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THE USE OF A DIGITAL COMPUTER TO MODEL A SIGNALIZED INTERSECTION

1. Introduction

In 1952%, staff members of the Willow Run Research Center of the
University of Michigan developed the following method for the study of auto=-
mobile "ride" characteristics: A test car, with a light on its rear hubcap
was driven slowly, at night, over a test road. Successive photographs of
the light provided a functional representation of the test road. Accelerations
were recorded at several points on the body of the car as it moved at various
speeds over the test road. Next, the eguations which governed the motion of
the car in the vertical plane were set up on an electromechanical analog com~
puter and with the test road function reproduced in a function generator, the
corresponding computed accelerations were recorded with the computer car model
"running" at the same speeds over the computer "test road". Since agreement
between real and simulated acceleration values was not perfect, more factors
were added to the equations to account for effects at first omitted as neg-
ligible. This work finally produced computed accelerations which agreed with
test values within a pencil's width on the recorder. Armed with this "com-
puter model", changes were made in various factors such as shock absorber
characteristics and points of suspension and in each case the computer pre-
dicted the outcome of the changes before any expensive physical changes were
made. The Chrysler Corporation is now designing ride into its cars with this

tool.¥*¥

* Jeska, R. D., "A Comparison of Real and Simulated Automobile Suspension
Systems", University of Michigan, Engineering Research Institute, February,
1953, Contract No. DA-20-018-ORD 12087 (Unclassified).

Huebner, G. J«, Jr., Chrysler Engineering Division, Address to Association
for Computing Machinery Meeting, University of Michigan, 195kh.
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The method used is general and this paper is concerned with its
application to the Traffic problem. The steps are represented in Figures
1.1 and 1.2 for the Traffic Process. In these diagrams, "independent
quantities" would be the lighting cycle, the probability of turns, the
average number of cars per hour arriving, etc., The "traffic process" would
be the functioning of the intersection, a group of intersections, a network
or a highway. The dependent quantities would be average delay, time thru a
region, or congestion, etc. The remainder of the figure on modelling (1.1)
is self evident. Prediction (1.2) would take the form of predicting the re-
sult of a change in lighting cycle, lane width, parking regulations, etc., by
incorporating the change in the computer model and if the result is satisfactory,
using it in the traffic process.

The application of these simulation methods to a process as com-
plicated and discrete as vehicular traffic flow is not without precedent. The
Bell Telephone Laboratories even without a digital computer successfully used
such modelling techniques in predicting the performance of the number 5 cross-
bar, a new type of switching equipment, prior to its introduction in operating
exchanges. The model was known as "The No. 5 Crossbar Throwdown". Our problem
is of similar nature. The results of the present paper demonstrate further
the feasibility of the development of the computer model as a powerful tool

for traffic analysis.

2. Analysis, Simulation and Trial

We digress for a moment to discuss the relative merits of analysis,
simulation and trial (and error). ‘Table I summarizes the results of such

considerations.



Table T

Criterion Analysis Simulation Trial
Cost Least Medium Most
Time Least Medium Most
Reproducibility Most Medium Least
Realism Least Medium Most
Generality of Most Medium Least

results (if

real)

Attacks on the traffic problem have been made in the past with the
tools of both analysis and trial. By analysis we mean writing a mathematical
expression to represent the traffic process and then manipulating it mathe-
matically to determine values to be used in changing to better traffic condi-
tions. Trial involves a change in the real traffic situation, and subse-
quent correction if it turns out badly. Simulation is actually a combination
of both methods but allows attack on the most complicated of processes, which
analysis does not, and on the other hand, does not affect traffic until a
solution has been reached, which trial methods do. Simulation, it will be
noted in Figure 2, is almost always midway between analysis and trial. But
as the situation being studied becomes more complex, the differences between
methods in terms of cost, time, etc. become more pronounced until finally
simulation is the only feasible method.

There is one aspect of the attack on a problem in which simulation
is better than both analysis and trial. When a suggested solution is being
examined, it is in the light of some measurable criterion which determines
its usefulness. Sometimes, as is the case with traffic, several criteria
may be used (time thru region; flow across boundary; or congestion as mea-~

sured by average delay), or different criteria may be used at various times.



In analysis we may use only those criteria which are mathematically tractable
(e.g. least squares, but not maximum absolute deviation), and in trial, we
choose only one criterion because even one is costly to measure. In simu-
lation, we may select any criterion and as many as we like, measuring them
continually if necessary.

In the traffic process, the goals achievable by simulation are
clearcut and offer a pronounced payoff. The worst aspect of our lack of
knowledge of the traffic process today is the absence of a reasonable esti-
mate of the theoretically achievable improvement in traffic flow by traffic
control methods. Estimates derived from data on speeds and number of cars
per hour are so far from the practical situation as to be useless. Clearly
we need a method for estimating this theoretical upper bound. For if we
had it, we would know that either (a) only a small improvement is possible
with control methods and we may save all the money we are investing in control
methods for use in radical solutions like the dispersal of cities, moving
sidewalks, etc., or (b) a sizeable improvement is possible. In case (b)
we may use the same tool that gave the theoretical upper bound, the model,
to determine necessary changes. But further than that, the logic governing
automatic traffic control systems, such as those which automatically meter
traffic flow in order to control lights, must be studied. The model offers
the means for such a study. Moreover, it is possible that future traffic
control will require car control. This may be done, for example, by
directly controlling the movement of each car or by a broadcast which in-
forms every driver, perhaps by means of a cathode ray tube display, of
the traffic conditions for blocks around him. Car control will have to be
investigated and its techniques developed and evaluated without interfering
with actual traffic. The computer model is an ideal instrument for use in

such research.



The simulation model is not another means for accomplishing what we
can do today, but is a tool for solving a problem which cannot be solved today.
To see this, we quickly review present methods of traffic design. A bad situ-
ation in city traffic is brought to the attention of the traffic engineer by a
death or perhaps a string of accidents at an intersection. He examines the
characteristics of the intersection in terms of the light cycle, the number of
lanes, the type of area, etc. By changing some factor which is controllable,
he then seeks to increase capacity (caré per hour) to a value greater than
the number per hour observed at the intersection. To aid him in his choice

he uses some reference such as the Highway Capacity Manual. And frequently

he gets a reasonable solution to the intersection problem. But none of the

traffic engineers consulted claimed to be able to predict the effect of a
change at a given intersection on adjacent intersections. On the other hand,
all agreed the major traffic problem in cities concerns sets of intersections,
or regions, not single intersections. If this were not so, the automatic
controller would be the final solution. But as in so many problems, opti-

mizing at a point does not imply optimization over the whole region.

3. A Computer Model for Simulating Traffic

The traffic model discussed here was set up on a digital computer,
the MIDAC, at the University of Michigan. It is intended as a demonstration
of the proposed technique. No experimental verification of its applicability
could be undertaken with the means available, but it contains enough of the
real traffic situation to make it interesting.

In developing the computer model, the fundamental unit to be simu-
lated was first chosen. It consisted of a street intersection and the lanes
approaching it. Such a combination was called a cross-block and is illus-

trated in Figures 3.1 and 3.2. The cross-block can be considered a "building



block" from which the network of streets of a city can, in many cases, be
constructed. A simple combination of two cross-blocks is shown in Figure 3.3.

After the general characteristics of the cross block had been decided
upon, a method was devised for representing the position of every car in the
cross-block at any particular instant of time. This was extended in the light
of the operations available on MIDAC to a method for simulating traffic flow.
This method requires the computer to determine the motion of and to move each
car in the cross-block individually.

Once the overall picture had been sketched the detailed development
of the rules according to which the computer determines the movement of the cars,
their introduction into the lanes, and so on were developed. The formulation
of these rules concluded the first phase in the construction of the computer
model. The final phase, the writing of the computer program to realize the

model on MIDAC, was then carried out.

3.1. General Characteristics of the Cross-Block

The first step in the construction of the model is to define a
"typical" cross-block to be simulated. The abstract and idealized cross-
block which constitutes the computer model will be an approximation of this
"typical" one.

The cross-block upon which the MIDAC model is based has streets
22 feet wide and lanes in the neighborhood of 400 feet long. The vehicles
travelling through it are assumed to average about 18 feet in length, being
in any case more than 11 feet and less than 22 feet long. They travel in
the lanes at 30 mph when unobstructed, pass through the intersection under
the control of a three phase traffic light, and turn right, left or go
straight ahead according to the'desires of the driver". Their position

in the block is given by the position of the mid-point of the front bumper.



To avoid complications cars are not allowed to pass one another and inter-
ference from parked cars and pedestrians is assumed to be negligible.

Instead of conceiving of a lane as a two dimensional strip, it
can clearly be thought of as a line, and the position of a car in the lane can
be thought of as corresponding to the position of a point on the line.

In the idealized cross-block to be represented in the computer a
further idealization takes place. The line representing a lane is replaced
by a sequence of 4O points. A car in the lane must be thought of as being
at one of these 40 points. As it moves down the lane, it "jumps" from point
to point.

In our model there are four lanes. With each lane are associated
four paths lying within the intersection, one followed by right turning cars,
one by cars going straight ahead and two by cars turning left. These are
called p, @, A, and X\ respectively. They are also considered to be sets of
points and are shown for a single lane in Figure 3.2. The end point of A

is of special importance and is called the Left Turn Zone.

Cars move down the idealized lanes and paths by "jumping" from one
point to the next. When a car is moving, it "Jjumps", and thereby covers the
distance between two adJjacent points, every quarter second.

The distances between points are different for the lanes and the
several intersection paths. Consequently, the simulated speeds vary. The

distances and corresponding speeds are:

Number Distance
Length of points between points Speed
Lane ko9 ft Lo 11 ft 30.0 mph
a 33 ft h 8.25 ft 22.5 mph
0 18.4 ft 5 3.67 ft 10.0 mph
A 19.8 ft 9 2.20 ft 6.0 mph
x 18 ft 6 3.00 ft 8.0 mph




3.2. Representation of a Distribution of Cars in a Cross=-Block

This idealized cross-~block can be represented in the computer. To
each lane and to each intersection path there corresponds a register, twenty
in all since there are four lanes and sixteen paths, The points of the lane
or intersection path are associated one to one with some digit positions of
the corresponding register (not all digit positions need be used).

To represent the distribution of cars in a lane at a particular in-
stant of time, it is only necessary to specify the presence or absence of a
car for each point of the lane. This is done by having ones in the digit
positions corresponding to points at which there is a car and zeros otherwise.
For any particular instant of time, t, the set of such distributions for all

lanes and intersection paths is called the distribution for t.

As an example of these ideas, consider the first 10 points of a lane.
Label the points at which there is a car by C. Then the following scheme
shows the points of the lane, the correspondence of these points with the
digit positions of the assoclated register, and the distribution of zeros

and ones corresponding to the distribution of cars in the lane:

C 6 C ¢ e o o

Lane: XX XXXXXXXX o o o
WL

Register: 1010001010. ..

This form of representation is particularly suitable for MIDAC be-
cause numbers are stored in its registers in binary form (i.e. the digits are
either O or 1 instead of O, 1, . . . 9 as in decimal numbers). Each register
contains 44 digit positions, more than enough for our lanes which require L0

digits.

3.3. Simulation of Traffic Flow in a Cross-Block

In a moving picture, motion is simulated by observing a sequence of



pictures taken in temporal succession, the time between successive pictures
being very small. The motion of traffic in a cross-block can be similarly
conceived as a temporal succession of car distributions taken (in the case
of our model) at one quarter second intervals. The computer simulates the
flow of traffic by constructing a sequence of car distributions for suc-
cessive moments of time.

Consider again the first ten points of a lane. Let the binary number
representing the distribution of cars in this lane be stored in register, R.

Then the contents of R at successive intervals might be:

At time t : 1010001010 . . .
At time t + 1/4 : 1010010010 . . .
At time t + 2/4 : 1010100010 . . .

At time t + 3/4 ¢ 1010100100 . . .

If the cars are considered to be numbered from left to right then car
1 and car 2 remain stationary; car 3 moves up until it is right behind car 2;
and car 4 after remaining stationary moves up until only two points separate
it from car 3. Because of the restriction imposed on car length (greater than
11 and less than 22 feet) cars in a lane are separated by at least one point
(i.e. there must be at least one zero between two ones ).

Although it is not essential for understanding the MIDAC model, some
insight into the working of the construction process may be gained by seeing
how a car is moved in a lane or intersection path, how the computer can tell
if there is a car at a point, and how it can choose among different courses
of action.

A car (i.e. a one) is moved from one point to the next by addition.
Addition in MIDAC is binary, since the numbers are in binary form. It is

defined by:



Binary Addition Table
0 1
o) 0 1
1 1 10

In order to get the distribution for t + 1/4 from that for t, we

proceed as follows:

Distribution for t 1010001010

Shift Number : 00000011000

Distribution for t + 1/4 1010 Oll O|O 10

A MIDAC operation used in deciding if there is a car at a particular
point (i.e. a one at the corresponding digit position) is "logical extract".
It isolates any specified digit of a register by putting it into some other
register, E. E is then studied by the "comparison operation". For example,
if the digit position under examination contains a one, the logical extract
operation will put a 1 in E; if it contains a zero, it will put a zero in E.
In the construction of a car distribution, the examination of a digit position
may lead to two separate courses of action:

1l. 1if there is a car there - to the determination of and the
carrying out of the car movement.
2. 1if there is no car - to the examination of the next digit
position,
The choice is made by the comparison operation, which compares the number
zero to the number in E. If the latter is greater than zero, then (1) is
followed. Otherwise (2) is carried out. This operation is used wherever

choices must be made, e. g. between the steps to be taken if the light is

red or green.
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3.4. The Determination of Successive Car Distributions

The construction of a car distribution employs procedures for entering
cars in the lanes, for determining the direction of cars entering the inter-
section, for cycling the traffic signal, and for taking account of "traffic
conditions".

In the MIDAC model, cars enter the four lanes at point 40O. They are
"generated" by a process which makes use of pseudo random numbers. At the end
of each quarter second interval a random number subroutine generates a random
number R (between O and 1) for lane N. R is then compared to a number M. If
R <« M a car is generated for N. Clearly by changing the value of M, which
is a parameter of the program, the "average number of cars per hour" entering
the lane may be controlled. For example, if M = O, R cannot be less than M
and so no cars would be generated; on the other hand if M = 1, R would always
be less than M so a car would be generated every quarter second. For the
small intervals of time used, the cars generated in this fashion will have
approximately a Poisson distribution.

In order to avoid "piling cars on top of one another", which would
occur whenever cars are generated at successive quarter second intervals,
cars are first put in a register, B. No attempt is made to take account of
the position of cars placed in B. Its contents merely indicate the number of
cars waiting to enter the lane. As space becomes available, the cars are moved
from B into N.

A similar procedure is carried out for the other three lanes.

When the cars leave the end points of the paths in the intersection,
they are dropped from consideration.

If several cross-blocks were to be fitted together, the picture would

be somewhat different. Cars would be generated in the manner described above

11



at the free ends of lanes, i.e., those ends not attached to an intersection
path - Figure 3.3, Wi, Ny, Sl, Ny, Es, and Sp. However, they would not be so
generated at E; and Wp. Cars leaving cross-block I at point A, for example,
would become the inputs for lane W of cross-block II and would only be dropped
from consideration when they left free ends of paths.

At an actual intersection an observer of traffic cannot tell which
way a particular car will turn. However, he may know the probabilities for
a right turn, left turn, or for going straight ahead. This characteristic
of traffic is simulated by associating a turn register with each lane. It
can be thought of as representing the turn indicator of the car nearest the
intersection in that lane. If the turn register contains a 1 then the car
nearest the intersection will turn right. A zero indicates straight ahead
and a two a turn left. After the car has made its turn the turn register
must be set to indicate the next turn. Suppose the probability for a right
turn is .3 and that for a left turn, .2. Then to determine what the next
turn is to be, a random number is generated. If it lies between O and .3,
the next turn is to the right; between .3 and .8 it is straight ahead; and
between .8 and 1.0 it is left. Since the numbers are equally likely through-
out- the 0 - 1 range, cars will turn with the desired frequency in each
direction. These probabilities are parameters for the program and as such
may be varied at will.

The three phase traffic light is simulated in the computer by a
light register. The register contains a zero if the light is red, a one if
the light is green, and a two if the light is amber. The duration of each
phase of the light is controlled by counting the number of quarter seconds
during which it has been continuously in that phase and changing to the next

phase when the counter has reached a certain specified value. The duration

12



of red and green for the N and S lanes are parameters of the program and may
be set to anything desired. The duration of amber, however, is fixed at three
seconds (12 quarter seconds), which is long enough to enable all cars enter-
ing the intersection on green to pass through before the light turns red.

The effect of the turn register, the light, and the traffic can be
seen by considering the manner in which the computer moves the "cars" and there-
by determines the next distribution in the cross-block. Behind the specific
rules the computer obeys are the following general principles: (1) Cars ap-
proaching the intersection give the right of way to cars which are in the
intersection but not in the left turn zone and (2) cars in the left turn zone,
give right of way to cars which will cross their paths.

The cars on Q, p, A are first considered and are moved up one point.
This can be done without any consideration of the light or traffic because they
are not allowed to enter these paths until the way is clear for their complete
negotiation.

A car approaching the Left Turn Zone is likewise automatically moved
up. If there is a car, C, in the left turn zone, the light is checked. If it
is red, C completes the turn. If it is green or amber, it examines the right
and straight ahead paths of the opposing lane (e.g. S if C is turning left
from N). If they contain a car, C remains where it is. If they are empty,
the traffic in the opposing lane is examined. If there isn't any car within
55 feet of the intersection (i.e. if there are zeros corresponding to the
first six points) the car continues its left turn. If there is a car within
55 feet, the turn register is examined. If it indicates that the nearest
car is to turn left, C completes the turn otherwise it remains in the left
turn zone.

If the car is at point one (i.e. is about to enter the intersection)
the light is checked. If it is red, the car remasins at point one. If it is
green, the computer examines the turn register. If a right turn is indicated,
the digit corresponding to point one is made zero and the digit corresponding

15



to the first point of the right turn path is made 1, (i. e. the car turns
right). If a left turn is specified, the left turn path is examined. If it
is empty the car proceeds, otherwise it remains at point one. If the turn
indicator shows straight ahead, the car proceeds.

A car a point two of a lane always moves to point one and a car at
point three advances unless there is a car at point one or a car entering the
intersection from this lane. These facts are determined by checking to see if
zeros or ones are associated with the points of these intersection paths.

Cars further back in the lanes follow rules designed to maintain a
distance of at least 55 feet between the front bumpers of moving cars. This
was deemed a reasonable minimum distance for cars travelling at thirty miles
per hour. A moving car will, of course, approach a stopped car until there is

a distance of 22 feet between their front bumpers.

L., Study of the Model

The MIDAC under the control of this program simulates the flow of
traffic. Cars enter and move down the lanes. They pass through the inter-
section under the control of the traffic light, turning right, left, or moving
straight ahead, before leaving the area of observation. The observer operating
the MIDAC, however, knows nothing of these things.

In order to study the flow of traffic provided by the model additional
programs called "study routines'" are employed. Study routines may be used to
gather statistics and to make calculations regarding the flow of traffic in
the model. In fact, study routines may be written to investigate the traffic
from any point of view desired.

A routine to compute the "average delay" at an intersection has
been written and illustrates the nature and use of such routines.

The average delay for cars in a given lane is the average actual

14



time needed to go from the far end of the lane (point 40) through the inter-
section less the minimum time for negotiating this same course. The routine
used calculates an approximation of this average delay. The average time
needed to pass through the lane and intersection is approximated by counting
the ones (i.e. the cars) in the lane and its associated intersection paths
every quarter second, accumulating this count and dividing by the number of
cars leaving the lane's intersection paths.

The average delay was computed under many different conditions. The
average number of cars arriving per hour from each direction, the duration of
the light cycle, the fraction of the cycle the light was green (thus determining
all other light phase durations), the fraction of cars going right, left, and
straight ahead all were varied from run to run. The values of the variables
chosen and the results obtained are presented in Figures 4.1 and Table I.

Although it has not been done, a study routine could be written which
would display the traffic moving in a cross-block on a cathode ray tube in a
manner similar to television. The outline of the cross-block could be per-
manently recorded on the face of the tube and the traffic would appear moving
within this outline as if viewed from high above.

This form of presentation was actually used on MIDSAC, another Michi-
gan Computer, where a pool game, with 15 balls and a cue ball, was simulated.
The boundaries of the pool table were recorded on the face of the cathode ray
tube, the balls were represented by circles of light, which moved within these
boundaries, and the cue stick appeared in the form of a shaft of light. In
order to make a shot the player would set the cue stick to the desired angle
by turning a knob and would then throw a switch. MIDSAC would thereupon calcu-
late the position of all balls in real time taking account of elasticity, ac-

celeration, cushion angle, etc. - everything but "English" - and the cathode
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ray tube display would show the balls moving around this "pool table". A

similar technique would work with traffic.

5. Critique and Prognosis

It should be emphasized that realism is not of interest for its own
sake. It is necessary only insofar as it provides answers from the model
which are applicable to the real situation. Thus, in Physics, the wave or
particle model may be used as required although it is difficult to conceive
of both being correct, at the same time. The decision to add complexity to a
model should depend not on any improvement in its realism but only upon whether
the change produces answers which are in closer agreement with measurements.

The methods outlined here are not cheap in absolute cost. Digital
machine staff and digital machines are expensive, but the potential power of
the tool and the foreseeable contribution are so great that by comparison the
costs are negligible, even if in the hundreds of thousands.

Development of the method will require a large initial investment.
Further sizeable expenditures will undoubtedly be needed as traffic workers
develop the use of more powerful techniques, which realize to an ever increas-
ing extent the potentialities of the model method.

The ratio of machine to model real time for the MIDAC model is 3.2 to
1, i.e., to simulate one minute of real time takes 3.2 minutes of computer time.
Under these conditions, if 50 intersections were handled, and assuming no in-
crease due to interconnections, the ratio would go to 160 to 1. This would
seem almost intolerable if it were not for the fact that it can be much im-
proved. This can be accomplished, for example, by using a faster computer,
more sophisticated techniques of simulation, or equipment especially designed

to handle traffic simulation.
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Although all digital computers are fast, they cover a wide range of
speeds. the NORC computer, which is 100 times as fast as MIDAC, would cut the
ratio back to 1.6 to 1, and even faster computers can be built if required.

Simulation techniques are foreseen at this writing which would reduce
the ratio by a large factor. For example, if enough were learned about inter-
sections, it would be possible to associate a function with each of the four
directions in which traffic leaves the intersection. Each of these functions
would have four variables representing the number of cars backed up in each of
the four lanes. The values of each function would be the number of cars leaving
the cross-block in the associated direction. These values would be determined
in such a way that their time distribution is similar to that encountered in
real traffic. A single evaluation of these functions would give the result of
a light cycle computation. The investigation required to develop this tech-
nique is, of course, long and expensive.

In going from 1 to 50 intersections, it was necessary to multiply
3.2 by 50, because the computer could work on only one intersection (actually
only one point of a lane or intersection path) at a time. If small digital
computers designed for intersection simulation were provided for each inter-
section and then were hooked together to simulate a traffic network, all 50
intersections could be considered at the same time. Some consideration has
been given to this approach by UCLA in the report.¥**

A program to develop the model method might begin with an attempt

to simulate traffic in a small relatively isolated community, which bottle

**¥¥Ds L. Trautman, Harold Davis, Jack Heilfron, Er-Chun Ho, Arnold Rosen-
bloom, "Analysis and Simulation of Vehicular Traffic Flow", Institute of
Transportation and Traffic Engineering, University of California, Los
Angeles, December, 195L.
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necks the flow of traffic to and from work in a large city. After a successful
simulation has been achieved and its efficiency tested, the method might be
adapted to the simulation of a region of a city with less detailed representation
serving for the region than for an intersection. In the possibility that such
regions can be simulated lies the hope for large metropolitan areas. After

this had been accomplished the traffic engineer could begin to study the flow

of traffic between regions. Finally, since regions are not independent, the
investigation of traffic might be aided by the development of models in which
regions are joined together.

It is possible to imagine a time in the future when every large city
will have its modelling team and computer which the traffic engineer will use
as a tool to try out his projected changes, assuring himself of a smooth tran-
sition to a new optimum use of his city's traffic facilities. The small commu-
nities, unable to afford a large machine, would band together perhaps under
state auspices, to use a single large machine. ©Since the model, once developed,
can be changed with relatively little effort, even small communities will be

able to develop the technique without having a machine standing by.
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Figure 3.1. Simple Cross-Block
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Figure 3.2, Cross-Block, Position of Cars
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