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PREFACE

Before his untimely death, in October of
1960, Professor Goode had completed the following
work in rough form. Credit should be given to
Blackwell and Girschick (Ref. 11) for the mathemat-
ical formulation of the problem. Because of Prof.
Goode's experience in the use of high speed comput-
er devices he realized that the calculations implied
by the mathematics were feasible with today's high
speed computers. He also had the insight to see how
these calculations could be applied to present-day
decision problems, e.g., radar.

The work was done under US Army Signal
Corps Contract No. DA-36-039 sc-78283 at the Cooley
Electronics laboratory. Mr. T. G. Birdsall, Mrs. P.
Elliot, Mr. R. A. Roberts, and Mr. W. Evans have
made it possible to present Professor Goode's work.
Without funds provided by the Office of Naval Re-
search under Contract No. Nonr-1224(36) this report
could not have been completed.
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ABSTRACT

The problem examined in this paper is the
case of the simple two-alternative decision in which
it is allowable to defer decision until further ob-
servations have been made. Given the costs of mak-
ing errors and the cost of deferring a decision, the
problem is to determine a course of action which
will minimize the expected losses. An iterative al-
gorithm is presented for calculation of decision
points. The existence of decision points is proved
by proving convergence for the algorithm. Results
for Gaussian distributions run on the IBM 704 are in-
cluded. For the parameters examined it is shown
that the decision points converge within four defer-
rals.
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DEFERRED DECISION THEORY

1. INTRODUCTION

Some of the earliest notions concerning decision making be-
tween two alternatives on the basis of observations of a stochastic var-
iable were introduced by IaPlace (Ref. 1). In his view, for a variable
representing an outcome which is either a success or a failure, the

quantity to be calculated is

r +1
p = ) (l)

where n is the number of trials and r the number of successful outcomes.
If p, now conventionally considered the probability of success, is large,
an action compatible~with a successful outcome is indicated. If p is
small, the converse action is indicated.

Subsequently, Bayes (Ref. 2) constructed a model of decision
which, for the two-alternative case, sets up & choice to be made between
two hypotheses. The choice depends on values of s, stochastic variable
to be observed. It is assumed that the a priori probability of each hy-
pothesis' being true is known. The distribution of the observed-variable
values when either hypothesis holds is also known. More explicitly, let
the hypotheses be Hy and Hé, their associated a priori probabilities z
and 1-z, respectively, and let the distribution of y, the observed var-
iable, be pl(y) when Hy is true and p2(y) when H, is true. Then

zp, (v)
z i (y) + (1-2)p,(y)

P, (i) (2)

is Bayes' formula, where Py(Hl) denotes the probability that if y was

observed Hl is true.



In the context of decision making, this formula incorporates
the following parameters:
1. The difference in value between alternatives if these can
be expressed quantitatively.
2. Prior knowledge about the hypotheses.

3. The distribution of outcomes under each hypothesis.

Another factor, important in making decisions, which is not accounted
for by the formula is the set of losses and gains associated with the
several possible combinations of hypotheses and actions taken, as, for
example, an action taken compatible with H2 when Hl is true.

Because of widespread misunderstanding about the meaning and
use of the a priori probabilities, Bayes' formula fell into disuse. Its
place was taken by?a considerable amount of confused thinking, represent-
ed, for example, by the view that the population mean is distributed
about the sample mean instead of the converse.

Into this state of affairs, Fisher (Ref. 3) injected precise
statements concerning inferences to be drawn from observations. He de-
fined the null hypothesis as one of interest whose validity was to be
tested. He rejected the 1ull hypothesis when sets of observations oc-
curred which would be improbable if the null hypothesis were true. The
level of improbability at which the null was to be rejected was labeled
the level of significance. However, the alternative hypothesis was not
in evidence.

Neyman and Pearson (Ref. 4) reintroduéed the alternative hy-
pothesis. They stated, reasonably, that if one alternative is rejected,
another is accepted. (This might be a complex of alternatives all con-
sidered at once.) This, in turn, led to the recognition of two types of

2



error: accepting H, when H; is true (Type I), and accepting H, when H,
is true (Type II). Because the probability of each type of error could
be calculated if the decision policy relative to values observed were
stated, it was possible to make, in some sense, an optimum decision.
Neyman and Pearson suggested holding o, the Type I error probability,
constant and so choosing the decision mechanism that B, the Type II er-
ror, would be minimized.

For example, consider the situstion represented in Fig. 1,
where pl(y) and pz(y) are both normal with different means and a single
observation is made. If one decides to accept H2 whenever y lies in the

interval Yy <y < Yo then,

T2
a = [ () ay,
Il
and
Yo
- = [ pyly)dy
I1

These areas are indicated for two different decision intervals in Fig. 1.
When the observation falls in a region o, which is fixed in area, H2 will
be accepted. Otherwise Hl will be accepted. The only restriction on

the choice of ¢ is its fixed area. Minimizing B is equivalent to maxi-
mizing 1-B. It is intuitively ciear that the o region in the right tail
of pl(y) maximizes 1-B in pg(y). It is also rigorously correct. Thus,
Neyman and Pearson had restored the alternatives in the two-alternative
decision but made no use of prior knowledge. |

Wald (Ref. 5) took a major step in his treatment of statisti-

cal decision functions. He introduced three new characteristics of the
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Fig. 1. Two choices of the o region and the corresponding
1-B regions for two normal distributions.

decision and unified the entire treatment. The three new characteristics
are:

a) The introduction of the costs of errors as determinants of
the sizes of o and B. It remains true that there are two
types of error, but this fact is less important than the
losses due to each.

b) The inclusion of the alternative of putting off decisions
until it pays to make a decision. Up to this point, the

decision was assumed to be made once and for all after

L



observations were taken. Wald introduced the clearly de-
sirable notion of waiting until making a decision is worth-
while.

c) The possibility that an opponent was determining the situ-
ation was introduced. This led to the minimax criterion
which Von Neumann (Ref. 6) had introduced earlier, and the
result was shown to be equivalent to the game solution for
zero-sum two-person games. Wald used the expected value

as a criterion for action.

In the present paper, we are concerned with the case of a two-
alternative decision in which it is allowable to defer decision (deferred
decision case) until further observations have been made. The problem
is to determine the course of actions (which will minimize expected los-
ses). The major objectives of the paper are twofold: to set forth the
solution of this problem as simply as possible so as to exhibit its im-
plications for practical decision making and to provide a means of de-
termining numerical answers for special cases. To our knowledge this
has not previously been done.

We begin with a short review of the two-alternative decision
under the approach used in present-day statistical decision theory.

Then the problem is restated in deferred-decision terms. An iterative
algorithm is produced for the calculation of decision points if, in fact,
they exist. The existence of decision points is proved by proving con-
vergence for the algorithm.

Since the formulas are difficult to handle analytically, a com-
puter program has been written. The flow diagram for the program and a

summary of the results for Gaussian distributions and some specific

2



numerical costs are given. Finally, some conclusions are drawn regard-

ing the usefulness of the results.

2. STATISTICAL DECISION - TWO-ALTERNATIVE

Suppose we have two possible alternatives, Hl and H2, which we
know from prior knowledge have a prbbability of materializing of z and
1-z, respectively. To make decisions, we observe a variable y whose
probability distributions, if Hi is true, are pi(y) with i = 1,2. We
also know the costs of making each of the possible errors: the cost is

for taking action A, consistent with H2 when in fact Hl is true.

®10

The cost is m?l

is true. The gains from making correct decisions have been normalized

2
for taking action Al consistent with Hl when in fact H2

at zero with no loss of generality. Our problem is to choose to take Al
or A2 on the basis of an observed y in such a fashion that the expected
loss is minimized.

Our choices may, of course, be made under several different
criteria. We will deal with the criterion of minimizing the expected
loss as being mathematically tractable, of frequent occurrence, and rea-
sonable in many cases.

After the observation of a value of y, the state of our knowl-
edge of the truth of Hl will be given by Eq. 2. It states the newly cal-
culated probability that H is true, Py(Hl).

The probability (from our view) that H, is true is Py(Hl), and
the expected loss for taking A2 is P

Y
ing action A, is Py(Hz)u)21 = [1 - Py(Hl)]wEl' These lines are plotted

(Hl)le. The expected loss for tak-

in Fig. 2. The double-ruled portions of these curves are the smaller

loss parts, and if we are forced to be on one of these curves, we should

o
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Fig. 2. Plot of expected loss for deciding on the Ay and A, as
a function of the probability that event Hl
occurred given observation y.

try to be on the double-ruled portions. This can be accomplished by

taking A, when Py(Hl) <y and A, otherwise. 7 is given by

o1

Ty e

Some notes should be made about this result and its relation to other
terminology. Frequently, likelihood ratio, £(y) 2 pg(y)/pl(y), is of
interest. Py(Hl) is monotonic decreasing with £(y) as shown by substi-

tution into Eq. 2:

B = ) (+)
or

z[1 - Py(Hl)]
1(y) = 1-2) Py(Hl) . (5)

£(y) goes from « to O as Py(Hl) varies from O to 1. The decision point

in £(y) is



12 (6)

i.e., take A, when £(y) > £(y).

2

Further, one frequently deals with four values: the two costs

already stated plus the gains associated with taking A, when in fact H2

2

is true; and similarly for A Let these gains by and W Then if

1 @22

one calculates expected value taking these into account, w
Wy + O

placed by ————— . Since the gains are negative costs, choosing w4
@21 * D2

and Wy, 85 Zero is merely the choice of new origins from which to measure

costs. We still retain freedom to choose a unit of measure for cost

12/w21 is re-

statements. We reserve its use until later.
Finally, we note that y can be representative of a larger num-
bex of observations than just one. 1In case several observations are
made, pl(y) and pe(y) must be caléulable. For example, for independence
and a single distribution, pl(y) = pl(yl)pl(ye) «vs Dy(¥,), where k ob-
servations are made. It is emphasized that the state of our knowledge
before seeing y is z and 1-z, whereas after seeing y, it is Py(Hl) and Py(Hé).
We make the decision after seeing y. If we had to make it before seeing
Y, the same cut-off point, Py(Hl)'< y, would hold but Py(Hl) would be re-

placed by z.

3. DEFERRED DECISION PROBLEM

We now examine the following situation: things are as in the
two-alternative case, but we are told after arriving at the state of
knowledge Py(Hl) that we do not have to make a decision. We can hold off
for another observation or as many as we like until a total of n have

been taken. The penalty for taking observations is the cost of an



observation, which we take as 1 (the unit of loss measure). Whether we
should delay decision will depend on whether the expected loss for taking
another observation is greater than for making the decision now. But,

of course, the expected value of taking another observation will depend
on the expected value of taking another one beyond that, etc., until we
have exhausted our right to take observations. In fact, the expected
value of taking one more will depend on how many we may be allowed, the

actual value being the result of a complicated nesting process.

3.1 General Theory

To start the process, suppose no observations may be taken.
That is, a decision must be made at once. If T(z) is the expected loss

for a terminal decision,then the expected loss E _(z) is,

bo(zo) = T(zo) = 2, ®p, , 0<z <7,
(7)
= (l-zo) W1 5 7o 2o <1
where:
w
2l

Yy, = ————— ,and 0,,, ®,; >0
o] mEl + wl2 12 21

The above follows from the fact that the probability of Hl being true is
z, and the cost of taking action A2 is Wy, 80 that the probability of a
loss when action A2 is taken is Z, and the expected loss is 2, W5 Sim-
ilarly, the probability of H2 being true is (l-zo), the cost of taking
action Al is in this case W55 and the expected lbss is (l-zo) Wy A
plot of these two expressions as a function of Z is shown in Fig. 3.
Actions should be taken as indicated in Fig. 3.

Suppose now the option is offered of one further observation.



EXPECTED LOSS

TAKE TAKE
ACTION A, ACTION A,

Fig. 3. Expected losses making up E,(z), the
terminal decision curve.

The expected loss curve for each value of zy in this case must be calcu-
lated. For fixed 2, the probability that the value actually observed

is y is given by-
p(y) = zy py(¥) + (1-29) pp(¥) © (8)
If y is observed, the probability that Hl is true can be calculated from

P, (¥):
P(5) = 2z ST - (9)
The observer will then be in a state such that no more observations are
permitted and the probability of Hl is Py(Hl)' The expected loss for
any given observation y is Eo[Py(Hl)]' For all possible y, the expected
loss is & p(y) Eo[Py(Hl)]' Thus the expected cost of deferring a

all y
decision is,

G (z) = al% ; p(y) B [Ry(H)] + 1. (10)

Conjoining the expected values of not taking an observation at all,
[T(z)], and taking the one observation, [Gl(z)], the curves appear as in

Fig. L.
10



’//r-150(2)= T(2)

’/—-G|(Z)

EXPECTED LOSS

l
|
|
|
|
|
0 % 8

— —r — J

TAKE ACTION A, DEFER TAKE ACTION A,

Fig. 4. Eu(z), Gl(z), Eo(z) as functions of z.

Alternatives should be chosen as shown in Fig. 4. The optimized expected

loss curve is

El(z) = min [T(z), Gl(z)] . (11)

Suppose now two observations may be taken and the observer
must decide whether to stop and decide now, or take the first of the two
observations. Again, the expected value of each move must be calculated.
In case a decision is made at once, T(z) holds. In the case of making
another observation, suppose y is observed. The probability of this oc-

curring for a given 52 is as before,
p(y) = 2z5p(¥) + (1-25)p,(y) - (12)

The probability of Hl being true is given by

11l



ngl(y)
Py(Hl) = —_EE;T_ . (13)

At this point, the observer is in the position of having the probability
of Hl being true equal to Py(Hl) and an option of taking one more obser-
vation for which the expected loss is El(z). For this observation y,
the expected loss is El[P (Hl)]. Averaged over all y the expected loss

y

is, l% p(y) El[Py(Hl)]‘ Adding the cost of the observation, the ex-
a Y

pected loss for taking an observation if two more are permitted is

Gy(2z) = a1>1: , p(y) Byl (H)] + 1. (1)

To compare the expected losses for taking and not taking an observation,

Fig. 5 shows the plot of Gg(z), EE(Z)’ El(z),and T(z).

v o

)
n
(o)
|
o
w
-
[$)
w
a
x
w
7
TAKE DEFER TAKE
ACTION A; ACTION A

Fig. 5. Plot of Ge(z), £,(z), El(z), and T(z).

The optimized expected loss curve for the a priori probability z and the
option of taking as many as two more observations is given by

12



Ey(2) = min [2(z), Gy(z)] . (15)
The process generalizes to the set of steps:

1) »ply) = Z pl(y) + (l-zn) pg(y); probability that the val-
ue y will be observed with the option of taking up fo n

more observations.

p; (¥)
2) Py(Hl) =z, 5%;;- ; probability of H, being true, given

the observation y and the a priori probability Z,

3) Gn(z) = al% ; p(y) En_l[Py(Hl)] + 1; expected loss
for taking an observation with n possible observations re-
maining.

L) En(z) = min [T(z), Gn(z)]; optimized expected loss

with n possible observation remaining and where T(z) is

expected loss of making a terminal decision.

In the case of no observations permitted, the set of decision points are
the same, Yo = 60, and in general, the decision points are a pair Yo Bn,

the intersection of T(z) and Gn(z).

3.2 An Example: The Normal Case

Consider the case where the logarithm of the likelihood ratio
is normally distributed under either hypothesis. (It follows that it
will be similarly distributed under the other hypothesis.)

Without loss of generality we can consider the observation to
be real valued with normal density functions with unit variance, and
means zero and d'. Let the cost of a Type I error be W55 and that of a
Type II error be Wny s and let the cost of deferring for one observation

be 1.00. If one is allowed to 13



defer and take at most n more observations, should one terminate and
take action Al’ or take action A2, or defer and take an observation?

This is the decision problem at "Stage n."

Solution, n = 0

Specifically

2
L2y

L1}

Py (¥) J%i
and
1 -1/e(y-at)?

Jax

p,(y)

T(z) is the expected loss for a terminal decision. Let z, be the given
a priori probability of Hi. We have no observations left to take, and
we must make a decision. This is the simple two-alternative probability

case and as previously discussed in this paper we say Hl when O < z, < 7
w
. . 2l
and we say H2 when % < Zg < 1 where 7, 1s given by Yo = &EE_:TEEI .

Thus our expected loss for a terminal decision is,

T(zo) = 2, 0, s 0<zy <7,

(16)

(l—zo) Wpy 7o S22y <1

n = 1: We have the possibility of taking one more observation. We wish
to know if we should accept Hl or H2, or defer and take our one obser-
vation at which time we then will apply the results of the "O" state.

We are given 295 the a priori probability of Hl' From Bayes"Theorem

we are able to calculate the a posteriori probability z, on the condition

we have an observation y,

Py (¥)

= 2, —



But,

p(y) = z; py(¥) + (2-2z7) py(¥)

Therefore,
2
zy e /2
ZO = Py(Hl) = _(Z:_c}l\)e
z) e y/2 + (l-z.) e 2
- 32
z; + (1-2;) J e 2
£(7) f+°°
6 = [ e - 2 )y ay R R RN
-0 4

(17)

dy + 1 (18)

Substituting the expressions for p(y) and Zg from above we have,

G(z) = oy f

£(y) 0
(1+2;) pp(¥)ay + o, . / 2P (y) ay + 1 (29)

i (7)
where:
£(y) = value of y for which Py(Hl) =y
. (Z) ) 0)21(1-21) ff(y) e_l/2(y_dv)2 dy
. Jor — -o
®10%1 /e y®
+( ) f e Yoay +1 (20)
Jor '£(7)
' /
_ wEl(l_zl) ff(y)-d e-t2/2 at + .--——-—-Zlm:l'2 f = e-t2/2d.t + 1
NP R Jor £(7)

We now wish to find an expression for £(7y).

15



2

P (H,) =
yyl 32
Z) + (l-zl) e d /2 e Ve

For Py(Hi) = ¥ what is the corresponding value for y?

2, z,(1-7)
-dt=/2 ya! 1
y = £(r) <> (1-z)) e /2t -
Explicitly
2 zy(1-7)
1 ' 1
=4 5 +In = f£(y)
a2 7(1-z))
Therefore,
L
(1-2) w 1 .2 z to 2
G, (z) ————————@if et/gdt+—-—l—2f et/gdt+l
vex -0 2n L2
L. = l' in z(1-7) _ ar/2
Lo dhy y(1-2)
L, = L an—(-l—'ll+d'/2
afl" y(1-2)

To find the decision points, set T(z) = Gl(z) and solve for z. Specif-

ically, for the lower decision point, zy, solve,

z,0y = G, (z,) for z, . (21)
And for the upper decision point, zﬁ,solve,
mbl(l - ZE) = Gl(zb) for zy . (22)

Equations 21 and 22 for the upper and lower decision points cannot be
solved in generality. To illustrate further let ude = wel = W. Gl(z)

then becomes,



To obtain the upper and lower decision points we must solve,

1 zZ a' 1 Y d
2N = (l-zy) wd C?- zn(l_z) - oty d<- v n 7=~ s+l
7 (24)
and,
pA z

1 o) 4! 1 o] at
w(l-zs) = (l-za) wd S i +z5w¢> - sptl

d o) d 3] (25)

of course, by symmetry, 2z, = l-zy. This may be used, or saved for a

3
check. Equations 22+'and 25 were solved graphically for w = 15 and 4' =
1. The lower decision point, z7 = .342, and the upper decision point,

Zg = .657. Thus, our decision criteria is as follows:
For 0<z< .342, choose HQ; expected loss is 15z.
For 342 <z < .657, defer; expected loss is Gl(z) +1

= 15(1-z) @{ln-l%z—-%- + 152 Cb{-zn-l-%-%} +1

For 657 < z < 1, choose H ; expected loss is 15(1-z).

n =2: left for reader.

L. CONVERGENCE

To prove that the process converges, we shall show that all
En(z) are bounded below by O, and for each z is a monotonic nonincreas-
ing function of n. Thus there is a limiting function E(z), and corre-

sponding limiting decision points y and &. Further, the limit is non-

17



degenerate, i.e., y >0 and & < 1 and there exists a z such that E(z) £
0. Both the lower bound and monotoniety follow inductively.

Note that T(z) is nonnegative, since wij > 0 and T(z) = min
[z ®) 0 (1-2) @b both nomnegative quantities. Since Eo(z) is equal to
(z), Eo(z) is nonnegative. Now if some Ek(z) is nonnegative, any aver-
" age of Ekﬁo values is nonnegative. Thus dk+l(z), which is an average
of Ekvalues, plus the cost of observation (which is 1) is bounded below

by 1. Finally, E is simply the lesser of G, +l(z) and T(z), and so

k+l(z)
it is nonnegative and the induction is complete. This establishes the
lower bound for En(z).

It also follows that since Gn(z) > 1 for all n and z, that for
very small z, and for very large z, a terminal decision is always ap-
propriate. Specifically,

L
®10

0 <z

IN

o L=> (z) <1 =>E (2) = (z)

Lok
21

IN

z < 1

P
This establishes the nondegenerate bounds on the decision points

1 1
7, > — 5 < 1-—
n (D12 n 0)21

and confirms the contention that at least for each n, En(z) is not
identically zero, since E (-j;-) = 1 for all n.
nAw,
The monotone decreasing nature of En(z) is also established by

induction. By definition, since Eo(z) = T(z)

El(z) = min[Eo(z), Gl(z)] < Eo(z) .

18



Suppose
En_l(z) < En_e(z), i.e.,En_l(z) —En_e(z) <0

2

6,(2) - Gy 1(2) = [ By [ iy | - 120) oo [ mvrroyry | &

Z

= 1o 5oy [ 55007157 ) - e L eIy )} S ©

since p(y) is nonnegative and En-l - En_2 is nonpositive at every y.
Since Gn(z) < Gn_l(z), En(z) < En_l(z) and the induction is complete.

From the viewpoint of the subsequent computer work, we should
pull out one comment from the above proof. If at some pair of succes-
sive stages, the maximum discrepancy of En(z) and En-l(z) is €, then
Gyyq(z) Will be within € of Gn(z), and this will enforce a corresponding
bound in the maximum discrepancy between En+l(z) and En(z). Thus the amount

of reduction of En(z) "gained" each iteration is monotone decreasing.

5. COMPUTER ANALYSIS

The expressions of Egs. 13, 14, 15, define the process by
which we may iteratively determine the En under either a truncated or
nontruncated process. Since hand calculation is prohibitive, we resorted
to the use of the University of Michigan's IBM 704. The solution for
normal distributions of mean zero and d''s of 2, 1, and .5 is given here;
but changes required for other parameters or other distributions or
changing costs, will be obvious. The binary cards in machine language
for this program can be made available. The flow diagram of Fig. 16 was
used to set up the computer program. A more complete flow diagram is in-
cluded in Appendix I. The parameter d', roughly speaking, is a measure

of the discriminability content of an observation.
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6. CONCLUSIONS AND APPLICATIONS

Professor Goode did not write any conclusions before his un-
expected death and so the only conclusions the writer will draw from
the data is that which Professor Goode commented on after he had glanced
at his computer data. The reader is as able as the writer to draw oth-
er conclusions from the data.

Professor Goode was interested in determining how quick}y the
intersection points y, & of the "terminal loss curve" and the "further
observation loss curve" converge to definite limits (see Figs. 7, 8, 9).
He was interested in this because he wanted to be able to take the costs
of errors, the cost of deferring a decision, and the a priori probabil-
'>ity of H, and from these parameters find the "optimum points" ¢, B and
minimum expected number of deferrals in terms of the costs and a priori
prob. of Hy. The "optimum points" ¢ and B are defined as the coordinates
on the power curve, or the ROC.* In other words, Professor Goode wanted
to take the costs involved in deferring a decision, compare this against
the costs in making a terminal decision and from this find the point of
operation on the ROC. This is the inverse of the problem solved by Wald
in his formulation of sequential analysis. Wald first sets his point
on the ROC, i.e., picks ¢ and B, and then finds a sequential test that
minimizes the expected number of deferrals to meet his operating point
on the ROC.

The table of Fig. 10 shows how quickly the y and & converge
to definite limits. This then is the conclusion drawn by Professor

Goode from his computer data. The y and & points converge very rapidly

*The power curve (Ref. 7) is a plot of Type I error vs. Type II error,
for all values of y. It has been shown that for "optimum" performance
in making decisions one should operate on the upper boundary of the ROC.

2l



o'l

* 2580 TBULIOU

2yl JOJ S9AJIND SSOT pajgoadxy

(Z) ALITIGavEONd

S

—z

,P

¢
S$S07 031923dX3

23]

(o]

22



ol

*28®BD TEWIOU oY% JI0J SSAIND SSOT Ppoqosdxy ‘g °381d
(Z) ALlT18v80Ydd
8 9 v P4
| _ _ _ | _ [ [
1=92
Ol = '2m
Gl =%m
Z 'sA (2)'3
— 2=,p
_“i
/
// \\
// /
' /
// /
AN /
// /
- /\\
| | | | | | |

o

o2
m
x
n
m
(@]
E |
m
o

ot
o
w
w
m
>

g,
o9

os8

23



ol

*958O TEWIOU 9U3 JOJ SoAIND SSOT Po3dadxy *g *Itd

(Z) Alllgvaodyd

9 v 2’
_ | _ _ _ _
1=2
G =12m
Gl =2m
Z'sA(2)Y3
2=,P A -

Q
N

O
¢

09

[(2) “3] $S07 03193dX3

2k



1
A @, | wpy

2| 15 > Jd2 [ .56 | W11 W61 | W11 .62

2| 15 1 (.062)

1|15 15 .33 |.67 | 30| .70 | .29 .71 | .28| .72

1] 15 10 28 .55 | 26 .58 | .25 .59

1115 5 21 .32 | 20| .32 | .20 .33

5115 7] 15 L6 [ 54 | L5 .55

S 115 10 .38 | L2

.5 | 15 5 1 (.25)
5115 1 | (0.62)

g
i

lower decision point © = upper decision point

()

value of Gamma, no observation required.

Fig. 10. Table of decision points for the normal case.

to definite limits for the costs and d''s examined.

The rest of the paper that follows is Professor Goode's work.

Examination of the relationship between the "terminal loss
curve" and the "further observation loss curve" yields an interesting
insight into the motive of penalties and gains for acting in one or an-
other nonoptimum fashion. Figure 11 is a plot of the difference between
a typical pair of such loss curves. Between y and & the curve represents
the added loss incurred when z is between these limits and a decision is
made without taking advantage of the possibility of making more observations.
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S o

EXPECTED LOSS

Fig. 11. Difference between "terminal loss curve" and
"further observation loss curve."

On the other hand, for z < y and z > 5, the dip in the curve represents
the added loss for delaying decision by taking more observations. While
the "further observation loss curve'" is represented here generally, it
must of course correspond to some specific allowable number of further
observations. However, for the numerical values of the costs chosen in
the computed examples (where the cost of a loss is large relative to the
cost of an observation), the greatest change occurs between the "ter-
minal loss curve" and the "one-further-observation-allowed loss curve."
After that, relatively smaller effects are obtained from two or more
observatiogs allowed. In the case of costs approximately equal to the
cost of observation, the penalty for taking observation holds over the
entire range of z.

In summary, when a priori knowledge says that the probability
of one or the other hypothesis being correct is high, cost for delaying

is incurred. When a priori knowledge is uncertain, it pays to gather
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information if the cost of observations are not great relative to the

possible losses incurred with decision.

Agglications

The developments in decision-making techniques have implica-
tions for many practical areas. One such area, for example, is in the
search radar. At the outset in using a search radar, a display was pro-
vided to the human operator and with little instruction concerning the
decision to be made the operator was told to report all "targets" de-
tected. But the elements of a decision mechanism are clearly recogniz-
able in the process. "Target" is one hypothesis and the alternative is
"Noise." The human was not instructed concerning the choice of a cutoff
point and widely vary%ng procedures were used (and still are) from wait-
ing for many scans before decision to a relatively few, from reporting
varying degrees of intensity blips to only reporting very intense blips.
To some extent in warfare the a priori probability was occasionally in-
troduced by putting the operator on the "qui vive" when enemy raids were
expected.

With the need for automatic detection, some attention had to
be given to the process of deciding between target and noise. In one
radar, the pulse repetition frequency was such that about ten hits could
be expected on a target in a single scan. In the mechanization of de-
tection in the radar the cutoff point was set at four pulse returns
above an arbitrary threshold level. This choice was made on an intui-
tive basis.

As the art developed, some statistical technique crept in.

The fact that the set might be saturated with targets, many false, led
to the consideration of methods for implementing a change in the
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threshold above which a return was called a target. This threshold was
so manipulated that the "false alarm rate," i.e., the Type I error, a,
was kept constant. Thus records were kept of the number of targets turn-
ing out false (discovered by the fact that the next return did not ma-
terialize) and the threshold reset so as to keep the fraction constant.
While this implementation was not introduced to improve de-
cision making, it began to use elements associated with the anatomy of
decision. More recently the @ and B errors have been introduced into
the radar and a sequential test employed (Ref. 8), storage being pro-
vided for information on the successive returns from a given set of
pulses. To date, to this author's knowledge, no attempt has been made
to introduce the a priori probability of a target occurring into the
setting of threshold and no place has been provided for the choice of ¢
and B based on costs of errors. The implication of deferred decision is
that information should be stored scan-to-scan and that the a posteriori
probability of a target should be computed. When the value of the a
posteriori probability is less than y, the information should be dis-
carded. When the a posteriori probability is more than 6, a target
should be recorded and the information discarded (unless a decision does
not need to be made, in which case the a posteriori probability should
be recorded). Of course, the 7 and & to be used depends on the values
of costs and a priori probabilities. These would need to be precomputed

and stored in the radar for use in setting the thresholds.
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APPENDIX

Figures 12 through 16 give a complete flow diagram for the com-
puter program used in obtaining the data presented in this paper. The
general block diagram of Fig. 6 has been broken into five detailed blocks,

as indicated in Fig. 6.
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