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PREFACE

Some introductory remarks seem to be desirable before presen-
tation of the model is begun. The author would like to describe
the reasons for his interest in the subject of this dissertation
and to thank those who have helped him during its preparation.

Work on the bacterial cell model described in this dissertation
was begun in 1968 by Dr. Roger Weinberg, as part of his post-
doctoral research in the Department of Computer and Communication
Sciences at The University of Michigan. Dr. Weinberg at that time
held a Ph.D. in microbial genetics from the University of Texas,
and was pursuing a second Ph.D. at The University of Michigan. In
talking with Dr. Weinberg at the Logic of Computers Group, where we
both had offices, I became interested in the model which he had
developed; in particular, the idea of building a model of a colony
of bacteria based on his model of a single cell appealed to me.

It seemed that a colony model in which the individual cells were
represented by a fairly extensive metabolic model would make

available for study a tremendous range of important questions
concerned with the interactions of cells with each other and with
their surrounding environment. My background in automata theory
suggested to me that a very powerful model of a colony could be
obtained by embedding Weinberg's model in a formal framework called

a cellular space or tessellation space. This sort of 'checkerboard"
model could be realized as a simulation using a computer system avail-
able at the Logic of Computers Group. I developed a preliminary model

of this sort in the Fall of 1969. It soon became clear, however, that
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the performance of the colony model {called CELLSPACE} was being
severely limited by the shortcomings of the single cell model (called
ONECELL). Weinberg had develeped the model to examine the necessity
of various control mechanisms for obtaining cevtain behavior over
short periods of time (ten seconds). Although he included some of

the control mechanisms which are necessary to maintain realistic
behavior over longer time periods, many were omiited, and still others
were not ''balanced" so as tc achieve reasonable behavior over long
periods of time. Two additional changes in approach were necessary:
first, Weinberg's work did not include any mechanism for transport

of materials into or out from the cell -- that is, the inputs to the
model were particular internal concentrations of some biochemicals,
and, second, the simulation operated with a time increment of 1 second
or less, and this was much too short to allow extended Tuns of many
hours of simulated time, particularly when many cells were concernec.
In addition, advances in molecular biology made it possible to specify
better models for some portions of the cell's metabolism. For these
reasons, a new ONECELL model has been developed, over the pericd of the
last two years. Work on the CELLSPACE model also progressed for a
considerable portion of that time; however, the rate of changes to
ONECELL has made it impractical to maintain compatibility between

the two medels.

As my understanding of the ONECELL model has deepened, my goals
have changed. It has become clear that the ONECELL model as presently
formulated represents an entirely different approach from the original
one of Weinberg. During the past year, my effort has been concentrated

almost entirely on the achievement of a good ONECELL model. Although
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I still hold my original belief that much could be gained from a colony
model composed of multiple ONECELL components, I now perceive that the
goal of obtaining a reasonable ONECELL model is at least as worth-
while, and of course a prerequisite to the former goal.

I wish to thank the many people who have helped me during my
doctoral study. My particular thanks are due to Dr. Bernard P. Zeigler,
whose expert counsel and encouragement as my chairman have pulled me
through many of the difficult points in the last two years. I am
indebted to Dr. Roger Weinberg for his patience in introducing me
to the bacterial model he developed. Dr. Julian Adams was extremely
helpful in providing me with references relevant to my research, and
in providing expert biological counsel. Dr. Henry H. Swain introduced
me to the fundamentals of biological systems in a way which stimulated
my pursuit of this work. Dr. John H. Holland taught me many of the
concepts which have proved vital in modeling a living cell. I am
grateful to all of my committee members for their patience in rummaging
through early computer runs of limited readability.

To all the members of the Logic of Computers Group, who make it
a stimulating and enjoyable place to work, I owe my gratitude. The
patient and expert assistance of Daniel Frantz in the use of the
computer system at Logic is appreciated.

I would also like to thank the faculty and staff of the College
of Engineering at Michigan State University, who have made it possible
for me to complete this work while at Michigan State. The use of
their computing facilities and the assistance of Mr. Les Keith are
appreciated.

My sincere thanks are due to Miss Jan McDougall, who has been
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helpful beyond the call of duty in preparing diagrams, formating,
and typing this dissertation. Miss Monna Whipp has also assisted
in the typing.
- To the GO players and the musicians who have helped me remain
reasonably sane, I am grateful.
My wife Denise has shouldered many burdens tc allow me to do
this work, and has buoyed my spirits when I have been low. I dedicate
tﬁis dissertation to her; she has worked for it as much as I have.
This research was supported by the National Institutes of
Health, Grant No. GM-12236 and the National Science Foundation

Grant No. GJ-29989X.
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ABSTRACT

ADAPTIVE BEHAVIOR OF SIMULATED BACTEKIAL
CELLS SUBJECTED TO NUTRITIONAL SHIFTS

by
Erik David Goodman

Chairman: Bernard P. Zeigler

The ONECELL simulation is designed to simulate the growth of
a single tacterial cell over many generations. It represents the cell
as a set of forty biochemical pools, interacting with each other and
with the extracellular environment tc produce growth in a wide variety
of conditiqns. Environments modeled include glucose minimal, lactose
minimal, casamino acids, and broth media. Many parameters of the
simulation are set using data for growth in these media from the
microbiological literature; some result from attributing simpie
forms to equations describing cellular processes. Extensive use 1is
made of experimental and theoretical work by Helmstetter, Cooper,
Pierucci, and Revelas (1968) and by Maalge and Kjeldgaard (19¢6) on
the organisms Escherichia coli and Salmonella typhimurium, respectively.
The simulation is designed to permit representation of many cells
in different states, and is a successor to a model used in preliminary
simulations of the develcpment of a bacterial colony (Goedman, Weinberg,
and Laing, 1970). Experiments with the simulation show that it is
capable of withstanding rapid changes of the simulated environment.
As a test of the flexibility of the simulation, instantaneous shifts
among various pairs of the media used for setting the parameters are
tried. The simulationperforms well (that is, agrees well with

laboratory observations) in shifts from poor to rich media. In



simulated shifts from rich to poor media, the transient behavior is
not as realistic as it is in the other shifts, but the control
mechanisms are sufficient to bring the cell to the proper
steady-state. A simulated shift to lactose medium demonstrates the
capability of the simulation to handle the dynamics of enzyme

induction, and to withstand the stresses of temporary deprivation

of usable carbon-sources.



CHAPTER 1

Perhaps the first step in discussing a wodel and a similation
should be to explain the reasons why the modeling is to be done.

Yates, Brennan, Urquhart, Li, and Halpern (1948 argue that modcls
serve several purposes. Central among them is the shaping of research
strategv. This 1s not to say that research should be directed only
toward confirming the predictions of models. Ir a very real sense,

the process of formulation of the model is the greatest benefit, if the
model is one which attempts to account for complex behavior in terms

of simpler, better-understood processes. The medeling process requires
explicit formulation and examination of ideas which the modeler may
never have solidified otherwise. Models allow examination of the
implications of sets of assumptions, often making evident inconsistencies
between assumptions which, taken individually, lock quite reasonable.
The '"bookkeeping'" function of a model, bring together and codifying

a set of beliefs, is of considerable utility.

Rosen (1968, p. 26) points out that the modeis ¢f the sort discussed
here are of a different sort than those traditionally employed by
biologists. While traditional biology may use physice-chemical models,
the relational biology (Rashevsky, 1960) which is used here abstracts
the chemical and physical laws from the actual material, and deals
cnly with them. This allows considerable freedom, but at the price
of difficulty of showing the correspondence of the abstract models
with physical reality.

If the need for a model is accepted, the next question concerns

the need for a simulation. A simulation can be callaed a realization



of the model, i.e., an analog of the modeled system. As such, it
should behave éxactly as the modeled system does, to the extent that
the model captures the behavior of the modeled system. If a model

is of a sort that mathematical treatment allows formulation of the
behavior in closed forms, that is, the model's responses to inputs
can be solved for analytically, then a simulation is unnecessary.
However, in the much more common case (for complex models) where such
solution procedures are impossible or impractical, simulation offers
an opportunity to explore the implications of the model by examining
the behavior of the model under various input conditions.

A computer simulation can greatly facilitate the setting of para-
meters, given a model of a certain form. For example, it is possible
to use cumulative or long-term behavior of the real (modeled) system
to set model parameters for components which work on a much shorter
time-scale, since the simulation can be used to obtain the long-term
behavior of the model for comparison with the data on long-term behavior
of the real (modeled) system. Using this technique, parameters which
would be extremely difficult to measure experimentally can be assigned
values.

An early problem which confronts a would-be modeler is the question
what organism(s) shéuld be modeled. At the level at which the ONECELL
model functions, there are, fortunately, many similarities among
organisms, making the possible sources of data for the model somewhat
less restrictive. The principle of the unity of biochemistry, which
asserts this similarity, has been acknowledged for many years to be
important. Of course, it is a general statement, and can be invoked

in specific instances only with considerable care, but as Luria (1960,
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p. 4) points out, the principle is exemplified by many chemical results
which are achieved by a unique pathway in many widely differing
organisms. Specific arcas where the units of biochemistry principle

is not,aéplicable are not hard to find (see, for example, Sanwal (1970,
p. 24)). However, the general validity of the principle makes it
possible to "fill in some heles' which might otherwise obstruct the
modeling process.

The ONECELL model described in this dissertation relies on data
from several similar bacteria. The most important source of information
was research with Escherichia coli; also important were Salmonella
typhimurium and Aerobacter aercgenes. E. coli and S. typhimurium
are similar, not only in structure, but in rates of change of bio-
chemical composition in rapidly changing environments, as noted for
example, by Kjeldgaard (1967), p. 47. Many properties cof interest
are similar in these organisms, and withjsuitable scaling, some use
has been made of data from all three in the ONECELL model.

The goal of modeling bacterial growth has been pursued by many
biologists. There are,’of course, a great variety of types and levels
of models, each with its strengths and weaknesses. In order that it
may be seen where the ONECELL lies in the range of these models, a
few will be mentioned, with some of their characteristics. However,

a few words about ONECELL are in order first.

ONECELL is a model of a single bacterial cell, perhaps closest
in structure and function to E. colZ. The model is more correctly
called a model of an average cell of a particular age (since division)
in a culture of cells engaged in exponential growth. If a culture

could be completely synchronized, and held in synchrony, without



disturbing the "normal' metabolic processes, then ONECELL would repre-
sent the average cell in that synchronized culture. The model does
not consider spatial distribution of components within a cell (in
agreement, for example, with Fredrickson, Ramﬁrishnaﬁ and Tsuchiya
(1967, p. 332)) but it does distinguish one cell from others in the
culture which are in a different 'metabolic state', having biochemical
compositions different from the modeled cell. Of course, by using
a number of '‘copies' of ONECELL, in different states, it is possible
to simulate the behavior of an entire culture, and this is done in
order to allow comparison of ONECELL with unsynchronized culture data.
ONECELL doe; not keep track of ''random" variations between cells in
the culture; that is, there is no probability distribution or stochastic
process used in the ONECELL model: it is deterministic. Marr, Painter,
and Nilson (1969) provide a great deal of data concerning the variations
between cells within a culture, but for the sake of simplicity, only
culture-averages are used in ONECELL. The model is organized around
a number (about 40) of pools of functionally-related biochemicals.
Gross characteristics of cﬁlture growth,- such as up, the doubling rate,
are not elements of the ONECELL model, but are observable only as
statistics, and result from complex behavior of the biochemical
apparatus. The model has a great variety of types of interactions
between pools, rather than restricting all pathways, for example,
to a single form of control or influence.

It might be argued at this point (but hopefully not later) that
the model is unnecessarily complex. However the alternative--for
example, prediction of u from nutrient supply under a restricted set

of circumstances--is of almost no utility except to allow interpolation



or extrapolation of values under the same circumstances. Henrici, as
quoted in Fredrickson, et al. (1967, p. 371) says, "Where these [i.e.,
mathematicai analyses of the growth curves of bacteria] are not inter-
preted in terms of organisms, substrate, products of metabolism ox
other definite factors, they do not seem to be wvery heipful to an
understanding of the phenomena... ."

There are great difficulties associated with studying a cell
at the level of 40 or more metabolic pools. The average number of poocls
which directly influence the rate of change of any pool is five or six.
One of the chief mechanisms which makes such a model somewhat tract-
able is self-regulation which is exhibited by some pools. The mechanisms
of induction, repression and feedback (allosteric) modification
of enzymes, all of which are modeled in the ONECELL model, make it
possible to study certain properties of a subsystem in isolation from
other subsystems of the model. That is, the cell (and the model)
exhibit some stabilizing effects which reduce the sensitivity of
some pools to certain sorts of changes in the rest of the cell. Rosen
(1968, p. 61) makes this point very strongly, and Mesarovic {1968,
p. 73) discusses the importance of this sort of control in yielding
stability within the organism. Without these controls, the 'network"
of interactions among pools would be much more difficult to model
(and so it should be, since one would be trying to develop the model
without considering some of the most important processes in the cell,
and this is somewhat akin to fistfighting with one hand tied behind
one's back). Models which have not included these controls have been
formulated (as discussed below), but they could not cisplay much of

the power of the ONECELL model.



Despite the advantages derived from use of repression and feedback

inhibition, formulation of a model which exhibits certain desired

’

behavioral characteristics is still difficult. Speaking of his cell
simulation, Heinmets (1966, pp. 14-15) says, "It requires a great
deal of patience and experience in computer technology to organize
a functional system of a model which consists of many entities (31
rate constants)." Tﬁis statement has been borne out by the ONECELL
model, with a much greater number of rate constants. He continues
in a clear statement of the modeling problems shared by his model

and many portions of ONECELL:

"In order to obtain a functional cell growth system,
the functional entities have to be in the proper quanti-
tative relation to each other as a function of time. This
presupposes that rate constants representing turnover and
formation of various functional entities should also
be in a proper relation to each other. Basically, we are
here dealing with the flow system where continucus synthesis
and decay of various elements takes place. If some element
grows too fast and another too slow, ‘then finally an imbal-
ance will result and the system will be disorganized. As
a matter of fact, in a system containing so many rate constants
and variables, the most probable state is a disorganized
state. Only by selecting specific rate constant values and
initial conditions is it possible to obtain a functionail
system. Obviously there can be a certain amount of deviation
in parameters, but those are limited. For example, it is
possible to make some functional entity more unstable by
letting it decay faster. This increased loss of entity can be
compensated by faster synthesis. However, this procedure
already introduces an imbalance in the system because increased
synthesis of one entity will affect the other systems, since
there is a competitive state between various synthetic processes.
This means that if only one element is made more unstable,
the whole system has to be altered in order to gain proper
balance."

The ONECELL simulation is of the 'recurrence' type, to use the
terminology of Gordon (1969, p. 22). Values of variables at one time

step are used in calculating values of variables at the next, and

are called lagged variables. One simplifying restriction which reduces
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the complexity of the model 1s that all bacteria modeled are growing
at 37° C. This allows the model to ignore the differing effects of
changing temperature on reactions, the rates of which might for some
rise linearly with T, some with Tz, etc. It Is possible under this
restriction to represent complex reactions in fairly simple forms,
as will be discussed in Chapter II.

For setting parameters, the ONECELL model postulates that growth
(in volume) occurs expcnentially. In particular, growth rate is assumed
to be primarily a function of size, not age (since division). This is
the experimental finding of Marr, Painter, and Nilson (1969, p. 245).
Ward and Glaser (1971) postulate that the cell volume actually rises
linearly until the cell reaches a certain age, at which the rate
of increase doubles; then volume rises again linearly. They state,
however, (p. 1064) fhat their data would not allow them to distinguish
linear from exponential growth. The model they support, that of
Donachie and Begg (1970), is cne which postulates a certain site which,
when replicated, allows the growth rate to double. Many models have
used this type of discontinuous growth rate, for example, in expressing
the effect of the replication of a particular gene on the synthesis
rate of the mRNA for which it codes. While this is certainly an accurate
representation in most cases, it involves additional bookkeeping which
has not been incorpcrated into the ONECELL model, which instead assumes
that the rates of RNA formation respond toc the total amount of DNA,
not to the number of instances of genes of a particular types. Thus
continuous curves for the rate of production of mRNA's result.

The ONECELL model and simulation can probably be understood more

completely if it is compared and contrasted with some other modeling



efforts.

Eakman, Fredrickson, and Tsuchiya (1966, p- 37) discuss a
classification of mathematical models for description of microbial
populations. They classify models as segregated or distributed,
according to whether or not the population is treated as protoplasmic
biomass distributed uniformly throughout the population's living space.
Further, segregated models are broken down into structured and
unstructured, according to whether or not differences between cells
are recognized. They propose a model which is segregated and structured,
as is' the ONECELL model when viewed as modeling the growth of a culture.
That is; when ONECELL is used to generate behavior of cells of several
different metabolic states, and these behaviors are combined to yield
culture growth characteristics (as is done in this dissertation),
ONECELL is a structured (and segregated) model of a microbial population.
Eakman, et al. (p. 37) also classify models accofding to whether or
not they take explicit account of interactions between population
and environment. Their model does this also. However, there is really
very little further similarity between their model and ONECELL, as
they compress the entire metabolic state of the cell into a single
variable, cell mass. While this simplifies enormously the task of
obtaining data for use in the model, it obviously is not intended to
address itself to the broad range of situations which can be studied
with the ONECELL model. Their model interacts with its environment
only through a single variable, substrate concentration, allowing
none of the richness of behavior evidenced by ONECELL in growth in
different types of substrates.

Fredrickson, Ramkrishna, and Tsuchiya (1967) take a somewhat



broader view in another paper, and define a framework for describing
models using a vector of biochemicals to specify the physiological
state of a cell. They develop this framework as a set of probability
distributions, taking account of the variations between cells. They
do not develop a model, of a particular situation, per se, but derive
some results concerning the form of models of various sorts. They
make perhaps an overly strong statement about the difficulty of study-
ing nonrepetitive growth, saying that, "The fastest computers presently
available could possibly solve problems in a reasonable time {minutes
or hours at most) if the physiological state vector had no more than
three or four elements; this reduction in dimensionality must be made
if nonrepetitive érowth'is to be attacked mathematically.'" This
assertion is, no doubt, a product of their particular framework for
model formulation; it seems doubtful that mathematical attacks on
nonrepetitive growth need be made in that generality.

Ramkrishna, Fredrickson, and Tsuchiya (1967) in another paper,
do take a step in the direction of a biochemically structured model.
They consider two pools: nucleic acids and everything else. They
use this model to predict the occurrence of a lag phase in batch growth.
Their model is distributed rather than segregated. Aloag the continuum
of degree of structure, if their model is structured, ONECELL wouid
have to be called highly structured, and highly compiex as a result.

A simple, nonprobabilistic model with two differential equations

[WH
Ui

s presented by Aiba, Nagai, Endo, and Nishizawa (1969). Their model
is distributed, and nonprobabilistic. They have used an analog computer
in some of their modeling work.

Powell (1967) proposes a model for growth rate u in terms of
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substrate concentration in eteady-state growth, and compares his fit
with others. Clearly this model is of a very different sort, not
attempting to account for the reaction of u to changing substrate con-
centration.

Simon (1970) has developed a model with many similarities to
the ONECELL model. His model is of a single cell, and uses the repli-
cation model proposed by Helmstetter, Cooper, Pierucci, and Revelas
(1968), as does the ONECELL model. His model considers three enzymes,
and four additional biochemical pools. He does not model the feedback
inhibition of enzymes. However, the enzymes are repressible in his
model. He uses the Helmstetter-Cooper model, together with the ideas
of substrate saturation and enzyme repression, to calculate a minimum
cycle length (interdivision time) under conditions of substrate
saturation. The model would not be suitable for studying the kinetics
of a shift from one medium to another due to its lack of rapid-acting
controls, but it is a step closer to the ONECELL approach than those
models previously discussed. His equations are still of sufficient
simplicity that he did not need to use a computer simulation to arrive
at his minimum cycle length result.

Chance, Garfinkel, Higgins, and Hess (1960) have been engaged
for some time in experimental study and modeling of the control
mechanisms operating in ascites tumor cells. They have developed a
model which describes the interrelation between glycolysis and respir-
ation in these cells. Their model is a very detailed one, with
components consisting sometimes of single enzymes; for this reason,
it can model only a few pathways. This, of course, does not in the least

diminish the worth of their model: its scope ohly ﬁeeds to be broad
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enough to include the problems of interest to them. They have used

a digital computer to simulate the behavior of their multi-enzyme
model, running over simulated time periods on the order of a min:te.
Their model is discussed in Rosen (1968), and Rosen states that, 'it
should not be surprising to see essentially the same basic model
accounting for regulatory phenomena on quite disiinct time scales.”
ONECELL, while not of a comparable level of detail of representation,
is certainly an attempt to model the metabolism of a cell using the
same fundamental approach as Garfinkel and his co-werkers, but over
a much longer time scale.

The model that probably bears the most resemblance to ONECELL
(in terms of level of the entities which it cheoses to group for
representation as a single variable) is the "advanced cellular
model-system'" of Heinmets (1966).

This is a single-cell model which he develops from his earlier
model,- modifying it to include the control mechanisms of induc:zion
and repression. His earlier model identifies several metabolic pools,
enzymes, genes, and messengers. It does not treat the process of
cell division and genetic replication, however, so cannot be used to
model extended growth periods; his advanced model does introduce mech-
anisms to allow cell division. 1In his earlier model, he is able to
manipulate initial conditions and rate constants to determine the
effect on the behavior of the model. He has rcalized the model on an
analog computer, and has generated a large number of curves showing
the relation of one pool to another. It should be pointed out that
Heinmets does not "solve" his system so as to obtain initial conditions

compatible with steady state growth: his curves typically show an
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initial peak or dip, followed by a slow rise or fall. In his advanced
model, Heinmets takes a somewhat different approach from that of ONECELL.
In this model, Heinmets has many variables which have direct analogs

in the ONECELL model, but he treats them somewﬁat differently. Each
"reaction" in his model is between two reactants, and he treats each
explicitly, with a rate constant associated with each. In contrast,
ONECELLrlhmps a sequence of reactions together, and assigns a single
rate curve to describe the rate of formation of end-product in terms

of the concentrations of the multiple factors which appear in the
reaction sequence. This considerably reduces the number of parameters
which need go be specified in ONECELL, removing the need for know-

ledge of rates of formation of many intermediates and complexes, which
appear explicitly in the models of Heinmets. It is probably this fact
that makes it possible to implement ONECELL on a computer, while Heinmets
says that his advanced model-system cannot, at the present time

[1966], be analyzed on the computer. Of course, Heinmets was restricted
by the fact that he used an analog computer; with a digital computer

his model would not suffer from size limitations, but more likely

from the shortage of information necessary to set the large number of
parameters in his model. It should be pointed out, however, that
Heinmets was not attempting to model the behavior of a particular

cell, but to develop a model which exhibits cell-like behavior. ONECELL,
while not at the other extreme, is directed much more toward a specific
type of organism. Other areas in which the ONECELL model reflects

a higher degree of correspondence with living cells are: the differ-
entiation among nutrients and their transport mechanisms, the model

for DNA replication and cell division, and factors such as the



surface-to-volume ratio, which does not appear in the Heinmets model.

Three radically different approaches from that of ONECELL will
be mentioned, to indicate the breadth of attack which is possible
in modeling a simple living system. Goodwin (1863) treats large portions
of the metabolism as random variables, changing rate constants in
the parts modeled explicitly. He 1ooks.at the occurrence of periodic
phenomena as functions of the distributions of these random variable
parameters. He uses statistical-mechanical notions to analyze the types
of behavior his model éould exhibit. Another formalism, that of
automata theory, has been used to obtain two additional type of models.
One, that of Stahl (1965), represents a cell as a Turing machine,
writing metabolites on its tapes as symbols, forming macromolecular
"words'", and so on. He uses this model to describe the process of
differentiation. The other automata-theoretic model is by Langer,
Krohn, and Rhodes (1968), and represents metabolism in terms of the
semigroup theory and machine theory in which Krohn and Rhodes have been
heavily involved. They do not actually formulate a cell model, but
present a framework for representing metabolism, and an exampie for
a small portion of bacterial metabolism.

It should be fairly clear from the discussicn above that the
ONECELL model is not the first model which attempts te represent the
growth of a cell, or even of a bacterial cell. It is unique, however,
in the levels of organization and control it employs, the breadth of
environmental conditions in which it is able te function, the many
types of behavior it is able to exhibit, and the flexibility which
is inherent in its organization. It is the author's belief that the

particular form of "the model'" at this point in time does not reflect
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the best of all possible models; in fact, it does not utilize some
large areas of current biological knowledge. However, the author
feels that the approach exemplified by the ONECELL model, and the
general level of metabolic representation used in the model, will
prove to be increésingly important in the understanding of cellular
growth and regulation, and will be used by biologists in further

elucidation of the processes of life.



CHAPTER 2

Description of the Model and the Simulation

The description of the model and the simulation will be given
in several phases:

(1) Presentation of the principal pools us«d in the model

‘(2) Discussion of State Model Terminology

(3) Discussion of the state variables and the general forms
of the state equations, showing what state variables enter
into each state equaticn

(4) Discussion of approaches used in formulating the simulation
and the model

(5) Presentation of the complete equations for an exampie pool,

NUC.

Section (1) - Presentation of the principal pools used in the model

The principal pools used in the model are given in Goodman,
Weinberg, and Laing (1971). A graphical representation of the materi:!
flows is shown in Figure 2.1.

This representation of the metabolism uf the cell is based on
the grouping shown in Figure 2.2.

The abbreviations which will be used throughout this dissertation
are the variable names which appear in the ONECELL simulation. They
are listed here for convenient reference. Alsc listed are the enzymes
associated with various synthetic and transport systems. For each

enzyme EK(i) there also exists a mRNA, called RNK(i)}, which codes for

15
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the synthesis of EK(i).

NUC - the concentration of (ribo- and deoxyribo-) nucleotides
. 1in the cell. :

AA - the concentration of amino acids in the celi

ATP - the concentration of ATP in the cell (kept as a variable

separate from NUC)

WALL - the concentration of cell wall and membrane precursors in
the cell

ADP -. the concentration of ADP in the cell

DNA - the concentration of DNA in the cell (derived from DNA1,
DNA2, DNA3 as discussed in Section (4))

PRIN - the concentration of the sum of the enzymes EK(1) - EK(14)
in the cell. Ribosomal protein is kept separately.

MRNA - the concentration of the sum of mRNA's RNK(1) - RNK(14)
in the cell

RIB - the concentration of ribosomes in the cell

TRNA - the concentration of transfer RNA's in the cell

GLUC - the concentration of glucose and its products (Figure 2.2)
in the cell

LAC - the concentration of lactose in the cell

VOL - the cell volume

NO - the number of (identical) cells represented by this ONECELL.

(NO is doubled at each simulated cell division.) NO is
sometimes called COUNT in later sections.

MASS - the weighted sum (in daltons) of the amounts of each pool
in the cell. (An output)

EK(l) - the concentration of enzymes for NUC synthesis

EK(2) - the concentration of enzymes for AA synthesis

EK(3) - the concentration of enzymes for ATP synthesis

EK(4) - the concentration of enzymes for WALL synthesis

EK(5) - the concentration of enzymes for ADP synthesis



19

EX(6) - the concentration of enzymes for DNA synthesis

EK(7) - the concentration of enzymes for PRTN synthesis

EK(8) - the ccncentration of enzymes for MRMA synthesis

EK(9) - the concentration of enzymes for IR synthesis

EK{(10) - the coqcentrétion of enzymes for TRNA synthesis

EK(11) - the concentration cf enzymes for GLUC transport

EK(12) - the concentration of enzymes for LAC transport

EK(13) - the concentration of enzymes for nucleoside transport
EX(14) - the concentration of enzymes for aminoc acid transport
IN - the concehtration of an initiator required for start of

DNA replication

SVR - the surface-to-volume ratio

EXT(1) - (EXTNUC) external concentration of nucleosides (an input)
EXT(2) - (EXTAA) external concentration of aminoc acids (an irput)
EXT(3) - (EXTGLUC) external concentration ot glucose (an inputl)
EXT(4) - (EXTLAC) external concentraticn of lactose (an input)

With the exception of DNA, PRTN, MRNA, and SVR (which are derived
from finer-structured state variabies), tﬁe EXT's (which are inputs}),
and MASS, which is an output, the variables ahove are state variables,
as discussed in the next section.

For ease of comparison with published data, these output and
state variables are often transformed by converting concentrations
to amounts and taking logarithms. Crude representations of unsynchron-
ized cultures are done by making several runs and recording (and
changing environmental conditions) at different stages of the division

cycle. These procedures are described in Chapter 3 where they are



used in generating graphical output.

Section (2) - Discussion of state model terminology

It is possible to divide the numerical entities of the model
into several classes: some are constant, some vary, some are integers,
some are real numbers, some are solved for, some are estimated from
experimental literature, and so on. One particularly important class
of numerical entities is the set of state variables. Roughly
speaking, these are the variables which may change during the course
of time in the model, for which the model must retain a value from
one instant to the next. That is, if time is treated as a set of
discrete instants, a variable is not a state variable if it can be
calculated at any instant of time using the inputs to the model at that
instant of time, and its previous value is not needed to calculate
the value of any vafiébles. State variables, as the name implies,
specify the state of the model at any time, and calculation of the values
of any variables can be done using only the state variables and the
inputs.

If a model can be expressed as a set of first order differential
equations and algebraic equations, it is the variables whose derivatives
appear in the differential equations that are the state variables.
this specification of the state variables agrees with the description
in the preceding paragraph, since in order to carry out a numerical
solution to a differential equation, it is necessary to calculate
the value of the state variable at a particular time using its value

at a previous time (to which the change is added). Of course, the two
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instants of time are brought arbitrarily close together in the limit,
but there is no escaping the necessity for '"remembering' a previous
value to calculate a new one.

When one is considering a model with respect to preparing a sim-
ulation, the state variables are of particular importance. The values
of the state variables are the only values which must be updated in
the simulation. That is, all other entities are either constant or
may be calculated at any time from only the constants, inputs, and
state variables. The importance of this for computer simulations is
very great. For example, if one wished to have the capability of
running a simulation for some time and then jumping back to an inter-
mediate state and trying the effect of a different sequence of inputs,
he could do this easily by saving (on cards or some magnetic peripheral
storage device, for example) the values of the state variables at the
times to which he might wish to return. Other nonstate variables
which may have been calculated need not be recorded, as they can be
regenerated from the state variables (and inputs, if necessavy).

For reasons such as the one above, it seems desirable to present
a '"skeleton'" of the cell model, showing which variables are state
variables, and showing, for each state variable, the set of state
variables and inputs on which calculation of its value depends. The
notation to be used is shown in the following example:

dx/dt = f(y,z)
This indicates that y and z are the state variables (or inputs) upon
which the rate of change of x depends. One additional notational

convenience will be used. Sometimes a state equation is easily



expressed, for example, in the form:

dx/dt = k x x x y x dz/dt
In such a case, dz/dt is not a state variable, so dz/dt should not
appear as a state variable on which x depends. In fact, dx/dt can
be calculated from x,y, and the set of state variables and inpute
upon which z depends. This should be clear since this set enables
dz/dt to be calculated, then used to calculate dx/dt. The situation
above will be expressed as dx/dt = f(x,y,D(dz/dt)), which should
be interpreted as saying that the next value of x depends on the
previous values of x,y, and of the state variables and inputs on which
z depends. At some points, the notation SCD(dz/dt) is used to

indicate a subset of D(dz/dt).

Section (3) - State equations

NUC

The pool called NUC represents free nucleotides present in the
cell, except ATP and ADP, which are handled separately. The units
used for this pools, and for most of the others, are molecules per
unit volume, where the unit of volume is the volume of an E. coli
ceil in well aerated glucose minimal medium (called in this simulation
environment 1).

The direct dependence of the rate of change of NUC on the state
variables and inputs of the model is expressed as:

dNUC/dt = £, (NUC,GLUC,STP,EK(1)) + £,(D(dDNA/dt),D(dMRNA/dt),

D(dTRNA/dt) ,D(dRIB/dt),SCD(dADP/dt) SCD(dATP/dt))

+ £ (EXTy,,.,NUC,EK(13) ,D(SVR))

Nuc’
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In the equation above, f1 represents the synthesis of NUC, using

GLUC as substrate. The noncarbon substrztes are assumed to ve
nonlimiting. The ATP represents the energy required for synthesis

of NUC, and EK(1) represents the set of enzymes which catalyze synthesis

of various members of the NUC pool. The f, term expresses the usage

yA

of NUC for synthesis of other pools. The f3 term represents the
transport process, which enables the cell to use NUC molecules present
in the growth medium if the cell is growing in broth or another
nucleoside-rich medium. The EXTNUC is an input to the model, namely
the concentration of NUC outside the cell. EK(i3) is the set of
enzymes responsible for transport of NUC into the cell. The D(SVR)
term represents the set of state variables necessary to calculate SVR,
the surfgce—to-volume ratio, which is not chosen as a state variable.
The equation for dNUC/dt given above actually describes the change
of NUC per unit of volume at the beginning of the time step. The
new concentration of this pool is calculated also taking inte account
the change in volume during the time step, so there is an additional

dependency of this and all the other pool equations on VOL and

D(dVOL/dt).

AA
The AA pool represents the amino acids present in the cell
(excluding those which have already been incourporated into structures
like protein or cell wall, etc.)}. The rate of change of the concen-
tration AA may be related to the other pools and inputs of the model
as:
dAA/dt = fl(AA,GLUC,ATP,EK(Z)) + fz(D(dPRTN/dt},

D(dRIB/dt)) + £(EXT,,,AA,EK(14),D(SVR))

LA
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As was the case for NUC, the f1 term represents synthesis of AA, the
f2 term handles usage of AA to form protein, and the f3 term deals
with transport of AA into the cell if it is present in the growth

medium,

ATP and ADP

ATP .represents the concentration of adenosine triphosphate
molecules in the cell. Itbis used in the model as the principal
supply of energy for the synthetic reactions of the cell. It is
related closely to the ADP, or adenosine diphoéphate, pool. ADP is
one of the forms which results when ATP gives up part of its stored
energy to drive a chemical reaction. ATP and ADP may both be viewed
as high-energy derivatives of AMP, adenosine monophosphate, a mono-
nucleotide which is included in the NUC pool. ADP is formed from
NUC (at the expense of ATP). The energy for creating ATP from ADP
comes from the GLUC pool, principally by way of the respiratory chain
(aerobic groﬁth is assumed in the model).

The dependence of the synthesis of ATP on the other state variables
of the model is of the form:

d(ATP)/dt = f, (ATP,ADP,GLUC,EK(3) ,EK(5))
+ f,(SCD(dNUC/dt),SCD(dAA/dt) ,SCD(AWALL/dt) ,

D(dDNA/dt) ,D(dRNA/dt) ,D(dRIB/dt),D(dVOL/dt)),

where the fl term represents the synthesis of ATP from ADP, and
SCD(dNUC/dt) represents the state variables necessary for calculating
the amount of NUC synthesized (not uged), and similarly for

SCD(dAA/dt) and SCD(dWALL/dt).
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The f2 term represents loss of ATP (becoming ADP). The f2 term
depends on the rates of synthesis of most of the pools within the
cell, since ATP supplies energy to them.

The corresponding expression for change of ADP is:

d(ADP)/dt = £ (ADP,ATP,NUC,EK(S)) + f,(D{dATP/dt))

2
where the fl term represents synthesis of ADP from NUC, using enzyme
EK(5), and the f2 term represents net conversion of ADP to ATP

(including both ATP formed from ADP and ATP beccming ADP).

WALL and VOL

Cell wall and cell membrane are lumped together in this model.
The amount of cell wall and membrane is not kept explicitly as a
variable of the model; rather, the cell volume is kept. The
surface-to-volume ratio at any time can be calculated from a relatively
simple geometric model of the cell, using the volume. Thus it 1is
possible to calculate the amount of surface area (= volume
x surface/volume ratio), which determines the amount of cell walil
and membrane, assuming that the cell wall and membrane have = constant
thickness and uniform composition. The rate of change of cell volume
is calculated as a function of the concentration of precursors avaii-
able for constructing wall and membrane. While the cell wall and
membrane are composed of many types of substrates, the model will assume
that the principal components are derived from lipids and carbohydrates.
The model takes into account the need for the aminc acids which are
found in mucopeptides and lipoproteins, but they are not included as
part of the precursor pool. The substrates for cell wall and membrane

synthesis, consisting of lipids and carbohydrates not represented
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elsewhere in the model (i.e., glucose and the products of the glycolytic
pathway are not included in the cell wall precursor pool), will be
grouped and called WALL. It should be remembered that WALL represents
precursors, not the in-place cell wall and membrane. The model for
cell volume utilizes the state variables shown below:
dVOL/dt = f(WALL,ATP,D(dPRTN/dt),VOL)

The dependence on VOL is autocatalytic; i.e., the rate of change of
VOL goes up as VOL goes up.

The model for WALL, cell wall and membrane precursors, can be
similarly represented as:

dWALL/dt = £(GLUC,ATP,EK(4),D(dVOL/dt),D(SVR),TERM, ITRM),

where EK(4) represents enzymes which enable synthesis of cell wall

and membrane precursors, D(SVR) stands for the state variables which
determine the surface-to-volume ratio, and TERM (time since termination
of a DNA replication round), and ITRM, a variable set to 1 when cell
division is imminent, are needed to determine what use of WALL, if any,
is necessary for formation of additional wall and membrane near cell

division time.

DNA and Initiator Protein IN

The model for DNA replication is based primarily on the model
proposed by Helmstetter, Cooper, Pierucci, and Revelas (1968).
First the functional dependencies of the variables involved in the

DNA replication process will be presented here, mainly for reference

purposes:
dDNA3/dt = £, (NUC, ITRM, IN2)
dDNA2/dt = £, (NUC, ITRM, ITRM2, IN1, IN2)
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/dt

fl(NUC,ITRM,ITRMZ,INI)

t

il

fA(D(dPRTN/dt),IN,INI,INZ;VOL)

/dt

£ (ITRM, WATRT)

= £, (IN,IN1,VOL)

= £,(IN, N1, INZ,VOL)
= £4(DNAL, ITRM, GLUC)
= £4(ITRM,DNAL)

= £, (NUC)

= £, (6LUC)

IN2, ITRM, and ITRM2 are state variables, but are logical
ical) in form, and their behavior is not described by a
al equation (but is given later in this section). DNART
are not state variables, but instantaneous functions of
UC, respectively.

odel of Helmstetter, et al. can be described by these
Initiation of DNA replication occurs {at a fixed point

on the genome) every t minutes, where t is the doubling
time of the cells.

DNA replication progesses at a constant rate after
initiation, traversing the entire genome in 40 minutes,
for cells with t s 60 minutes.

For cells with t > 60 minutes, replication of the DNA
(after it is initiated) takes about 2/3 t.

After a round of DNA replication is completed, cell division
follows in 20 minutes (for v < 60 minutes) or about 1/3 7

(for t > 60 minutes).
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(5) DNA replication is initiated after a fixed amount of
initiator per chromosomal origin has accumulated,
regardless of the growth conditions.

(6) This initiator is accumulated as if it were the result
of protein synthesis: when protein synthesiz is blocked,
accumulation of initiator stops. Thus, it seems that a
total of 7 minutes of unrestricted protein synthesis are
necessary for accumulation of the required amount of

initiator.

An example of the behavior implied by these assumptions may help
to clarify their meaning. For a cell which is in exponential growth
with a doubling time of 30 minutes, the state of the DNA replication

apparatus just after cell division is as shown in Figure 2.3.

L ~ N/

30 minutes 10 minutes

Figure 2.3: DNA Configuration after Cell Division, 7 = 30. The
circular chromosome is represented as opened flat (at
the site where replication is initiated). The dots on
the left end represent points where DNA replication has
just been initiated; the third dot shows a replication
point that has progressed thirty minutes down the
chromosome.
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If division is at t = 0, then DNA replication must have been

initiated at t = -(20+440) = -60 minutes. Then, since 1 = 30,
replication must have been initiated again st t = -3C minutes.
At t = -30, then there were 3 points moving along the chromosone.

At t

-20, the first round of DNA replication wmust have been completed,
leaving the second replication point 10 minutes (1/4) along the chromo-
some. Division must then occur 20 minutes iater, that is, at t = 0.
But another round is also initiated at t = 0 (30 minutes after the

last round started). The round initiated at t = -30 has progressed

30 minutes down the chromosome {(i.e., 3/4 of its length). Thus we

find the situation must be as shown in Figure 2.3, where the dots
represent the moving sites of DNA replication. The same logic can

be used to convince oneself that the situation at t = +30 will be

the same as that at t = 0. Since at a growth rate v = 30 minutes there
are always two sites where DNA replication must be initiated, the
amount of initiator to be accumulated during each 30 minute period

is 2 units (where 1 unit per origin is required for initiation}.

It is assumed that initiation "uses up' or breaks down the (presumaply
protein) initiator, so that the entire 2 units must be synthesized
during the division cycle.

Like most models, this model of DNA replication and its regulation
is only applicable under certain conditions. Some experimental evidence,
for growth under the conditions within the scope of the rest of the
cell model presented here, lends considerable support to the replication
model of Helmstetter, et al. This work is cited and discussed in

their paper. On the other hand, the work of Ward and Glaser (1970),
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indicates that control of the process of initiation is not (in their
strain, at least) independent of the synthesis of DNA, as predicted
by the model used here.

The ONECELL model for DNA replication and cell division includes
the assumptions of the model of Helmstetter, et al., and requires
some additional ones. In particular, the time needed for DNA
replicafion and the time between completion of DNA replication and
the occurrence of cell division in slow growth {t > 60) must be
functions of the metabolism of the cell. Also, the control over the
rate of initiator synthesis must be made explicit.

The model of Helmstetter, et al. has been restructured into a
form which is easily implemented in a computer simulation. The DNA
of a cell is divided into three categories:

(DNA1): DNA between the terminal end of a chromosome and the
replication point closest to reaching it. In the case
of no replication, DNAl includes the entire chromosome.
(DNA2): DNA between the furthest-advanced replication point and
the next replication point {vn each strand leadiny from
the furthest replication point). If there are no
additional replication points, DNAZ extends to the origins.
(DNA3): DNA between the DNA2 reginn and the origins of the

chromosome.

When a round of replication is completed, DNAl is, of course,
0. DNA which was up to that time designated as DNAZ now becomes

DNA1l, and that DNA3 becomes DNA2. DNA3 is now 0, assuming that
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no generation times 1 < 20 are considered. Figure 2.4 illustrates

this partitioning of DNA for two configurations of DNA.
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Figure 2.4: Representation of DNA Configuration. Amounts of DNAlL,

DNAZ, DNA3 are kept as fractions of a single
nonreplicating chromosome (so the value of DNAL in the
left hand cell is 5/40 = .125, and the value of DNA2
is 2 x 25/40 = 1.25).
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The initiator substance 1s assumed to be a protein, and its
concentration is denoted IN. In order to obtain an amount per
chromosomal origin, IN must be multiplied by VOL and divided by the
number of origins. Several additional variables are used in the model.
One is ITRM, which is set to 1 when a round of replication is finished,
and to 0 when cell division eoccurs. Others are IN1 and IN2. IN1 is
1 when any replication point is present on the chromcscme, and 0 other-
wise, IN2 is 1 whenever there are multiple forks on a chromosome
(i.é., DNA3 is being formed). ITRM2 is éet to 1 when a round is
completed but the (normally) 20-minute post-termination sequence from
the previous round has not been completed (which can occur only under
slow-growth conditions):

The slow-growth behavior is contrclled by DNART and WATRT, which
are functions of NUC and GLUC respectively. DNART determines the rate
at which a DNA replication point moves along the chromosome. DNART
is 1 when NUC is above a threshold value (which it is whenever t > 60),
and a replication round takes 40 minutes. When NUC is lower, DNART
falls off sharply and a round takes longer. (The equation for DNART
is DNART = min(NUC/(.9 x NUCO),1.0)2'4, where NUCO is the initial
concentration of NUC in environment one. Thus low NUC causes DNART
to be low, and the replication points move more slowly, so the rate
at which DNAl yields DNA2 is decreased, as is the rate at which DNA2
yields DNA3. The numbers .9 and 2.4 used in the equation were chosen
to give a DNART that falls off fairly sharply for values of NUC below
those in environment one.) WATRT has a similar effect on the rate at
which TERM, the time between completion of a round of replication and

the cell division which follows it, is decremented. WATRT is a function
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of GLUC, and low GLUC causes WATRT to be low (WATRT is linear with
GLUC below the threshold), so the time before TERM goes to O
(signaling cell division) is longer. In a sense, both DNART and

WATRT can be viewed as measures of the rate of flow of ''physiological
time", not unlike the concept of '"degree-days' which has been employed

in studies of growth (Caswell, Koenig, Resh, and Ross, 1871).

PRTN

The protein pool is actually a sum of 14 separately-maintained
pools, the pools, EK(1) through EK(14). Each of these pools represents
the concentration of a group of enzymes which catalyze a particular
set of reactions associated with one of the pools of the model. The
protein present in cell membrane and in ribosomes is not included in
the PRTN pools; the model deals with these proteins elsewhere. A
large part of the total biochemical apparatus of the cell is involved
in the production of substrates for or regulation of protein synthesis,
so it should not be surprising that the protein synthesis function in
the cell model contains a large number of terms. Abstractly, the
equation for synthesis of each type of enzyme pool is:

dEK(i)/dt = f(RNK(i),EK(7),ATP,TRNA,RIB,EK(1),PRIN),

where RNK(i) represents the mRNA's that code for enzymes in EK(i},
and EK(7) represents the enzymes that catalyze translation of mRNA

into protein.

MRNA
The pool MRNA, like PRTN, is a sum of smaller pools, called

RNK(1) through RNK(14). Each RNK(i) stands for the concentration of
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messenger RNA's that code for enzymes in EK(i).

The equations for synthesis of the RNK's are of the general form

dRNK(i)/dt = f(Y(i),NUC,DNA,EK(B)ATP,AA,RNK(I){MRNA),

where Y(i) stands for the pool for which EK(i) catalyze the synthesis
or transport. The dependence on NUC is for precursors. The role of
DNA is as a template for forming mRNA. The Y(i) concentrations, for
some i's, enter into the mRNA synthesis by repressing or inducing
(or derepressing) synthesis of the corresponding mRNA's. The total
MRNA is used in calculating an overall rate-constant for synthesis

of mRNA.

RIB

The pool RIB represents the concentration of ribosomes in the
cell. The units are number of 100 S (sedimentation constant of 100)
particle-equivalents per unit volume, where each 100 S particle is
viewed as the equivalent of 2 70 S ribosomes. The reason for using
these units is a holdover from the past, but there is no adverse effect,
since the half-size number is used throughout all places where RIB
appears. |

Ribosomes are composed of both protein and RNA (called rRNA for
ribosomal RNA). There is experimental evidence (see, for example,
Kelley and Schaechter (1968)) that control of synthesis of the protein
fraction can be exacted separately from control of synthesis of the
TRNA fraction. This model, however, will treat RIB as if it were a
single entity with a specified composition, and will not allow for
synthesis of an excess of ribosomal RNA over the supply of ribosomal

protein, for example.
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The model for ribosome synthesis is of the form:
dRIB/dt = f(RIB,NUC,AA,EK(9),ATP,D(dPRTN/dt}),
where D(dPRTN/dt) denotes all of the state variables of which

dPRTN/dt is a function.

TRNA

The transfer RNA pool, TRNA, is composed of the
low-molecular-weight RNA molecules which play a rele in interfacing
amino acids with mRNA templates in the protein synthesis process.
There is a different tRNA specific for each distinct type of amino
acid, but in this model, they are all lumped as TRNA. The synthesis
of TRNA is assumed to be of the form:

dTRNA/dt = £ (TRNA,NUC,AA,DNA)

GLUC

The GLUC pool consists of the intracellular glucose and inter-
mediates in the breakdown of glucose along several pathways. The
model for the concentration GLUC is of the form:

dGLUC/dt = f(EXT GLUC,LAC,EK(11),EK(12),D({dNUC/dt),

GLuC’
D(JADP/dt),D(dAA/dt) ,D{dATP/dt),D (dWALL/dt) ,D(SVR)),

where EXTGLUC represents the concentration of glucose in the medium
in which the cell is growing, LAC represents the concentration of
lactose in the cell, EK(11) is the concentration of enzymes respons-
ible for transport of glucose into the cell, and EK(12) is the

concentration of enzymes for conversion of LAC to GLUC. D{SVR) denotes

the state variables on which the surface-to-volume ratio depends.
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A more detailed description of the model for GLUC is

dGLUC/dt = £ (GLUC,EXT EK(11)D(SVR)) + £, (LAC,EK(12))

GLUC®
+ £, (D(dNUC/dt),D(dAA/dt) ,D(dATP/dt) ,D(AWALL/dt)

D(dADP/dt))

of GLUC in synthesis of NUC,AA,ADP and WALL, and of ATP from ADP.
It is assumed that these uses of GLUC do not overlap; for example,

energy available as ATP when GLUC is used in AA formation is ignored.

LAC

The LAC pool represents the concentration of lactose molecules
in the cell. Lactose is brought into the cell, and its only method
for entering into the general cellular metabolism is assumed to be
by conversion to glucose and galactose, which in turn enters the GLUC
pool. The form of the LAC model is thus:

JLAC,D(SVR),EK(12)) + £, (LAC,EK(12)),

dLAC/dt = fl(EXTLAC

where EXTLAC represents the concentration of lactose outside the cell,
and EK(12), represents both the enzymes for transport of LAC into
the cell (B-galactoside permease) and for conversion of LAC to GLUC
(B-galactosidase and enzymes associated with galactose conversion
to components of the GLUC pool).

The function f1 represents the process of transport of LAC into

the cell (and the exit process as well), and f, represents conversion

2
of LAC molecules to the GLUC pool.



Section (4) - Approaches in Formulating the Model and Simulation

The ONECELL model has at its core a set of differential equations.
These equations express the rate of change of many of the cell's vital
constituents, as the cell grows and changes. Most of the variables
which appear in these equations represent concentrations of groups
of functionally-related biochemicals. The extent to which the model
captures essential features of the life of the cell depends upen the
adequacy of the set of variables chosen in representing the activities
of the cell and the degree of validity of the relations assumed to

hold among these variables.

Aggregation

First it should be noted that there is inaccuracy inherent in
the lumping of related types of molecules to consider them as a single
pool. An obvious difficulty is the necessity to reconcile the differ-
ences in weight among various molecules. For example, the AA pool
(amino acids) is assigned a certain concentration (number of
molecules/unit volume), but removal of a particular amino acid, say
arginine, will result in a change in the average weight, as well as
the number, of molecules remaining. This is a problem when numbers
of molecules used by a particular synthetic pathway are estimated
using the average molecular weight of the product divided by the average
mclecular weight of the substrate pool. If a large inaccuracy resuits,
it can be decreased by considering the concentration of the pcel to be
the number of average-weight-equivalents of each type of molecule.

for example, if a pool of average M.W. = 200 contained 25 molecules
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of M.W." = 400, these 25 molecules could be considered, where necessary,
to be 50 average-weight-equivalents.

The inaccuracy attributable to differences in weights is small
by comparison to the other difficulties whicﬁ‘may arise out of lumping
to form pools of functionally-related molecules. The larger problem
is that the different chemical species lumped may not have similar
functioﬁs with respect to some aspects of the cell's metabolism.

The pools chosen represent an attempt to limit this divergence of
behavior within a pool, but it should be clear that this can only
be accomplished to a limited degree.

The rule for choosing chemicals to be grouped as a pool is that
which mathematicians might call a homomorphism rule. Lightly stated,
it says that one shéuld not put together what the cell can subsequently
pull apart. More accurately, it requires that the grouping of two
chemicals A and B should be done only if the behavior of the cell is
influenced only by the sum of A and B, and not by the proportion of
A+B that is A, or how much of the total is B. This is obviously a very
stringent requirement, ana whatever aggregation it is possible to do
with strict adherence to this criterion reflects unnecessary complexity
in the real cell. However, if one considers the behavior of the cell
under a restricted set’of conditions, and if one is willing to apply
the rule loosely, as a guideline, it is possible to perform a great
deal of lumping. The formalism for expressing the notion of a homomor-

phism and its application to this model are discussed in detail in

Zeigler and Weinberg (1970).
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Equation Forms

The differential equations used in the model are developed in
part from examining the chemical kinetics of the reactions being
modeled. For example, the chemical reaction A+B ki C would be
represented as d[C]/dt = kl*[A]*[B].

Similarly, a reaction in which three molecules must meet simul-
taneously could be represented by d[D]/dt = k*[A]*[B]*[C]. This equation
is not the one which would ordinarily be used to represent the formaticn
of an AB complex which subsequently reacts with C. However, by ignoring
the temperature dependence of the reaction (the ONECELL model always
models growth at §7° C) and by not requiring that k be the product
of the k's of the individual steps, it is possible to consider the
equation

d[D]/dt = k*[A]*[B]*[C] to model a sequence
A+B > AB
AB+C - D.
This is the approach used throughout the formulation of the mod=i,
with the rate constant k replaced by a function K of the concentration D.

In many instances, it is desirable to include substrates,
energy-yielding molecules, enzymes, and other chemical species necessary
for a synthetic pathway all in the same equation. This is done by multi-
plying in factors for the effects of each of these cn the reacticn
rate. The simplest factor used is the concentration itself; it is
often assumed that a reaction is linearly proportional to each of
the chemical species it requires. Of course, this is not true in
general, but it would be extremely difficult to characterize the effect

of each species on the reaction rate. The factors used, then, repre-
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sent an attempt to introduce some effect, which hopefully is a better
representation of the reaction than would be had were the factor omitted
entirely. In addition, if the concentrations appearing in the equation
afe following the pattern they exhibit in the range of environments

used to fit the overall reaction rate curve (discussed next), the
nonlinear variation of the reaction rate with the concentrations

is included in the rate curve calculated.

Rate Curves

One of the principal control mechanisms of a cell is the feedback
control provided by the mechanism of allosteric modification of enzyme
activity.

This control mechanism was incorporated in Weinberg's original
model (Weinberg and Berkus, (1968)). The simulation of the effect of
end-product feedback is done using a variable K for each of the major
synthetic pathways simulated. The K's are subscripted, with K(I)
being the effective activity of the enzyme EK(I) in catalyzing formation
of product Y(I). Actually each K is a lumping of many factors, and
is used as the rate "constant' for synthesis of a pool. Of course,

K is not constant; it varies with the concentration of the end-products
of the reaction sequence it is associated with, and is recalculated

for each time step. The shape of each K curve, that is the value of
K(I) for each concentration of product Y(I), is determined by solving

a set of simultaneous equations. Values of K are estimated in each

of three environments, using the following procedure:

The amount of product (I) to be produced in one second, per unit
volume, in order to keep Y(I) constant in this environment is estimated.

This amount is called DY(I). The concentrations of all the pools
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entering into the synthesis of Y(I) are kncwn. DY can be divided by
each of these concentrations, leaving only K. (That is, if

DY(I) = K(I)*A*B*C, then if A,B, and C and DY(I) are known for a
particular set of conditions, K(I) can be solved for in that set of
conditions.)

After the values of K(I) are known for all 3 environments being
used to determine K(I), the values are used in a set of three equations
in seven unknowns, which arise from the model chosen for ailosteric
modification. Specification of four additional values allows solution
for the K(I) curve, as a function of Y(I). The four values which are
to be specified correspond tu the rate constants of an enzyme-product
complex with no, one, two, and three molecules of product, respectively.
Since these values are generally unknown, particularly when they
represent rates for sets of enzymes, appropriate values are determined
in this model by trying possible values until a K(I) with certain
properties is obtained. The K(I) curve is assumed to be monotonic
nonincreasing with Y(I) and to flatten out for Y(I) above and below
its extreme values in the three environments.

One of the major difficulties in obtaining stable behavicr in
all three environments is the problem of fitting the K(I) curves.
Monotonicity, while necessary, is not sufficient to yield overall
stability; that is, the behavior of one pool is affected by the
behavior of others, and K curves must be adjusted as a group, not just
individually (as discussed in Chapter I).

A detailed description of the equation used for calculating the
K(I) in each environment is given in Zeigler and Weinberg (1970).

One fact not mentioned there is that the K curve reflects not only
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allosteric inhibition, but also some of the nonlinearities of the
reaction rate with respect to the substrate and other reactants entering
into the synthesis. For example, saturation of the reaction with

substrate in one of the environments would be reflected in the K curve.

Repression

Repression (or induction) of enzyme synthesis is also included
in the ONECELL model. It is assumed that the enzymes for NUC,AA,ATP,
WALL,ADP, and LAC may be repressed. The technique used to implement
repression is to sense the level of the controlling pool, say NUC,
for example. If it is above a certain level, the rate constant for
synthesis of the mRNA that codes for NUC-synthesizing enzymes is cut
to a small fraction of its fully-induced value. This results in a
rapid reduction of the corresponding mRNA, because of the high lability
of mRNA. The level of the associated eﬁzyme pool will, of course,
fall more slowly.

In the case of LAC, the '"normal" state in the model is the
repressed one, aAd derepression occurs when lactose is present in
the growth medium and glucose is not (the ''glucose effect" described
in Beckwith and Zipser (1970) and elsewhere). Derepression results
in a rapid increase in the rate of formation of the mRNA which is

transcribed from the LAC operon.

Solution of Difference Equations

The model is largely composed of differential equations. In order

to realize the model as a simulation, it is necessary to solve the



differential equations. There are a variety of techniques for numer-
ically integrating a differential equati¢n. The simpiest, and that
used in this simulation, involves assuming the derivative is constant
throughout a time interval DT, and using its value at the beginning
of the time interyal times the length of time DU to get the change

’

in Y, called DY. That is, given an equation

dy (t)/dt = £(y(t),x(t),z(t),...),
the approximate numerical solution at time t+At can be calculated
by converting it to a discrete-time form:

by (£)/8t = £(y(t),2(t),x(t),...),
SO

Ay (t) = f(y(t),z(t),x(t),...) x At
and

y(t+at) = y(t)+dy(t).

Clearly, if At is chosen to be small enough, any desired accuracy
can be obtained. In the simulation, At is called DT, and Ay is called
DY. 1In effect, the differential equations are converted to difference
equations.

In order that the computer time required to run many hours of
simulated time is not excessive, DT is set at 60 seconds. This results
in poor accuracy in situations where the derivative is changing vapidly
relative to DT, but for most processes, this inaccuracy is not large
relative to the other errors of approximation used in the model.

For four pools, GLUC,LAC,ADP and ATP, this step size is too large,
and they are handled differently (as explained later in this section).

A better estimate of the solution of the equation

dy (t3/dt = £(y(t),z(t),x(t),...)
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can be obtained by using:

y(ede) = £(y(t),2(t),x(t),...) x bt+y(t)

Yo (t+0t) = £(y; (£+dt),2(£),X(£),...) x Atav(t)

y(eedt) = (v, (t+48)+y, (£+68))/2

This solution is more accurate particularly when y{t) tends to
be oscillatory, that is, where the simpler formula y(t+At) =
fly(t),x(t),z(t),...) x At tends to over-correct and make y alternately
large and small. This is often the case when the step size At is
chosen large, and the better approximation is used in the simulation
of GLUC transport where the oscillation problem is severe.

One additional technique is used to reduce the oscillations
introduced by a large DT. For some pools, the DY is 'lagged'", that
is, saved from one time step to the next. At each time step, a new
DY is calculated and saved, using Ay = f(y(t),x(t),z(t),...) x At.
The old and new DY's are averaged and used as the actual DY to be added
to Y for this step. The result is that each amount DY calculated
is added to the pool Y, but over two time steps, half at a time. Thus,
conservation of mass is maintained, in that an amount of Y used in
some reaction, which appears as a negative contribution to DY, is
finally subtracted in full from Y, although it requires two time steps

to do it.

Sampled Simulation

In a sense, there are two ''sides'" to the concentration variables
in ONECELL; that is, two ways in which & concentration functions in

the model. The first way is as what a systems theorist might call
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an intensive variable. That is, a concentration of one pool acts

as a stimulating factor (or retardant) or the synthesis of soms other
pool. This role may be performed as a substrate, enzyme, template,

or in other ways. The importance of the concen*ration viewed in

this way is independent of the actual volume (that is, of the absolute
number of molecules), but depends only on the number per wunit volume.
The type of variation that is generally important in this context is
the proportion (or per cent) by which the concentration changes,
regardless of the absolute numbers involved.

On the other hand, when a pool A is being used in a reaction,
but does not limit its rate (so long as A is nonzerc), the important
aspect of pool A is not the proportion by which its concentration
changes, but the absolute number of molecules per unit volume which
are removed. An example may clarify the distinction being made:
suppose pool A consists of 10 moles of A in 1 liter of water. Then
removal of 2 moles results in a change of 20% in the concentration:
the change is 2 moles/liter. However, if pool A is at 5 moles per
liter originally, and if 2 moles are removed, the proportion by
which the concentration changes is 40%, although still 2 moles/liter
change.

The reason for making this distinction is to lay the groundwork
for discussion of the time-sampled simulation of some of the pcels in
ONECELL.

The decision to simulate growth using a large time-step (one
minute) between successive modifications of the state of the cell,

entails many difficulties. The principal one is that many of the



46

pools in the cell exhibit turnover rates far in excess of one per

time step (some turn over in less than a second). The difficulty with
this is that internal to the real cell there are control mechanisms
which operate very rapidly, whereas the most rapid cperation in the
simulated cell can only be once per minute. This results in the follow-
ing problem: for pools with high turnover rates, a small difference
between rate of formation and rate of use (or rate of entry and rate
of use) in the real cell is compensated for quickly, and the concen-
tration does not change a great deal. However, such a difference,
when projected over a whole minute in the simulation, results in a
difference which is very large relative to the size of the pool, even
though the proportional difference between the synthesis rate and use
rate may be small.

The procedure which is used in the situations with the behavior
described above is to '"sample'" their equations for only a portion of
the time step. That is, rather than calculating the amounts of pool
A which would be synthesized and used during one minute at particular
rates, the rates are used to determine how much of pool A will be syn-
thesized or used in the first fraction of one minute (or sometimes,
fraction of a second). This fraction of the full time step is called
the sampling time. By means of a shorter sampling time, the difference
between the amount of a pool used and the amount synthesized is kept
to a reasonable fraction of total amount in the pool.

A critical step in this procedure is the choice of the sampling
time. The two factors relevant to the choice of the sampling time
are sensitivity and stability. Obviously, if the sampling time is

made small enough, the concentration of a pool can be made arbitrarily



stable. However, the pcol is then insensitive to changes in the sub-
strates, enzymes, etc. which should affzct its rate of formatien,

and insensitive to the rates of reactions which consume the pool.
Increasing the sampling time somewhat will result in a pool whicl: re-
sponds, but too slowly. Of course, response times of less than one
minute are automatically excluded from the simuiation, but responses
should not be '"damped'" any more than necessary. On the other hand,
sampling times which are too long do not alleviate the original insta-
bﬂityproblem. For example, a long sampling time could "over-exhaust”
a pool - that is, use more of the pool than was there to begin with,
causing a ''negative concentration'" to result. This is obviously a
situation to be avoided. Short of this, a too-long sampling time

can cause a pool to undergo very high amplitude oscillations, with

the model's control mechanisms only able to over-react and shuttle th

O

concentration back and forth about its correct value. This wild
oscillation has detrimental effects on other pools cf the mcdel, tendinyg
to make them unstable also.

There is another problem associated with using a sampled simulation
of a particular equation. For example, let pool A be sampled for only
one second each time step (i.e., one-sixtieth of the full rate} The
concentration of pool A may be maintained quite well by this procedure.
However, consider the use of another pool, say ATP, necessary for the
formation of pool A. The amount of ATP used during the omne-second
sampling interval may be calculated, but that is not the amount by which
ATP should be decremented. The amount of ATP used can be calculated
from the synthesis rate over the whole time step of one minute. 7he

problem of a difference (between rate of synthesis and rate of use)
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being exaggerated does not occur at this stage, since no difference
must be calculated. Of course, the ATP pool may (in fact, it does)
require sampled simulation.

In summary, then, the use of ''sampled'" simulation of some pools
does not affect the rate at which those pools consume resources (that
is, other pools). The use of resources is calculated over the entire

time step, rather than over the shorter sampling time.

Transport

The model used for describing the transport of nutrients into
cells is based on the work of Kepes and Cohen (1962). The model
accounts for both uptake and turnover; that is, an exit mechanism is
included as well as an entrance mechanism. Entrance is regarded as
an energy-requiring enzyme-catalyzed process with Michaelis kinetics;
that is, it exhibits a saturation curve characterized by a maximum
rate of uptake Vmax and a Michaelis-Menten constant Km' The exit
mechanism is assumed to be kinetically passive; that is, it shows no
tendency toward saturation. The overall model, in the notation of

Kepes and Cohen, is given by:

dGin yhax Gex
Tdt in  K+G " KexCin’
m ex

where Gex represents the concentration of G, the substance being trans-
ported, outside the cell, Gin is the concentration inside the cell,

ax . . . . .
V?n is the maximum rate of entry of G, Km is the Michaelis-Menten

constant (the concentration of Gex at which entry is at half its

maximal rate), and Kex is the exit rate constant.



In ONECELL, the Kepes-Cohen model is augmented by inclusion of
the surface-to-volume ratio as a multiplicative factor in the active
transport term. This is consistent with the notion that transport 1is
a function of the membrane surface area, while the internal concentration
depends on the voluﬁe; thus, as the surface-to-volume ratio increases,
the amount of material transported in per unit volume should increase.

The energy-supply ATP for the transport is assumed not to be
a rate-limiting factor, so ATP does not appear.

There are four separate transport mechanisms in the model: NUC,
AA,GLUC, and LAC. Each of these has its own set of transport constants.
In addition, the NUC transport model has a modified exit mechanism,
which is described in the NUC discussion in Section 5. Kepes and
Cohen provide most of the information which has been used in setting
the constants for the LAC, GLUC, and AA transport models. Their paper
also gives an indication of the degree of similarities and diversities
among many different transport systems.

The three environments used in setting rate constants, etc., 4are
glucose minimal medium, casamino acid medium, and broth medium, cailed
environments one, two, and three, respectively. Media of thesc types
are defined in Schaechter, Maalge, and Kjeldgaard (1958, p. 225},

(their media numbers 14,7, and 6. respectively.) An additional medium,
lactose minimal medium, is usec¢ in simulated shifts. The cencentrations
assumed in these media are EXT = 0.4%(W/Vj in environments one,

GLUC

two, and three, and 0 in lactcse medium; EXT,, = 1.0 (arbitrary units)

AA

in environment two, 1.1 in environment three, 0 eisewhere; EXT 1.0

NUC T
(arbitrary units) in environment three, 0 elsewhere; EXTLAC = 0.2%(W/V)

in lactose medium, 0 elsewhere.
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Initial Concentrations

Setting the parameters of the simulation requires knowledge ¢f
‘the initial state of the pool concentrations in each of three environ-
ments. The particular initial states used arévthOSt which occur in a
cell just after a cell division; however, in determining the initial
concentrations of the pools (with some exceptions), it is assumed that
the concentrations remain constant throughout the division cycle during
steady-state exponential growth in a given environment. Since many
of the values which are reported are average amounts of a pool per
cell in an unsynchronized culture, it is necessary to apply a trans-
formation to obfain the values for the pools as concentrations. The
culture-average figure must be divided by the average volume of the
cells in the culture, assuming that the concentration of the pool is
constant over the cell cycle.

The average volume of a cell in exponential growth, which has

doubled when t reaches 1, and has initial volume VO’ can be calculated

as:

1 1, 11

¢ t log 2

.1 _ t log 2 _y € e

avg. vol. = 3 f V(t)dt = VO /e e” dt = V0 —-———-——-10gez

0 0 0
1Z0 7 (2-1).= 1ZO'2
Ee &e

If VO and the average amount of pool per cell are known, the
concentration can now be calculated as: concentration = avg. amount
per cell/average volume per cell = avg. amount per cell/(VO/logeZ) =
avg. amount per cell x 1oge2/V0 = concentration of the pool.

This is the initial value of the pool which is actually used in

determining rate constants and initializing a simulation run. (Of
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course, different average amounts of pool and V. 's are used for different

0
nutritional environmen@s,) During a simulation vun, the concentration
of each pool varies as is expected, but tabulation c¢f the average
value and calculation of the average amount per cell (that is, gener-
ating data comparable to the original amount per cell data) indicates

that very little error has been introduced by assuming constant concen-

trations when deriving the transformation procedure.

Sources of Data

Data used in setting parameters for the ONECELL were taken from
a varieﬁy of sources. Data on cellular size and composition were
taken largely from Watson (1971), Maalde and Kjeldgaard (1966), and
Mandelstamm and McQuillen (1968). Data concerning DNA replication
were taken from ﬁelmstetter, Cooper, Pierucci, and Revelas (1968).
Transport data is mainly estimated from Kepes and Cohen (1962) and from
Dean and Hinshelwood (1966). Weinberg used Mandelstamm and McQuillen
(1968) as é reference in assigning values for ATP requirements, but
better estimétes are available in Gunsalus and Shuster (1961).

Marr, Painter, and Nilson (1969) provide information on the increase
of cellular volume. Data on the lactose pool and the associated enzymes
is found in Knorre (1969), Kjeldgaard (1967), and in the volume by
Beckwith and Zipser (1970). Ward and Glaser (1970) discuss the
Helmstetter-Cooper DNA-replication model, and in another paper (1971),
discuss thé rate of change of volume.

The role of tRNA in RNA synthesis is discussed in Kjeldgaard

(1967) and Williams and Neidhart (1971). Kelley and Schaechter (1968)

provide information on ribosomes. Tempest and Ellwood (1969) deal



52

with the cell wall pool, and discuss the surface-to-volume ratio.

Section (5) - Equations for NUC

To enable the reader to get an idea:of the form of the equations
used in simulating the individual pools, the equations for the NUC
pool will be given here. It may be viewed as a typical pool - some
pools have more complicated equations; some, less.

For the reader‘who is not familiar with FORTRAN, a few remarks
are provided here to enable him to read the description of the NUC
equations.

Variables are w;itten in capital letters. They may be subscripted,
by enclosing the subscript in parentheses following the name of the
variable. For example A(I) means a; in more conventional mathematical
notation, and B(3) means b3. An equation written in FORTRAN has a
special meaning. A_= B+C means add the values of variables B and C
together, and make that sum the value of A.

Functions are expressed similarly to subscripted variables. In
mathematical notation, we denote a function f with argument x as
f(x); in FORTRAN, we express it as F(X). Functions may be defined
in FORTRAN; for example, f(x) = 3x+2 would be defined as F(X) = 3*X+2,
where the * denotes multiplication. After this function F is defined,
it can be used as follows (for example) :

W
Q

These statements cause W to acquire the value 17(=3x5+2), and Q

F(5)

F(2.2)

to become 8.6 (=3x2.2+2).



T
o

For further information on FORTRAN, the reader may consult the
IBM 1800 FORTRAN Reference Manual, or any other FORTRAN manual.
The NUC (nucleotide) pool is modeled using a set of equations
which account for NUC synthesized, incorporated,intb nucleic acids,
recovered from breakdown of mRNA, and transported into the cell (or
out of the cell). Diagrammatically, the NUC pool can be seen in relation

to a subset of the model as shown in Figure 2.5.

active
T, transport — phosphorylation -
external N o - - @DP

nucleosides &
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Figure 2.5: Mass-flows involving the -NUC pool.

Figure 2.5 shows only the mass-flows involving the NUC pool;
there are other pools which influence the rates at which these flows
occur. The equations which govern the NUC pool can be written in

the form:

(1) DNUC = K(1)*GLUC*EK (1) *ATP*DT
~(2.5E9/660.)*DDNA - (1.E6/660.) *DMRNA
- (2.5E4/660.)*DTRNA - (2.E6/660.)*DRIB

-DPOOL
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(2) XNUC = (EK(13)*K2(1)*EXT(1)*SUVLR(VOL)/(KM(1)+EXT(1))
-KEX (1) *EXNUC (NUC) *NUC) *DT

(3) NUC = VOL/ (VOL+DVOL) * (NUC+DNUC+XMAX (XNUC,0.0))

The first term in equation (1) represents synthesis of nucleotides,
considering members of the GLUC pool to be the substrates. K(1) is
the rate curve, expressing feedback inhibition by NUC of its own
synthesis. As was discussed in Section (4) of this chapter, X(1)
is hand-fitted to obtain a monotonically nonincreasing rate curve,
when graphing rate (y-axis) versus NUC (x-éxis). EK(1) represents the
concentration of enzymes which are used in NUC synthesis. This con-
centration is affected by repression, as well as by the general level
of protein synthesis in the cell. The ATP term is included to reflect
the need for high-energy bonds in the NUC synthesis reactions. DT
is the time step (60 seconds).

The remaining terms in equation (1) represent loss of NUC due
to its incorporation into macromolecules. DDNA is the amount of DNA
synthesized this time step (per unit volume). The multiplicative
factor (2.5E9/660.) has the following meaning: 2.5E9 (to read 2.5 x 109)
is the estimated weight of one complete DNA chromosome in daltonms
(Watson, 1970, p. 99). The 660 divisor was used (by Weinberg, originally)
as the average weight of a NUC molecule. In fact, this is the average
weight of a nucleotide pair, as given by Watson (p.99), and the figure
for NUC has been corrected to 330 in a later version of the simulation.
The DMRNA term represents the change in MRNA per unit volume, and may
be either positive or negative; that is, a small decline in the mRNA

synthesis rate will allow the breakdown of mRNA (which has a half-life



on the order of a minute) to numerically exceed the synthesis,
resulting in a net flow from mRNA to NUC (Watson, 1970, p. 452).

The multiplier (1.E6/660.) is intended to convert the change in mRNA
to the corresponding change in NUC. The terms for tRNA and rRNA,
are handled similafly, with molecular weight estimates taken from
Watson (1971, p. 85). The DPOOL term represents AMP (adenosine
monophosphate) which is phosphorylated tc become ADP, some fraction
of which becomes ATP within the same time-step. Since one NUC is
consumed in producing one ADP, no multiplicative factor is needed.

Equation (2) represents transport of nucleosides from the external
medium into the cell. This process camnnot bring in nucleosides,
of course, unless they are present in the medium, as in nutrient broth.
The form of the transport model is basically that described by Kepes
and Cohen (1962, p. 187), as discussed in Section 4).

The specific values assigned to the NUC transport model vparameters
were arrived at in a number of ways. Since NUC is transported into
the cell in only one of the environments used to set parameters
(environment 3, broth), it was not possible to solve a set of simul-
taneous equations to obtain values for several parameters after fixing
only a few and knowing the rate at which transport must proceed in
each environment. The only information known is the net rate at which
NUC must enter the cell in environment 3 calculated from the rate of
use of NUC'and assuming a steady-state concentration of NUC internal
to the cell) and the external concentration of nucleosides EXTi1)

(in arbitrary units; therefore chosen to be 1). Cf the remaining
parameters - KM,K2, and KEX, two could be set and the third solved

for. However, preliminary attempts at this technique showed that
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adequate control of NUC could not be maintained, even in a constant
environment, by this model with a linear exit term (i.e., a constant
KEX times NUC). It was decided that a nonlinear function, called
EXNUC, would be introduced, and would be of the fouru

EXNUC(NUC) = 1. + 1.*(NUC-NUC03)/NUCG3,
where NUCO3 is the initial internal concentration of N in steady-state
growth in environment 3. Thus, the entire exit terﬁ,
KEX*EXNUC (NUC) *NUC, allows exit to proceed at a rate above or below
KEX*NUC, depending on whether NUC is high or low.

The values for KEX and KM are set at .005 (that is, .5% of the
NUC pool per second) and .1, respectively. The KM of .1 was chosen
to indicate that the external concentration of nucleosides (EXT(1),
= 1.) is saturating in environment 3. The KEX is chosen arbitrarily,
small enougﬁ not to expend a large amount of metabolic energy in
"wasted" transport, but large enough to provide adequate control of
the internal NUC level. K2 can now be solved for in terms of the
other quantities.

Initial values for NUC, called NUCO, must be set in each of the
three environments used for calculating the rate curves K(i). Watson,
(p. 85), gives a value for fhe average amount of NUC in a cell growing
in environment 1; this is 1.2E7 molecules. Converting this figure
to an initial concentration in a newly-divided cell, according to
the method described in Section (4) yields 1.2E7*LN2/VOLOl, which will
be used as the initial value of NUC in environment 1.

The value in environments 2 and 3 are estimated using the obser-
vation that RNA formation appears to be nearly saturated with NUC

in all three environments, but it is not expected that the NUC pool
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is a great deal above the saturation level,; since for transport of NUC
into the cell to maintain a higher-than-useful level of NUC would ve-
quire unnecessary use of energy. The iﬁplicaﬁimn of these assumptions
is that NUC does not change by a large factor within the range of the
three environments. However, NUC must rise significantly from
environments 2 to 3 in order that r@pr@séimn of NUC synthesis may
operate. Thérefores it is assumed that NUCO in environment 2 is
1.4E7*LN2/NUC03j, and in environment 3, NUCO is set at 2.1E7/*LNZ/VOL0O3}
Equation (3) handles the updating of the NUC concentration after
the DNUC and XNUC terms have been compuﬁedan It uses VOL, the
volume of the cell last time step, and DVOL, the.shange in volume,
to arrive at a new volume, and uses NUC (the old value) and DNUC and

XNUC to arrive at a new amount of nucleotides. The result is the

new concentration, since the equation essentially reduces to:

old volume x (c¢ld concentration+change in old
concentration)
new volume

new concentration =

The models of the other pools are of similar forms, and will not
be described in detail. The interested reader can consult the listing

of the program for details of the other pools.



CHAPTER 3

In this chapter the results of the simulation will be presented,
and comparisons will be made with data on real ceil growth. The
performance of the simulatioh will be given first in the simulated
environments which were used in setting the parameters; seccnd, in
shifts between these environments; and third, in an entirely new
environment. Most of the output of the simulation will be presented
in graphical form, for ease of comprehension. Parameters are set in
the ONECELL model using three sets of values. Each of these sets
is an estimate of the state vector of the cell growing in a particular
environment. For example, one environment represents glucose minimal
medium (sometimes called glucose mineral medium or glucose salt medium),
composed of glucose and other constituents as given in Schaechter,
Maalde, and Kjeldgaard (1958, p. 225). An estimate is made of the
concentration of each of the pools in a newly divided cell which is in
exponential growth, in a well-aerated culture. There is no single
source of all the data required, so estimates are made as described
in Chapter 2, using information from various sources.

The two other steady-state (repetitive) growth environments for
which parameter estimates are made are casamino acid medium and brotl,
also described in Schaechter, et al. (the broth medium is their
medium number 6 (p. 225)). These media are discussed in Chapter 2.

Once the parameters have been set, it is possible to run the
simulation to determine whether the values of the parameters, together
with the form of the model, do indeed produce balanced growth. That

is, growth can be simulated over long time periods to see if it exhibits
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the characteristics it is supposed to: namely, balanced growth with

all pools, doubling in the appropriate time period, and a close agreement

of the average pool values with those originally input. The clearest

way to present this behavior of the simulation is to follow the com-

centration of each pool. If the concentration of each pool remains

constant throughout the course of the simulation, and if the volume

doubles each T, where T is the average interdivision time of real

cells in the medium being simulation, then it is clear that the

simulation is producing "steady-state" growth. However, these conditions

are far too restrictive. A cell in steady-state growth does not

maintain all of its concentrations constant throughout its division

cycle. In fact, such factors as the surface-to-volume ratioc and

a nonexponential DNA-replication apparatus make it imperative that

the cell not maintain constant concentrations. What 7Zs required of

steady-state growth is that the cell volume (that is, the sum of the

volumes of the individual cells produced) double every T wminutes, and

that the average concentrations of each pool remain the same from

one cycle to the next (or, a somewhat stronger condition, that the

concentration of each pool be the same at time t+T as it was at time t©.
For glucose minimal medium (called environment 1 in the simu-

lation), the.behavior of the simulation is shown in Figures 3.1 through

3.4. Each of these figures follows several concentrations through

two completevdivision cycles. As can be seen from Figure 3.1, there

is a wide range of types of behavior--some pools iemain relatively

constant, while others show large (but regular) changes within the

cell division. The units for all the curves are arbitrary, chosen

so the curves do not overlap. The top curve, for the NUC pool, shows
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Figure 3.1: NUC, AA, ATP, ADP in Simulated Growth in Environment One.

Scale is linear, units for each pool are arbitrary.
Sample points are two minutes apart. Recording was
begun after one simulated cell division.
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that NUC remains fairly steady during much of the cell cycle, rising
only for about ten minutes near the end of the 50-minute cycle. These
10 minutes are the period during which no DNA replication is occurring.

The AA (amino acid) curve shows much more change during the cycle.
Its fluctuation is mostly attributable to the availability of
glucose~-pool precursors, which varies with the surface-to-volume ratioc,
which is a function of c¢ell size (which, of course, depends on the
amount of time since the last division, among other things). Although
the AA pooi-attains a higher value during the second cycle, longex
runs have shown that the second peak on Figure 3.1 is approximately
the maximum attained. The reason the first peak is lower is that the
graph begins just after the completion of the first simulated division,
and some pools have not quite reached their steady-state growth values.
This could be eliminated with a better estimation of ihe cell's initial
state, but>it is more practical to begin with a rougher estimate and
allow a short amount of running to adjust the values.

The ATP pool shows essentially constant concentration throughout
the cycle.’ The fluctuations are due to the coarseness of the simu-
lations, not to any attempt to model cyclic fluctuations associated
with ATP. The ADP pool exhibits similar behavior, but the amplitude
of the fluctuations is higher, because the size of the pool is smaller.

Figure 3.2 shows the WALL pool, which represents precursors used
in cell membrane and wall formation. The large dip near the end of
each cycle results from a high rate of use of WALL to form the septum
which will divide the daughter cells., In the ONECELL model in
environment 1,7it is assumed (in setting parameters) that the septum

formation goes on during the last 5 minutes prior to cell division.
JY
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Figure 3.2: WALL, DNA, GLUC in Simulated Growth in Environment One.
Scale is linear, units for each pool are arbitrary.

Sample points are two minutes apart. Recording was
begun after one simulated cell division.
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It is also assumed that elongation does not cease during this period,
so a higher demand for WALL occurs during the five-minute period.

The curve for DNA represents the concentration of DNA, noi the
amount per cell. This figure is derived by dividing the amount of
DNA (calculated in accordance with the Helmétetﬁer«@ooper model
(Helmstetter? Cooper, Pierucci, and Revelas, 1969} by the cell volume.
The concentration can be seen to fall near the end of a cycie, at
which time mo DNA replication is going on, but volume is increasing.
When replication is initiated, the concentration increases toward
its former value.

The GLUC curve shows the concentration of glucose and the products
of the pathways which metabolize glucose (up to the points where they
are considered to be NUC, AA, etc.). The variation in the concen-
tration is due to the changing surface-to-volume ratio, which affects
the rate at which glucose is transported into the cell.

The protein pool, PRTN is shown in Figure 3.3. The large size
of the pool relative to its éynthesis rate makes the concentration
relatively insensitive to small changes in the synthesis rate, so a
very smooth line results. Fﬁrthermcre, since the protein synthesis
rate-determining factor in most growth situations is not concentraticn
of precursors, it displays very little variation with the AA level,
unless AA drops far below its value in environment 1.

The RIB curve, representing the number of ribosomes, shows some-
what greater sensitivity to its substrates than does PRTN. In part
this is due to the fact that the ribosome synthesis equation does not
synthesize a protein component, an RNA component, and then "join'" them.

Instead, it uses a simpler model in which the precursors for both
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Figure 3.3: PRIN, RIB, VOL in Simulated Growth in Environment One.

Scale is linear, units for each pool are arbitrary.
Sample points are two minutes apart. Recording was
begun after one simulated cell division.
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protein and RNA synthesis enter. Undocubtedly a more sophisticated
model would give a more realistic picture of the mechanism of ribosome
synthesis. However, for the present purposes, the simple ribosome
equation appears to function adequately.

The curve for VOL represents the volume of the cell. This
curve incféases in a roughly exponential fashion until cell division,
at which point it is halved. It has been argued (see Ward and Glaser
(1971)) that the increase in volume within the cycle is linear, not
exponential, and that the slope doubles at a particular point
(associated loosely with the start of a DNA replication round). How-
ever, they indicate that their data could not distinguish stepped
exponential increase from the stepped linear increase. In any case,
the VOL curve appears to be a reasonable description of the cell
volume in environment 1.

Figure 3.4 shows the MRNA pool (among others). It shcws strong
fluctuations because it is a small pool, and undergoes rapid turnover.
These factors mean that when its synthesis rate falls, with the break-
down of MRNA going on at a high rate (half-life on the order of a
minute (Kjeldgaard, 1967, p. 452)), the pool shows a sizeable change
in concentration. There are several factors which can influence the
MRNA synthesis rate. The principal ones influencing this curve are
DNA and AA. The AA, while not a substrate for MRNA synthesis, is
observed to affect its rate, as discussed in Maalge and Kjeldgaard
(1966, pp. 125-163). The DNA concentration enters the MRNA synthesis
equation so that when multiple copies of a gene are present, its rate
of transcription can increase. Of course, the ONECELL model does not

consider the replication of individual genes, but using the DNA
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Figure 3.4: MRNA, RIB, TRNA, RNA in Simulated Growth in Environment One.
RNA is a weighted sum of MRNA, RIB, and TRNA. Scale is
linear, units for each pool are arbitrary. Sample points
are two minutes apart. Recording was begun after one
simulated cell division.
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concentration provides an approximation; it is as if genes for each
pool were "spread out' evenly over the entire chromosome. The
shortcomings of this approximation are evident, but it is a necessary
simplifying assumption at this stage of the model development.

The RIB curve is shown again here so that all the RNA fractiocns
can be viewed together.

The TRNA ?ool is even steadier than RIB, because the model assumes
that the effect of substrates on the rate of TRNA formation is less
than first order. TRNA, unlike RIB, is present>in lower concentration
in rich environments (like casamino acids oxr broth) than it is in glucosc
minimal medium (Maalge and Kjeldgaard, 1966, p. 90). It varies
with growth rate much less than RIB does.

The curve given for total RNA does not represent a state
variable--it is a weighted sum of the RNA components of the model.

Its behavior is clearly dominated by the rRNA and tRNA, giving it the
appearance of a constant value.

The graphs presented for growth in glucose minimal medium
(Figures 3.1 through 3.4) show the behavior of the simulation during
a brief period near the beginning of a run. In fact, the behaviocr
shown in this period is representative of the behavior if growth is
continued indefinitely. The longest runs made, allowing some thirty
cell divisions, showed no trends toward higher or lower values; that
is, after a few generations, the simulation can be seen to exhibit
behavior with the one-generation time period, and some variaticns
with a peridd of three or four generations, but no tendencies for the

simulation to drift, or to oscillate unmstably, have been observed.
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(This is, of course, the end result of much work on the individual
components of the model to coordinate them in such a fashion as to
produce this .stability.)

In casamino acid medium and broth medium the same sort of stable
behavior has also been obtained. The concentrations cf the major
pools during grthh in these media are presented in Appendix A (Figures
A.1 through A.4 are for casamino acid medium (environment 2) and
Figures A.5 through A.8 are for broth (environment 3). Most of the
pools behave similarly, with the exception of those directly

affected by transport of NUC and AA into the cell.

Shift-Up
The behavior of the ONECELL simulation can be tested by subjecting

it to a change in the growth medium surrounding it. That is, the
simulation is allowed to progress (''grow'") in one medium for some
period of time, then 'shifted" to a new medium without changing any
variables but those representing the growth medium ocutside the cell.
This is designed to simulate a laboratory experiment in which a culture
growing in glucose minimal medium is diluted into broth medium, for
example. This shift-up (up because the new medium is richer in nutrients
and permits faster growth) will be called a shift from environment 1
to environment 3 (broth).

The fact that the simulation can grow stably in environments 1
and 3 does not imply that the simulation will be able to adjust all
of its variables in such a way as to attain the stable growth situation

characteristic of environment 3. That is, the abrupt change in



69

conditions could cause one or more variables to grow without bound,
"dragging' the other variables with it. Alternatively, a stable
growth condition could be found in which the cell would remain, exhi-
biting periodic behavior, but different from the growth normally
exhibited‘in environment three. Further, even if the simulation wers
able to attain the proper growth in environment three after the shif¢,
its behavior during the adjustment period immediately following the
shift might differ widely from the behavior observed in real cells
duriné a shift-up.

None df the unpleasant possibilities just mentioned has occurred.
That is, thé simulation does properly shift from environment one to
environment three. The agreement of the simulated shift results with
those reported in Maalge and Kjeldgaard (1966) is good.

The first attempts to shift the simulated cell from one environment
to another did not work. After some investigation, however, it was
discovered that the trouble lay in the mRNA synthesis equation. The
difficulty was that a factor in the equation was being normalized by
dividing it by MRNAO, the initial concentration of MRNA in each
environment; that is, a different value was used in environment one
than that used in environment three. This was easily correctable
merely by eliminating the divisor entirely, since its presence was
only to scale the concentration for convenience of comparison with
the initial value. It should be clear that this error causes no
difficulty'until a shift is attempted, but in a shift gives rise to a
completely incorrect result. The elimination of this term did
not represent a refitting of the simulation parameters, but rather
a "debugging'' correction. Afiter this bug was corrected, the shift

progressed normally.
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Figure 3.5 shows the behavior of several outputs of the simulation.
This figure is a logarithmic plot of the amounts (not concentrations)
of RNA, DNA and the total cellular mass as computed in the simulation.
The vertical axis is ruled in lines whose distance zpart corresponds
to one doubling of amount. The units of the three variables plotted
are scaled so that the three lines coincide over the pre-shift peried,
which represents about two doubling times in the pre-shift medium.
Each point is the sum of three values, each value generated by a
separate run of the ONECELL simulation. The runs were done so that
the time-step recording was begun in the first run 9 minutes after
a division, in the second run, 25 minutes, and in the third run, 41
minutes after a cell division. This procedure is an attempt to elimi-
nate the effect of cell age on the behavior, since it is desired to
compare the output with the growth of a culture which is not synchronized
The crudeness of representation (i.e., three cell-ages) is clear,
but the length of computer time required for each run is extensive
(on the order of an hour on a very slow machine), so it was decided
that three samples were an appropriate number. The time interval
between consecutive points plotted is four minutes in all simulated
shift graphs.

First it should be noted at the time of the shift, the three
lines begin to diverge, then gradually become parallel (but not
coincident). That they are parallel indicates that they are doubling
at the same relative rates (higher, of course, than the rates at
which they doubled in environment one prior to the shift). That they

are not coincident means that the relative proportions of RNA, total
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Figure 3.5: RNA, DNA, MASS in Simulated Shift-up from One to Three.
Logarithmic plot of amounts - units adjusted so curves
for balanced growth (pre-shift) in environment one coin-
cide. Distance between horizontal lines corresponds to
one doubling. Each point is a sum of three values, one
calculated in each of three ONECELL runs. The runs
differ in the age of the cell at the time of the shift.
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mass, and DNA in the cell in environment three are different from the
proportions in environment one. The different shapes of the curves
reflect the difference in the ways they respond to the change in
environment.

To see the extent of agreement of the simulated shift results
with actual shift experiments, Figure 3.5 should be cumpared with
Figure 3.6. This latter figure is reproduced from Maalge and Kjeldgaard
(1966, p. 100). Their figure is the observed behavior of a colony
of Salmonella typhimurium, and displays the characteristic pattern
of changes which is common to many bacteria. In fact, Kjeldgaard
(1967, p. 47) says of a reproduction of the same figure,

"The observed pattern seems to be universal in
character, and is exactly reproduced by
Escherichia Coli strains both of the stringent
and the relaxed type (see below), as well as
by a Gram-positive organism like Baeillus
megaterium (Sud and Schaechter, 1964)."

The agreement between the two figures (simulated growth versus
real growth) appears to be good. In both, the RNA curve quickly
attains a slope higher than that of either environments one or three,
then falls to its eventual value in environment three. The mass
curve in Figure 3.5 is directly comparable to the optical density
curve of Figure 3.6, as indicated by Schaechter, Maalge, and
Kjeldgaard (1958, p. 594)

"The values of mass/cell are expressed as the optical
density at 450 mp (1 cm. path) given by a suspension
containing 107 cells/ml. The optical density was
found to be proportional to the dry weight, irre-
spective of the cell size."

The DNA curves both remain close to the old rate for some period

of time after the shift, then increase to approximately their ultimate
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RNA, DNA, Mass in Shift-up Experiment with Salmonella
typhimuriwn. Culture was shifted from glucose minimal
medium to broth (at 37°) at time 0. Optical density
(proportional to mass), RNA, and DNA content were fre-
quently determined. Logarithms of measured values are
plotted, transposed so as to make the curves representing
balanced growth in minimal medium coincide. The distance
between horizontal lines correspends to one doubling.
(After Maalge and Kjeldgaard (1966, p. 100)).
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Figure 3.7 is the same type of plot as Figure 3.5, showing total
cellular mass against the number of individuals cells in the simulated
culture. The sawtooth néture of the curve is due to the fact that
only three cells are used to represent the culture, so when one of
these divides, there is an abrupt jump in the number of celis. The
curve can be fit very well by two straight lines, intersecting at time
80 or 90, and should be viewed as a jagged approximation to these
two lines. This figure should be compared to Figure 3.8, which displays
mass (optical density) versus colony counts (an index of the number
of viable cells). 1In both figures, the number of cells continues
to increase at the old rate for a period in excess of an hour (about
70 minutes in Figure 3.8 versus about 80 or 90 in Figure 3.7). This
time period represents the length of time necessary for an increased
rate of initiation of DNA replication to have an effect on the rate
of division.

The mass line and count line have not yet become parallel in
Figure 3.7, but longer runs have shown that they become parailel within
the next few generations.

Graphs of the behavior of other poois during the shift from glucose
minimal medium to broth are included in Appendix A (Figures A.9 - A.13).
In addition, a shift from environment one to environment two (casamino
acids) was simulated, and the results are presentcd in Appendix A
(Figures A.14 - A.20). The shift followed the same general pattern
as the shift to broth, and the simulated cells achieved stable growth

in environment two.
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Figure 3.7: Mass and Cell Count in Simulated Shift-up from One to Three.
Logarithmic plot of simulated total cellular mass and
number of cells with units adjusted so curves for balanced
growth (pre-shift) in environment one coincide. Distance
between horizontal lines corresponds to one doubling. Each
point is a sum of three values, one calculated in each of
three ONECELL runs. The runs differ in the age of the cell
at the time of the shift.
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Figure 3.8: Mass and Viable Counts in Shift-up Experiment with

Salmorella typhimuriwm. Culture was shifted from glucose
minimal medium to broth (at 37°) at time 0. Optical
density (proportional to mass) and viable counts were
frequently determined. Logarithms of measured values

are plotted, transposed so as to make the curves
representing balanced growth in minimal medium coincide.
The distance between horizontal lines corresponds to

one doubling. .(After Maalge and Kjeldgaard (1966, p. 100)).
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Shift-Down

The simulation of two shifts down was attempted. The first is
a shift from broth to glucose-minimal medium. The results of this
shift are presented in a series of graphs of the same form as those
for the shift-up experiments. At this point a small additional sophis-
tication was‘introduced into the plotting routine which produced the
computer-generated figures shown here. Each plotted value represents
a wetghted sum of the three values generated by the three ONECELL
runs (each run répresenting a cell shifted at a different age). The
weighting is done by dividing each cell by its volume at the time
recording of points (on the disk, for eventual plotting) is begun.
The effect of this is to assign larger weights to small cells (at
the start of recording), and to assign smaller ones to the (initially)
large cells. This weighting should compensate for the fact that in

an exponentially growing culture that is not synchronized, there are

&1

more small cells than large ones at any instant of time. The weight
in effect cause the single small cell in the simulation run to repre-
sent more cells than the large cell does., Of course, the small cell
becomes large, and the large cell becomes two small ones, but this
does not (aﬁd should not) change the weighting which is done.

Figure 3.9 shows the responses of DNA, RNA, mass, and number of
cells to the change in enviromment. The number of cells can be seen
to continue to grow at the pre-shift rate for about an hour (an
implication of the DNA replication and cell division model employed).
The DNA rate falls off after about twenty minutes. The rate of increase
of mass decreases, and the rate of RNA formation drops sharply.

The behavior of the simulation can be compared with the behavior
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Figure 3.9: RNA, DNA, Mass, and Count in Simulated Shift-down from

Three to One. Logarithmic plots of amounts - units adjusted
so curves for balanced (pre-shift) growth in environment
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corresponds to one doubling. Each point is a weighted sum
of three values, one calculated in each of three ONECELL
runs. The runs differ in the age of the cell at the time
of the shift.
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of a real culture, as shown in Figure 3.10, reproduced from Maalge
and Kjeldgaard (1966, p. 118). There is some general similarity, but
there are many differences between the behavior of the simulated culture
and that of the real one. The number of cells (colony counts) in both
figures continues at the old rate after the shift, but does so for a
longer period in the simulation. The DNA replication rate appears
to agree well with the experimentally-determined one. The rate of
mass increase (heavily influenced by protein) does not fall to zero
in the simulation as it appears to in the real culture. Also the
rate of increase of RNA, while falling to nearly zero, does not go
negative, as it does in the real culture.

Some explanations for these differences between the real culture
and the simulated one can be found upon examination c¢f the model.
The overall picture appears to be that the simulated cells are not
""starved" of NUC and AA to a sufficient degree when the shift cccurs.
That is, for example, net production of protein, which 1s virtually
eliminated at the time of the shift in the real culture, can continue
(though at a lower rate) in the simulated culture. This is evident
in Figure 3.11. The fact that AA drops to about 25% of its usual con-
centration in environment one does not cause a sufficient reduction
in the rate of protein synthesis. This may indicate one of several
possibilities: (1) the dependence of protein synthesis on amino acid
concentration has been made too small in the simulation, (2) the amino
acid pool does not fall low enough after the shift, or (3) some other
protein-synthesis rate-limiting factor, such as ATP, does not fall
as far as it should. It is likely that a combination of these factors

is responsible. The possibility that ATP (shown in Figure 3.12) is at
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Figure 3.10: Shift-down Experiment with Salmonella typhimurium.

Culture was shifted (at 37°) from broth to
glucose-minimal medium at time 0. Optical density,
viable counts, DNA, and RNA were frequently determined.
The logarithms of the measured values are plotted
against time, and all values are transposed so as to
make the curves representing balanced growth in broth
coincide. The distance between horizontal lines corre-
sponds to one doubling. (After Maalge and Kjeldgaard
(1966, p. 118)).
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fault is a strong one (and a new model for ATP-ADP-NUC has been
developed and programmed for future introduction into the simulation).
The synthesis of RNA suffers from a similar problem; synthesis
goes on at a very loﬁ rate, but in the real culture, a net loss of
RNA is occurring instead. The inability of the simulated cells to
reproduce this phenomenon can be blamed on the form of the RNA models.
The MRNA equation allows for decay of mRNA when synthesis is slowed,
but neither the RIB nor TRNA equations do (see Figure 3.13). In the
real culture, some ribosomal or transfer RNA must be breaking down,
éince breakdown of the total amount of mRNA would not be enough
to explain the dip observed in the RNA curve. Tuning of the simulation
could not eliminate the discrepancy; a better model of the rRNA and
tRNA pools is required. Some tentative work has been done on a new
TRNA model, but no final form for a new equation has been arrived at.
The number ofvcells (as‘determinable by colony counts) continues
td grow at the pre-shift rate for too long in the simulation (Figure
3.9 vs. Figure 3.10). The explanation for this appears to lie in the
way in which the DNA replication-cell division apparatus is connected
to the rest of the metabolism. As explained in Chapter 2, the rate of
DNA replication is postulated (by Helmstetter, et al. (1969)) to go
on at a fixed and maximum rate in both environments oné and three.
In growth conditions where the cells grow even more slowly than in
environment one, in particular when the doubling time T is greater than
60 minutes, Helmstetter, et al., postulate that the rate of DNA repli-
cation falls off in such a way that the time to replicate the chromosome
is 2/3T, and the time to division after completion of a replication

round is 1/3T. Of course, the DNA replication rate for slow growth
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cannot be incorporated in the simulation in this form - a cell does

not "know'" what its generation time T will be; rather, its DNA
replication rate determines what its generation time will be. The
assumption is therefore made that the rate of DNA replication is a
function of the level of the NUC pool, since NUC provides the precursors
for the replication of DNA. When NUC is high (i.e., its value in
environments one, two or three in steady-state growth), the DNA repli-
cation goes on at its maximal rate. However, when NUC is low (less
than 90% of its concentration in environment one) the DNA replication
rate (called DNART) is linearly proportional to NUC.

The problém with the number of cells can now be seen to be that
the simulated rate of DNA replication (DNART) does not fall off as it
must after the shift, so that the cell divisions continue at the full
rate until the effect of less frequent initiations comes into play
(one hour after the shift).

The causes for this might be that (1) the replication rate
is not adequately represented as a function of NUC, or must be a
nonlinear function of NUC, or (2) the level of NUC does not fall as
far as it should in the shift from broth to glucose minimal medium.
Figure 3.12 shows that NUC falls somewhat during the shift, but not
a great deal, and it recovers quickly. The fault is probably a com-
bination of both (1) and (2) above. There is experimental evidence
(Ward and Glaser, 1970) that the DNA replication rate is not inde-
pendent of protein synthesis, so that it is expected that an improved
model of the DNA replication mechanism will be required. This new
model should certainly be able to account for the observed reduction

in cell division rate after a shift-down.
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In assessment of the bechavior of the simulation in the shift
from broth to glucose minimal medium, it can be said that the simu-
lation was able to shift, that is, the new steady-state growth condition
was attained, but that the dynamic behavior of the pouis during the
shift did not fit tﬁe data on real cultures nearly as wcll as was
the case in the shifts up from glucose to casamino acids or broth.

A shift down from casamino acid medium to glucose medium was also
simulated. The results of that shift were similar to those of the
other shift down, and graphs of the simulated shift are given in

Appendix A (Figures A.21 - A.25).

Shift to Lactose

The last type of shift experiment performed is a shift from
glucose minimal medium to lactose minimal medium. This is a severe
test of the simulation, since the simulated cell is essentially de-
prived of a carbon source (which is needed to provide both carbon
skeletons and energy). The cell is initially unable to transport or
utilize lactose. In the absence of glucose and the presence of
lactose, synthesis of a set of enzymes for transport and utilization
of lactose is induced.

The inducible 1lactose system is a widely studied system, as can
be seen in the book The Lactose Operon Beckwith and Zipser, 1970).
The properties of the system which are modeled in ONECELL are only
the simplesc and among the first discovered. Insofar as the present
form of the simulation is concerned, there are only a few properties
of the lactose system that are important. First, there are about

3,000 molecules of B-galactosidase (one of the LAC enzymes, which
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catalyzes the breakdown of lactose to glucose and galactose) when an
E. coli cell is growing exponentially in lactose medium (Watson, 1970,
p. 438), and only a few molecules per cell when growing in glucose
(unadapted to lactose). Second, the transport-facilitating enzyme
(B-galactoside permease) and the lactose-splitting enzyme (B8-galacto-
sidase) are induced together (although not in the same amounts).
Third, the induction of the enzymes occurs when a culture is shifted
from glucose minimal medium to lactose minimal medium.

- The "inducer exclusion' effect of glucose in preventing LAC
inducﬁion when glucose 1s present (Magasanik, 1970, p. 190) is
modeled in ONECELL, however, the transient repression by glucose
(Magasanik, p. 194) is not modeled. Thus the present model should
not be used to examine the growth of a lactose culture to which glucose
is added. Furthermore, catabolite repression by glucose, as discussed
in Knorre (1969, p. 229) is not modeled, so no oscillatory behavior
in the induction of B-galactosidase will be observed. The simple form
of the model for lactose induction and use makes it possible to solve
explicitly for an entry rate constant and a rate constant for conver-
sion of lactose to glucose and galactose, given a value for the internal
concentration of lactose in steady-state growth on lactose. It is
assumed'tﬁat the galactose utilizing system (which is also inducible)
would not constitute a bottleneck, and that the intermal glucose
concentration ultimately achieved in steady-state growth on lactose
was the same as is found in environment one {(glucose minimal medium).
This latter assumption is based on the observation that fully adapted
cells grow at about the same rate on lactose minimal medium as on

glucose minimal medium (Dean and Hinshelwood, 1966, p. 81).
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The test of the simulation 1s whether it can survive the ''shock"
of glucose deprivation and recover to achieve normal growth in lactose
medium.

The shift to lactose progressed well for two of the three cell
ages shifted; however, the third revealed a situation which had not
been taken into account in the implementation of the [IINA replication-cell
division model. When the simulated cell was shifted during the period
in which a round of DNA replication had just begun, but the cell
division which normally follows the completion of the last replication
round had not yet occurred, the simulation eventually encountered a
situation not considered in the formulation of the program logic.

The situation occurs when a round of replication is completed before
the division which follows the preceding round has occurred. The
program logic had only been designed to keep track of completion of
one replication round at a time. It employs a logical variable ITRM
which is set (to 1) when a round is completed, and reset (to 0) when
division occurs. It was a simple matter to add a new logical variable
ITRM2 which '"tells" the program that the newest round has been coumpleted,
and that the variable indicating a completion should not be reset

when the cell division occurs. This change is not a change in the
assumptions or form which the model is intended to have, but only

a correction to bring about the performance that the model was already
presumed to have. In this sense, it should not bc viewed as a
refitting of the model, but as a correction to the program logic.

The correction of this situation brought the performance of the cell
shifted at the last stage of its division cycle into line with the

cells shifted in the two earlier stages. Figure 3.14 is a graph
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Figure 3.14: LAC and EK(12) in Simulated Shift to Lactase. At
time 0 ONECELL is shifted from glucose minimal
medium (environment one) tc lactose minimal medium.
EK(12) represents LAC operon enzymes induced by this
shift. Scale is linear, units arbitrary. Sample points
are from a ONECELL run shifted four minutes after cell
division, and are four minutes apart.



(linear scales) of LAC and LAC enzymes (called EK(12)) versus time,
for a single ONECELL shifted ten minutes after & cell division.

The shape of the EK(12) curve is as expected; that is, its slope
is initially low, reflecting the slow rate at which the depressed
cellular synthesis machinery is able to form the required mRNA and
enzymes for lactose transport and utilization. The rate accelerates
as the enzyme already synthesized enables the cell to use lactose
and resume biosynthetic operations at a higher rate. Finally the
curve levels off as the level of full induction is approached.

The LAC pool does not reach the neighborhood of its steady-state
growth value fof about two hours. In the meantime, GLUC has been at
a very low level (see Figure 3.15), with a strong effect on the other
pools. (GLUC is shown slightly above 0 in the graph, so that it 1is
distinguishable from the axis, but its minimum value is actually C.)
The effect of the low GLUC on the AA and NUC pools is shown in Figure
3.16. The lowered concentrations of NUC and AA are reflected in the
MRNA curve (Figure 3.15), and in the other pools (as shown in the
lbgarithmic plots of Figures 3.17 - 3.21). These graphs use the
weightings described for the shift-down graphs.

Figure 3.17 shows the different way in which the shift affects
DNA and RNA. DNA synthesis does not fall off quite as fast, although
it drops to zero eventually. RNA synthesis is never quite zero, but
falls off quickly to a low value. (Of course, the differential rate
of synthesis of mRNA specific for the LAC enzymes is very high.)

The curves for DNA and RNA regain the proper slopes for growth at
the 50-minute generation time expected in steady-state growth on lactose.

The small distance between the DNA and RNA lines after about time
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Figure 3.15: GLUC and MRNA in Simulated Shift to Lactose. At time

0 a shift from glucose minimal medium to lactose
minimal medium is simulated. Scale is linear, units
arbitrary. GLUC goes to 0, but is shown just above
the x-axis for clarity. Sample points are frcm a
ONECELL run shifted four minutes after cell division,
and are four minutes apart.
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260 is attributable to the procedure used for scaling the two variables
so that they have a common slope in the pre-shift region. That is,

the scaling is donce ﬁsing the basis of the pre-shift performance,

and a small difference of the values used for scaling from their
long-term averages causes the larger divergence obzesrved in the
right-hand portion of the graph. Examination of printed output shows
that DNA and RNA do in fact attain the proper ratics expected of

them.

Figure 3.18 shows the curves for cellular mass and cell counts.
Both curves become flat after the shift, until the interhal GLUC
pool has begun to climb. The lagging of the mass curve below the
count curve for a short time shows that smaller-than-normal cells
are formed during that period.

The curves for ATP and WALL, both of which depend or glucose,
also flatten out after the shift (Figure 3.19). It is felt that the
fact that ATP does not decline is an indication that the ATP model is
probably not as sensitive as it should be. The reason it does not
is that the reactions which use ATP have come to a virtual standstill
due to substrate limitation, so the demand for ATP is small. The
improved ATP-ADP-NUC model which is being prepared will probably alle-
viate this difficulty.

The RIB and PRTN curves exhibit a flattening after the shift
(Figure 3.20). RIB then leads PRTN for a short period, after which
they attain their asymptotic rates and ratios.

The curve for NUC is repeated, this time as a logarithmic plot,
in Figure 3.21. Also shown there is the TRNA curve, which decreases

in slope after the shift, then attains the rate required for maintenance
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Figure 3.18: Mass and Count in Simulated Shift to Lactose. Logarithmic
plots of total cellular mass and numbers of cells (viable
counts). Units are adjusted so curves for balanced
(pre-shift) growth in environment one (glucose minimal
medium) coincide. Distance between horizontal lincs
represents one doubling. Each value is a weighted sum
of three values, one calculated in each of three ONECELL
runs. The runs differ in the age of the cell at the
time of the shift.
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Figure 3.20: RIB and PRTN in Simulated Shift to Lactose. ogarithmic
plots of amounts - units are adjusted so curves for
balanced (pre-shift) growth in environment one (glucose
minimal medium) coincide. Distance between horizontal
lines represents one doubling. Each value is a weighted
sum of three values, one calculated in each of three
ONECELL runs. The runs differ in the age of the cell
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of the TRNA concentration in steady-state growth.

A general assessment of the shift to lactose indicates that the
induction apparatus worked properly to the extent it could be
expected to; oscillation of LAC enzyme production was not obtained
because no cataholite repression was modeled. Furthermere, the
simulated cell was able to withstand the stresses of carbon-source
starvation and regain stable growth at the proper rate, in spite cf

large disruptions in the levels of its constituent pools.



CHAPTER 4

The preceding chapters have discussed the development and
present performance of the ONECELL simulation. In this chapter the
future directions which might be taken in continuing this research
will be discussed.

There are Séveral avenues of endeavor which may be pursued from
the point of development of the simulation reported here. There are
improvements to the CNECELL model which haVe already been programmed,
and await only a refitting of parameters for inclusion iﬁ the ONECELL
simulation. In addition, the performance of the ONECELL model in
simulated shifts, as reported in Chapter 3, suggestsfhrther improve-
meﬁts. ‘That is, it is possible to refine models and refit parameters
using the information gained from observation of the shifts. Thig type
of improvement should yield a modelbof greater power than the present
one, thch can be tested in still other simulated experimental
situations. qu example, the effects of treatment with certain drugs,
such as chloramphenicol or nalidixic acid, could be simulated, and the
performance of the simulation again comﬁared with experimental data
from the microbiological literature.

The interest of the author in development of a model of a bac-
terial colony has aiready been discussed. Preliminary work, as reported
in Goodman, Weinberg, and Laing (1970) has shown that it is within
current technical capabilities to implement a colony simulation based
on the ONECELL model. The prototype of a colonial simulation system
has already been implemented by the author at the Logic of Computers

Group. The spatial representation and symmetry assumptions made in

100
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the colony model facilitate simulation in the Cellular Space Simulation
System developed there. (The hardware and software used in both the
single cell and colony simulations are described in Goodman, Weinberg,
and Laing (1970).).

The process of developing a colony model based on ONECELL involves
two principal areas of modeling effort. One is the representaticn
of the spatial or geometric aspects of the colony; the other is the
relation of the rates at which various materials enter and leave cells
to the concentrations of these materials in the extracellular environment
(intercellular "'spaces' and the agar medium on which the colony develops).
Of course, these two areas are not independent, and decisions in one
area impose constraints on the other.

The problem of geometric representation can best be viewed by
first considering the nature of a cellular space. A (two-dimensional)
cellular space may be roughly characterized as an infinite checkerboard
on which all squares are identical in the potential which they have
for assuming different states. Each square, or cell (italicized to
avoid confusion with a cell in the biological sense) can be viewed
as an automaton, or machine, or computer, which calculates its next
state using information about its present state and the present states
of its neighbors (which are generally considered to be other cells
adjacent to it, or to which it is directly connected). Inputs from
outside the space may also be used in determining the state transition.
A (two-dimensional) cellular space is easily seen to be useful in
representing the behavior of a surface which can be discretized into
a regular (statically arranged) array of components which are identical

in state set (not necessarily in state). It should be clear that a
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bacterial colony is not well represented as such a surface, since
it exhibits significant variation in three dimensicns, and is not
statically organized.

Two fundamental points must be made to demonstrate the utility
of a cellular space for representing a colony. The first is that
the colony exhibits a strong degree of radial symmetry (about an axis
through the center of the colony and perpendicular to the agar surface).
Thus, all behavior which does not violate this symmetry assumption
can be captured on a plane surface (a section through the axis of the
colony). The second point is that the expanding (dynamic) configur-
ation of cells in a real colony does nct prohibit their representation
by an array of automata with a static neighborhood relationship. The
fundamental insight needed for this assertion is that a cell (of the
cellular’space) need not represent one cell (i.e., one bacterial cell).
The difficulties which would be encountered in such a one-for-one
representation are immediately obvious if the situation is considered
in which two or more adjacent cells divide simultaneously. A fund-
amental property of cellular spaces concerns the rate at which infor-
mation (i.e., the effect of changes of state) can propagate through
the space, and this property implies the impossibility of handling
the above situation if a one cell for one cell model is attempted.
However, it is not necessary to represent each cell as a cell; the
alternative is to develop a procedure which determines, at each cell
division, what cell is to represent each daughter cell produced.
Thus each cell represents many cells (see Figure 4.1). In fact, the
criterion for determining how many cells aré necessary to represent

a colony of a particular size should be the level of detail at which



the internal differences in the colony are to be represented; i.e., how

many distinct micro-environments must be considered.
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Figure 4.1: Representation of Colony Geometry. The left-hand
side shows the general form used in the cellular
space to represent a colony of the approximate
shape shown on the right. The lines on the left
side signify cells that are growing; the points,
cells that do not yet represent any bacterial
cells.

One difficulty which the above representation raises is the
problem of translating a given cellular space configuration to the
geometric situation it represents. A reasonable solution appears
to be to maintain dynamically for each cell both its height from the
agar surface and its distance from the center of the coleony. The
radial distance can be calculated using the radial distance of the
cell to the left and the number and volume of the cell under ccnsid-
eration, provided packing density assumptions are mace.

It may be evident from the discussion above that although a cellular

space may be useful in modeling a colony, it is not an ideal formalisn,

due to the static relationships which it imposes on neighbors. However.
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this very shortcoming is a boon in allowing ease of gecmetric inter-
pretation of configurations, as also discussed above. Other
formalisms for representing multi-cellular growth are the subjects

of research, for example that of Laing (1970), Lindenmayer (1968),
and others. It is also their experience that increasing the flexi-
bility of the relationships between cells increases the difficulty

of mapping from the model space back to a three-dimensional Euclidean
space.

There are areas in which it is desirable to modify the formalism
of a cellular space to accommodate a colony model in a simple fashion.
In particular, it is desirable to bound the space below with a layer
of distinguished cells (or an extra-spatial model) representing the
agar medium on which the colony is growing. Further, the radial
symmetry is most effectively modeled by using a left-hand boundary
as well. The finiteness of the automata (cells) is also
interesting - in fact they are finite (since the state of each cell
is stored as a finite number of bits of memory), but they are more
easily conceived of as consisting of a finite set of variables which
range over the (nonfinite) set of real numbers. It would be possible,
on the other hand, to discretize the ONECELL mocdel variables to yield
a model with a much smaller state set than the present (practically
infinite) one. Its transition function, however, might be more complex,
and such a reduction of state-space size is of interest mainly from a
theoretical viewpoint.

The second area of modeling effort required to use ONECELL in
a colony model is to relate the flow of materials into and out from

a cell to the concentration of those materials outside the cell.
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The interactions between ONECELL and the environment which are
included in the state set of the prototype are the four types of
nutrients (NUC,AA,GLUC, and LAC) and oxygen and wastes. The problams
in connecting the flow rates with the concentrations are (1) spec-
ification of the volume of extracellular material which the nutrients,
etc., are considered to be present in, and (2) specification of the
rates of diffusion of the various substances through the extracellular
space. These are both difficult problems, but can be made more
tractable by means of some simple assumptions concerning the packing
density of cells in the colony and the composition of the inter-
cellular space.

The colony model is still in need of considerable development.
It, like the ONECELL model, suffers from a scarcity of information
concerning some of its variables. While some investigators have
studied the development of colonies on solid (agar) medium, the
measufements taken are often of macroscopic variables, such as radial
growth rate, rather than of variables which display different levels
in various parts of the colony. There is work which tries to connect
the two levels of variables, such as thét by Pirt (1967) and Whittaker
and Drucker (1970), but this sort of work is still in an early stage.
The approach taken by Pirt in describing the distribution of nutrients
available to a colony gréwing on agar is a good indication that the
colony model would be of utility in the study of bacterial growth,
and that the questions that are formulateble within the model are
biologically interesting ones.

One of the chief limitations in the development of the model

to date has been severe shortage of both core memery and output
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capabilities. With the forthcoming alleviaution of these restrictions,
in the form of a doubling of core memory and the addition of a line
printer, future work on the simulation should be able to proceed at
an accelerated pace.

The ONECELL model was originaily designed by Weinberg to operate
with certain fixed internal concentrations, receiving no inputs from
its environment, and producing no changes in its environment. The
new ONECELL model has as inputs concentrations of four different types
of nutrients, and has available as outputs the amount of each nutrient
consumed, allowing dynamic alteration of the environment of the cell.
In addition to these inputs and outputs, it would be desirable to
include in a future model additional environmental factors which interact
with the cell's metabolism. Foremost is the supply of oxygen, deter-
mining whether the growth is aerobic or anaercbic. ONECELL now assumes
that oxygen is plentiful. The structure of the model is such that
it should not be difficult to introduce the effect of oxygen deonri-
vation. Another new factor, which should probably also be introduced
when oxygen is modeled, is wastes that are produced in (and may diffuse
out from) the cell. Lactate, for example, will be generated in large
quantities under anaerobic growth conditions, and should probably be
considered in the model.

It is hoped that the ONECELL model, in one form or another, will
continue to be developed. The author feels that in spite of the
difficulties which will doubtless be encountered, the goal is a
worthwhile one, and the model embodies a level of detail and an array
of biological controls which should enable it to serve as a useful

tool in the study of bacterial growth.
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Figure A.1: NUC, AA, ATP, ADP in Simulated Growth in Environment
Two. Scale is linear, units for each pool are arbitrary.
Sample points are two minutes apart. Recording was
begun after one simulated cell division.
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Figure A.2: WALL, DNA, GLUC in Simulated Growth in Environment Two.
Scale is linear, units for each pool are arbitrary.
Sample points are two minutes apart. Recording was
begun after one simulated cell division.
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PRTN, RIB, VOL in Simulated Growth in Environment Two.
Scale is linear, units for each pool are arbitrary.
Sample points are two minutes apart. Recording was
begun after one simulated cell division.

Figure A.3:
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Figure A.4: MRNA, RIB, TRNA, RNA in Simulated Growth in Environment Two.
RNA is a weighted sum of MRNA, RIB, and TRNA. Scale is
linear, units for each pocl are arbitrary. Sample
points are two minutes apart. Recording was begun
after one simulated cell division.
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Figure A.5: NUC, AA, ATP, ADP in Simulated Growth in Environment
Three. Scale is linear, units for each pool are
arbitrary. Sample points are two minutes apart.
Recording was begun after one simulated cell division.
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Figure A.6: WALL, DNA, GLUC in Simulated Growth in Environment Three.
Scale is linear, units for each pool are arbitrary.
Sample points are two minutes apart. Recording was
begun after one simulated cell division.
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Figure A.7: PRTN, RIB, VOL in Simulated Growth in Environment Three.
Scale is linear, units for each pool are arbitrary.
Sample points are two minutes apart. Recording was
begun after one simulated cell division.
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Figure A.8: MRNA, RIB, TRNA, RNA in Simulated Growth in Environment
Three. RNA is a weighted sum of MRNA, RIB, and TRNA.
Scale is linear, units for each pool are arbitrary.
Sample points are two minutes apart. Recording was
begun after one simulated cell division.
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Figure A.9: AA and NUC in Simulated Shift-up from One to Three
Logarithmic plot of amounts - units adjusted so curves
for balanced growth (pre-shift) in environment one coincide.
Distance between horizontal lines corresponds to cne
doubling. Each point is a sum of three values, one cal-
culated in each of three ONECELL runs. The runs differ
in the age of the cell at the time of the shift.
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Figure A.10: WALL and ATP in Simulated Shift-up from One to Three.
Logarithmic plot of amounts - units adjusted so curves
for balanced growth (pre-shift) in environment one coincide.
Distance between horizontal lines corresponds to one
doubling. Each point is a sum of three values, one
calculated in each of three ONECELL runs. The runs
differ in the age of the cell at the time of the shift.
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Figure A.11: RIB and PRIN in Simulated Shift-up from One to Three.
Logarithmic plot of amounts - units adjusted so curves
for balanced growth (pre-shift) in environment one
coincide. Distance between horizontal lines corresponds
to one doubling. Each point is a sum of three values,
one calculated in each of three ONECELL runs. The runs
differ in the age of the cell at the time of the shift.
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Figure A.12: MRNA and TRNA in Simulated Shift-up from One to Three.
Logarithmic plot of amounts - units adjusted so curves
for balanced growth (pre-shift) in environment one
coincide. Distance between horizontal lines corresponds
to one doubling. Each point is a sum of three values,
one calculated in each of three ONECELL runs. The runs
differ in the age of the cell at the time of the shift.
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Figure A.13: GLUC and VOL in Simulated Shift-up from One to Three.
Logarithmic plots of intracellular volume and amount
of intracellular GLUC pool - units adjusted so curves
for balanced growth (pre-shift) in environment one coincide.
Distance between horizontal lines corresponds to one
doubling. Each point is a sum of three values, one
calculated in each of three ONECELL runs. The runs
differ in the age of the cell at the time of the shift.
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Figure A.14: RNA, DNA, MASS in Simulated Shift-up from One to Two.
Logarithmic plot of amounts - units adjusted so curves
for balanced growth (pre-shift) in environment one
coincide. Distance between horizontal lines corresponds
to one doubling. Each point is a sum of three values,
one calculated in each of three ONECELL runs. The
runs differ in the age of the cell at the time of the

shift.
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Figure A.15: Mass and Cell Count in Simulated Shift-up from One to

Two. Logarithmic plot of simulated total cellular mass
and number of cells with units adjusted so curves for
balanced growth (pre-shift) in environment one coincide.
Distance between horizontal lines corresponds to one
doubling. Each point is a sum of three values, one
calculated in each of three ONECELL runs. The runs
differ in the age of the cell at the time of the shift.
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Figure A.16: AA and NUC im Simulated Shift-up from One to Two.
Logarithmic plot of amounts - units adjusted
so curves for balanced growth (pre-shift) in
environment one coincide. Distance between horizontal
lines corresponds to one doubling. Each point is a
sum of three values, one calculated in each of three
ONECELL runs. The runs differ in the age of the cell
at the time of the shift.
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Figure A.17: WALL and ATP in Simulated Shift-up from One to Two.
Logarithmic plot of amounts - units adjusted so curves

for balanced growth (pre-shift) in environment one coincide.
Distance between horizontal lines corresponds to one doub-

Each point is a sum of three values, one calculated
in each of three ONECELL runs.

ling.

The runs differ in the

age of the cell at the time of the shift.
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Figure A.18: RIB and PRIN in Simulated Shift-up from One to Two.

Logarithmic plot of amounts - units adjusted so curves

for balanced growth (pre-shift) in environment one coincide.
Distance between horizontal lines corresponds to one
doubling. Each point is a sum of three values, one cal-
culated in each of three ONECELL runs. The runs differ

in the age of the cell at the time of the shift.
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Figure A.19: MRNA and TRNA in Simulated Shift-up from One to Two.
Logarithmic plot of amounts - units adjusted so curves
for balanced growth (pre-shift) in environment one coincide.
Distance between horizontal lines corresponds to one
doubling. Each point is a sum of three values, one cal-
culated in each of three ONECELL runs. The runs differ
in the age of the cell at the time of the shift.
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Figure A.20: GLUC and VOL in Simulated Shift-up from One to Two.

Logarithmic plots of intracellular volume and amount

of intracellular GLUC pool - units adjusted so curves
for balanced growth (pre~-shift) in environment one
coincide. Distance between horizontal lines corresponds
to one doubling. Each point is a sum of three values,
one calculated in each of three ONECELL runs. The runs
differ in the age of the cell at the time of the shift,
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Figure A.21: RNA, DNA, Mass, and Count in Simulated Shift-down from
Two to One. Logarithmic plots of amounts - units adjusted
so curves for balanced (pre-shift) growth in environment
Two coincide. Distance between horizontal lines corresponds
to one doubling. Each point is a weighted sum of three
values, one calculated in each of three ONECELL runs.
The runs differ in the age of the cell at the time of the

shift.
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Figure A.22:
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NUC, WALL, and AA  in Simulated Shift-down from Two to
One. Logarithmic plets of amounts - units adjusted so
curves for balanced (pre-shift) growth in environment
three coincide. Distance between horizontal lines corre-
sponds to one doubling. Each point is a weighted sum

of three values, one calculated in each of three ONECELL
runs. The runs differ in the age of the cell at the

time of the shift.
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Figure A.23:

TRNA, ATP, and MRNA in simulated Shift-down from Two to
One. Logarithmic plots of amounts - units adjusted so
curves for balanced (pre-shift) growth in environment
three coincide. Distance between horizontal lines
corresponds to one doubling. Each point is a weighted
sum of three values, one calculated in each of three
ONECELL runs. The runs differ in the age of the cell at
the time of the shift.,
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Figure A.24: DNA and RIB in Simulated Shift-down from Two to One.

Logarithmic plots of amounts - units adjusted so curves
for balanced (pre-shift) growth in environment three
coincide. Distance between horizontal lines corresponds
to one doubling. Each point is a weighted sum of three
values, one calculated in each of three ONECELL runs.
The runs differ in the age of the cell at the time of
the shift.
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Figure A.25: PRTN and GLUC in Simulated Shift-down from Two to One.

Logarithmic plots of amounts - units adjusted so curves
for balanced (pre-shift) growth in environment three
coincide. Distance between horizontal lines corresponds
to one doubling. Each point is a weighted sum of three
values, one calculated in each of three ONECELL runs.
The runs differ in the age of the cell at the time of
the shift.
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