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ABSTRACT

The topics treated in this thesis cover three main areas:

(1) Phase distribution during flow of two immiscible fluids in a porous
medium; (2) Stability of macroscopic interfaces separating two immisci-
ble phases in motion in a porous material; (3) Residual equilibrium satu-
ration of a non-wetting phase resulting from frontal displacement of

that phase by another fluid immiscible with it.

The first main problem was that of formulating and verifying
the basic equations of two phase flow. The principles of dimensional
analysis were applied to the equations in order to reveal the basic scal-
ing parameters. An approximate solution to the problem of linear dis-
placement of gas by water was derived. Experimental data were taken for
constant rate of water injection into the base of a vertical sand column
initially containing air and water. These data agreed well with the ap-
proximate solution.

A theoretical solution to the problem of the steady state
capillary end effect was obtained by means of an integration of the basic
equation of multiphase flow. It was found that the saturation distribu-
tion near the outflow face of a core could be predicted quite well.

As an illustration of the use of the basic flow equations, the
problem of countercurrent capillary imbibition was treated theoretically.

The second major topic considered is that of the stability of
the displacement fronts which occur when one fluid expels another from

a porous material., The rigorous solution of the problem in which the



two fluids are moving at an initially constant velocity, and are sepa-
rated by a discrete interface, was obtained. The analogous problem, in
which the fluids are accelerated from rest, was also solved. The effect
of viscous damping on the propagation of instabilities was treated funda-
mentally by means of rigorous formulations of the work-energy and Bernoulli
equations for porous media. The effect of capillary pressure gradients
on the stability of quasi-steady flows was treated from a theoretical
viewpoint. The effect of capillary imbibition was determined quantita-
tively insofar as it tends to stabilize the flow by destroying the dis-
crete nature of the interfaces. Helmholtz flows in adJjacent layers of
porous media were also treated with respect to interface stability. The
problem of the stability of radial, quasi-steady flow was solved for the
cases of thick and thin storage reservoirs. Finally, the relation of the
influence of model boundaries on instability propagation was examined
theoretically.

The third main topic of this work is that of the magnitude of
the non-wetting phase residual equilibrium saturation. The experiments
performed showed that the microscopic fluid-fluid interface moves across
a given pore unstably and that a pore is either completely full of wetting
phase fluid or else almost completely empty. It was also shown that the
residual is due to a blocking process in which a zone of non-wetting phase
becomes isolated. An empirical correlation of available data yielded the
conclusion that the non-wetting phase residual saturation is a function
of porosity orly, provided that the initial wetting phase saturation is
sufficiently low. Experimental work also showed that the residual gas
saturation after water flooding is independent of the flooding rate over

a wide range of velocities.
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I. INTRODUCTION

The object of the engineering research undertaken in the area of
multiphase flow in porous media is to predict the outcome of complex flow
experiments on the basis of simply measured basic properties of the porous
media and the fluids involved. It is necessary that the properties so
measured be representative of the system to which the calculations are
applied and that these measurements lead to expressions which can be used
to formulate the problem mathematically.

The research presented here is designed to elucidate the phenomena
which occur when one fluid displaces another which is immiscible with it
from a porous material. These processes present a formidable degree of
complexity even under the best conditions. The number of possible situ-
ations that can arise is large. Consequently, an approach which purports
to achieve any reasonable degree of generality must necessarily resolve

itself into an attack on certain separate problems.

A, Saturation Distributions During Immiscible Displacement

The determination of the fluid phase distribution as a function
of time and distance constitutes the solution of problems in two-phase
flow in porous media. When one fluid displaces another which is immiscible
with it from a porous matrix, the fraction of the pore space filled with
the displacing fluid will vary with time and distance. This fraction is
called the saturation, and must be understood in a macroscopic sense,
i.e. as the ratio of the volume of displacing fluid to the total pore
volume when averaged over a large number of pores. Commercially important

examples of this displacement phenomenon are: (l) recovery of underground

-1-



0il by sweeping with water, (2) movement of natural gas and water in a
storage reservoir, (3) simultaneous movement of two immiscible phases in
packed absorption and distillation towers, (L) dewatering of filter cakes
in chemical operations. As the displacing fluid moves into the saturated
porous body, an interface between the immiscible fluids is formed. This
interface (or front) is visualized as the distance in which the displacing
phase saturation changes from its maximum to its minimum value. This
saturation front is illustrated in Figure 1(a). Ahead of the front, the
pores will be occupied by essentially all displaced phase fluid (A), while
far behind the front, the pores are nearly entirely filled with displacing
phase (B). These terminal saturation values are not O and 1.00, however
(saturation defined as fraction of pore space filled with whichever fluid
is chosen as the reference fluid, in this case fluid B). In this work the
displacing phase, B, is usually water, the displaced phase A being gas.
The minimum permissible wetting phase saturation is usually called irreduc-
ible minimum (water) saturation, S&r,and corresponds to the connate water
saturation found in reservoirs. It represents the least fraction of the
void  space that can be filled with wetting phase. The minimum irreducible
non-wetting phase saturation is called residual equilibrium (gas) satura-
tion, Sér’ and represents the maximum wetting phase saturation that can be
attained by frontal displacement. The wetting property is defined as the
ability of a fluid phase to be spontaneously imbibed into the porous medium.
Since the porous media under consideration often are cores taken
from wells, the term "core' is used interchangeably with experimental
laboratory porous media. A core into which water is spontaneously drawn

with resultant expulsion of, say, oil is termed water wet. It would be
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desirable, ideally, to be able to predict the saturation distribution curve
of Figure 1(a) from the viscosities, densities and surface tension of the
fluids and the properties of the porous media, such as porosity and perme-
ability.

However, at present, data on residual equilibrium gas saturation,
irreducible minimum water saturation, capillary pressure, and relative
permeability are needed for the purpose of formulating the problem. The
capillary pressure concept is illustrated in Figure l(b) and may bethought
of as the height corresponding to a given liquid saturation when the liquid
has been allowed to imbibe vertically to equilibrium. The relative perme-
ability concept is illustrated in Figure 1(c). Fluids A and B are entering
and leaving the core at steady state and generating a pressure drop. The
pressure drop depends on the saturation in the core at a given time. The
relative permeability thus defines the influence of one phase on the flow
of the other, and is equal to the ratio of phase permeability at saturation
S' to that at S' = 1.00.

When a non-wetting phase is displacing a wetting phase, and the
system has reached steady state, i.e. the wetting phase fluid in the core
is not moving, there is always observed to be an increase in the wetting
phase saturation near the outflow face of the core. This saturation
increase is called the capillary end effect, and is due to the retention
of the water at the outflow caused by the saturation discontinuity at
that point. In dewatering of filter cakes, and in performing laboratory
experiments on petroleum cores, it is desirable to minimize this effect,

or at least to have some idea of its magnitude.
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An important problem in reservoir mechanics is that of counter-
current capillary imbibition into a porous formation. In general, a
wetting phase will spontaneously imbibe into a porous body. If an experi-
ment is set up in which one end of a core is open and the other closed,
the initially contained non-wetting phase must be expelled countercurrent
to the imbibing phase. It frequently occurs thatthis is the most impor-
tant means of recovering petroleum from reservoirs in which the oil is
contained on long horizontal streaks which cannot be produced by frontal
displacement. In many practical applications, it is desirable to know

the saturation space-time history of such a system.

B. ©Stability of Interfaces

The problem of stability in two phase displacement problems
is the determination of whether small disturbances on a (macroscopic,
discrete) interface separating the fluids will grow or decay with time.
In these stability problems, the macroscopic interface is assumed to be
sharp, i.e. without significant saturation gradients on either side. It
is important, at this point, to distinguish between the macroscopic and
microscopic approaches. The microscopic approach involves examination of
the actual process going on inside a given pore. All multiphase flows in
porous media have their microscopic aspects irrespective of whether the
gross flow is macroscopically stable or not. The macroscopic approach
involves the examination and averaging of many hundreds of pores, and
results in mean quantities. The problem of stability is considered as a
macroscopic problem insofar as it is treated in this thesis. The growth
of the perturbations in the macroscopic unstable case results in the

formation of long fingers of displacing fluid moving at relatively high
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velocity through the formation and bypassing large quantities of the in-
place fluid. Photographs of fingers in porous media are shown in Figure 2.
The light areas in Figure 2 are water fingers moving into a glass powder
pack which was initially saturated with oil of the same refractive index
as the glass.

The simplest problem in stability analysis i1s that arising when
two immiscible fluids are found flowing at constant velocity and separated
by a plane interface on either side of which the saturations are constant.
Small perturbations are then assumed to appear on this surface, giving it
a corrugated shape. Growth of these perturbations results in finger
formation. Decay results in steady, frontal displacement, as previously
described. It is desirable to find a relation between such parameters
as permeability, porosity density, surface tension, etc., and the tendency
of the porous medium to form unstable fingers. Energy relations must also
be satisfied in the growth of fingers, so that the effect of viscous damping
on the kinetics of growth must also be considered. Finally, if fingers of
wetting phase fluid are formed, capillary imbibition must take place between
the fingers due to the sharp saturation gradients generated. This imbibi-
tion will tend to annihilate the fingers by filling the space between them.
These problems, together with others which are related to stability, are

solved in this thesis.

C. Residual Equilibrium Saturation

When a wetting phase moves into a porous formation containing a
non-wetting phase, a certain amount of the non-wetting phase is left behind
and is non-recoverable by the frontal displacement process. The problem to

to be solved here is that of the determination of the final saturation of
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213, 103, (1958). N, = oil production in pore volumes

Wi = cunulative water injection in pore volumes. )
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the non-wetting phase under equilibrium conditions, i.e., the quantity

Sér in Figure 1(a). For example, when water displaces gas from a water
drive reservoir or in aquifer gas storage projects, this phenomenon occurs.
The gas is physically trapped in the interior of the pores by the advancing
water. The ideal case would be to be able to predict the residual gas
saturation for natural porous media from measurements of the viscosities,
densities and surface tension of the fluids and porosity, permeability

and other simple properties of the rock.

All the available evidence, both empirical and theoretical, shows
that, in the microscopic sense, the wetting phase can remain in a stable
position only up to a certain critical point as it enters the pore. The
interface then Jjumps through the pore to a new position of stability by
bypassing some of the non-wetting phase. The magnitude of this amount of
bypassed fluid is of prime importance in the recovery of gas and oil. The
quantitative description of this unstable interface jump appears to be the
key to an understanding of residual equilibrium saturation. Experimental
values of residual equilibrium saturation on naturally occurring rock
formations are useful for field applications, but give little insight from
a fundamental point of view because of the unspecified pore geometry. Con-
sequently theoretical and experimental consideration of the microscopic
phenomena occurring in ideal packings of spheres is necessary. In partic-
ular, the effects of displacement rate, surface tension and contact angle
have to be reduced to a quantitative basis if an adequate basic under-

standing of residual equilibrium saturation is to be achieved.



II. SATURATION DISTRIBUTION DURING MULTIPHASE
FLOW IN POROUS MEDIA

The four subsections of Section II include a formulation of the
basic equations followed by the application fo these equations to the prob-
lems of frontal displacement, capillary end-effect, and countercurrent
capillary imbibition. The general procedure in each of the subsections
will be to include a literature survey, theoretical development, experi-

mental results, if obtained, and a final discussion.

A. Formulation and Dimensional Analysis of Basic Equations

This section describes the development of the mathematical state-
ment of the two-phase flow problem starting from the simple concepts of
Darcy's Law, capillary pressure and relative permeability.

1. Single Phase Flow in Porous Media

The general theory of single phase flow in porous materials is
highly developed, and may be found in extended treatments (85), (108).
General background on the problems of the oil and gas industries may be
found in (61) and (95). An excellent general introduction to the theore-
tical aspects of flow in porous media is given in (15), which must be con-
sulted for the most elementary background.

2. Relative Permeability

The fundamental concept in two-phase flow in porous media is
that of relative permeability. It appears to have been first enunciated
by Wyckoff and Botset (137). The relative permeability to a given phase
is defined to be the ratio of the permeability at the specified satura-

tion to the permeability at 100% saturation of the phase in question.

-9-
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Physically, it is thus a measure of the reduction of the permeability
to one phase due to the presence of the other. The quantitative expression

for the permeability is given by Darcy's Law

oy ﬁ(Vp-ﬁ-pVQ) (1)

The dynamic relative permeability equations for two phase flow, taking

the saturation into account, are written for gas and water by means of a

natural extension of Darcy's Law.

KK
U% = - _;ég (vpg + pgvn) (2a)
2, = - K:rw’ (Vp, + o, v0) (2b)
w

The above equations are simply speculations about the nature of two phase
flow, and serve as a convenient method of correlating experimental data.
An example of relative permeability curves is given in Figure 3. The
original experiments in (137) demonstrated that relative permeabilities
were functions of saturation only, to a good first order of approximation.
Additional evidence bearing on this point is given in (107). Also presented
(107) is a thorough discussion of the various experimental methods used in
relative permeability measurements.

A recent experimental investigation by Sandberg et. al. (106)
provides experimental evidence that relative permeability is, to a first
approximation, a function of saturation only. When the saturation distri-
butions due to capillary end effects were properly taken into account, it
was shown that, within limits, the relative permeability is not a function

of flow rate or viscosities. In the absence of conclusive proof, and for
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purposes of analytical formulations, it will be assumed in this thesis
that relative permeability is a function of saturation only. Additional
comments regarding the uniqueness of the relative permeability functions
are given by Scheidegger (107), p. 156, and Richardson (102).

The latest development in techniques for measuring relative
permeability was given by Johnson et.al. (56). It is called the relative
injectivity method, and involves measuring the pressure drop and production
history across a core during a simple frontal displacement. The method is
theoretically rigorous and gives individual relative permeabilities rather
than their ratio. The method is far simpler than the others, and gives
results in agreement with them. The data shown in Figure 3 were taken
by this method and are seen to be in agreement with those taken by Wyckoff
and Botset by the steady state method. Further work on relative perme-
ability is given in (26), (39), (43), (96) and (102).

5. Capillary Pressure

Capillary pressure is the second basic concept in multiphase flow
theory. The primary work in this field is by Leverett (73). Capillary
pressure was defined to be the difference between the pressure in the non-

wetting phase and that in the wetting phase

PC = pg - pW (5)

Leverett was also able to correlate the capillary pressure curves for a
wide variety of unconsolidated porous materials by means of a single
function.

Pe

N (ky1l/2
e = @ ey
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where J(S') is a single valued function of the wetting phase saturation.
The J function is slightly different when the wetting phase saturation is
increasing (imbibition) than when it 1s decreasing (drainage). The static
capillary pressure can also be interpreted as the height above a given
datum to which the wetting phase fluid will spontaneously rise to produce
a given saturation. Experimental work which establishes an important
conclusion regarding two phase flow was done by Brown (9). In particular,
he showed that the capillary pressure vs. saturation curve was the same
whether this pressure is measured with both phases moving or with both
phases stationary. This means that the relation between capillary
pressure and saturation will not change in two phase flow situations in
which the saturations are changing. Data are presented which show that
each lithologic type of consolidated rock will possess a nearly unique
J function describing the capillary pressure. A diagram of a capillary
pressure curve is given in Figure 4, together with the average drainage-
imbibition curves of Leverett (73). Additional treatments of capillary
pressure are given in (5), (12), (48), (58), (122) and (139).
L, Wettability

Wettability is the third basic concept necessary to an under-
standing of multiphase flow. The classical approach to wettability is
to define it as being some function of the three phase contact angle 9.
This is the angle, measured through the wetting phase, which the interface
between the two fluids will assume at the point of contact with the solid.
Wagner (127) elucidates this point of view, and gives a discussion of it,
together with diagrams. The quantitative definition of wettability,

according to this point of view (129), is that it is numerically equal to
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the cosine of ©. Denekéis et.al. (30) illuetrate another concept of wett-
ability. Relative wettability is here (30) to be given as the ratio of
the initial rate of capillary imbibifion Qf the given fluid to the rate
at which water is initially imbibed into the same core. A p}oposal which
purports to give a quantitative interpretation of wettability has been
outlined by Calhoun (16). The suggestion is that the function of ©
(£f(e).) of Equation (4) be replaced by cos © for the purpose of showing
quantitatively the effect of contact angle on capillary, pressure. The
last, and by far the most basic treatment of the effect of contact angle
on capillary pressure has been given by Melrose (80). He exposes the use
of cos @ in Equation (4) as an unjustifiable attempt to avepid consideration
of the contact angle as a boundary condition dependent only on the three
phase surface free energies of the gas, liquid and solid phases. Using
the concept of the ideal séil, Melrose derives”expressions for the drain-
age and imbibition capillary pressureé,“ﬂhiéh are in good agreement with
experimental data. He then goes on to show that the effect of contact
angle cannot be included in the capillary pressure funct;on by so simple
a procedure as multiplying by cos @, Iftwas also demonstrated that the
microscopic approach to interface movement yields an equation which must
be solved numerically., Additional information may be found in (2), (39),
(63) and (81).

5. Formulation of Basic Equations

The basic equations of two phase.. flow in porous media were first
formulated by Muskat (85), p. 302, without the capillary pressure term.
The complete formulation.was.achieved by Rapoport (97) and (98), who in-
cluded frictional, gravitational, and capillaric effects.* Rapoport (98)

also showed how the boundary conditions could be properly specified.

¥The fractional flow equation (Equation (9)) was formulated by Leverett (73).
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6. Scaling

Scaling of multiphase flow experiments has often been used in
lieu of adequate analytic or numerical solutions to the basic equations.
The theory of scaling has been devgloped for the purpose of aiding in
the application of laboratory experimental data to field operating
conditions. The most extensive treatment of scaling of two phase flow
experiments has been given by Geertsma, et.al. (41). Problems in cold and
hot water displacement of oil, and miscible flooding are treated in detail.
Important similarity groups are derived for each case and the conditions
under which scaling can be achieved, are discussed. It is shown that
exact scaling is very difficult. Other treatments of scaling are given
in (27), (70), (T4),(90), (97), and (98).

The problem to be treated is that of obtaining a mathematical
statement of the multiphase flow phenomenon. The procedure will be to use
the quantitative statements of the foundations of the theory as outlined
previously to formulate the governing differential equation and boundary
conditions. This formulation will then be used as the basis for a
dimensional analysis.

T. Theoretical Development.

The general problem of the movement of two immiscible phases in
& porous matrix may be stated by writing the following system of

equations: Subscript g indicates gas phase, subscript w indicates liquid

phase.

Equations of Motion; c.f. Equations (2).
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Equations of Continuity:

N a(p S/
SV gy - 9 TS (5)
S (pwa*w)=¢%ﬂzl

Equations of State:

O
|

= 8 (pg)
(6)

Pw = &5(py)
The general solution of the two phase flow problem requires the simulta-
neous solution of this system of equations for arbitrary boundary condi-
tions. However, certain simplifying assumptions, as applied to the above
stated system of equations, will yield a single partial differential
equation.

Equation (3) is assumed to apply to the system. Under the
assumption that both phases are incompressible, it is noted that the

total flow uy equals the sum of the gas and liquid flows.

— - =
ut=uw+ug (7)

This latter assumption will hold very well for liquids. For a gas-

liquid system, the assumption is still good provided the pressure drops

are not a significant fraction of the total pressure. An example of

this would be a natural gas storage reservoir in which the pressure draw-

downs do not exceed 25%¢of the ambient pressure. The gas is thus behaving

as if incompressible. In line with the evidence presented previously,

relative permeabilities are considered to be single valued functions of

saturation, Viscosity is assumed constant.



-18-

Proceeding to the formulation of the equations, we obtain from

Equation (2)

My Yw
= - - Q 8a
K Ky Vby - Py (82)
T
€ &__ % -p W (8p)
K Krg g g

subtracting these equations, substituting for ug from Equation (7), and

using Equation (3), we calculate u_ as

-
2 - u + mrg/“g [P, - AoVl

(9)
1+ Krgp.w/ﬁrw“g

For the case of both phases incompressible, the Equations (5) of con-

tinuity reduce to the single equation:

— = -V - () (10)

Substituting Equation (9) in Equation (10), and expanding;

gs' , dFy [os 08 98 ﬁ_é_< dPg 38
/ ot T3 {uax +V»5y et Hg Lox KrgFldS 0%

(11)
d dP, 38\ , 9 ( p Pc 98 } klpg d 3
= s c X I Cc == - - €2~ 0
Ty <frgFl as o) T oz \"re'13s 3, by 45 (ergF )5

which is the fundamental equation to be solved.

where;

K -1 —_ —_ — —
Ap =p. -p_ 3 F o=|1+-Z8Y " _90-X1 +Y) +Zk; Z = -g.
K'pr'g - - - -

and the positive 2z direction is upward. The linear system is considered
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to be vertical, with water injected at the bottom, at rate u The

£
sbsolute saturation. S' is the dependent variable, and is a function of
the independent variables x, y, z and time t.

Examination of Equation (11) reveals that it is, in general,
non-linear, The coefficients of the spatial derivatives are, except in
special cases, functions of S. They are not always representable in
simple analytic form., It seems highly probable that the solution of
Equation (11) is beyond the power of presently known, exact, closed form
mathematical techniques. If capillarity is neglected, Equation (11)
reduces to the well known Buckley-Leverett equation, whose ramifications
have been described elsewhere (107).

In order to examine the effects of the various parameters in

a qualitative sense, Equation (11) is subjected to the following normal-

izing substitutions, which were suggested by Rapoport (90) and Perkins (98),

_X _J _z _ _yv -V
X—L)Y_L;Z‘L’U_utﬁv‘ﬁ;Jw_W
and
tut
T =
Iprs:
where
MNS' =8' - 8¢
gr wr
The result is, when g = S' - Swr
[S!
38 dFy [ 35 o8 35 ] 2, . af 35
— 4+ = ly—+V—+W— |+ F.VS + 222 ®w.®. - .2 _op
3T as U & 3y Z 2 3s 5z

(12)
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where

ap
fg(s) = ffrg - C Fy

£ (s) = Lo8r d(krgF1)
5 hgiy  as

2 2 2
Ry o098 9% 078

x2 T ovE T a8

It can be shown, for linear geometry in which the z coordinate is in the
same orientation (upward or downward) as the gravitational effects, that
the scaling problem reduces to a gquestion of only two dimensionless
functionals. Reducing Equation (11) to linear geometry and using only

the substitutions

t
L s
the result is
2
dS df] s 3% . dfp, 382
o5} o, + 2y¥_o (13)
ST Tas oz T 2R T T (32
where
APEK
fqo=F - F
17T uy (krgF1)
-
Hglt

the functionals f; and f, are measures of the frictional-gravitational,
ap

and capillaric effects, respectively. The derivative E—E may be obtained
S

from experimental data, or from correlations such as that given in

Equation (4) and Figure 4. The expression of k F; and P, in terms

rw’ ﬁrg’
of the normalized saturation S was a concept arrived at independently by
the author., This is a logical concept, since these quantities are not
defined outside the limits S/ . to Sér. Rapoport (98)was the first to

formulate Equation (11). The present analysis has been brief in view of

the previous work (98), which must be consulted for further detail.
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8. Discussion

A qualification must be made to the basic Equation (11).
Equation (3) is based on the assumption that there is a finite pressure
Jump across the gas-liquid interface when that interface is curved. For
purposes of a theoretical analysis of the mechanics of gas-liquid flow,
it is assumed that the capillary pressure can be treated in the manner
implied by Equation (3).

It is almost certain that the existence of hysteretic effects
involved with the wettability characteristics of some sands relative to
some two-phase systems must compel modifications of the present approach
(i.e., that the contact angle is constant). For example, contact angles
are known to be a function of whether or not the wetting phase is
advancing or receding across the solid matrix (88). The equations, as
derived, however, will be expected to be vélid for the movement of gas
and water in reasonably clean, non-reactive porous media.

Generalized scaling analyses were done by Rapoport (98), and
Geertsma et.al. (41). Each of these authors suggests at least four 4if-
ferent dimensionless groups which must be either equal or proportional
in model and prototype in order that scaling be achieved. The initial
and boundary conditions must also be the same. The author feels that,
while the two analyses are internally consistent, and correct as far as
they go, they are far too restrictive from a practical point of view,

aFy

Equation (12) shows that, if the three functions of S, =’ £,(s), fB(S)

are the same, then the differential equation is the same, and there is
nothing further to be said about the differential equation itself, as

far as the scalling aspects are concerned. F

17 f2 and f5 are functions
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of S only. Fl’

functions. The general scaling problem for multiphase flow may therefore

fE(S) and fB(S) can be termed the dimensionless scaling

be stated as;
1. Model and prototype geometry must be similar.
2. 1Initial, boundary and operational conditions (sequence of

events) must be the same,
dFy
as

3. s fE(S) and fB(S) must be the same.

It must be emphasized that — R f2 and f5 are single valued functions of
as

S alone, obtainable from simple experimental measurements which can be

taken in a core laboratory. The general procedure for conducting a

af
scaled linear experiment is simply to make the functions 1l ang r

ds e
equal in model and prototype as well as to satisfy conditions 1 and 2
above, Exception is therefore taken to the previous work in this area
(4¥1), (98) in that the author feels that it is easier to work with two
groups than it is to work with four or more. It is one thing to say
that the capillary pressure function and the viscosity ratio and the
relative permeability must be the same or proportional. It is quite
another to say that all that is necessary is for the function f2, for
example, to be the same in model and prototype. In this sense, it is
felt that the scaling procedure suggested above is far less restrictive
than those previously suggested (41), (98), and that it may simplify
considerably the planning of model work. Examination of Equation (11)
yields the total number of parameters affecting the results of multi-
phase flow experiments. They are: Uys Ugs Ky Uiy D, L, PC, ¢, K ot and

g

Krge Other parameters such as pore size, pore size distribution, and

contact angle do not enter directly into the picture. They will auto-
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matically affect the parameters listed above in such a way that the

equivalence of the groups of Equation (12)ff. will produce scaling.

B. Saturation Distribution During Constant Rate Displacement

1. Previous Solutions of Two Phase Flow Equations

As has already been shown, there are three major forces acting
on fluids in mulitphase flow in porous media - frictional, capillaric
and gravitational forces. A rigorous formulation, on the basis of these
three forces is given in Section ITA of this thesis, and yields Equation
(11).

The first attempt to solve the problem was made by Buckley
and Leverett (13), who included only the frictional forces. A detailed
exposition of the two phase flow solution from.the Buckley-Leverett
viewpoint is given in (107) p. 163. Although the method which Buckley
and Leverett used to solve the basic equation was not strictly correét,
they did successfully obtain the right answer, and the theory which bears
their name has become the foundation of all non-capillary multiphase flow
theory for porous media.

The next step was the inclusion of the capillary pressure effects,
which make the partial differential equation of saturation as a function
of space-time a second order equation. The general equation of two phase
flow is usually non-linear in all the space derivative terms. Recognizing
this, Philip (93) proposed a numerical solution. The numerical solution
is laborious, but is claimed to be an improvement over solutions (65),
(92), proposed up to that time. The solution is for linear geometry.

The next step in order of complexity was the proposal of a

generalized numerical solution for multidimensional two phase flow with
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the inclusion of gravity and capillarity. This was accomplished by
Douglas, et.al. (32), who were able to observe some qualitative agreement
between their numerical calculations and the experimental data,

The most elaborate computerscheme treating this problem was
given by West (133%), who not only considered complex geometry, but took
into account the variation of density and viscosity with pressure. Other
theoretical work related to the solution of the basic two phase flow

equations is given in (17), (18), (33), (57), (72) and (79).

2. Experimental Techniques Reported

The obtaining of good experimental data in two phase flow
through porous media is very difficult because of the problem of measur-
ing dynamic saturation distributions accurately. One of the finest pieces
of experimental work that has come to the author's attention is that of
Leverett, et.al., (74). Model studies were done for the case of water
coning in multiphase flow, and for the displacement of oil from sands
of non-homogenous permeability. Saturation distributions were obtained
by running the same experiment on a number of identical models, and
stopping the flow at different times. Samples, which were mechanically
removed from the sand pack at these times were then analyzed to determine
the saturation. Other experimental techniques are outlined in (21) and
(64)..

The measurement of saturation can be done in many different
ways. These include electrical resistivity (3), (75), radioactive
tracers (25), (59), (130), X-ray techniques (7), (71), (83), magnetic
susceptibility (134), and matched refractive indices (51), (116). It

must be noted that the electrical resistivity method must be viewed with
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reservation for dynamic flow studies, since Dunlap, et.al. (34) have
reported that it takes 5 to 25 days for most cores to reach equilibrium
with respect to electrical resistivity saturation measurements.

3. Experimental Two Phase Displacements Reported

Determination of saturation distribution during frontal displace-
ment of natural gas by water was made on laboratory scale models by
Geffen, et.al. (42). The conclusions were that the same behavior will
occur in the core as will occur in the field. Saturation distributions
during oil-water displacements from a consolidated alundum core were
obtained by Levine (75) using the electrical resistivity technique.
However, his results were made less useful than expected due to a signifi-
cant non-homogeneity of the core. Point values of the flow potential were
also measured. Saturation distribution data during Qibaater displacements
in a sand pack were taken by Perkins (89). These data illustrate the
effect of capillary forces on the flooding behavior of short laboratory
cores. The information obtained here indicates that both inlet and outlet
capillary end effects have an influence on the saturation history.
Terwilliger, et.al. (121) presented saturation distribution data for the
case of gravity drainage performance. The basic concepts related to the
theory of the stabilized zone were also presented here.

The general form of the saturation distribution in linear, two
phase flow will now be discussed. Equation (12) and experimental evidence
indicate that for sufficiently high injection rates u, the Buckley-
Leverett theory (13) applies. In those flows which can be adequately
described by the Buckley-Leverett theory, the water saturation drops

slowly from the inflow face, reaches the breakthrough saturation (107),
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and then drops suddenly to zero, forming a sharp saturation shock. At
low rates uy, the gravitational and capillaric effects assume importance,
and the saturation front is more diffuse. Examples of this behavior

can be seen in Figures 1 and 2 of (89), It must be emphasized that
Equation (11) is not a rate equation in the strict sense of the word.

It simply describes the variation of saturation with time and distance
for a given injection rate Ut . Equation (11) does not describe the
pressure phenomena which give rise to the flow, but describes the conse-
quences of a given total flow in terms of multiphase behavior. Back-
ground information on the saturation profile problem has been given in
the introduction. In the next section, we will consider the description
of the saturation front in linear, one-directional, constant rate, upward
flow of water into an unconsolidated sand column which initially contains
air and a small water saturation. The shock front is defined as the
region in which the water saturation is changing rapidly in comparison
to its rate of change (with respect to distance) in other sections of the
porous material. For low enough rates, the shape of the shock front is
close to that at equilibrium with respect to capillary imbibition., For
rates between the latter and those flow situations in which capillary
pressure is negligible, (Buckley-Leverett flows), the saturation profile
is a function of rate. It is these intermediate conditions which will

be considered here, since they provide a reasonable basis on which to
obtain a meaningful comparison between prediction and experiment, i.e.,

a comparison in which all three (frictional, capillaric, gravitational)

forces are acting.
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The practical implication of the determination of saturation
profiles during frontal displacement is easily seen when considering the
transition zone between gas and water in gas storage reservoirs. Gas
bearing strata may generally be coﬁsidered of the order of magnitude of
10 to 100 feet thick. Leverett (73), on the basis of laboratory
measurements, concluded that the transition zones can also be of the
same order of magnitude in thickness. The transition zone is here defined
to be the section of porous structure in which the saturation changes from
a high to low value. It can be considered to be equivalent to the thick-
ness of the saturation shock front. An example of the shock fronts to be
investigated is given in Figure 1(a).

4, Theoretical Development

The physical problem to be treated here is that of water being
injected into the bottom of a linear, vertical porous core having a low
initial water saturation with the remainder of the pores filled with gas.
The general method of solution outlined below is analogous to the
Von Karman-Polhausen (109) integral technique for the approximate solutions
to problems in boundary layer flow. The technique is described in detail
on pages 255-260 of Knudsen and Katz (66).

Normalization of the saturation by the definition

s =5 = Sur
Sz Sur

in Equation (9) and Equation (11) gives the equation,

- g S8 .g.z_ [Fl u, - Ksref1oee o krrgll SPC ] (14)
“g U-g z
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_ The expression for the volumetric velocity of water at any point is,

= Khrg .% - 1
nw | g+ 228 Sl sy |y (15)

~ Consideration of experimental data and the general physical characteristics
of the displacement process in porous media yields the following boundary
and auxilliary conditions which must be satisfied by any solution. These

conditions are,

1. 8 (z, 0) =0

2. 8 (o, t) = 1.00

5" S (Zo,t) = O
3s

)'"n é‘;(zo}t) = -Al

5. 0<8 (z, t) < 1.00

oS -
6. 3 (z, t) < O

BS aZO
7. = (z,t) = A v

lim JdUg B
8. t__)mazn (o) t) - O

Boundary condition 1 expresses the initial condition that the
(normalized) saturation is everywhere zero at the beginning of the dis-
placement. Boundary condition 2 expresses the experimentally observed
fact that the inlet saturation instantaneously rises to 1.00 and remains
there throughout the process., This is true primarily in liquid-gas dis-
placements in relatively long cores. Boundary condition 5 states that

the saturation drops off to zero at the point of farthest penetration
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(zo) of the liquid. An illustration of a typical displacement process is
given in Figure 1(a). Boundary condition 4 implies that the saturation
gradient at the leading edge of the displacement front (zo) is constant
throughout the process, Conditions 5 and 6 imply that the saturation must
always lie between O and 1.00 and that the saturation gradient must always
be negative. The former condition is evident from the physical nature of
the process and the latter is derived from the experimental observation
that saturations always decrease from the inlet to the leading edge of the
front. Boundary condition 7 is derivable from the definition of the partial
derivative., This derivation is given in Appendix A. Condition 8 expresses
the restriction, derived mainly from experiment, that all spatial deriva-
tives of the saturation are zero at the inlet after a large number of pore
volumes of displacing fluid have been injected. This is illustrated in
Figure 6 of (L42).

All the physical experience heretofore gained with displacements
of this type indicates that the displ;cing phase usually forms a saturation
shock front. This means that the water invaded zone has a definite length
Z, beyond which the saturation corresponds to that initially given.. The

saturation is observed to drop off fairly rapidly near =z This behavior

o°
is described by the statement of the boundary conditions, as given above,
It must be emphazised that the integral method, as applied in the
present work, depends on the assumption that a function which is required
to satisfy nearly all of the critical properties of the desired solution
will consequently approximate all of the other properties of the solution.
If this assumption is to be realized, a reasonable functional form is then

developed into an approximate solution by means of the satisfaction of all

the boundary conditions and the partial integral of the differential equation.
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The wetting phase saturation is assumed to occur in the form

of a series,

(16)

+ ... C (E—Jgnt + ...

z &1(t) z (8ot
s(z, t) =Cg + Cy (3=) +C ‘3> n (75

Zo 2 (Z
The procedure used 1s to calculate the constants Cn and functions gi(t)
from the boundary conditions 1 through 8. The series must be truncated
sO that the number of constants in it be equal to the number of numerical
boundary conditions available., The more boundary conditions the function
is required to satisfy, the more likely it will be that the approximate
solution will come close tothe exact solution. The function satisfying all

of the conditions 1 to 8 is,

s =1 - 1% (17)

zZ

where =7
3 Zo

Equation (17) was obtained by truncating Equation (16) after the first

two terms. We now have a saturation functions S(z, t) which satisfies

all the boundary conditions associated with the problem. The satisfaction
of the integral relation derived from the basic differential equation will
now be examined. The result of the integration of the basic differential
equation will be the determination of the relation between z, and t

(25 is a function of t only). This zZ, (t), together with the computation
of Al, will provide . the quantities for use in predicting the saturation
profiles according to Equation (17).

Integrating both sides of Equation (14) from O to zo glves;

Z
008 0 9 KKy Kkpg dPc
£ —dz = [ — |Fu. - —8 Fiapg + —& —F{ | dz
P ! % { e T Ty T T as L

(18)
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the integral on the left is, by Leibnitz' rule,

y o g ° , dzo
AS'P of St dz = As'P St of sdz - £8'8 S(z,,t) 33 (19)

Q/

the last term on the right of Equation (19) is zero by virtue of boundary

condition number 3. Evaluating the left side of Equation (19)

A > 1
AS'0 vy of Sdz = AS'¢ v of zo (SAS') dt
1 2
_ 4 9 (1 _gPA1%0 40 [ zoA188!
=7 3 of % [AS (2-677) ] at = ot {:Alzo + 1}

But, this expression is also equal to the expression on the right side of

Equation (18).

z B Ze)
o Kk 1008 KkpoFp 4P
s [ Bag o -| Fuy - xell rg 1 cj} (20)
o) ot V) 9 as O
g g
Noting that k. =0 and kpg =1 at 25, and Ky, = 1 and kp, =0

at z =0, and using the expression for F; in Equation (11) £f., we

obtain from Equation (20)
Zo
3s
1 — p—
AS'P of St 42 = Ut (21)

Making use of Equations (19) ff. and (21) gives

2
A1zoAS! _ ugt (22)
Az + 1 @

From which

Ajuit +A\/QAlutt)2 . LAjAS'utt

. g : (23)

1
2ArAS
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Turning now to the evaluation Al’ we place Equation (15) in

the fractional flow form,

i oz A%’)] Fy (24)

The stabilized zone concept of Terwilliger, et.al. (121), and Jones-Parra

oS

(57) will now be used to evaluate the quantity v at z_, i.e., at the
leading edge of the shock front, The basic feature of the stabilized
zone method is that %% is assumed to be a linear function of S from S =0
to the saturation corresponding to the Buckley-Leverett breakthrough
saturation, designated S', Experimental evidence supporting the near-
linearity of %% with S is given in (75), and (79). For a complete
discussion of the determination of §', see Figure 3% of (57), or (107),
page 165, The stabilized zone method is not applicable to saturations
above the cutoff, or Buckley-Leverett breakthrough saturation, the
solution becoming unbounded in this region. It cannot, therefore, be
used to give saturation distributions over the complete range of space
and time,

It is desired to solve Equations (24) for the saturation

B
gradient S5z at the point z i,e,, where S is zero, It will be assumed,

o)

Uy . . .

T is a linear function
t

i.e,, near S = 0,

by analogy with the stabilized zone method that
of S only in the immediate neighborhood of Zg»
(Stabilized zone theory assumes its linearity over the whole saturation
range.) In addition, it is assumed that his linear function of S is

obtained by the method of the stabilized zone, i.e., by the Welge (132)

tangent construction, which yields
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Ew;— = ags
Ut
Solving Equation (24) for oz
oS
dPC
% _ _«x ( e s ] (26)
oS wguy | Yw +:Krgpw Apgkkrg
u [1 "k ] -1+
t rw“g utug
K u K: s
At low saturation rg v > > 1 and Rg = 1.00, and'ji 8 >>1

rwug Ut '%wu%

Making all these substitutions in (26) and simplifying gives

dPe
%) _ & as (27)
aS ’ U.t Pﬂ Hw + ApgK. ’
© Ut Krw Yt ©
dP.
The value of qs  near zg (i.e., near S = 0) can be read from the static

capillary imbibition curve.

The relative permeability'nrw is expanded in a power series

2 n
= ons 28
ky =DyS + D8 + ... DS + (28)

which reduces to Ky = D.S for small S.

1
Substituting this and Equation (25) into Equation (27) gives

dPe
dz| _x _ dsl%o _ L (29)
3slzg, gy Bohy | Aggk Ay

Dl Ut
For very small values of Uy,
o8 . L 4P (30)

dz  ApgdS
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which is the capillary equilibrium curve.
The equations giving the solution are (17), (23) and (29).

Ay and z, are determined from (23) and (29), respectively, and are then

o
put into Equation (17) to give the required space-time distribution. The
problem which has been solved is that of the saturation distributions
arising when water is injected at constant rate into the base of a

vertical, linear core initially containingconnate water and air.

5. Experimental Results

The purpose of this section is to present experimental data
taken on the physical system corresponding to the problem outlined above.
These data will then be compared to the predictions developed in that
section. Experimental data were taken for water displacing air upward
from a vertical glass tube which initially was filled with sand, air,
and enough water to give a saturation corresponding to the irreducible
minimum water saturation.

A glass tube (1.15 inches inside diameter) was packed uniformly
with 150-200 mesh clean Ottawa sand. The pack was formed by allowing the
sand to settle through the water at the rate of 30-35 gm. per minute, with
constant vibration of the tube. The vertical pack was then blown down
to 10-15% water saturation by flowing air downward through it at 20-25
psi pressure drop. The packs were 3 to 4 ft. in height. Water was then
introduced at the bottom of the vertical core at a constant rate. This

rate was controlled by a Ruska pump having a range of 1 cc/hr to 224 cc/hr

to a precision of 1%. The properties of the sand pack and fluids used
are given in Table I. The capillary pressure curve was obtained by

placing the bottom of a sand pack (containing 10-15% water) in a beaker



-35-

of water, and letting the water imbibe to equilibrium. The pack was then
divided into cylindrical sections, each of which was immediately sealed
to prevent evaporation. The sampling operation for the most part con-
sisted of pushing the pack from the tube in the form of a slug and cutting
off cylindrical sections (whose diameter was that of the tube) as they
emerged from the tube. The pack was held vertical during this operation,
and the total sampling time was 3%-4 minutes. In some cases, samples

were removed from the tube by displacing them with a flat steel strip.
The samples from the saturation transition zone were taken first in all
cases. The saturation distribution in adjacent layers was not disturbed
during the sampling procedure on a specific element. The samples were
then weighed, muffled at 175-180°C for 20-25 hours, and then weighed
again. The average saturation in each element was then calculated from
the known pore volume of the dry sand and the total volume of water

that had been evaporated from the pore volume,

TABIE I

Properties of Sand and Fluids Used in Frontal Displacements

Sand grain size 150-200 mesh
Permeability 11.7 darcies

Porosity, fraction voids 409

Water density 62.4 1b m/ft°
Water viscosity (68°F) 1.00 cp
Air density 0749 1b m/ft3

Air viscosity .0184 cp
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The sand was strongly water-wet., The capillary pressure data are plotted
in Figure k4.

The saturation distribution curves under the dynamic flow
conditions were measured in the same way as was the saturation distribution
under capillary equilibrium, the pump being shut off at a specific time
after the start of flooding and the samples taken immediately. A new
sand pack was used for each run. The results are shown in Figures 6 to
14. Figure 10 shows a profile development with time. In the series of
profiles shown in Figure 10, the rate of injections was kept constant,
and the distribution taken at various times. Figures 6 to 1L, except
for Figure 10, show profiles for different rates, but at only one stage
in the flood. The value of Dl = %gﬂ = ,025 at very low saturations was
measured by the relative injectivity method (56). The results are
presented in Figure 15, and indicate that the curve does have a finite
slope at S = 0. The value of a = 1.00 was determined by the Welge
tangent construction method (c.f. Scheidegger (107), p. 166). The experi-
mental technique permitted a precision of the order of 3-4%. The solid
lines in Figures 6 to 14 represent the predictions indicated by Equation
(17), Equation (23) and Equation (29).

The relative permeability for the 150-200 mesh sand used in
these experiments was measured by the relative injectivity method of
Johnson, et.al. (56). The data obtained are plotted in Figure 3 for
comparison with the average curve for unconsolidated sands determined
by Wyckoff and Botset (13%7). The average deviation of the 185 data
points in Figures 6 to 14 from the predicted curves is 3.9% in spite of

the fact that small disagreements tend to cause very large errors in the
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portion of the curve where the slopes are large. The prediction curves
of Figures 6 to 1L were calculated as follows. The saturation profiles
were calculated from Equation (17) using the computed values of A, and z,.
Al was computed from Equation (29) with Dl = .025 obtained from Figure 15,
and a = 1,00 obtained by the Welge tangent construction technique. %gg at
S = 0 was obtained from Figure 4. The depth of penetration z, was
calculated from Equation (23) from a knowledge of ug, t and Aj.

The calculation procedure implied in Equations (17), (23) and
(29) was used in an attempt to predict the results of some experiments
performed by Geffen, et.al. (42) on Nellie Bly sandstone (k = 590 md.
(air), and ¢ = .265). Natural gas was displaced upward from a vertical
core first by a constant rate injection of water and then by simple co-
current capillary imbibition. The calculation procedure was the same as
that used for the unconsolidated sands. The comparison of prediction
with experiment is shown in Figures 16 and 17. The equations are seen to
predict the experimental saturation profiles satisfactorily. The volu-
metric velocities for the imbibition displacement were determined by
calculating the area under the saturation vs. distance experimental curve.
6. Discussion

The solid lines of Figures 6 to 1L are seen to deviate from the
experimental data by about the same order of magnitude as the precision
of the data themselves (3-4%). It must be emphasized that the theory
developed permits semi-theoretical predictions to be made when S Srg:
capillary pressure and relative permeability data are known. These

solutions do not involve curve fitting or the introduction of arbitrary

constants. Since the agreement of theory with the data is as good as
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the precision of the data, there would be nothing to be gained by curve
fitting in any case. Inasmuch as agreement of some experiments with
theory does not necessarily establish the theory, the validity of the
results will now be discussed.

The major point at issue as far as physical theory is concerned
is that of the effects of the capillary pressure, and whether or not the
capillary forces cause flow in exactly the manner given in Equation (3).
The development of the basic equation is, after all, only the result of
a formal procedure. It involves the supposition that there is a finite
pressure jump (Equation (3) ) across a curved interface separating two
immiscible fluids. One author goes so far as to say that no such
pressure difference exists (54). In any event, it must be pointed out
that the exact nature of capillary pressure and capillary rise is still
not precisely known, as evidenced by a recent publication in the area
of physical chemistry (114). For purposes of multiphase flow in porous
materials, however, it is considered that the agreement of the theory with
experiment (Figures 6 to 14) appears to substantiate the validity of the
method.

Another point of discussion is related to the validity of
Equation (2) to properly represent the volumetric velocities during
multiphase flow. These equations state that the velocities in multiphase
flow can be derived from a potential in the same way as in single phase
flow, except for the relative permeability function. These relative
permeability equations are not theoretically derived, and may or may
not represent the what actually goes on in porous media. Work by

Irmay (55) shows experimental data indicating that Equations (2) are
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valid provided both phases are continuous,

The equivalence of the static and dynamic capillary pressures
was discussed previously. The equivalence of dynamic and static relative
permeability curves is also a problem. Relative permeability data are
sometimes taken with the fluids flowing at steady rates and the satura-
tion in the core unchanging. The question arises as to whether these
static curves can be used to describe the situation occurring when the
saturations are varying considerably with space and time. Johnson, et.al.
(56) compared relative permeabilities measured under steady state
conditions with those measured by the dynamic relative injectivity method.
The curves were identical. It may be concluded from this that steady
relative permeability curves may be used in calculating the behavior of
unsteady state systems.

Some final comments with regard to the physical theory must
be made., The development of Section ITA presupposes a gas-solid-liquid
contact angle which is the same as the static contact angle and which is
independent of rate., The difference between advancing, static and re-
ceding contact angles has been previously documented (1), (19), and (80).
Changes in the value of contact angle will generate changes in the
capillary pressure, as shown by Equation (4). This does not happen with
the silica-air-water system as is shown in Table I of (80). This is the
reason that sand-air-water was chosen for the experimental work of this
thesis. It must be emphasized, however, that the contact angle for

other systems may be a function of rate of liquid advance,or at the very

least a function of whether or not the liquid is advancing. The

equations developed in Section ITA must, therefore, be used with care.
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In particular, the static capillary pressure curves must be modified to
properly allow for the change in contact angle with advancing or receding
wetting phase. A large amount of data related to contact angle is given
by Melrose (80).

Kinetic effects with respect to wettability may also occur in
flows in which a wetting phase 1is displacing a more viscous non-wetting
phase, Putting aside all question of hydrodynamic stability, we may
imagine that the rate at which the wetting phase actually wets the solid
surface is a function of the viscosity of the in-place fluid as well as
of the simple adsorption kinetics. Alternately, the time taken for the
wetting fluid to move past the viscous o0il to the solid surface . may be
of the same order of magnitude as the time taken for the flood front to
move past the element of surface in question. The flood water may then
behave as if it were the non-wetting phase when it actually would wet the
solid if given enough time.

A problem of considerable proportions in oil reservoirs is
that of wettability reversal., In physical terms, a core which is initially
strongly water wet can be made o0il wet by placing it in contact with crude
0ils containing certain components. These components appear to be
adsorbed on the rock surface. The longer the surface is in contact with
these oils, the more oil wet it becomes and vice versa with respect to
water. In water flooding of oil by water, there may be a change, or
even reversal of wettability near the flood front, depending on the
kinetics of change of contact angle. This change in wettability did not
enter into the frontal displacement experiments done in this thesis.

However, such changes must always be consered as a possibility when
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examining other multiphase displacements, especially with two-liquid
phases, Quantitative data on the wettability reversal phenomenon are
given by Denekas, Mattax and Davies (30). and Wagner (127).

The approximate method was devised because oi the very con-
siderable mathematical difficulties involved in the exi ct solution of
Equation (14) even when the simple linear geometry is assumed. The
success of the method in predicting the experimental data, together with
its simplicity, are its principal justifications since it is not entirely
rigorous. In view of the approximate nature of the solution presented,
the validity of the results and the engineering precedent supporting the
technique will now be examined. The following discussion (extending to
the bottom of p. 56) illustrates other uses of the integral technique and
may be omitted by those familiar with these applications.

Much attention has been turned in the last fifty years to methods
for the solution of the (non-linear) Navier-Stokes equations. Schlichting
(109) has summarized many of the results of the boundary layer approach to
the problem of viscous flow. The essence of the boundary layer approach
is that the effects of the viscosity are confined to a liquid layer of
definite thickness which lies in the immediate neighborhood of the solid
bounding surface. Approximate methods of solving the boundary layer
equations have been devised by many workers and have been summarized by
Schlichting (109), page 238 ff., who introduces the problem in the follow-
ing manner.

"The general problem involving the flow of fluid around a body
of arbitrary shape, which is particularly important in practical applica-
tions, cannot be solved with the ald of the analytical methods developed

so far ....
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"It is, therefore, important to devise approximate methods
which would in such cases quickly lead to an answer, even if their
accuracy were to be inferior to that of the numerical methods. Following
Th. Von Karman and K. Polhausen, it is possible to devise such simplified
methods if it is agreed to satisfy the differential equations of boundary
layer flow only in the average, and over the boundary layer thickness
rather than to try to satisfy the boundary conditions for every individual
fluid particle. Such a mean value function can be obtained from the
momentum theorem. This, in turn, is obtained as an integral of the
equations of motion over the boundary layer thickness."

The momentum equation referred to by Schlichting is the partial
integral of the governing differential boundary layer equation, integrated
from the solid wall to the edge of the boundary layer. Its physical
meaning expresses the fact that the shearing stress at the wall is
equivalent to the loss of momentum in the boundary layer., The analogy
between this Von Karman-Polhausen method and the solution given in
Equations (17), (23) and (29) may now be detailed as follows. The analug
of the boundary layer thickness is the depth of fluid penetration into

the porous material (the z_ of Figure 1(a) ). The governing differential

o
Equation (14) is integrated from z = O to z = z_ (Equation (22) ) in the
same way that the governing boundary layer differential equation is
integrated from the solid wall (y = O) to the edge of the boundary layer
(y = 8) to yield the total momentum balance.

The Von Karman-Polhausen method is completed by expanding the

velocity in a power series of similarity parameters and computing the

constants in the series from the boundary conditions (cf. Schlichting
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(109), p. 244), Of course, the necessary auxilliary (compatibility)
conditions are satisfied by the form of the function chosen. The shape
factor parameter is obtained from the partial integral equation (momentum
equation), cf. Schlichting, page 246-8. The similarity between the Von
Karman integral technique and that given in this thesis is complete,
except for the calculation of the function zo(t) (Equation (23) ) in the
present solution in place of the shape factor function. Also, the
saturation profile does not have the similarity characteristic possessed
by the boundary layer velocity distribution.

Schlichting makes the following comments regarding the agree-
ment between the exact and approximate methods.

"It is seen that the approximate method leads to satisfactory
results in the case of a flat plate at zero incidence, and the extra-
ordinary simplicity of the calculation is quite remarkable, compared
with the complexity of the exact solution." "The agreement between the
approximate and the exact values (of the solutions to the two-dimensional
boundary layer equations) is here also completely satisfactory" (Schlichting,
pp. 251-2).

"No general criterion regarding the admissibility of the
approximation has been given so far, and it seems that it will be diffi-
cult to obtain, Judging by the above and similar calculations, as well
as by experimental results, it appears certain that Polhausen's approxi-
mate method leads to very satisfactory results .... " (Schlichting (109),
P. 253). The Von Karman-Polhausen method has also been outlined by

Knudsen and Katz (66), p. 258.
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Another application of the integral method was given by Squire
(45) for the solution of the problem of natural convection from a vertical
flat plate, Partial integrals of both the momentum and energy equations
are obtained and evaluated over the boundary layer thickness. Expressions
for temperature and velocity distributions satisfying all the boundary
conditions are written. Substitution of these expressions in the partial
integral equations gives results for the velocities, 6 boundary layer
thickness and Nusselt number which are quite close to those computed by
the exact method,

A recent application of the Von Karman integral technique has
been achieved by Friedlander (40) for diffusion from spheres. The partial
integral of the diffusional transport equation evaluated over the boundary
layer is obtained. It expresses the fact that the (steady state) amount
of material diffusing from the surface at any point must be balanced by
the convective transport through the boundary layer at that point.. An
expression for the concentrations, satisfying all the boundary conditions
except one, is substituted into the over-all balance equation to obtain
the solution. Agreement with experimental data is good.

Vetrov, Petrenko and Todes (126) used the integral technique to
obtain an approximate solution to the problem of non-steady gas motion in
porous media.

It must be emphasized that the approximate method is dependent
upon a reasonably accurate knowledge of the slope of the capillary
pressure and relative permeability curves at the saturation occurring at
the leading edges of the displacement front (cf. Equation (29) ff.).

When this saturation is the irreducible minimum wetting phase saturation,
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the determination of these slopes can become quite difficult if the
proper experimental data are not at hand. Examination of Equation (17
will show that the slope %% at Zg must not be O or infinite. This
requires a careful examination of the capillary pressure and relative
permeability curves at the saturation at Zgos

The approximate method can also be used for linear floods in
which the saturation at the leading edge is not equal to the irreducible
minimum wetting phase saturation. This involves the evaluation of
the quantities %gg B %ﬁ and kp, &t the saturation specified. Figure 11
shows that excellent agreement is obtained between the experimental data
and approximate solution even though the sand pack was at zero absolute
saturation (S') at the beginning of the run.

In the final analysis, the approximate method presented here
must be considered as a semitheoretical model which successfully predicts
the outcome of flow experiments to an acceptable degree of accuracy.

The success of any semitheoretical model must be Jjudged not only by the
ability to predict absolute values of the desired quantities, but also
the slopes of the curves. Consequently, experimental data shown in
Figure 10 were used to form the derivative Sz'and these were compared to
the gradient predicted by Equation (17). The horizontal lines in Figures
18 and 19 represent the experimentally measured saturation gradients.

The theoretically predicted saturation gradients (solid lines) are seen
to lie quite close to the measured gradients in Figure 18. Figures 18

and 19 illustrate the best and worst agreement obtained between predicted

and measured gradients. Most of the curves (Figures 6 to 14) show agree-
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ment intermediate between these two extremes. The conclusion can be
drawn that the data stand up well to a first differentiation and that
the integral technique predicts the saturation gradients satisfactorily.
In summarizing the support for the validity of the approximate
solution to the multiphase flow equations, the following are mentioned.
1. The approximate method agrees with experimental
data on an unconsolidated sand to within 5.9%.

2. The approximate method successfully predicts the
saturation gradients occurring in displacement of
alr by water from an unconsolidated sand,

3. The approximate solution predicts saturation dis-

tributions during displacement of natural gas by
water from a consolidated sandstone,

4, The approximate method is an adaptation of an ac-
cepted engineering technique which has been suc-
cessfully used by Von Karman and Polhausen (109),
Squire (45), Friedlander (40) and others.

The approximate method is applicable to the calculation of
saturation distributions in natural gas and oil reservoirs when the
fluids may be assumed to be moving linearly, for example, in a bottom
water drive. The method can also be applied to the movement of fluids

in filter cakes and packed beds.

C. ©Steady State Capillary End Effect

It has been observed for many years (31) that anomalous
saturation behavior frequently occurs in two-phase flow experiments in

short cores. Specifically, water will build up at the outflow face of
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the core, resulting in average residual water saturations much higher
than for long cores, Increases in the desaturating gas velocity are
observed to decrease this residual water., This behavior is due to the
discontinuity in capillary pressure at the outflow face of the core and
is called capillary end effect. The water buildup at the outflow face
causes a drastic reduction in the permeability to gas. This means that
very much higher pressure drops are required to flow a given quantity
of gas through the core,

The problem is visualized physically as a wetting phase such
as water being driven out of a porous core by a nonwetting fluid such as
air. At equilibrium, the water will be immobile and the air will flow
through the core at a constant mass velocity. The water saturation will
build up at the outflow face because of the capillary forces which tend
to draw the water into the body of the core rather than letting it flow
out, This outflow saturation buildup is always present even in dynamic
two-phase flow experiments. Additional discussions are found in Leverett
(73), Kyte (70), and bombrowski (31), Kocatas and Cornell (67), Brownell
and Katz (11), Brownell (10), and Buzinov (14).

The problem then arises concerning methods to predict the
magnitude of the end effect from simple measurements on the fluid and
rock properties. The saturation will be highest at the outflow face,
dropping off to the irreducible minimum at large distance from the out-
flow face, The forces acting to desaturate the core are gravity and
friction, The force holding the fluid in the core is capillarity.

The problem.of the end effect with both.phases in motion and the outlet
saturation corresponding to residual equilibrium non-wetting phase was

treated by Richardson (102).
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Silverblatt (112), Nelson (85), and Dombrowski (31) have
presented data for filter cakes. Haruni (49) has presented data for
centrifuge cakes, Nenninger (87) presented a theory for the unsteady
dewatering of filter cakes, Of course, the work presented in this
paper is applicable to prediction of moisture content in filter cakes
or any porous material, provided the irreducible minimum wetting phase
saturation is known. In the remainder of this section a theory of end
effect will be developed and compared with some data of Dombrowski (31).

l. Theoretical Development

The starting point for the quantitative treatment of the end
effect will be Equation (15) with the positive z direction this time
being taken as downward, at equilibrium u, = 0, u, = ugo The final

equation is

aP
g Egﬁ [HES + A@g] =0 (3%4)

To obtain the equation in more explicit form, we know that (c.f.

Equation (4) )

where J(5) is Leverett, J function. Leverett found that for a wide variety
of unconsolidated materialé, Equation (4) would describe the experimental
data. J(S) is apparently a universal curve. From Leverett's paper we

can represent the J function by the following curve:

J(S) = .200 + 2110
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where S 1s the normalized saturation. S' 1s .070 for the materials under
consideration. Sgr is the irreducible gas saturation or the residual gas
gas saturation, It is estimated at .90 on the basis of the experimental
data of Dombrowski.

The definition of normalized S is necessary so that the
capillary pressure data can be fitted to an equation of the form (35).
These manipulations serve to fulfil the conditions that J(S) becomes very
large at S =0 (i.e. at 8' = ,070 rather than S' = 0), for drainage.

With the above definitions, we can write the following equation,

noting that S is to be the dependent and z the independent variable.

dP, ds - ,110 of(e) (g)l/g s

- - 36
az as dz 5@ K dz (36)

From the data of Wyckoff and Botset, (137) it is seen that for saturations
S' up to 75% the relative permeability to gas, for a wide range of uncon-

solidated materials, can be represented by

=1-1.258 (37)

Krg

Substituting all these results into Equation (34), we get:

k(1-1.255
ug ¥ ——-——————l {- .1100f(0) ('ng)l/2

Hg

1 a8

+ Nog| =0
s2 4z } (38)

Multiplying through by Y8 and rearranging,
K

u_p 1/2 1
£8 ¢ pog = - ,1100f(0) (%) / = a8 (39)
(1-1.258)k 5= dz
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Let - .1100£(0) (%)1/2 Y
JaYe'=s = B
He'g -

K

Equation (39) is an ordinary differential equation in

and z which can be solved by separation of variables,

AdS
dz = c
g2 - + B
#|rim v 7
and
z =-E [ ds +E [Le220d5 (L0)
52(1-1.25FS) S(1-1.25FS)
where
A B
Ezb-; F:B; D=B+C
Integrating Equation (L40)
z = E [ é + 1.25 (F—l)ln(l—iiéégg) } + 1n(const.) (41)

Using the condition that S = Sl, at z = 0 and taking antilogs,

the final functional relation between S and z is

LA E
R ! {E; 1-1,25FS ] (42)
S 1-1.25FS;

The computation of the end effect for radial coordinates in

the absence of gravitational effects proceeds as follows:
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- fhrg dP
hg dr

g
Going through the same development as before, the analog of Equation (39)

is obtained as,

T 1/2 1 4s
€8 .. .1100f(®) @)/ 1
(1-1.258) se dr

Integrating this equation and using the boundary condition S = Sl at

r = rp, the final saturation distribution is
S

r = il 1 + 1.25 1In —i} + Ty
C Sl S S

where A and C are the same as in Equation (3%9) ff.

Calculation of A, B and C for various cases of commercial
importance will readily show that all three of the viscous, gravitational
and capillaric forces are usually significant.

It is often the case in the desaturation of a porous body that
the pressure drop is specified rather than the volumetric velocity (u)
of the desaturating phase. The method of handling the problem is then as
follows:

The core of length L is divided into n' differential elements.
The ith element is of width 4Lz; and has a pressure drop across it of Api

dependent on the saturation of the ith element Si.

nl

o = L Loy
i=1

o, - UjH g2y
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Lp = § uipgres

i=1 KKrgi

But all mass passing the ith element must pass all the others

so that u is a constant, Then,

A

n'
5 gl 24

u =
Passing to the limit

0 = —K® (43)
Hg(! E;g

The procedure in the case that Ap only is specified will be to
estimate ug and calculate the saturation distribution from Equation (L42).
ug may then be computed from Equation (43) recognizing that kg is a known
function of S.

The process is repeated until the original estimate agrees with
the final calculation from Equation (42). Of course, if the desaturant
mass flow rate is given directly, this procedure is not necessary and
Equation (42) may be used directly.

The following table shows some of the data on the systems used

by Dombrowski (31).
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TABLE IT

Properties of Materials Used by Dombrowski (31)

Sphere size Permeability  Porosity  Bed Surfgce }E:f) Contact%
(sq.ft.) Length(ft) tension' ft ' angle(®)
100/115 mesh  9.17 x 10711 367 339 2.4k x 1075 o5°
60/65 mesh  4.03 x 10710 .356 .623 2.k x 1070 25°
35/4k2 mesh  1.03 x 1079 367 L9814 2,44 x 1072 25°
*

Data from Newcombe et.al. (88) for air, mineral oil, and glass beads.

Dombrowski (31), presents some data indicating the saturation

distributions in packed beds before the pressure differential is great

enough to cause gas flow.

an analogy with liquid rise in a glass tube due to capillarity.

To visualize this situation, we can consider

If the

free liquid surface and the liquid surface inside the tube are at the

same pressure, the liquid will rise to a height equivalent to the

capillary pressure.

the tube, the liquid level will fall.

porous beds, except that there will be a saturation distribution.

Setting u, = 0 in Equation (38) and integrating

ool e
n |

- 1)+ constant

However, if a small pressure is put on the gas in

This is what is happening in the

(k)

In accordance with the discussion in the preceding paragraph,

it will be assumed that the height above the free liquid surface is
depressed by the imposed pressure.

a saturation distribution such that the gravitational and capillaric

The fluid will then have to assume
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forces are in equilibrium. Since at high saturations, the capillary
pressure varies negligibly with saturation, it will be assumed that the
height at which S = 1 is found will be depressed in proportion to the
applied pressure. This depression can be easily calculated from the
original capillary pressure curve. The constant can thus be evaluated.

2. Comparison of Theory with Experiment

The data of Dombrowski (31), p.l216, are shown in Figures 20,
21 and 22. The solid lines represent the theory as given in Equation (42)
and (44). The outflow face is at z = O and the saturation there is taken
from the experimental data.

The parameters of the curves are given as the quantity
equations (42) and (44). The outflow face is at z = O and the satura-
tion there is taken from the experimental data.

The parameters of the curves are given as the quantity

’_J

b-f
£t

Ap
! = + —
g PrI

This €' may be thought of as the combined desaturating potential con-
sisting of gravitational and pressure factors., Since a higher pressure
drop across a core will cause increased desaturation, higher {' values
imply lower saturations. This is illustrated by the data. The experi-
mental data points are rarely more than 20% from the theoretical. 1In
most cases, the integrated average experimental saturations agree with
theory to within about 10%.
The curves for which the outflow face saturation is 1.00

correspond to the .situation prior to breakthrough.
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3. Discussion

The application of this work to gas reservoir engineering is
immediate, and based on practical field experience. It is well known
that operators in the field report that the ability of a well to produce
gas under a specified pressure drawdown is greatly reduced when a well
has been watered out. The water around the well bore is usually very
difficult to eliminate. Since the well bore represents a discontinuity
in the porous body and hence in the capillary pressure, end effectswill
be present. This work should assist in explaining the occurrence and
persistence of water blocking at the well bore.

The previous theory on capillary and effect suggests that the
problem may have commercial significance for gas reservoirs. As preceding
thecretical and experimental work has been seen to demonstrate, the in-
creased saturation at the outflow face (well bore) may cause significant
decreases in the permeability to gas.

A hypothesis similar to this has been recently advanced by
Ribe (100). He makes certain calculations showing that the performance
of an oil reservoir blocked by water at the well bore is greatly differ-
ent from that of a normal reservoir. It is suggested in this thesis
that the saturation build-up due to end effect near the well bore may
significantly affect the performance of commercial gas storage reser-
voirs.

In order to test this hypothesis, the following model was set
up. Pressures at the well bore and aquifer inner radius are assumed
known. The radius of the well bore and the gas reservoir are known.

A zone of known water saturation and radius is assumed to surround
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the well bore;* The system is at steady state with none of the radii
changing significantly. Calculations will be made comparing the pro-
duction rate from the reservoir described above to that of a reservoir
which has no zone of saturation near the well bore. The following

table shows the data used in making the calculations.

TABLE III

Characteristics of Assumed Water-Blocked Gas Fields

Symbol Quantity Case A Case B
ry Well bore radius (ft) .300 .300
ry Radius of saturated zone (ft) 30 3

Permeability in unsaturated

.eone k k
Krg Permeability in saturated zone .lk 333 k
Ty Reservoir radius (ft) 102 to 10° 102 to 10°

The geometry is considered to be radial, The theoretical
solution of the problem is quite easy — being simply that of radial
steady state flow through two layers of unequal permeability. This
method of calculation is given in McCabe and Smith (78), pp. L422-L.
Relative permeability curves show that the water saturation in the
saturated zone is T0% for case A and 40% for case B. It is estimated

that cases A and B are roughly equivalent to the limiting cases of

*Actual saturation distributions around well bores will, in general,
not necessarily be the same as this assumed distribution.
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commercial importance. It is assumed that the '"unsaturated zone," i.e.,

from rq to Tys contains connate water., In general, the volumetric flow

rate per foot of pay thickness is

Q _ 2p
=22 (45)

where R is the resistance to flow of the reservoir and is defined as

(for the unsaturated reservoir)

R - \TB = Tplu (46)
K.AL

where p = viscosity of gas, and AL = logarithmic mean area, It can be
immediately seen that, provided the relative permeability curves do not
change, the flow ratio between the blocked and unblocked reservoirs is
indepéndent of the absolute permeability and the viscosity. Calculations
have been made using the data of Table III and the results presented in

Figure 25, Results are shown as Qp/Qy vs. rp where

flow rate under given total /p in blocked reservoir

%
W

rb = radius of reservoir,

flow rate under same total fp in unblocked reservoir

The term blocked reservoir is taken to mean a reservoir having a zone of
higher saturation around the well bore., The curves of Figure 23 show
that the very small amount of water around the well bore will drastically
change the ability of a gas storage reservoir to flow gas under a given
pressure drop as compared to flow through dry sand. In making the
calculations, it was assumed that the water near the well bore remained
immobile. In the case that this water does move, the curves of Figure 20

give the initial productivity ratio.
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The computation of the liquid content of unconsolidated sands
when capillary end effects are present is seen, from Equation (34), to

involve only the following factors.

1. Minimum irreducible liquid saturation wa'
2. Relative permeability to the non-wetting phase.
3. Capillary pressure.

4, Absolute permeability.

5. Fluid densities.

6. Viscosity of non-wetting phase.,

7. Volumetric velocity of displacing phase.

The viscosity and relative permeability of the wetting phase are not
involved, as might be guessed from the fact that this phase is not
moving.

In general, the saturation at the outflow face must also be
known before the calculation can be made. The outflow face saturations
used in the Figures 20 to 22 were taken from the curves of Dombrowski (31).
In the absence of any theoretical method of predicting these outflow face
saturations, it is suggested that they be obtained from empirical

correlations.

D. Countercurrent Capillary Imbibition

A concept which is closely related to capillary pressure is
that of drainage and imbibition. These two terms are usually reserved
for phenomena in which only the capillaric and gravitational forces are

acting. The capillary forces tend to imbibe the wetting phase into the
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porous medium while the gravitational forces tend to drain the fluid out,
or at least to keep it segregated at the bottom of the element. The
drainage phenomenon results when the wetting phase fluid has been raised
vertically to a level higher than it would rise by capillary action

alone (cf. Fig. 1(b) ). When the external forces are released, some Of
the wetting phase drains out until the fluids are at capillary equilibrium.
Saturation distributions during a typical drainage experiment are shown in
Figure 24, Terwilliger, et.al. (121), give a theoretical and experimental
study of gravity drainage. Their analytical technique involved finite
difference calculations. Also presented in this paper (121) is an account
of the stabilized zone technique, which is an alternate method of calcula-
ting saturation distributions during dynamic multiphase flow., The
stabilized zone technique was used in the calculation of the saturation
distributions in Section IIB.

The imbibition phenomenon results when the wetting phase has not
yet reached the height to which it will normally rise by capillary action.
This imbibition process may be either cocurrent or countercurrent depending
on whether the top of the porous element is open or closed.

Further information on drainage and imbibition may be found in
(16), (30), (k4), (46), (77), (115), and page 489 of (61).

When a wetting phase is applied to one end of a sand pack having
a low initial saturation, the wetting phase will spontaneously imbibe into
the pack even though no external dynamic forces have been applied. The
model to be considered is a long, horizontal linear porous medium filled
initially with gas and connate water. One end of the porous element is

closed and the other is suddenly placed in contact with water (wetting
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phase), Water will spontaneously flow into the sand while the gas is
expelled countercurrently.

The practical importance of examining the problem of horizontal,
countercurrent capillary imbibition lies in the fact that it may be an
important method of production of petroleum and natural gas from under-
ground reservoirs. In these reservoirs, there may be isolated regions of
high permeability embedded in regions of low permeability. As the aquifer
water rises by, say, bottom water drive, these relatively impermeable
regions can be by-passed partially or totally. The only way in which the
gas or o0il contained in these pockets can be produced is by countercurrent
capillary imbibition. Specifically, oil and gas can be trapped in long
beds in the reservoir, which are open at only one end and otherwise sur-
rounded by impermeable shale streaks., Under such condition, direct frontal
displacement by water, of the kind described in Section IIB, is virtually
impossible. Under these circumstances, the aquifer water will rise to
the open face of the permeable o0il or gas bearing zone by means of bottom
water drive, thus allowing a countercurrent capillary imbibition to occur.
Since this may be the primary production mechanism in many cases of practi-
cal importance, it is desirable to be able to determine the rate and
efficiency of oil or gas production.

1. Theoretical Development

The model to be treated is that in which a semi-infinite,
horizontal porous medium, initially containing gas and connate water, is
touched at its open end by an infinite supply of water. The effects of
gravity are neglected and the linear porous element is assumed bounded

by impermeable barriers at all points except the inflow face. Water is
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imbibed and gas is expelled countercurrently. Under conditions where
the basic differential equation has non-linear coefficients, a technique
analogous to that given in Section IIB can be applied.

The total velocity u, at all points is zero by virtue of the

t
assumption that the pressure drops are small relative to the total
pressure (pseudo-incompressible flow) and that the porous medium is
closed at one end. Because of the countercurrent nature of the flow,
u,o= - Ug and Equation (7) yields up = 0. Using up = 0, neglecting

gravity and making the normalizing definition,

S = = wr (61)

where Sé is the saturation occurring at the inflow face of the porous
medium,

The governing equation is obtained from Equation (ll) as,

——, 3OS _ O (kkpgF1 OP O ,kkrgF1 dPc 0S
-y =2 =2 (Krrgrl Zrey - (RRrg l e P
? ot oz hg Oz ) oz ( hg ds az) (62)

Note that the saturation is normalized with respect to the saturation
Sé attained at the inlet face (z = 0) of the porous element.

The determination of the saturation distribution is to be made
according to the following approximate solution.. A typical saturation
profile at a specific time during the course of a countercurrent imbibi-
tion process is given in Figure 25. Two separate solutions, Sl for

z < 25 and Sy for z > z, are assumed, as shown in Figure 25. These

solutions are then matched at the point of farthest water penetration
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Figure 25.

Fractional Wetting Phase Saturation vs.
Distance During Typical Countercurrent
Capillary Imbibition.
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(ZO) by means of the boundary conditions. 2z4 is a function of time only.

The following boundary conditions are specified.

1. s (z, 0) = O (initial condition)
2. 8; (0, t) = 1.00
5. 8, (zg,t) = SII(ZO,t) =0
oS o3
y, 2Lz 1) = =Lz t) =0
Y (zg,t) iy (z,t)
>°s
5. I(zo,t) = 0
dz°

Boundary condition No. 3 expresses the continuity of saturation at zg.
Boundary condition No. 4 expresses the continuity of flux at Zge This
may be seen by noting that the flux at any point is given by Equation (9)

as, (ut = 0, gravity neglected),
= Brgl e 2 eis) (63)

dPe

15 ) may be thought of as a hydraulic conductivity

F
where the group ferg’l (
Hg
Kp relating the flow rate to the saturation gradient. Boundary condition
No. 4 is thus inferred from the fact that a saturation gradient is the
only cause of flow (cf. Equation (63) ), and that the normalized satura-

tion is always zero in region II (cf. Figure 25).

Boundary condition No. 5 is derived as follows. Designating

F ap —
rg’l (—=) as some hydraulic diffusivity D (S), a form of the diffusion
¢A5'u as

equation is obtained from Equation (62) as,
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At z = z_, Equation (64) gives

38 d =38 D 3s — 3%
— =— (D ) = S_ S— + D S‘E (65)
dt|z, 0z oz’ |, z 0Z|y 2%\ 2,
o) @]
The right side of this last relation is simply D S_E because of boundary
Z

condition No. 4., The left side of Equation (65) is zero by virtue of the

total differential relation

_ o8
ot

s
dt

+ 35 dzg
Oz dt

Zo Zo %0
and boundary conditions No, 3 and No. 4. Boundary condition No. 5 is
thus established., The development of boundary condition No, 5 was
suggested by K. H. Coats. This additional boundary condition was appar-
ently overlooked by Vetrov, et.al. (126) in a similar analysis.

Since SII is zero for all z > Z the subscript I will be
dropped from SI, and a single solution will be treated.

The saturation is now expanded into a power series of the
Z

Zg =t

S = 8 + a g + a g + a &. + .o 66
. J 2 000 n ( )

Calculating the constants a, to a; in the (truncated) series

5

from boundary conditions 2 to 5, there results

S=(1-8)°; &=2= (67)

e}

The functional relationship between Z and t is now established

by means of the partial integral of the differential Equation (64),
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Zo Zo
oS d ,— oS

—_— = —_— — d
g. St az g oz (D BZ) z

This becomes, using Leibnitz' rule,

(0]
ZO _
L 1%saz + 8(3/8) 2o - . D =
at § © at

substituting for S from Equation (67 ) gives

1 dzo0 _ 3Do
L 3t Zg
From which
L
= la4 D 2 68
Z, = |24 D_t (68)

where 50 and 52 indicate the values of the hydraulic diffusivity
o
(cf. Equation (63) ) at z =0 and z = z,, respectively.
The total production of the in-place fluid from the porous

medium at time t is,

Zo
Total production = S'dz - @S' 2z
b ¢(! g wr O

Substituting from Equation (61) and Equation (66) gives,

= 1 1
Dot .5 ) >
Total production = ¢ AS' (2—9—)2 =1.22 ¢ /S" (ﬁot)g - (69)

The rate of production at any time t is

. _ 1 1
, = T 5 3
@rs (5D0)2 -6 g s 0,2 ft

Production rate = — .
2 2t t ft%hr.
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The total (cumulative) production and the rate of production are
given in actual cubic feet of non-wetting phase at the pressure of the
operation. The depth of wetting phase penetration, saturation distri-
bution, rate of production and cumulative production are given by Equa-

tions (67) (68), (69) and (70), respectively, with D, defined by,

Dy = [EEEEE; EES} (71)
z=0

5T, 4S

The procedure in using the method is as follows, 56 is calcu-
lated at S} (saturation at z =0) from Equation (71) using experimental
determinations of relative permeability and capillary pressure. Some
estimate of the saturation Sé at z = 0 (inlet saturation) must be avail-
able, The functional relation between Zg and t is computed from Equa-
tion (68). Finally, cumulative production and rates of production are
computed from Equations (69) and (70) and a knowledge of the cross
sectional area perpendicular to flow.

In the case of a porous medium having the special property

that,

_ F. 4P
D - frg’l "¢ - constant = D, (c.f. Equation (62)) (72)

ST
g7s g dS
the governing equation is linear, i.e.,

%s

Q/

oS -
..._=DC

73
ot oz (73)

N
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The solution for the normalized saturation is then, for a semi-

infinite system,

zZ
S = erfc [——————-—]
2 ﬁi;;
The analogous problem in heat transfer has been worked out
previously (22), page 132 ff.
The cumulative non-wetting phase efflux is given by, (cf. Equa-

tion (6) on page 133 of (22) ).

D 1/2 - 1/2
Total production = ¢ 287 (cht) / =1.13 ¢ 557 (D.t) / (75)
and the production rate is,
=T WD, 1/2 D¢ 1/2
Production rate = g———— (—) / = .565 ¢ ST (EE) / (76)

2 nt

2. Discussion

The question of the value of the saturation Sé at the inflow
face (z = O) of the linear element is important in capillary imbibition.
The value of 50 in Equation (68) is dependent on Sé, and this in turn
affects Equations (67), (69) and (70). There does not seem to be any
way of calculating this inlet saturation a priori from presently known
theory. Co-current capillary imbibition experiments (48) indicate that
the inlet saturation will be somewhere near the residual equilibrium
non-wetting phase saturation. In the absence of other information, a
value of Sé equivalent to about 90% of the residual equilibrium non-

wetting phase saturation is indicated,
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It is seen that Equations (75) and (76) are the same as Equa-
tions (69) and (70) except for a small difference in the numerical factor.
Handy (48) observed experimentally that cumulative production varied as
the square root of time for co-current capillary imbibition in the case
where gravitational effects are negligible.

The solution given in Equations (67) and (68) is an approximate
one in the same sense as the solution for the saturation distributions in
Section IIB. Hence the argument supporting its validity will be the same
as that given in the discussion of Section IIB. No data on countercurrent
capillary imbibition have been found in the literature., However, the
experimental determination that cumulative production is proportional to
the square root of time (48) for co-current imbibition is encouraging,
as is the square root relationship resulting from the linear diffusion
model (cf. Equatioﬁ (75) ).

In order to test the ability of the approximate solution to
give a correct prediction of saturation distribution, production rate and
cumulative production, the following example calculation will be made,
Assuming a constant hydraulic diffusivity D, (cf. Equation (72) ), the
exact expressions for saturation distribution, rate, and cumulative
production will be computed from Equations (74), (75) and (76). The
approximate solution, embodied in Equations (67), (68), (69) and (70)
will then be used to compute the same quantities for comparison.

3. Example Calculation

Natural gas of viscosity .0l cp. is assumed trapped in a thin,
lamina-like permeable streak which is closed on all sides except for the

face adjacent to the water flooded zone. The relative permeability to
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gas and water for the porous medium have been measured to be Krg = l-S

and k. =S (S is normalized saturation). The connate water content

W
(S' ) and residual equilibrium saturation (S'r) have been measured as

wr
.10 and .90, respectively, Permeability and porosity are found to be
250 md., and 25%, respectively, Aquifer brine viscosity is 1.00 cp. The

capillary pressure of the porous medium has been found to be

P
1b-f d ¢ 100 1lb=f
P, = 100 (1 - 1In 8) 2 a8 -~ 5 72

The hydraulic diffusivity Bc (cf, Equation (73) ) can be simplified by

noting that, to a very good approximation,

KK Fl aP KKy, 4ar

ﬁ- = rg (]
¢ §BTug 45 GB T, ds

C

<

over the whole saturation range except for a very small region at very
high water saturation. The saturation at the inlet face is taken to be
8y = o8l (or 90% of the residual equilibirum gas saturation). The hy-
draulic diffusivity is in this example a constant and is computed as
*

ﬁ; = 6,34 x 1077 EEE . The saturation distributions, rates and cumu-

sec
lative productions were computed by both the exact and the approximate
techniques. The results are presented in Figures 26a, 26b and 26c., The
total cumulative gas production (Figure 26c) and the production rate
(Figure 26b) according to the approximate solution are seen to be 7,8%
higher than the same quantities predicted by the exact solution.
Figure 26a shows that the approximate solution not only agrees well with

the form of the saturation distribution predicted by the exact method, but

*Porous media will, in general, not have even approximately constant
hydraulic diffusivities. The example chosen is, therefore, illustra-
tive only.
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differs from it only by a few percent. The approximate solution thus
predicts saturation distribution, total production and production rate

with surprising accuracy in spite of its non-rigorous character,

Summary (Sections II A-D)

The preceding material serves to indicate the theoretical
considerations involved in the scaling of laboratory flow experiments.
The scaling parameters were derived from the basic partial differential
equations governing the flow of two immiscible fluids in porous media.
The results show that there are three dimensionless functions which
must be scaled in two and three dimensional experiments and two func-
tions for linear experiments.

Experimental saturation distribution data were taken for the
case of linear constant rate displacement of gas by water. An approx-
imate solution to the equations of multiphase movement yielded good
agreement with these data and with others taken from the literature.

A theoretical solution to the problem of capillary end effect
was obtained. This solution is applicable when the wetting phase is
immobile and only the non-wetting phase is moving. Comparison of this
theory with data from the literature yielded satisfactory agreement.

An approximate solution to the problem of countercurrent
capillary imbibition into a linear medium was obtained by means of an

integral technique.



III. MACROSCOPIC STABILITY OF INTERFACES DURING
DISPLACEMENT PROCESSES IN POROUS MEDIA

A. Stability of Plane Interfaces in Linear, Quasi-Steady Flow-Effects

of Inertial Damping

When a less viscous fluid, such as gas, displaces a more
viscous fluid, such as oil or water, from a porous material, long fingers,
of macroscopic dimensions relative to the pore size, may form under cer-
tain conditions. These fingers may bypass large amounts of the in-place
fluid, with resulting technical and economic disadvantage. In natural
gas storage reservoir development, the water (aquifer) which is initially
found saturating the porous structure is displaced by the injection of
high pressure gas. The shape of the interface between the gas and the
water, and the rate at which gas can be injected are important considera-
tions. In particular, if the gas moves into the aquifer unstably, there
is the possibility that some of the long fingers may be pinched off and
become trapped as permanently unrecoverable gas. The study of viscous
fingering*is, therefore, expected to give insight into the details of
the fluid movements involved in fluid-fluid displacement, and particu-
larly into the mechanics of the natural gas reservoir development process.,

The recovery of oil by frontal displacement is also an example
of a physical situation in which fingering can occur. The less viscous
flood water may enter the porous medium (initially saturated with oil
and connate water) in the form of fingers, and break through to the
producing wells before any significant amount of o0il has been recovered.,
It is desired to be able to predict the occurrence and the form of the

viscous fingering from general considerations relating to the fluid and

*The term "viscous fingering" was first used by Engelberts and Klinken-
berg (36) and refers to the unstable fingering resulting from the dis-
placement of a fluid by one of lesser viscosity.

_95_
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porous medium properties, such as porosity, permeability, interfacial
tension, densities and viscosities, etc.

The physical model to be assumed in the following treatment
is that in which one fluid is being linearly displaced from an isotropic,
homogeneous porous medium at constant volumetric velocity by another
immiscible fluid which is assumed separated from the first by a discrete
interface, Saturation distributions, as treated previously in Section II,
are not considered., The porous medium is assumed 100% saturated with the
displacing fluid up to the separating interface and 100% saturated with
the displaced fluid beyond the interface. The fluids are immiscible,

It is worthwhile to distinguish between the viscous fingering
described above, and some of the other phenomena which can give rise to
unequal fluid flow in porous media., They are:

1. Finger formation due to permeability stratification,

2, Streamers of displacing fluid resulting from the potential
field - as in the reaching out of water toward the corner
wells in a five-spot flooding arrangement, or in the upward
coning of water toward a single producing well.

3. Unequal flows due to gravity segregation of fluids,

L, Mechanical instability which can occur when a heavier
fluid is temporarily found above a lighter one,

The kind of instability to be considered here must be carefully distin-
guished from unequal flows caused by the items listed above. The theory
and phenomenology of viscous fingering (hydrodynamic instability) to be
considered here has been discussed by Chuoke et.al, (23), Saffman and

Taylor (105), and Van Meurs (125), Photographs of the processes are
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given in these references, and one from Van Meurs (125), is reproduced
here as Figure 2. [Other papers on this subject are (20), (21), (29),
(36), (104), (108), and (124).]

The analysis employed in the papers mentioned involved the
use of complex variables in the manner of Rayleigh and Kelvin, i.e.,
first order perturbation theory. The final step in the development was
to equate the pressures on the interface between the two fluids. These
pressures were obtained by straightforward computation from Darcy's Law,
with interfacial tension taken into account. Also, these analyses (23)
and (105) apply only in the case of fluids moving at a sufficiently low
velocity.

It is to be demonstrated in the following work, that the non-
steady and inertial effects involved in the finger acceleration may
both affect the flow, and that both of these may be included in the
theoretical analysis. The kind of instability to be treated in the
whole of Section III is designated by the general term "hydrodynamic
instability" and is to be carefully distinguished from the other forms
of non-uniform behavior listed above. The term hydrodynamic instability
is used, since the fingers are due solely to the fluid dynamic effects
and are not conditioned by non-uniformities in either the porous medium
or the applied forces.

The work of this section differs from that of Chuoke et.al.
(23), and Saffman and Taylor (105) in that inertial and unsteady effects

were taken into account. The analysis presented here yields the result

that the initial growth rate of the instabilities is less than

previously calculated in (23%) and (105).
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1, Theoretical Development

The physical model to be considered is that shown in Figure 27,
Fluid 1 of Py and Ky is displacing fluid 2 of Ps and Ko at volumetric
velocity V. The fluids are immiscible and separated by a discrete inter-
face on either side of which are no saturation gradients. The porous
medium is assumed homogeneous and isotropic.

The first step in the solution is to formulate a complete
expression for the pressure in a porous material under unsteady conditions
Consider the flow of a viscous, incompressible fluid through the differen-
tial volume element shown in Figure 28. The velocities to be used will be
the integrated average (Darcy) velocities, which are related to the true

point velocities in the volume element by

14¥ (77)

Sl

/
V

1"

g ¢

where 1 signifies any principal direction, and ﬁi is the microscopic point
velocity within the pore. ¢é_.indicates integration over the void space
(pore volume) @dxdydz of the total volume element 5xdydz.. The total
volume element ©&xdydz contains both fluid and solid. The quantity Ei

is recognized as the average pore velocity. The pore spaces are
considered to be completely filled with fluid, i.e., at 100% saturation.
The velocity uy is known as the volumetric velocity (fluid volume per

unit area per unit time), and is a statistical average. It is assumed

that the porous medium is so constituted that the small differential

volume elements used in the analysis do not approach the pore size, It

is only under the preceding limitations that it is possible to speak of
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A

FLUID 2

Figure 27. Schematic Diagram of Linear Displaeement
of Fluid 2 by Fluid 1 at Start of Finger-
ing Process.
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Figure 28.

Y

Differential Element of Porous Media.
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a point volumetric velocity uj.
One of the basic premises of flow through porous media is that

the volumetric velocity is derivable from a potential,
u = - V '(D' (78)

The result is experimentally based, and has its origins in the work of
Darcy (28)., It has only been verified in the case of steady flow. As
has been shown by Streeter (p., 234 of (118) ), microscopic inertial
effects in the steady state flow of a homogeneous fluid through porous
media can be shown to be negligible if Equation (78) holds. In addition,

when the fluid is incompressible,
V.eui =0 (79)

and the Laplace equation holds
¥ =0 (80)

The velocity potential $ has the same units as the pressure
(the force potential concept of fluid motion is implicit in Equation (78)).
In the steady state, the force exerted by the walls of the pores on the
fluid contained in the pore space of the volume element of Figure 28 is

calculated as

_ p.U.i 81
FDi = - ¢ dxdydz (81)

This Darcy viscous reaction is calculated in the x direction, say, by

o
multiplying the potential drop S; by dx and the area of application

¢6y6z. The quantity FD can also be thought of as the momentum flux
i
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between the fluid and the walls of the pores contacted by that fluid.

The admission of negligible inertial effects on a microscopic
scale, i.e., use of Equation (78), by no means justifies elimination of
the macroscopic inertial effects. The distinction between the approaches
is that on a microscopic scale, the actual processes occurring inside
individual pores are examined whereas, in the macroscopic approach, the
processes are treated as the result of averaging over a very large number
of poresf Microscopic inertial effects are related to the acceleration
and deceleration of fluid particles as they pursue tortuous paths through
the pores. Equation (78) implies that these effects are negligible.
Macroscopic inertial effects are related to gradients in, and time rates
of change of, the volumetric velocities, To clarify this point, it must
be noticed that the width of unstable fingers is usually many orders of
magnitude larger than the average pore diameter., Equation (78) implies
that the microscopic (point) inertial effects are negligible. But the
fingers, being of much greater than microscopic .dimensions, are thought
to generate appreciable inertial effects on a macroscopic scale due to
their acceleration. The situation is analogous to that in which a rigid
bar is accelerated. While there 1s no acceleration of the internal
particles of the bar relative to one another (microscopic scale), the
acceleration of the bar as a whole will give rise to inertial effects
on a macroscopic scale, From the point of view of the pressure in porous
systems, it may be stated that microscopic inertial effects are negligible
because there is essentially complete pressure recovery as & fluid
particle accelerates and then decelerates to its initial velocity if the

gross flow is steady. These microscopic effects are averaged to zero

¥A11l topics in this thesis are treated from a macroscopic viewpoint
unless otherwise stated.
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over a large number of pores due to the isotropic statistical properties
of the porous material. When the total flow is being accelerated, the
gross inertial effect must, of course, be the sum of all the microscopic
inertial effects. The continuity of this gross acceleration is what
causes the macroscopic inertial effects to influence the pressure.

In the light of the preceding discussion, we now turn to a
formulation of the momentum balance for fluids moving in the unsteady
state in porous materials. The balance is taken on the fluid contained
in the volume eiement of Figure 28, 1In addition to the body force,
normal pressure force, and stresses, the viscous reaction of the pore
walls on the fluid is considered. These forces are equivalent to impulse
per unit time and are equated to the net momentum flux for the fluid
element,

At any given time, the influx of momentum into the differential

element in the u direction of Figure 28 is, at the point x,y, z.

Influx = ;—; (ou)p Bydy - + é (ou)P 545, + % (pu)¢§x;5y (82)

These momentum flux terms were found by multiplying the average pore
velocity, e.g., u/¢ by the mass flow rate e.g., pu by the cross sectional
area, e.g., ¢8yﬁzdacross which the fluid was flow;ng. In formulating
these equations, it is important to keep in mind that the fluid volume is
¢6x6y6z, that its mass is pPdxdydz, and that the area normal to flow in
the x direction, say is Pdydz. Also the summation notation with i and

J is used throughout. Here the subscript i is the free index, indicating
which component is being considered, and j is the dummy index indicating

repeated operations, The momentum balance is being made on a control
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volume comprising the fluid in the pore space of the differential
element of Figure 28.

The outflux of momentum in the u direction at the point x; vy, z

is;
ou
(u+ 5x)
Outflux = ———gi—— (pu + 9%%‘—11 8x) @oydz (83)
ov
(v+ <= dy)
+ -&-;L—— (pu + Bé;;u) dy) Poxdz
(w+-§§ dz) 3
+ ¢ (pu + —ésgl dz) ¢6x6y

The time rate of change of momentum is
u
5,(9@)
dxdydz
ot ? v

To show that the Darcy velocity, u; can actually represent a physically
real momentum, consider a very small volume element d¥ (much smaller than
the pore size) in which the average velocity is Gi' The momentum of the
fluid in this volume element is, (in the i direction) pﬁidv. The total
momentum in a differential (macroscopic) element is then, from Equation

(17)

/ pﬁid¥ = puy¥
g+

where

¥ = d5xdydz

The developments leading to the momentum influx and efflux terms are thus
seen to be correct since thevolumetric velocity pu has been shown to

correctly represent a momentum term.



-10%-

The next step in the development of the unsteady momentum
balance for porous media is to consider the shear stresses which may
be set up due to velocity gradients ggi. Graton and Fraser (47) and

X -
Coberly andMarshall (24) have observed velocity gradients in flow
through tubes packed with porous materials. These velocity gradients
suggest the presence of macroscopic internal stresses and, in particular,
shear stresses. The relation between the velocity gradients and the
shear stresses which may occur is not known with any certainty. Also,
the velocity distributions observed in flow through porous media in
tubes may be due to inhomogeneities in the packing. The flatness of
the velocity profiles obtained experimentally (24), indicates that the
constant relating the shear stress to the velocity gradient in porous
media is much smaller than the corresponding constant (viscosity) in
homogeneous fluids. The stress-deformation relation for a fluid of
viscosity pi flowing through a porous medium of permeability k will be

assumed to be represented by the (Newtonian) relation

1 dui , Oy

Te. = py ( —
1
1J axj Bxi

) (8k)

where

= the stress in the j direction of the face perpendicular

iJ
to the i direction, and
p% = a pseudo viscosity which is expected to be a function

of Hy and k.

The forces exerted on the fluid at x and x + &x on a face dydz

perpendicular to these directions are p¢6y62 and (p - %E dx)¢6y6z, leaving
X
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a net momentum interchange of
e PFoxdyd2 (85)
ox
The body force on the fluid mass p@Pdxdydz is
gp¢6x6y52 (86)

Formulation of the shear and normal stresses as on p. 216-218 of
Streeter (118) yields, for the momentum flux due to shear stress in the

X direction on the face normal to the y axis

OTYX

J dxdydz (87)

The last force acting on the fluid in the differential element
is the drag from the walls of the pores surrounding that element. This
is the Darcy viscous reaction., It will be designated F' , with the prime

D=
i
denoting the unsteady state. The associated momentum interchange will be

FD-

—E}'¢ 5xdydz (88)

The momentum balance on the fluid in the element of Figure 28
may be expressed verbally by saying that the net flux of momentum out
of the element in the x direction is equal to the negative time rate
of change of the momentum content of the fluid plus the net momentum
interchange occasioned by .the forces acting on the fluid. The balance

is formulated from Equations (82) through (88) with second order terms

neglected as,
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Outflux - Influx = - time rate of change + external forces,

or,
1fou ou ou ouw] FBy 13p - 130
¢[Bt+u5x+vay+waz}_p-pax+§x+55_x—
(89)
+ L éIXE + L OTax
p oy p 0z

and likewise for the other principal directions. Proceeding according

to Streeter (118) pp. 217-229, the desired equations are obtained as

1 | duy ; — FA
5[gl+u,aul}:-iél—)—+§i+v’veui+Di (90)
where
IJ-'
v' = ;’ = pseudo kinematic viscosity.

The form of the momentum balance Equation (90) can be clarified by
recognizing that the left side of Equation (90) represents the total
momentum change per unit volume per unit time and the right side
represents the corresponding unit impulse.

When macroscopic velocity gradients are absent and the flow

is steady (i.e., g&l and gEl are zero) Equation (90) is seen to reduce
t X .
J

to Darcy's law, as required. (Note: under these assumptions
HUj

F =F == ¢6x6yéz and Vzu. = 0). The quantity F' represents the
Di Di K 1 Di

force exerted on the fluid by the walls of the pores. The Equation (90)
is the momentum-impulse edquation for porous materials and is analogous

to the Navier-Stokes equations for homogeneous fluids. In fact, the
Equation (90) represents spatial mean macroscopic Navier-Stokes equations

for porous media in much the same way that time-mean equations are

developed to represent the macroscopic aspects of turbulent flow,
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It is now possible to proceed to the complete formulation of the momentum
balance for the unsteady case. The object of this development is to
obtain results which can be applied to unstable finger motion, which is

a special example of unsteady flow.

The integration of the basic momentum equations depends on the
possibility of finding a suitable expression for Fﬁi (the force exerted
by pore walls on fluid in the unsteady state). The steady state value
(FDi) is given in Equation (81). Philip (91) has recently shown that,
unless varying potentials of large magnitude are very suddenly applied;
or are periodic with very small period, the microscopic velocity field
set up in the pores of a porous medium are functions only of the
instantaneously applied potential, and not of the past history of the
applied potential. This means that, as long as attention is confined to
a single phase flowing in a porous medium, the volumetric velocity Uy at
any point is a function only of the potential gradient at that point, and
not of the unsteady character of the flow. The result of Philip's (91) dem
onstration 1is that the velocity uy and the velocity field in ﬁi do not
lag behind the applied potential except under conditions which almost
never happen in real displacement processes. Since the microscopic
velocity fields are set up instantaneously, it is reasonable to suppose
that the drag at the pore walls will also be instantaneously a function
of applied potential. It is therefore concluded that the pore wall drag

is, within limits, the same in the unsteady state as in the steady state,

i.e.,

u-
F' =F = E;i P5x5ydz (91)
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The physical content of Equation (91) is that the pore wall
drag is a function of the instantaneous volumetric velocity only, and
is independent of the unsteady nature of the flow.

From Equation (78), it follows that the flow is irrotational,
i.e., Vaui =0,

It 1s also being assumed that the pseudo viscosity up' is zero.
Substituting this last relation and Equation (91) into Equation (90)
yields the simplified form of the impulse momentum equation for porous
media,

E[BuiJ,u.?l{i_}ﬁ_iB_P_ T. o Hui

3t J ij "o ox4 th- oKk (92)

Integrating these equations in the manner of Streeter (118), p. 23 gives,

for fixed volume element,

_2 - _
ig-£@—&9+gz+£+czo (93)
2 ¢ ¢ t PK
where
g —
4@ = -V o and the bars indicate quantities taken with
respect to fixed volume elements
8 = arbitrary constant.

Equation (93) can be called the Bernoulli-Darcy equation, and is the
result which is desired for purposes of future applications, It is seen
to include the usual terms of the Bernoulli equation plus the effect of

of the Darcy viscous reactions,
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The stability of the system illustrated in Figure 27 is now
computed, Formulations of the simpler forms of the stability equations
have been done by Chuoke et.al.,(23), and Saffman and Taylor (105). A
summary only will be given here. Fluid 1, of viscosity Ky is assumed
to be displacing fluid 2, of viscosity Ho (immiscible fluids), with
velocity V, Referring to Figure 27, assume that the co-ordinate axis
is moving along in the position of the undisturbed interface with

velocity V., The governing equations are,

3. =

2%
o= Y =0

o2

The (three dimensional) perturbation is,

b = Be"Peo sk X cos-—y (9L)
NERRRNE

i.e., periodic in x and y. Positive n will indicate an unstable system.

2, Boundary Conditions

1. Perturbations vanish as z -+ «
2., Pressures equal on interface except for surface tension.

ab 1 1

=W, =W on z =D
2

where primes refer to the perturbation velocity only, and ¢ refers to the
velocity potential of the perturbation only, since we have eliminated the
uniform flow by the expedient of moving with the velocity V.

The solutions are,

nt kz k

0o = - Ae e cogj- ;f‘ y (95a)
o, = A entekzcosg—x cosE— y (95b)

2 J2 J2
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where

nB
A =—
k

Assumptions are that the perturbations are small and that the quadratic
terms of the substantial derivative can be neglected in developing
boundary condition 3. (c.f. p. 189 of Chuoke et.al. (23) ).

In order to convert the Bernoulli-Darcy Equation (93) to the

moving coordinate system, the following transformations are used,

?=0-Vz

2 30

q()28¢2 JoX) 2

+V
These transformations are used in Equation (93) to give

2 Ry 2
q' pw'V 1 pV p 0 uVz uod N
- —_——= ¢+ — - F— 4+ —-pgz +C (96]
¢ g 2 ¢ got

1
p =-=F8
2

where

acbg a<x>2

= (5,

o
I

+ (5 (

q" ==total velocity of perturbation only.

Suppose that the value of the pressure on the interface (z =0) is Py

2
. = Ve
in the absence of the perturbation. Then C = Py + 1/2 E;;‘and Equation

¢

(96) becomes
,2
pg” _ pw'V 4
g ¢

O/

p B2 4 B2 . 5z + pg (97)

p o®
g 3 kK

l\)ll—-’

All quantities without bars refer to the perturbation only, which is

the center of interest.
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The expression for the pressure in Equation ©7) is now
linearized by recognizing that q will be much smaller than V and that
the term % Egi— will be negligible compared to EE%E~ . The term in
q2 is deleted from Equation (97) based on the assumption that the second
order terms of the perturbation are insignificant. The term in w'V

represents the inertial cvoss~linking effect.

The pressure balance at the interface is, cf, Chuoke, et.al. (23)

P, - P,y = d*(cl +c,) (98)

where
cl and ¢y = interfacial curvatures with relation to phases 1
and 2, respectively,
Making use of Equations (94) and (95) in Equation (98), and the fact

that e¥? - e® =1 on z = b, there results,

2
n”(e1tpp)  (po-py)uiVk | (5§+ﬁl) - {(E-a—uﬁ)w(pe-pl s]k+°k5= 0
¢ g "2 *1 "2 "1 (99)

The validity of Equations (97) and (99) may be inferred by a comparison
with the corresponding equations derived by Chuoke, et.al, (23) in their
simpler analysis. Equation (97) is the same as their Equation (&)

except for the terms

pq'2 _QWW
¢

¢

451

-

E
Equation (9g9) is the same as their equation (12) except for the terms

2
(pp =p1)nVk
%‘ (py + pp)- _22_.§l;f1~_

which result from the terms mentioned above,
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Solving for n from Equation (99),

[(“2 ul) i (pz-pl)Vk}e

K2 K] )
- | (2 oMLy _ (P2 - P1)Vk 4(pit+eo) [| mo w1 ) %3
[(Kg “l) 3 } + + 3 {(“2 Kl)V+(p2 pl):]k UL{}
2 (py + pyp)
¢ (100)

Instability occurs only when n is positive, and this will happen only
when

H2 M1 2

= - = + - - k= >0 101

(Kz Rl) V+ (py - pp)8 (101)
This turns out to be the same stability criterion previously derived by
Saffman and Taylor (105) and Chuoke, et.al. (23). The actual value for

n is different however (cf. Equations (12) to (15) of Chuoke, et.al. (23)).

Chuoke, et.al, (23) calculate

M2 M1 %5

[ = Kl) vV + (pp pl)g] k -0uk

n= : (102)
Mo My
= i)
ko %1

The critical velocity and wavelength of critical stability also turn

out to be the same as previously derived (23), (105), i.e.,
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1
* =
)\c=2u[“ m g 2 and Ay =3 A" (103)
2 1
(:--K_) (V"Vc)
2 1
where Vc is defined by
M T
Z 1)V, + (o, - py) 8 00D = 0 (10k8)
kg k' ©

The wavelength of maximum instability is found from Equation (100) by

solving %i = 0, The result is

(104b)
2002 0%V | | Blopmp1) v h(128p1402)) {b(o1epe) [y,
¢ g g g B
13
Horoys + 2 (e FER |}
k= : -
™ - 2h(py + pp) O
g
and
2n~Jé
My = k

This wavelength of maximum instability is not the same as that found

by Chuoke, et.al. (23), who computed

Note: For explanation of the meaning of A or Ao, see footnote at bottom

of . 190 of paper by Chuoke, et.al. (23).
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B ¥
M- Bve e -00e
K, = (10kc)

UJE

It is seen that deletion of the terms in P27P1) of Equation (10k4b)
reduces Equation (104b) to Equation (10Lc). These terms in EB@:ELZZ
arise from the retention of the cross-linked intertial term (of form
E%LYJ in the Bernoulli-Darcy equation, Equation (97). Thus, the specific
difference between the wave number of maximum instability (km) as
computed in this thesis (Equation (104b) ) and by Chuoke, et.al. (23)
results from inertial effects only. This means that the present analysis
does not indicate a change in the naturally occuring finger width (Xm)
when the term E%LK is not significant with respect to the others in
Equation (97). The unsteady term e §9 results in a change in the

g ot
instability index (n of Equation (100) ) but does not affect Ap*

3. Discussion
The previous solutions (23), (105) did not include the effect
of the time rate of change of the velocity potential (%%) or the cross-

' w'V
linked interial effects (p¢ ) in the analysis, For brevity, the change

in the value of n (Equation (100) ) resulting from the inclusion of the

ol
5S¢ term in Equation (97) will be called "unsteady damping." The change

pw'V

¢

in n resulting from inclusion of in Equation (97) is designated

"inertial effect.,"
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While it may happen that the simpler derivations in (23) and (105) will
hold for certain cases, it is seen that the present development, taking
proper account of the total momentum balance (Equation (90) ), is more
complete. The expressions for n, (Equation (1Ql) ), and the wavelength
of maximum instability, Km’ (naturally accurring wavelength) are the
only bases on which it is possible to choose between the two derivations,
and this must, apparently, be done experimentally. It is suggested that
critical experiments measuring the rate of early growth of the
instabilities, and the tip to tip distance (xm) of the fingers may
decide the matter, since these quantities represent the only points

at which this derivation differs from the others.

The present analysis ultimately rests on two assumptions. One
is that the flow is potential - a reasonable one for porous media. The
other assumption is that the pore wall drag on the fluid, represented by
the term Fﬁi in Equation (91) depends only on the instantaneous velocity
u; and not on the unsteady character of the flow. This second assumption
can be clarified by an analogy. A successful method of computing the
trajectory of a sphere starting.from rest and accelerating to terminal
velocity in a fluid is to assume that the drag coefficient at any
instantaneous velocity is the same as the steady state drag coefficient
at that velocity. Of course, the fact that the sphere is accelerating
through that velocity rather than being constantly at that velocity
may have some effect on the drag, depending on the magnitude of the
unsteady effects, The effect, however, is small, In the same way, the

past history of the fluid acceleration through the porous medium is here
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assumed to have negligible effect on the drag which is exerted at a
specified volumetric velocity.

The demonstration of the existence of macroscopic shear stresses
being produced on fluids contained in porous media by the action of
Darcy velocity gradients has yet to be achieved conclusively. Also, the
form of the relationship, i.e., whether Newtonian or not (macroscopic
scale) (cf. Equation (84) ) must be determined. The phenomenon is
complicated because of the action of these shearing forces on the pore
surfaces as well as on the fluid. It is thought that only unconsolidated
materials will be able to allow any significant amount of shear stress to
occur, since it is only in these materials that the fluid is continuous
to any great extent. The continuous nature of the solid and the asso-
clated interconnecting channel structure of the pore space seems to
preclude macroscopic shear stresses from being generated in consolidated
materials, The shear stresses ceferred to, and defined by Equation (8L4)
are to be thought of as macroscopic shear stresses generated by gradients
in the (macroscopic) Darcy velocities, They represent the summation of
the large number of microscopic shear stresses occurring in the particular
fluid element under consideration. The gradient %E , for example, is

Y
defined as,

;& ax (105)
¥ oy

These microscopic shear stresses are generated at all times, whether or

not there are macroscopic velocity gradients occurring.
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This distinction between microscopic (pore scale) and macroscopic
shear stress may be clarified by comparison to an analogous situation
which occurs in turbulence, The Prandtl approach to turbulence (cf., 298-
303 and %68-371 of Rouse (103) ) leads to the conclusion that the mean
macroscopic shear stress is equal to the eddy viscosity multiplied by the
gradient of the mean velocity. The mean velocity in turbulence is the
time mean of the microscopic fluctuations. These small fluctuations also
lead to microscopic velocity gradients which must lead to microscopic
shearing stresses. The Prandtl approach thus leads to a mean macroscopic,
integrated average description of the turbulent phenomena. The approach
to flow in porous media which has been made in this thesis 1is analogous
to the Prandtl approach to turbulence except that the mean quantities are
space-mean, rather than time-mean, The microscopic scale in the porous
medium is the pore scale, whereas the microscopic scale in the Prandtl
approach is defined by the amplitude of a typical turbulent fluctuation
(Prandtl mixing length). Thus, in both turbulence and flow in porous
media, the macroscopic quantities are summations of the directed character
of the microscopic quantities which always underlie the basic flow.

Since there are, at present, no values of p' available in the
literature, an experiment by means of which it might be determined is
illustrated in Figure 29, The plate is drawn along the surface of the
liquid which is saturating the porous medium and also extending a certain
distance above it, Anemometers placed at the downstream end of the model
are used to measure the velocity distribution in both the clear section
and the packed section. u' is determined by a comparison with the theo-

retical solution for a plate being drawn over the surface of a homogeneous
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PLATE
7 ’—-\/ —

CLEAR LIQUID AL //

/
f
POROUS MEDIUM  je—_ \ eLooy

SATURATED WITH |

SAME LIQUID | GRADIENTS
|

]
1

Figure 29,

Experiment to Determine the Pseudo-Viscosity
p* of a Porous Medium Saturated with Liquid

of Viscosity fi.
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fluid of viscosity resting above a homogeneous fluid of viscosity which
is immiscible with it. The exact nature of the stress-strain relation
in porous media would have to be determined by fitting the experimental
data to various Newtonian or non-Newtonian theoretical models.

To examine the conditions under which the value of n in
Equation (100) may differ significantly from the n of the work in (23)

and (105), the following example calculation is given.

4, Example Calculation

An oil of 10 cp viscosity is being displaced from a porous

5
medium (kx = 100 Darcies) by water (u = 1 cp) at a rate of 1.0 L.

ft 2 se
. . . dynes : c-
Assume interfacial tension = 20 —~—m and ¢ = .25. Density of the oil is
1b
37.6 Pl Compare the index of instability n for the simple case of Equa-
tion (102) and the more complex case of Equation (100). Chuoke, et.al.
(25) have shown that the necessary condition for instability in the

simpler system considered by them is that the velocity V be greater than

the critical velocity VC defined by

v o= (92 - pl)g (106)
© M2 _Hh
2 K1)

provided wavelengths greater than A, are present (cf. Equation (103) ).
Reference to Equation (lOl) shows that the critical velocity for the more
complicated case considered here is the same as given for the simpler case.
For both cases, V_ is calculated to be 1.28 x 107 1%  agsuming

sec,

Ky = Ky = 100 Darcies.
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The wavelength of maximum instability is computed from the

following equation, for both cases,* (cf. Equation (15) of Chuoke, et.

al. (23) )
o L
g = 2n 3 [ } o2 = ,00927 ft
M2 _ Ei) (V.-V)
K2 Ky c

sk = 6780 f£t-1

The valuesof n calculated from Equations (102) and (100) are
3560 sec™d and 3360 sec_l, respectively. Physically, this means that the
initial rate of propagation of the fingers is smaller when the more complex
analysis is taken into account (i.e., the fingers are being damped ). The
inclusion of time rate of change of the velocity potential, as derived
from the complete specification of the inertial effects, thus tends to
damp the initial growth rate. The criteria for stability and critical
wavelengths are unchanged. Examination of Equation (lOO) reveals that
the damping effect (shown by the lower n from Equation (100) will, in
general, be greater as the sum of the fluid densities and the displacement
velocity become greater,

The quantitative criterion establishing the range of variables
over which these inertial damping effects are important is determined as
follows. The expression for n in Equation (100) is expanded in series by

means of the expression given in Pierce (94) No. 817. The result is

*
Inertial damping negligible,
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where

. b(py + Dg>)Vk] {:[(Eg_ ELyy + (o, -pl)g}k-ak5:}

bp H1, (p2-p1 Ko K1
e
LR ¢
It is seen that the expression in Equation (107) reduces to that of Equation
a
(102) (i.e., simplified model) when I— is small relative to unity. (i.e.,
quadratic terms and higher are negligible). The criterion may be set up

such that the value of g satisfies the inequality,
a < .10 (108)

To give the maximum difference between the two values of the amplifica-
tion factor n as 2.5%.

In the main difference between the work presented here and that
previously done (23) and (105), is that the initial rate of growth of the
fingérs, for a given situation, is predicted to be smaller.. The quanti-
tative measure of this difference is given by the respective expressions
for n in Equations (100) and (102). The criterion by which it can be
estimated whether or not the morecomplex solution differs from the
simpler one in any given problem is given in Equation (108).

Examination of Equation (107) shows that the term (pl + pg),
arising from unsteady (*9) damping always stabilizes the flow, i.e.,

ot
makes n smaller. The term (p2 —pl) stabilizes only when p, (displaced
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fluid density) is larger than P and makes the system more unstable
otherwise,

The assumption that the flow is potential is basic to the
analysis. Therefore, some additional justification of its validity is
considered necessary.

The formation of a rotational boundary layer is usually asso-
ciated with flow parallel to a solid boundary. For small perturbation
amplitudes, the flow considered here is predominantly normal to the surface
of separation of the two fluids. In the treatment of unsteady boundary
layers in homogeneous fluids, the first approximation to the flow for
small times is usually taken to be the potential solution. This is
illustrated for the case of objects started impulsively from rest in
Schlichting (109), page 207. Immediately after the start of the motion,
the flow in the whole fluid space is irrotational with the exception, of
a very thin layer near the solid boundary. This comes about because, in
the very early stages, not enough time has elapsed to allow the formation
of any significant boundary layer. It can easily be shown that irrota-
tionality is usually formed by diffusion of vorticity from solid boundaries
at which there is no slip. It is one of the basic postulates of boundary
layer theory that viscous flows are irrotational at sufficient distances
from solid walls. In the problem solved in this section, there are no
solid boundaries present, The fluids extend infinitely in the directions
perpendicular to the flow, and semi-infinitely in the directions normal to
the separating interface. There is thus no solid boundary which can cause
vorticity diffusion., Since the viscous fingering problem is characterized

as flow which is essentially normal to the interface, in its early stages,
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and without the influence of solid boundaries, the potential flow
assumption is indicated. In any case, the initial flow can always be
assumed to be potential, since the form of the perturbation can be
arbitrary. This amounts to imposing a potential flow perturbation on
Equation (92) and computing the resulting stability.

Experimental data for flow in homogeneous fluids can also be
advanced to support the assumption of an irrotational perturbation.
Taylor (120), in computing the stability of interfaces between homogeneous
liquids accelerated normal to their planes, assumed that the flow was
potential even though the analysis was supposed to apply to real liquids.
Lewis (76), in a subsequent verification of this theory, found that the
instabilities were propagdted in accordance with potential theory as long
as the height of the perturbations did not exceed 40% of the distance
between fingers. Air-water, water-carbon tetrachloride, benzene-water and
air-glycerine pairs were accelerated at up to about 50 g in a channel of

n n

cross section 2 - 5 by 5 - Since the resulting fingers were observed to
be three :dimensional, it could be concluded that the flow is potential in
the initial stages even though the fluids were viscous. Since flows in
porous media are considerably slower than those observed by Lewis (76),
it is presumably safe to conclude that the initial stages of instability
in porous media will also be irrotational

It remains to demonstrate the persistence of irrotationality
in the flow field if the fluid is irrotational in the state of rest. The

equations governing vorticity diffusion have been developed on page 210

of Rouse (103) for a homogeneous fluid. Retaining the Laplacian
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in Equation (90) and performing the appropriate manipulations, the equa-
tions for diffusion of macroscopic vorticity in porous media can be

derived. For example, if

- 5 -
®, = ou _ ov Darcy vorticity (109)
ox Oy
then,
DB — al) — aD _ ab 'VZ_ H‘Bz
= = = = + & — + ®, - 22
bt - Pxox TPy oy TPz TV V%2 T ok (110)

likewise for the other vorticity components. If the pseudo-kinematic
viscosity v' is zero, then the right-hand side of Equation (110) is zero
in regions of the flow field where flow is irrotational. As long as no
non-slip conditions are imposed in the region in question, there is no way
that vorticity can be introduced. In the problem of viscous fingering,
the fluid is irrotational (uniform flow) far behind the separating inter-
face. Since the substantial derivative (moving with the fluid) of the
vorticity is exactly zero far behind the interface, there is no way that
the vorticity itself can change, and the total flow field must be poten-
tial at all times and places.

Finally, it is to be shown that no net vorticity is diffused into
the macroscopic flow from the microscopic velocity gradients. The total
vorticity'&é in a small fluid element &xdydz (containing many pores) must

be the sum of all of the microscopic vorticities.,

1 o _ oV
Wy, = 3 f (a—_ 'é;)d’ﬁf
¥

>
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But, from Equation (109) ff., @, must be zero. This means that the net
amount of spin of the fluid particles in the pores in element dxdydz is
zero, Since the microscopic vorticities are certainly not zero at all
points, the conclusion can be drawn that the statistical properties of
the porous media are such that 52 is zero, That this is physically
reasonable can be shown by the following example. In the very slow flow
of a viscous fluid past a sphere, the vorticity is, in general, finite at
any given point. However, from considerations of symmetry, the total
vorticity in the flow field is zero. A given fluid spin at a point on
one. side of a plane of symmetry is balanced by an equal and opposite spin
at the point's mirror image. Since the porous media can be visualized
as an isotropic assembly of particles it is to be expected that the total
vorticity in a fluid element will be zero by virtue of the symmetry of
statistical properties.

The results of Equation (110) ff. are that the flow will always
remain potential if it is potential far behind the interface, and that no

vorticity can be diffused into the flow field from the pore walls,

B, Viscous Damping of Unstable Fingers

The previous section treated the problem of the effect of
unsteady and .inertial damping of instabilities generated in displacement
processes in porous media., In this section, the problem of the effect of
viscous damping on finger formation and growth will be considered. The
developments of Chuoke, et.al. (23), Saffman and Taylor (105), and the
previous section of this thesis consider stability from the point of view
of the momentum balance only. Since the flows under consideration are

dissipative in nature, it is reasonable to consider the possible influence
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of the energy effects on stability. The object is to establish, on the
basis of energy considerations, the effect of the pseudo-viscosity p'
(defined in Equation (84) ) on the stability of the interface in the sys-
tem shown in Figure 27. The description of this system is given following
Equation (93). The minimum unstable wavelength will be determined by
computing the necessary relation between the time rate of change of the
potential plus kinetic energy and the various rates of energy dissipation
within and on the boundary of the fluid body.

The core of the analysis is that the Darcy velocity gradients
duj.
and on the surface of the volume element shown in Figure 28. The velocity

do, in fact, give rise to macroscopic shear stresses on the inside

field obtained for the potential flow of Section IIIA will be taken to
provide a uniformly correct description of the flow for purposes of
computing the energy terms. This amounts to assuming a viscous, irrota-
tional flow on a macroscopic scale in the areas in front of and behind the
interface. The velocity field is given rigorously for small perturbations
by the potential solution, and the energy terms (for example, the dissipa-
tion function) follow from it according to known principles. Of course,
the dissipation due to gross angular deformation can only be construed in
a macroscopic sense, i.e.,, as limited to the Darcy approach to porous

media,

1. Theoretical Development

The generalized work-energy equations for fluid motion in porous
media will now be derived. The general impulse-momentum equations for the

unsteady case were derived in Section IIIA, and are (cf. Equation (89) )
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1 . . 1 OTs 3 U+

‘—'{aul +u. aul}:_i_a_P +X,+—8_lél_“'__]; (lll)

¢ -9 o P OxXy  px

where Tij is the deviatoric stress tensor, related to the velocity gradient
according to Equation (84). The velocity u; represents the total perturbed
velocity. To transform the left side of Equation (lll) into the appro-

priate energy term, notethat, for example,

Du _ du + L 9 (u S ) + v (él—l-u-éz (QE__§E)

Dt ot 2 x oy ox dz ox
or, since the flow 1s considered irrotational

2

Dug 943 13q

D ot 2 oxy
Then, Equation (111) becomes

1 [du; . 1368 1 Jdp 1 0Ty _ pUi

13y 1397 13,y L3y ww (112)

g Lot 2 ox; P ox; TP . Pr

J

The total perturbed flow is the sum of the unperturbed (ﬁj) flow and the

disturbance flow u!'
J

U, = E. + u', 11
§= (113)

where u' is the disturbance velocity, and ﬁj is, in this case, simply
J

the uniform velocity V. The total pressure is the sum of the unperturbed

pressure p and the disturbance pressure p',
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Substitution of Equation (113) and Equation (114) into Equation

(112) gives,

Lfag 1 o R aa
g L ot 2 Bxi J ox Ox 5 _EI axi
, _ (115)
i S
K 1 o) Bxi Pk

But, from Darcy's law for the undisturbed flow

136y
X, --—=— -3 _9
i P Bxi o

Also,

5, =0 since u, is a constant (V) .

Since_the perturbation velocity is negligible compared with gross velocity,
19oq'
2 ox

1

is deleted from the equation,

The final equation for the disturbance only is,

1 - + - 43 - F (116)
¢ Lot Bxi o Bxi o Bxi o

{aui N auz} 13p' 103r., pul

Multiplying each of Equation (116) by its respective perturbation

velocity ui gives
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Qjr
1

Using the incompressibility condition —= =0 to eliminate the
X3
third term on the left and the second term on the right, and integrating

with respect to a moving body of fluid gives

2 _ d(ulu. 1
éii[q'd_ﬂf-}ljua_(u_luﬂl —f%— ")d’sf
2¢ 3t % ¢ dx, Py O%y
= [T (1..ul)d¥ - — .. —3F - — 'ad¥ 118
T i x5 (7y 594) o i Tij axj Pk é 4 (118)

Converting the appropriate volume integrals to surface inte-

grals by means of Gauss' theorem,

1 9 2 1 1 1
=— 2 [ q'@¥ + 3 [ ngVuluidsS = - = [ n.u'p'dS + = [ 7,.ulnsdS
2 Ot 4 g5 psll pg HIY
1 oui B ?
- = —= - a¥
0 é Tij x, a¥ Ok 4 4 (119)

Where n, indicates the appropriate normal components of the quantities
i
in question. The integrals in Equation (119) represent, in order of

appearance
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(1) Time rate of change of kinetic energy of the system.

(2) Rate at which energy is being convected into the system,
(Cross-linked energy effect).

(3) Rate of working of external forces on system.

(k) Rate of working of surface stresses on system,

(5) Rate of energy dissipation in the volume of the system
due to macroscopic angular deformation in the flow
(dissipation function).

(6) Rate of (Darcy) energy dissipation due to viscous drag

of the fluid on the pore walls.

The quantity Ej is the uniform velocity V in the z direction. Converting
the expressions in the surface integrals of Equation (120) to equivalent

forms gives,

2 .
9 [ q'a¥ + e s Vw’(u'§§4_v'§1+.w'§5 )as = - [ p’(u'§§.+v'§1+w'§5)ds
¢ oz ¢ 5 on on on S on on  on
ox Ay | oz
+ [(uir #vir 4wt )T+ (ulr 4T #wit )T+ (u't 4vit 4wt )TwdS
5 xx Xy Xz’ dn yx vy yz’ dn ZX zy z2 an
! 2 ,
-y O gy _ B [ q'a¥ (120)
¥ 9 ox, Ok

0 )
It will now be shown that o and oy are negligible compared to QE under

on on on

the conditions of the present problem.

The surface in space defined by Equation (94) is,

nt k
z - Be cos — x cos —y =0 (121)

K
J2 Je



-130-

ox
The quantity S— is the rate of change of x with respect to arc length
n

along the normal to the curve of the perturbation (cf. Kaplan (60),

pp. 107-9). The unit normal to a curve is, in general

e ad =
=cosal + cospi + cos yk

where

cos @, cos B, cos y = direction cosines

e e

i) j’ k’)
A vector which is normal to the surface defined by Equation (121) is,

= k -ﬁ =
VF = - — Be tsz.nk cos——y l - l—f‘—-BentcosE—x s1n——y + k

J2 NERRYE: J2 NERNF

- - -
=al +Dbj + k

unit vectors in x, y and z directions.

where F (x,y,z) denotes the function defining the surface in space. The

direction cosines are then calculated as,

dx @ —2
cos @ = — =

o Val+be+l
cos B = % = o

on a2+b2+l

oz 1

Cos y = — = —————
7 on Va2l

The assumption involved in the first order stability theory is that the

maximum height of the perturbation is not significant compared to the

wavelength A, i.e.,
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25N 2 Boay < < A

or
2ﬂ~/_2Bent < <1
A
but,
L ey
Tk

Therefore, the inequality is

kBe™® < < 1 (123)

It is easily seen that

2
2. 2.
% B?eentsingjgg L cos?%iy +£— B2e2ntcos‘kx,sinjg_y < k2B2e2nt
J2 Jor 2 J2 {2

From Equation (123), Equation (124) and the definitions of a and b in

Equation (122), it can be concluded that,

a + b < <1 and a<<1l, b<<1l

Therefore

ZHyg; Hyg; Xy, (125)
on on on

The results of Equation (125) substituted in Equation (120)give

the final form of the work-energy perturbation equation as,
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o 9 2 2
o 3t éq'dv + §¢é Vwids + é p'w'ds - é (' 4V T, #W T, )AS
! 2
¥ ij PK 3

It is necessary to be quite clear that these energy terms apply
to the perturbation only. Continuity of stress in the z direction at the

interface between the fluids requires that,

+T_+0 =T _+7T +0 = d?cl+02 (127)
XZl. le ZZl XZ2 yZ2 ZZ2
But
dw+
o == py +2u) L =-p, 4T
229 1 1 3z 1 224
Vo
1
Uzz2 == Pp + 2 Sz =- Pt Tzz2

using Equation (84) in Equation (127) gives

- ) . awi . BU{L aVl 1 Bwl aU.i
PR A gt (Tt i () (128)
_ - al12 aVe v dwh  dup
B, + Dp + 2u, + ( ) +u, (= + ) + o (C )
2 e 232 2 2 ‘d3x oz % 2=b

To.compute p on z = b, note that

' = p o |° + 12
P,b = Pz0 * 2 z=0 (129)
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Also,
3  dp',
= (P +p' + (5 #=—) Db+ -mm- 130
P (5 +0p )z=o (az oz ) z=0 (130)
Combining Equation (129) and Equation (130) gives
— dp
1= - - = b + —=-- 131
P20 pz=b Pro ~ 3z |z=0 (131)
But
- Vz
P =-5=- e

K

and p is given by Equation (97) derived previously. Combining these

results in Equation (131) yields

pé:b = | - Q%X + % g% + %2 + higher order terms o (132)

Solving Equation (128) successively for p{, and p), and using

Equation (132) in each case gives,

1
Bl M w oV
p, = (;—--,;g)Vz + (pq-py)E2 - pav oV | P2 09 4 Hpdp
1 2 ot Ko

-+

1 a ! ! ) 1 - S us ! a :
2(“2 5_2’_2__ ulg—wzi) + “2(8V2+8u2+awg+ “u2)

dx Oy Ox Oz

N ' 3 t avv 3 t
Hl(a:;l"' o PR R B o7 (e +e;) (133a)

oy X z

!

\ 00 0]
=-(E_]_-.-E_2_)Vz-(p -p )gz-ﬂﬂ_+pl 1 4+ H1®1
2 K1 K2 e g g 3t Tk

' BWi ,BWé 1 dv] Ou] ow] oy
PRl Eu ) ST T RS

Bvé . Bué N Bwé . 8ué
ox Jy Ox Oz

ua( ) - o (eq+cp) (133b)
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where
® designates a perturbation velocity potential

¢ 1is the porosity.

The velocity potentials and the perturbation to be used in this problem
are given in Equation (95) and Equation (94%), respectively.

Substituting Equations (95a) and (95b) into the equation for
work-energy (Equation (126) ), performing the integrations, and equating
the form of Equation (126) for phase 1 to the equivalent form for phase 2

(the left sides of each form of Equation (126) being equal to zero) gives,

2
n + ' 1
n7(e1tea) V(pympy)nk - 2( J2-1) (uy#uo)nk + n(%+ Bl

¢ — 5 1

i [(t% - v (pl-%)g} k- o =0 (154)

The surface integrals in Equation (126) are evaluated across 1 wavelength
each in the x and y directions, the boundaries falling at the nodes of the
perturbation. Volumetric integrals are evaluated from z = o to + oo,

It can be seen that the stability equation developed by the

work-energy approach is identical with that developed by impulse-

momentum (Equation (99) ) except for the term in (ui + ué).
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The expression for n 1is,

-1 )Vk ' )k
(G2t - R - oo + ]

2(91 + p2)

¢

(135)

[(‘:_2+%)_(F>_2:%1>_VE_ 2(~/—2~l)(pi+pé)k2}2+ u(plmg){[(*@ %)v

+(02-pl)g]ke§ki}

2(py + py)

¢

In the case of viscous damping, the stability criterion is not
changed. Examination of Equation (13L4) shows that Equations (101), (103)
and (104) hold whether the flow is damped in the manner described in this
section or not., As previously discussed, only the value of n and the

wavelength of maximum instability are changed. A series expansion n gives

B2 Bl
(ko *%) - (p2 -p1)Vk - 2(2-1) (g tap ) 2
. R I X
2(p1+p2) 2 = 8 = 16 =
““‘EZ“"“ (136)
where
“(ol+pg)-{ [ V + (pap1)e ] k G*kj}

¢ [(%%*;%%) - EEg:%;lYE - 2(~fé-1)(“i + ué) K2 ]
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Examination of Equation (136) shows that the viscous effects contributed

by (4 + ué) always damp the flow.

2. Discussion

The boundary condition imposed on the solution at the interface
is given in Equation (127) and states that the stresses in z direction
must be equal. The perfectly rigorous boundary condition at the inter-
face is that all the stress components be balanced, not just the normal

component of the stress, i.e., that all of the following equations be

satisfied.
cxxl %’é + -ryXl gy; + szl —g—:‘; = Gxxg %xr-l + 'ryx2 g% + szg —S-f; (137a)
1'xyl g% + Uyyl %Z‘ * oy :z Xy, g’_é Uyyz 2Z * zy gf? (13T0)
Txz) gnx ¥ vz, % ¥ Uzzl % ) szg g% * vz, %i- " ez, % (157e)

These equations represent the equality of the stress components on the

fluid-fluid interface.

From Equations (95) and (84),

( av - (Akgentekzsing—x cos )
xy = Ty =P Sy T " 2" U2

il

1
I
=)
|

(224 2
Xz zx P Bz dx

=
]
4
n

p@é(Akg nt k251%%rx co

%]ry)

1]
I

= '(§Zu+§ﬂ) V@(Akg ntekzcos-li—x sin——y

T,y =B :
e 2y dz 3y Ja2o 42

Decomposing the normal stress into its vector components,
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where

g, = total stress (normal plus deviatoric) in the i direction.

It has been shown that

. dy 2

dn on on

for first order theory.

Then

ne

7 7

n zz

ox :
The question arises as to whether the termg -—<——oro —Ezlmay, in some cases

Xan yan

be of the same order of magnitude as the deviatoric part of the stress

component in the z direction, ¢

z° Since o, 88y, is largely of order

ox
pg; (neglecting gravity and higher order terms), and the deviatoric
component of 9, is of order pigﬂl, a quantitative estimate of their
z

relative magnitudes can be determined.

From Darcy's law,

P =~ E%i (neglecting gravity)

Then, from Equations(121), (122) ff., and (95) p%§ is of order
uVv
— kBeeantcosek— X cong— y

k J2 J2

! éﬂlis of order
Z

k k
' A k2eNteKZeoos™x cosT
1 Je PR
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The ratio between azzand the deviatoric part of the normal stress

(Tn ¥ TZ) is then, (using n = %5 from Equation (95) ).

ox
o Vb
on
b (138)
PRTCLAN T
dz
Equation (138) shows, that regardless of the value of ®V__ the ratio of
M kD

Oy to the deviatoric normal stress can be made as small as desired by
making b (height of perturbation) sufficiently small (n is not dependent
on the amplitude of b).

Since the theory specifies that any instability however small

will magnify under certain conditions, it is seen that the size of b
presents no restrictions. Since the x and y components of stress can
thus be made negligible without affecting the conditions of stability.
it is considered sufficient to satisfy only the normal (z direction)
stress continuity condition at the interface.

Evaluation of Equation (126) shows that

duj
L. —= = ' + v + W' das 1
é Ty 5 OF é (u T TV Ty Y ) (139)
duy
Tijg;— is recognized as the macroscopic dissipation function, repre-
J

senting the energy dissipated by macroscopic angular deformation. The
surface integral represents the rate of working of the viscous stresses
on the fluid boundaries. These quantities are equal and opposite for

potential flow. Equation (126) then states that the change in kinetic

energy content is equal to the kinetic energy flux plus the sum of the
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work done on the surface minus the volumetric Darcy dissipation. The
result is quantitatively identical to the momentum approach except For
the terms in u'.

The postulation of the stress-deformation relation of Equation
(84) is admittedly heuristic. In fact, the relation may ultimately turn
out %o be non-Newtonian. However, it 1s argued that the general struc-
ture of the solution should be given by Equation {(13L). 1t should be
realized that the hypothesis contained in Equation (84) and (91) {(namely,
that the stress effects can be separated into the integrated microscopic

— . U4 .
(rD_) and the gross macroscopic {u' —1) parts) are not meant to describe
i %

2

the exact details of the viscous dampiﬁg s0 much as the net effects.
Taylor on page 390 of (I103)has given a succinct statsment of this kind of
macroscopic approach in speaking of his assumption that vorticity is
transferred unchanged by turbulence in homogeneous flow; he said, "Thig
is clearly a very drastic assumption, because it is certainly untrue in
details, though it may be true when considered in relation to the effects

produced on the mean motion."

2, Effect of Capillary Pressure Gradients on the Hydrodynamic Stability

of Quasi-Steady Flows

The computation of the stability of quasi-steady flows, as pre-
sented in Section IITA, did not take into account the possible effects
of saturation gradients near the fluid-fluid interface., The results ob-
tainsd are strictly correct only if no saturation gradients are present,
and the interface is sharp. Experimental verification of the simpier

form of the stability equations has been obtained on Hele-Shaw cells .,
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Chuoke and co-workers (23) showed that the critical velocity (cf. Equa-
tion (104) ) was much higher than predicted from the sharp interface
theory. That is, real systemsof porous media were much more stable than
the simplified analysis predicted.

In two phase flow in real porous media (as distinguished from
the Hele-Shaw work), saturation gradients will exist near the transition
region between the two phases. It is suggested that these saturation
gradients give rise to capillary pressure effects in such a manner as to
tend to cause stabilization of the flows, as observed in practice, To
handle the problem analytically, it is convenient to assume that the
saturations are invariant except in the immediate neighborhood of the
interface. This saturation transition region has been treated experi-
mentally and theoretically in Section IIB of this thesis. The object of
the analysis is to incorporate the effect of these saturation gradients
on hydrodynamic stability insofar as the saturation gradients give rise
to (capillary) pressure gradients, which in turn will affect the pressure

balance.

1. Theoretical Development

The physical model assumed is exactly the same as that described
in Section IITA and illustrated in Figure 27. The saturation gradients
behind the interface are the same as those illustrated schematically in
Figure la., The fluid-fluid "interface" is to be taken arbitrarily near
the point of farthest advance of the displacing phase, i.e., the point

z in Figure 1 a.
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The argument is as follows. Capillary pressure 1s a known

function of S, But S is, from the work of Section IIB, a known function
of z. Therefore the capillary pressure gradient must be a known function

of z according to the equation

oP oS
e 4P (140)
Az ds oz

The strict definition of the mean interface will be that it is

located at the point z_ - &, i.e., at a distance & behind the point of

o]

farthest advance of the displacing phase 2z Phase 1 will be defined as

0°
that which is located behind the interface z = b, cf. Figure 27;
phase 2 being defined as that which is located ahead of z = b. The
pressure in phases 1 and 2 will be changed due to the saturation gradi-
ents near the interface. The effect of these capillary pressure gradients
will now be examined in detail,

The present analysis is not going to include the effects of
(a) unsteady damping (b) inertial damping (c) viscous damping. This
simplified approach is considered to be clearer and more illustrative of

the phenomenon to be examined., Direct integration of Darcy's law gives,

in the absence of capillary action

Vz
p. = - H1 - p.gz + H191 + D (141a)
l K l K o
1 1
VZ o}
p. = - 22 - pogz + £2%2 o P (141p)
2 ko Ko le)

where

pressure on the interface in the absence of the perturbation.

ke
O
il
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Experimental measurements indicate that capillary effects will
cause a reduction in the wetting phase pressure and an increase in the
non-wetting phase pressure. These pressure changes occur over and above
the hydrodynamic pressure gradients occurring in the non-capillary flow.
Accordingly, the actual pressures acting in the non-wetting and wetting

phases will be written as

= dP, 0S
plc =Py - (a = s Sz ZOZ) (1k42a)
neglecting higher order terms
_ dp, oS
P, =DP,* (e +35 37 z) (1k2p)
¢ o)

where
subscript ¢ indicates the total pressure acting under the
influence of capillary pressure effects.

is a constant to be determined.

o

The conditions which must be satisfied at the interface (z = z ), in the

o
absence of the disturbance are;
b +D
lC o EC o
2 " Fo
Ps - Py = Pc
Clo Clo o]
where
P, = capillary pressure existing at the saturation occurring
o

at the interface.

p, = mean pressure at the interface,
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Solving these last two equations gives

o]
B | ot (1433)
= fo 143b
Plc =P~ 5 (1h3p)

Comparison of Equations (143) with Equations (142)(using Equa-

tions (141) on z = o and in the absence of the perturbation), shows that

P

= c
a = —59 and that..the. resulting expressions for the phase pressures under

the influence of capillarity are, from Equations (1L1)

Pe, ap, oas
o c p1Vz 19y
P. =p. -~ — ~— =— | z = - P8z + (1kka)
1. "© 2 4 9z |, Ky 1 Ky
Pe dP. oS eV \
_ ¢] —-c =P CHDVZ CHo®o
Po TP Pt as 3z |oF T T, T PeBE Tt (1kbo)
c 2 2
Then continuity at the interface requires that,
*
- = - P 14
Py " Pp Po+ 0 (C +¢C)) (145)

The displacing phase is here assumed to be the wetting phase. Substi-

tution of Equations (14k4) into Equation (145) yields the value of n as,

o, M1 Mo K1 dPe o8 5
=4y EE-TL) v o4 (p,- - == k 0%k’ =0 146
n(2+2h) L (28D v+ (ope s - 50 5 . (146)
The stability criterion is
Mo K] dP, oS )
(EZ-2) v+ (pppde - S 2| ¥k =0 (147)
Ko Kq as oz |z
©)
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The critical velocity is given from

-0 (148)

Provided the perturbation contains wavelengths greater than,

1
e[ (149)
(2 b V-V,

The wavelength of meximum instability is ~3 A, from %ﬁ = 0.

2. Discussion
For purposes of making the previous calculations, it was
assumed that the real. system (with saturation gradients) is replaced by
the‘following model. The porous medium behind the interface was considered
to be filled with a homogeneous fluid of viscosity ul. The pressure in
this phase is, however, assumed to be reduced by the amount indicated by
the capillary pressure gradients. It 1s also assumed that the saturation
distribution underlying the process near the interface is changed negli-
gibly from the steady state by the disturbance.
The position of the interface z = b can be made arbitrarily
close to Zq (cf. Figure la)by making the quantity & arbitratily small
(the mean interface is at z
dP, 38

quantity = (SE) of Equation (147) for the purpose of quantitatively

determining the effect of capillary pressure gradients on flow stability.

o - ®). It is then possible to compute the

Within the limits of the stated assumptions, this quantity can be calcu-

lated approximately as, cf. Equation (29)
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iz, 20
ds oz

_ V[ aguy , Aok (150)
zg L Dy Vg

It will be noted that Equation (146) predicts that capillary pressure
gradients will tend to stabilize the flow in the case where the dis-

oS
placing phase is wetting, since in this case, both 552 and — are

oz

negative. In this case where the non-wetting phase is being inJjected,

the definition of capillary pressure becomes

and Equation (146) becomes

Mo M1y [z ML dPe 95 3
nCe ) - [(Kef.nl) V+ (o0 )8+ 35 5, =0 (151)

] k -o%k
z
o

where S is, as before, the wetting phase saturation. Equation (151)
shows that capillary pressure gradients will also tend to stabilize flows
in which the non-wetting phase is being injected, since in this case é;
is positive and %gg is negative.

Experimental data on systems where capillary damping is pre-
sumably taking place is almost non-existent, except for some given in a
paper by Chuoke, et.al. (23). An example calculation will now be made
on one of these experiments., Water (u = 1 cp) is displacing oil (u =
200 cp) horizontally from a sand pack of permeability 200 Darcies at a

volumetric velocity of .115 cm/sec., The interfacial tension is 25 dynesfm.

Since the pack is unconsolidated sand, the relative permeability curve of
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Figure 3 will be used. The Leverett J factor curve of Figure L4 is used

for the capillary pressure relation. Figure 5 of Chuoke, et.al. (23)

shows that the experimentally observed finger spacing was 3 to 4 cm.
The stability condition can be written, from Equation (146)

and Equation (150), as (gravity neglected because of horizontal flow)

M M a
{ﬁ-_i-_g_l}vcwpg-pl)gw (152)
2 f1
asul . A . .
The term i) represents a pseudo inverse mobility. a2 1s determined as

1
4,0 by the stabilized zone technique (57) and Dl is .025 from Figure 3.

In the absence of gravitational effects (horizontal flow in a very thin

flat plate), Vc = 0 and the wavelength of maximum instability is

o :
My = [(ue R R } (153)

The naturally occurring wavelength (xm) is computed from Equation (153)
as .364 cm. A in the non-capillary case (%%%l = 0) is computed to be
.160 cm. Larger wavelengths are associated with increased stability., It
can thus be seen that the capillary pressure gradients tend to stabilize
the flow appreciably. However, the degree of stabilization is not enough
t6 account for the 3 to 4 cm wavelength actually observed in the experi-
ment, although the correction is appreciable and in the right direction.
The stabilizing effect of capillary pressure gradients can be
illustrated more vividly by assuming that the above experiment is con-

ducted.with the water displacing the oil upward at a density difference
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1b
of 15 ‘"g . The non-capillary critical velocity is then computed from
ft
t s
Equation (106) to be .658 I and the capillarity stabilized critical
day

velocity is 3.36 gﬁy from Equation 152, The critical velocity determi-
nation is thus expected to yield a more critical test of the present
theory than could be obtained from measurements of naturally occurring
wavelengths. Unfortunately, no experimental data on critical velocity
are currently available,

For neutrally wet materials, capillary forces are presumably
not supposed to exist. Equation (146) shows that, for given fluid-rock
properties and displacement rate, the neutrally wet materials should
exhibit the highest degree of instability because of the absence of
agg (%%), However, for porous media classified by them as neutrally
wet, Chuoke, et.al., (23) observe that the factor 2+ 3 must be replaced
by 30 in order to achieve an accurate correlation, This means that the
neutrally wet materials do, in fact, show a greatly increased stability
over the predictions of non-capillary theory. The cause of this increased
stability is unknown at present.

The increases in the naturally occurring wavelengths up to
factors of 20 (compare 3-4 cm from Figure 5 of Chuoke, et.al. (23) with
the computed non-capillary A of .160 cm.) suggest that, although the
present analysis gives corrections in the right direction, the magnitude
of the stabilization is not accounted for. Also, severe difficulties are
encountered in obtaining accurate enough experimental data to yield
quantitative predictions. This arises from the fact that the denominator
of the quantity in brackets in Equation (155) must be the difference of

two numbers whose magnitudes are very nearly equal (Eg- Bl and 8201 )

K2 Kl KDl
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if any appreciable correction in Am‘is to occur. Since the accuracy of
these quantities is, at best of the order of 4% a reliably calculated
increase in Ay of a factor of more than about 5 cannot be expected (cf.
Equation (153) ).

However, since the volumetric velocity V of critical stability
is normally of greater practical significance, the conclusion can be
drawn that the present analysis will yield useful results. For example,
the calculation on page 146 shows that for water displacing oil, capillary

ft
pressure gradients can increase the critical velocity from .658 a;; to
ft

5,56 day ° This factor of 5 increase can be accurately computed from
other experimental measurements on the porous medium (i.e., k, Kis Ko ¢
ete.,)

It can be concluded from this work that Equation (146) could
represent the minimum degree of stabilization possible in real porous
media., Since the data of Chuoke, et.al. (23) indicate that the degree of
stabilization is even greater than this, we must turn to some other
stabilization mechanism to account for the results. This mechanism is

thought to be related to annihilation of the fingers by capillary cross-

flow, and will be discussed later in Section ITIG.

D. Stability of Plane Interfaces in Accelerated Flow

Previous work in this thesis has dealt with the problem of
stability of plane interfaces in quasi-steady flow (Section IIIA). The
basis for those calculations was that the fluids were initially found
flowing at a constant velocity V and separated by a plane interface. It

is now proposed to examine the case in which the fluids are accelerated
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continuously from a state of rest. Taylor (120) has examined this

problem for homogeneous fluids.

1. Theoretical Development

The model to be assumed is that shown in Figure 27 except that
phase 1 is displacing phase 2 at a velocity equal to alt, where a; is the
acceleration. Going through exactly the same development as in Section

ITIIA yields as the counterparts of Equation (97) and Equation (100),

respectively.

__ev'V  p 00 _He1tz uo
D= - + L2 L KO s(g+aq)z+ (154)
g g ot Pk 1 ©
where the kinetic energy term has been neglected and
(155)

“leyeg) (o -p Juarts (24 BLy_ | (22 Bl g 4 (ppepy)( >] ot7=0

- +n (==+—)- —- —=)a + - g+a k40% " =

¢ ¢ k2 K1 ko K LY T AP2TPLAETRL

where ay is the upward acceleration. The axes are again fixed in the plane
of the unperturbed interface. The inertial body fovce term is introduced

by subtracting pa.z from the pressure in each phase. This downward pull

1

is the force experienced by an object which is being accelerated upward.,

2, Discussion

Examination of Equation (155) shows that the acceleration tends
to stabilize the flow when the acceleration is upward and to make it less
stable when downward (assuming lower fluid is always the more dense ﬁnder
the influece of gravity). Equation (155) also shows that, unless a; is

significant compared to g, then the effect of acceleration is negligible
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as far as the stability is concerned. It can thus be concluded that for
vertical flow in real porous media, the effect of any usual acceleration
on the stability is negligible. (Compare, say, 1073 ft/sec2 with 32.2
ft/secz). The stability is thus a function only of the instantaneous
velocity and not of the instantaneous rate of acceleration.

For flows in which gravity can be considered negligible, the
rate of acceleration could be an important factor, however. Neglecting
the first two terms and g in Equation (155) (unsteady and inertial

demping effects) yields,

P2 M1y | || (M2 M1 - —atd -
? Ex2+n1)] [(ng nl)alt * (e pl)al} S (16)

These conditions will normally hold in horizontal flows through porous
media whose vertical thickness is small compared to the lateral dimen-
sions. The consequences of Equation (156) with respect to critical
velocity, critical wavelength, and naturally occurring wavelength are

the same as those derived by Chuoke et.al. (23) except that al is replaced
by &g.

The significance of gross fluid acceleration on oil-water move-
ment will now be illustrated by an example calculation. Water of u =1 cp
is being injected into a thin oil bearing (u = 2 cp), horizontal, linear
porous formation (kx = 1D), at such a rate that the volumetric velocity is
given by V = a t with a; = 1070 rt/sec®. Compute the distance which the
interface has moved at the instant that the flow becomes unstable if the

acceleration is assumed constant, The time at which instability will .

occur is given by t = P1 - P2 . 9.83 x 1077 sec. The distance moved in
(£2- KL

Ko K1
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this time is

Distance = ajt® = 968 x 10705,

The velocity attained is

V-at=.985x 10712 ft/sec = 3.1 x 1072 ft/year.

It can be concluded that, in the horizontal systems described above,
instability is achieved nearly instantaneously even under the influence
of the largest accelerations and the largest mobility commonly found in
reservoir problems. As in the (non-gravitational) case, the critical
velocity is still virtually zero. Gross fluid accelerations thus have
no significance on the stability of displacements occurring in under-

ground reservoirs.

E. Stability of Stratified Flows in Porous Media

The previous work has dealt with the stability of flows in
porous media when one fluid is displacing another frontally. Many
problems in reservoir mechanics involve the parallel, or stratified flow
of fluids past one another when separated by a more or less well defined
interface. Gravitational drainage is usually the cause of this fluid
stratification, as when oil is found above the water in a producing zone.
Stratification may also occur when the same fluid 1s flowing through a
multilayered porous formation which has zones of varying permeability,

In either case, the difference in fluid mobility in various parts of the

porous medium can generate effects which lead to unstable behavior,
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1. Theoretical Development

It is assumed that two fluids are flowing in the direction
through a porous medium of permeability g separated by an interface
at z =0 (cf. Figure 30). Both fluid zones are assumed to extend semi-
infinitely in the plus and minus z directions and infinitely in the x
and y directions. The z axis is directed positively upward. The pres-
sure drop across any section perpendicular to the zy plane is constant
in each phase.

The perturbation is given by
ik
— (x+
b = Beinte V2 ) (157)*
Note that in this case, the coordinate system is not moving with any
unperturbed interface. It is fixed at an origin which is arbitrarily
assumed to be located in the plane z = O. The total pressure drop
between any planes A and B (cf. Figure 30) of the two-layer system is
assumed to be known and the system is at steady state. Under these
conditions there will be no net cross-flow across the interface. Darcy's
law states that,

K‘l apl K2 BPE

; = (158)
1 Ky ax 2 Ho SX
But, since the pressure drop across both layers is constant

apl apg TEaY MoV
122 H1V1 HBpYo
3% T ox then == = =5 (159)

*
Note: The wave numbers of x and y could have been made non-equal, but
this does not contribute to the generality of the solution,
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Figure 30. Stratified Flow of Fluids in Porous Media.
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If G(x, y, z, t) is the equation of the interface, then

DG oG, 06 9GO _ (160)

Dt ot * uax * vay * oz

But

Velocity potentialssatisfying the steady flow, the Laplace equations and

the vanishing condition at + « are,

ik
_ . 1 (x+y)
o = Alelntekze Ve - Vix = &1 - Vix (1612)

ij%" (x+y)
5 = A elntékze P) -V x

5 = A, X =0, - VX (161b)
Neglect of second order terms in Equation (160) leads to
ob ob
wo=<-+ V— 162
ot ox ( )

at the interface for each phase. Use of Equation (157) and Equation (161)

in Equation (162) leads to

. KV . kVo
A = - : = —_—
1 iB(n + TTE) 5 A2 iB(n + ‘fé)

The Bernoulli-Darcy Equations are, ignoring unsteady effects

12 =
1pqq KAl =
1% .
P, = - — == 4 - p.8z + C 163a
2 -
1 =
by = - — P19 k2% _ p gz + Cy (163b)
2 ¢ k2
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but

. 5@1

2
- ‘ 3
2 \/i B——X + Ji

' 1

4y = (57 g+ (5

In the absence of the perturbation, the pressure on the surface z = 0

is po = , wWhere Py is the ambient pressure at the arbitrarily

chosen origin. The constants in Equations (163) are then evaluated as,

also

00512 | (39,2 (9932

<ax Sy 3z

Note that ¢ indicates the potential of the disturbance only and that ¢

is the potential of the total flow. Then

P1V] 907  p1d;  piVx

= + + - - Z (16k4a
PL=P v % T ., P18 (164a)
) 1 1
PV, O3<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>