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ABSTRACT

At high frequency the acoustic surface fields for plane wave illumination
of a prolate spheroid are found for near ’symmetric illumination. The surface caus-
tic, in contrast to the symmetric case, is found to be diffuse. The values of the
surface fields are used to find the modification of the creeping wave contribution to

back scattering.
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I
INTRODUCTION

We consider the use of the creeping wave formalism (Keller, 1953; Fock,
1946) for the prediction of surface fields induced by a plane wave on smooth convex
scatterers. The application is straightforward away from regions of the surface in
which the creeping waves converge due to the geometry of the body. Here the local
geometry is taken to be cylindrical. If the creeping waves converge to a point, we
speak of this point as a caustic and the creeping wave formalism can be modified in
order to predict the fields in the region of a caustic. However, if the creeping
-waves do not quite converge to a point and yet cannot be treated in the cylinder ap-
proximation of the bodies in question by cylinders, a more subtle modification of the
formalism is required. We shall consider this problem and designate the near-
caustic region as a diffuse caustic.

We attack the problem of describing the field in the region of the diffuse
caustic through a canonical problem. We will study the surface fields on a prolate
spheroid for a plane wave which is near axially incident and then attempt a general-
ization to other shapes. In analyzing the prolate spheroid we shall extend slightly
the work of Kazarinoff and Ritt (1959) using the asymptotic analysis of Langer (1935,
1949). The generalization of these results to general convex bodies will then follow
from a consideration of the creeping wave paths, the geodesics, on a prolate spher-

oid.
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II
SCALAR DIFFRACTION BY A PROLATE SPHEROID

2.1 The Integral Representation
We suppose a scalar plane wave be incident on a prolate spheroid and study

the solutions of the Helmholtz equation satisfying either the Neumann or Dirichlet

boundary conditions. We use the prolate spheroidal coordinates (£, n, ¢) where

2 2
x=c\l'g° -1 \ll-n cosf ,
yeoEn \ll—nz sing | (2.1)
zzcEn ,

where c is the semifocal distance. The equation of the spheroid is & = Eo so the

major and minor axes are given by

a=ct
(2.2)
, 2
b=c SO— 1.
The Helmholtz equation
2 2
(V+k )0 =0 (2.3)

becomes, in the prolate spheroidal coordinates,
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O 2 0] . 2], [l _115% 2f2 2.
5E [(S '”ag]*an[(l'” )an]“{z ¥ 2], 5t [‘E - Lr1-m )]55'0’

-1 1-n7op (2. 4)
where ~ =kc. We require ¥ to be of the form

D o
geet T 4p (2.5)

where g[/s satisfies the radiation condition and ¢ is to satisfy either of the bound-

ary conditions

@(E’o,n,¢)=0,

or | 2.6)
g_!p(g, n’ ¢) = 0 ’
E g

o

- o

P
and when e1 r is the incident wave with
_)
k=k(sin6 , 0, cosf ) . (2.7)
0 0
We make the expansion

0 0]
g =Z¢meim¢ (2.8)
-®

and consider the component equations
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With X denoting a separation constant, (2.9) is seen to be equivalent to the separated

equations
0 m2 2,.2
[—(E -1) —E-'z—'; v (§ -1)-)L] u=0 (2. 10a)
5 2
[5"(1 )"—-——+'y (1- n)+k:| w=0 (2. 10b)
n on 1- T)

From the solutions ‘of (2. 10a) which are asymptotically in £ of the form

e-iwi
yé(S,hr“ 7

and (2.11)
ivg

~8
yl(§,>x) F

we form either

D
B €0 =y (€0 y,E 0=y, (E )y (£ N
or (2.12a)
N CRVERNCRVIA SVERA IR CIPY

and

¢1 (E,n) = yl(S, \) (2.13)
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With the solutions ¢1 and ¢2 we then form the resolvent Green's function
) P, (5<) 9, (E>)
T e2

G (2.14)

- where W(¢1, ¢2) is the Wronskian of the solutions ¢1 and ¢2 . This becomes for

the Dirichlet and Neuman boundary conditions

D 1 D

G = 2i7f, (€ ) fp €< N> (2. 152)

GNe———— g (<, 0P (&>, ) (2. 15b)
21‘y¢1 (€,

Similarly, we take the solutions of (2. 10b) which are regular at n=l,¢/l(77, -A)
and at n=1, wl(n, -\), where

(p_l(n: _h) =l//1(_ n, -k.) P (2. 16)
and form the resolvent Green's function

1
2
(L-mWw_.0,)

G = ¥_(n<, Y (>, X) (2.17)

-1

The solution l/{n can then be represented by the plane wave limit of

1 | ~ , p
wm-zﬁ G(n,n", A G(E E , VA (2.18)

r
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2.2 The Asymptotic Analysis

We wish to evaluate (2. 18) for v large. We will parallel the work of
Kazarinoff and Ritt (1959) making a turning point analysis of (2. 6a) (Langer, 1949)
and a Stokes phenomenon analysis of (2. 6b) (Langer, 1935).

On puting
u = 1 v o, (2.19)
£%-1
Eq. (2. 6a) becomes
2
2 -
ot [P T 2.20
£ -1 (5 -1)
We define Er by
2 2 1-m2
A=(E -y +—) , (2.21)
r 2 .2
(€ -1)
r
and rewrite (2.20) ,
2 .2
€ -& 2_
VP > rf,,m-l 1 v=0 (2.22)

£-1 | 4 € -DE-

Now for m=0 or for m<<+y the asymptotic forms of two solutions of (2.22) for

vy— oo with £€> 1 are, after Kazarinoff and Ritt

. +iyf(E ) .
S 6 Vi G=1,2) (2.23)
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3

¢=v| u(r)dr

Y=y =y (4 ; (2.24)
0% (Sr-l)

provided § is near Er. We note that for £ increasing without bound, the asymp-
totic solutions have leading terms independent of m.
Since we shall wish to evaluate (2.18) as a residue series (where this is pos-

sible) we look for the roots of
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¢l (80, A) =0
or (2.25)
¢2’ (E,N) =0

The zeros of these solutions occur at the zeros of

(1)
1/3(h )=0 ,
or (2.26)

g

Hy /3 (b, ) =

~From the definition of { these are the values of 'g"r such that

h orh’ =« (2.27) -
Moreover, if Sr is near to EO
25 12 3/2
b orh £v.3 (:5——1) (€-) . (2.28)
(o}
We now rewrite (2.23) using the Airy integral
w(t)=E M3y (11/)3(2 (-0°/2) | (2.29)

3/2

hence, with ¢ = %(-t)
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1/4
(D))= T4 t)1/4(§——) olt) . (2.30)
£
(1) (1)

We now approximate v (Eo) and v

(2.28) we find

(EO) with Sr assumed to be near SO. From

1/3
£2_1)

Lo
£ -8 ‘Ym< % )t (2.31)

r 1‘1

where tr is a root of

w(t) = 0, (Dirichlet problem)

or
w’(t) = 0 (Neumann problem)

Substituting in (2. 30)

, 16
o, —IvE(E) v (E-1)
(1),.,_ -mi/4 S M S0
Vg )ze ToE ) w(t) (2.32)
()
where we have made the approximation
§r+§o= 250
On noting that
, 13
EE =’Ym< 280 > d—t-

o
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we find

-1/6
' i/ rvf(S ?
W e (25 ) J 1)

For the case y>> m, we put

and define 1 /3

Hence (2. 32) and (2. 33) become

. -1y fl
e—11r/4 . o (El) M1/2

W ) - olt)

(1)’ JCin/4 IvH(E)

1
(€) -

M / yw (t) .

The angular Eq. (2.10b) is transformed by letting

and becomes

2
z"+{‘)/2+ A 2+ 1_?2} z=0 .
1-n° (1-n)

10

(2.33)

(2.34)

(2.35)

(2.36)

(2.37)

(2.38)




THE UNIVERSITY OF MICHIGAN

7030-9-T
As before, we put
2,.2 l-m2
A=y ('é’r- 1)(1+ 5 ) (2.39)
2,.2
04 (Er-l)
so that (2. 26) becomes
2 2 2
2 - -
L D L e ol N N I'm .o (2. 40)
117 Ae2-1) 2
TS, (1-n)
or, by defining
2
2 1-
= §r+ 2 ;n ’
0 (Sr-l)
2 5 9 _ 2
Vi L=t v + v=0 . (2. 41)
1-7’)2 by 9 2
(1-n)

Using the Stokes phenomenon analysis of Langer (1935) we may approximate the so-

lution of (2. 41) that is regular at n=1, as follows:

~ |2
V—J;Jm(c) (2. 42)

1
where o =y \ P(t)dt,

2 2
g 5 n-n
P(n) =

1-n

11
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The solutions of (2. 10b) are
-1/4
wl(n,-k)%’E[(l-n2)(ni—n2):] 7 (0) (2. 43a)
s//l(n, -A) = d/l(—n,-x) (2. 43b)

and

a-Pywi_, v,12 2 cos(2o (o)) ()™ (2. 44)

‘The angular Green's function is from (2. 44) and (2. 17)

. V_ (<, g (0>, )
G(n,n', ) = . (2. 45)
%cos (20‘(0)) (—)m

We now form the integral representations for the surface fields using Eqgs.
(2.45) and (2. 35) or (2.36). In the case of the Dirichlet boundary condition the nor-

mal derivative of the field on the surface is given by

o e Ry s S e

2 ~ 2 2
&’O (l-n)(l-no) o
o 1/4
dt —= o ( . Jm(c(nDJm(o(no))c(n)c(n )
2 cos (20 (o)) (772-772)(772-T)2) w(t) \ 0
, r r o
[ (2. 46)

where we have noted that 'yf(‘g“r)= -0 (o) and that dx =2'y’§o Mdt.

12
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If we take the incident direction to be near axial so that 60 is small, we can
truncate the m series at some m=m so that 'ySo can be chosen so large that

'yEo >> m . In this case we put
nr=§’r>> 1

and, except in oscillatory functions, put

Equation (2. 43) then becomes

1/4
2 1/4
D|  -mi/4 £, o "io (o)
W | xe ! '
, = dt o (no (n) ’
T M F %’2 2 . Toos ) ( ) (1- 1] )>
rl
S G Gmy) (2.47)
We note that the summation in (2. 47) can be done explicitly to give
5 1/4
D 7r1/4 S i -ig (0)
L7 ) - dt ———7——, o (1)
on : M1r r ’52 2 ) 1/4 2 cos(20 (o)
0 (1-77 ) 1
r
w(t) <Jcr (M+o (n )+20 (Mo (n )cos¢> (2. 48)

(Magnus and Oberhettinger, 1949).

13
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With a similar argument the surface field satisfying the Neumann boundary condi-

tions can be written as

N -mi/4 1 Sj 1 "l (0)
Y€)= - ( ) dt ‘lo (n)
o T 2 8(2)- T)2 (1-772)1/4 2 cos (20 (0))
F
(2. 49)
1
2>

where we have put
2

> " =o%mon ) +2 (Mo (n ) cos§ (2.50)

From the definition of o (n) we write

o (M)=c(0)-§ (n)=~v (2.51)
and expand about Sr= 'é’o
n ]
52—)‘2 1-62 2 dx
vl (= > d&x= ka 2" dx +M =5 t.  (2.52)
V 1-x 1-x J(l—e x )(1-x)
0 0 0

The first term on the right of (2.52) is the wave number k multiplied by the path
length measured from 1 = 0 to 1 along a curve of constant @ ; the second term is the

reduced distance given by Fock (1946) multiplied by tr . Rewriting

14
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% (n) = kS(n)+ ¢(n) t, (2.53)
where
n
Ll
S(n) = a ’2‘ dx (2. 54)
1-x
0
S(n) 1/3
| () ds
g(n) = <2 ) R(s) (2.55)
0
n
dx

=M .
] a0
0

with R(s) the radius of curvature at S(n) along a curve of constant §.
Since the path of integration /"' is such that Imt>0 we have from (2. 52)

that Imo (o) > 0 and we make the convergent expansion

-io (o) . @ .

e _ o (o) ¢ 4ilg (o)

2 cos (20 (0)) ~ © Z( ) e ) (2.56)
£=0

We now consider the forms (2. 48) and (2. 49) for n near enough zero so that

lc(n)l>> 1. In this case, we may use the asymptotic form of the Bessel function

and approximate Z by
E :zc(n)ﬂr(no) cos {§

=c(o)—2§(n)+c(no) cos (2.57)

15




THE UNIVERSITY OF MICHIGAN
7030-9-T

in oscillatory functions and

Z Z¢ (n) (2.58)

in non-oscillatory functions. On substituting the asymptotic form of the Bessel

function and the expansion (2. 56) in (2. 48) we have

2 1/4 (09} ,
T S S S > | L
on |, = 3/2 2 1/4 w(t)
€ 2Mn Ez—n 2
() 0 (1-n") £=0

41,20(0){ i(‘é(n)-c(no)cos;é) i<20(o)—5(n)+c(no)cos¢>}
e e -ie )

(2.59)
Using the forms (2.51) and (2. 53) and noting that for n near to one
o(n)=kbo +2 Mto (2. 60)
0 o b 0

and rewriting

L =
c(o)—k4+ 2 t,

where 1

N |l
1]
o5

(=)

is one quarter of the distance around, the spheroid for @ = constant mod x and

16
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dx
0 ‘[(1— €2x2)(1-x2)

-is the corresponding reduced distance, we have

o 1/4

(00]
.. D 3 . i
oY 1 0 1 £ dt  UKkL+4il=t
: — ( ) (=) | —=e
on . EETEACRE 5 1/4 Z w(t)

T ) 1=0

{i[kS(n)-kbéocos¢] i[C(n)-%Meosingb]t i[k%-ks(n)+kbeocos¢
c qe e -ie

i[-%—-g’ (n)+§Meosin¢] t (2.61)
e

If we now evaluate (2. 61) on the shadow boundary and include only the first

term in the back scattered direction we have an expression of the form

(n,,9)= (-i)e
LT 2M1r3/2 2 2 o 1/4

1/4
2 L
) ( EO ) 1|:k 5 —1<S(771)+kb60 cos¢1:| .
S0 (1-n))

e Ay, .
dt 1[_/4 §(n1)+bM6051n¢1]t

S(0° (2.62)

-

17
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where (nl, ) 1) are the coordinates of the shadow boundary and

~ a
=y t‘)ocos¢1 . (2.63)

Since 7n, is small we make the approximation

1

S(nl) = an
2

a
- 90 cos ¢1 (2.64)

We will neglect the terms of order 60 in the t-integration and include

terms of this order only in the phase. This gives the approximation

2
C

ik=—6 cos @

L) 2 e °° (2.65)

where IB(o) is the value taken on the shadow boundary for symmetric illumination.
The back scattered. field will be proportional to the integral of (2.65) over

the azimuthal angle ¢1 from 0 to 2x, that is

2r c2
k=6 cos¢1

wB(60)~ IB(o) d¢1 . (2. 66)

o

But the zeroth order Bessel function has the integral representation

18
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iz cost
e

J (z) = dt
(6]

g
o>y

so that the leading creeping wave term in the back scattered field is given

. 2
a c
wao)— l//B(O) Jo(k b 60)

There is an analogous expression for the Neumann boundary condition.

We have then , that for near axial illumination of the spheroid that the

leading creeping wave term in the back scattered field is given by the field arising

g ). We note
b o

that this factor takes the value of one for either symmetric illumination, 90= 0, or

from symmetric illumination multiplied by the shape factor % (k

for the sphere limit, ¢=0.

19
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