
drum in position to be read. It has been estimated that an ordinary drum
machine such as the Datatron or the 650 may be made to look like four-micro-
second access time if the programming is done carefully with regard to the
machine itself. Therefore, the above picture is not quite a complete state-
ment of the situation. However, as may be seen from the diagram, a fairly
large model may be handled in terms of presently available computers. Newer
and faster computers now being designed will extend these capabilities even
further.
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Critique of the Use of a Numerical Stochastic Digital Computer Model for an
Operations Research Problem =-- the Traffic Problem

We are now in a position to turn back to the points we made about
the methodology of Operations Research and examine the facility offered us by
the computer in connection with this methodology. We do this with relation
to the traffic problem as an example,

There are many viewpoints possible in the traffic problem. The
pedestrian and the driver, to name only two, require opposing solutions for
the same problem, and as a consequence the solution itself must result in
compromise. The driver is a complex of freight traffic (slow, many stops),
cabs (short hauls), tourists, commuters, etc. In addition to the pedestrian
and the driver there are the public officials to whom the traffic authorities
report. In each of these cases the difference in viewpoint leads to a dif-
ference in the choice of measure of effectiveness. The driver is interested
in traveling quickly, or perhaps with the least amount of psychological delay.
(The delay at a stop sign is known to be shorter than the delay at a signal-
ized intersection. But drivers are more impatient with stop signs than with
signalized intersections since in the former case they necessarily must stay
on the qui vive all during the time they are stopped.) The pedestrian is
concerned with safe crossing in a reasonable time and with not too great a
distance to walk to get to the crossing. The public official is concerned
with a minimum amount of public outcry and perhaps public praise. The Fire
Department must assure itself of a route through the city and of a parking
place at the point of the fire. The merchant wants a fair amount of tran-
sient traffic and a reascnable parking situation in the center of the city.
It is clear that many of these viewpoints are conflicting and the examination
of conditions under which each is satisfied in the actual traffic situation
is prohibitive. On the other hand with the computer model not only may we
examine conditions which satisfy each of these viewpoints and analyze the
possible effect on the other viewpoints, but additional measures for any
single viewpoint may be examined. For example, the satisfaction of the
driver's viewpoint might be measured by either average delay, or time be-
tween any two points in the city, or the number of cars crossing a boundary
of a region per unit time., With mathematical analysis each of these would
require a different setup and would be totally impossible in terms of the
difficulties encountered in such an analysis. In experiment (that is, by
trial and error), the expense is prohibitive not to mention the time and
organization factors.

The areas of permissible solution may be readily changed with the
computer model. The effect of prohibiting traffic in the center of the city,
a drastic solution in the real traffic case, may be reasonably well examined
on the computer model. Suggestions for changes in parking regime which are
radical, and which in the actual traffic case demand years of discussion
and planning and overcoming of public objections, may in the computer case
be reasonably easily tried out. When New York City, for example, changed
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its avenues in Manhattan to one way, the radical nasture of the solution created
great public outcry even though a long period of education was undertaken prior
to the initiation. If it had turned out unsuccessfully, the public outcry would
have been very great. Trying out such solutions on the computer is perfectly
feasible. Analysis on the other hand for problems of this type again appears
impossible. With some ingenuity a broad attack may be made in analytical fash=
ion. However, very little confidence may be placed in the result because of

the nécessity for the reduction in the mumber of important factors considered
which always accompanies such analyses.

To go on with considerations of the methodology of operations research,
we examine what is necessary in connection with the design, analysis, and con-
duct of experiments. OFf course the computer model does not obviate the need
for experiment. However it reduces drastically the amount of required experi-
ment. In the case of trial and error, the experiment must involve large regions
(for exsmple the so=called cordon count and the origin and destination study)
and in addition must be repeated many times to insure any confidence in the
result. The creation of a model on the computer limits the experiments to a
local determination of constants (for example driving habits at a particular
point, fraction of right and left turns, etc.) and because of the limited number
of variahles which are being measured, allows for a reduction in the number of
experiments required to achieve a given credibility. The underlying reason
‘for the large difference between the requirements for experiment in the case
of actual traffic and those in the case of the computer model, is that in the
former the physical relationships betwsen the parts (that is, the functional
forms of the model) are being determined as well as the values of the constants
involved. In the case of the computer model the functional form of the overall
traffic process is obtained by representing the fumctional form of the process
in the small, i.e., at each intersection or in eachk lane. The parts are then
joined together in the computer. Thus the experiment is confined (as-it is in
physics) to the measurement of characteristics or constants which are implicit
in the model. This is contrary to the need Jor experiment in economics, for
example, where the functional form is itself an unknown factor. Thus the com-
puter model makes the study process more closely akin to the physicist's
methods than the social scientist's, in that it provides a theory.

Analysis also requires relatively few experiments to determine
values with a given level of confidence; however, the determination of the
mathematical form to cover situations which are realistic, and which cover a
large geographical domain, is formidable.

In a sense the computer model serves as an experiment 'itself. The
knowledge of functicnal form at a point is used to connect those points up to
obtain a model of the overall process. The values of constants locally are
measured. The whole is then run on the computer repeatedly with stochastic
variables introduced at points where they occur in the real process. FEach
of these runs may in effect be considered an experiment. This leads to another
advantage which this type of approach has over the actual measurement of

~12-



conditions in the real traffic process. The latter are difficult to make
reproducible. Under what are seemingly the same conditions, different results
are obtained for variables being measured. This results from the stochastic
nature of the process making the reproducibility poor. Not only is the process
itself stochastic, but the organization of the collection of data is itself a
difficult task. In the handling of data by different investigators, the failure
to carry out instructions and the lack of understanding of the need for the
measurements result in difficulties in connection with reproducibility. The
computer on the other hand is under complete control and allows a reproducible
set of experiments.

On the computer, the number of runs which must be performed can be
determined sequentially. Those experienced with the conduct of experiments
recognize the difficulty of an analysis which predetermines, in any compli-
cated case, the required number of runs to assure a given precision or accu-
racy. However, in experiments in which the number of runs does not have to be
predetermined, one can watch the process and observe the stability of the
statistical process "set in". On the computer if more runs are needed, they
can be accomplished at a reasonable cost. In the real traffic process, dis-
covering that not enough runs have been made and that the experiment had to
be done over would be a catastrophe. (Of course this actually happens, but
is disregarded. )

The measurement of the actual process is, of course, more realistic
than what one can achieve on a computer. The computer model in turn is more
realistic than the model achievable through analysis; a good deal more so.
However, one should recognize that realism is not an obJjective of simulation
sny more than "truth" is’ an objective of the physicist who creates a model of
particle structure. One is after a model which when operated under conditions
similar to those in the real case, puts out the same numbers for the observed
quantities. Thus, instead of looking for as much realism as one can get, one
is really searching for as little realism as he can get away with. Only so
mugh realism is required as will produce in the model the same amount of
average delay as in the real traffic process. Similarly for other measures
of effectiveness. I believe it will be found that relatively simple computer
models will adequately represent the real traffic process. On the other hand,
analysis gives a distorted picture of the actual traffic process. Therefore,
inferences from analysis are not as useful as from the computer model.

This is not to say that the use of analysis in connection with the
computer model is not desireable. Of course, the computer model may be con-
siderably reduced in size by the careful introduction of analytical techni-
ques at each of the permissible points in the computer model. It is con=-
ceivable that instead of dealing with individual cars, a set of four functions
of four variables might be introduced in connection with a given intersection
model to provide the outputs in a given length of time from each of the four
directions. In this way, the time taken to simulate the flow in a particular
intersection would be drastically reduced.
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Thus far in the application of the methodology to the traffic problem
with the computer, we have been dealing with the "statement of the problem”
side of the question. It is just as useful to introduce the computer for the
evaluation of alternghive solutions. In fact, this discussion has been im-
plicit in the earlier one of statement of the problem. Not much time needs be
spent therefore on the solution side of the picture. Alternatives, no matter
how drastic, may at reasonable cost be examined by means of the computer model.
Evaluation of these alternatives is immediately available directly in terms of
the measures of effectiveness., If the solutions suggested yield evaluations
which mske them look good, they may be introduced into the traffic process.

On occasion, the introduction of a proposed solution into the real
traffic process will make requisite a new formulation of the model in the
computer. Thus, if one had been simulating traffic in New Jersey prior to
the introduction of the turnpike, he might have assumed (as those in charge
did) that the volumes of traffic which would be encountered would be the
same and that the flow of traffic along the turnpike would lessen the flow of
traffic along other roads. This turned out to be not the case. Actually
traffic increased, presumably due to the ease with which one could now travel
south from New York, to such an extent that traffic remained essentially
as heavy on the other roads as before, but the turnpike encountered great
traffic. As in all methods of science, the computer reflects no more than one
puts into it. Future users of simulated models, or analysis and armchair
planning, must still take into account estimates of the increased desire to
use facilities which are provided. But if the possibility had occurred to
someone, the effect of the increase could have been estimated on a computer
model ,

All of the factors we have discussed in comparing analysis and trial
and error in the real traffic process with the use of the simulated model are
sumnarized in the table of Figure 7.

Conclusion

We turn now to an estimate of the uses of such a model for the
future. It is clear that the compubter model can be used in the solution of
day-to-day praoblems. These problems must be approached in the same manner in
which the operations researcher approaches his other problems except that the
process on which most of the experiment is carried out, and observations made,
is in the computer instead of in the actual mechanism being studied. Thus one
may conceive of each of the large cities having built a model of their traffic
situation, introducing suggested new changes into the model and observing their
effect prior to their incorporation in the actual traffic process. In the
case of small cities one may envision a state supported center which has com-
puter tapes or programs which represent the cities in question. TFaced with a
relatively infrequent traffic problem, the smaller communities would submit
their problems to a state organization which would then introduce them into
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the computer and predict the consequences of proposed changes. All of this
assumes the handling of traffic problems on a day-to-day basis.

However, two developments are of great importance. One 1s the fact
that we are already introducing traffic systems which measure traffic flow in
the actual traffic situation on a continuing basis, and transmit the result
to a central point. At the present time the loglc for the control of such
traffic systems'is practically non-existent. Consider if you will what you
would do if you were given a board with a map representing a city, and the
indicated flow of traffic at every point in this city at any moment. Suppose
that a traffic jam occurred at some particular point:--which light cycle would
you change? What instructions would you give to traffic officers? What instruc-
tions would you broadcast to drivers?--in order to reduce the jam? This is a
difficult question to answer and requires experience before theoretical notions
may be introduced. The computer model offers the possiblity of conducting such
experiments on a simulated basis without introducing difficulties in the real
-traffic process.

The second important development is that concerning the future of our
cities ten, fifteen, twenty-five years in the future. It is clear that some
mode of traffic control will have to be introduced akin to that which now governs
the airlines. Whether cars are to be controlled on an individual basis (that
is, file some kind of flight plan) or will be controlled by party line (that
is, broadcasts made to the entire moving car population requiring each indivi-
dual to select instructfons applying to him from the instructions given to a
general group) or will be controlled by broadcast control (that is, information
presented, perhaps on an oscilloscope, of the situation around the driver for
about 10 blocks radius, and expect him to choose a path accordingly); whether
any or all of these is to be introduced as a method of control can only be
solved by theory and experiment. The computer model offers a method for intro-
ducing both, &nd well before the actual, crisis is upon us.
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Criterion Analysis Simulation  Trial
Cost Least Medium Most
Time Least Medium Most
Reproducibility Most Medium Least
Realism Least Medium Most
Generality of Most Medium Least
results (if

real)

Figure 7. Comparison of Analysis, Simulation, Trial
and Error
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