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ABSTRACT

In the last two decades, considerable information has become available
concerning thé/mechanism of auditory frequency analysis as it is inferred
from behavioral data. In the first section of this thesis a review of many
of these papers is presented. These include experiments from the area of
masking, frequency discrimination, and loudness. All of the studies are
analyzed in terms of the critical band concept proposed by Fletcher. While
many of the results are consistent with the deductions obtained from this
simple concept, certain relationships still remain obscure. For example, the
estimates of critical bandwidth obtained from masking data differ by as
much as an order of magnitude from the estimates obtained from freguency
discrimination data.

Two experiments concerning the detection of complex auditory signals in
noise are presented. The first experiment employed as a complex signal two
sinusoidal stimuli. Both the duration and the frequency separation of the
signal serve as variable parameters in the experiment. It is concluded that
the complex signal is more detectable than either of the two stimuli which
comprise the complex. A mathematical model, which is a simple extension of
the critical band concept, is presented. The model is based on the assump-
tion that the outputs of several critical bands may be combined in detecting
these stimuli. Two other models, which do not predict the data as well as
the first model, are compared with the experimental data.

The second experiment employed bandlimited white Gaussian noise as the
signal to be detected. A statistical model which incorporates the extension
of the critical band concept as it was used in the first experiment is

presented. This new model provides excellent predictions for the results

vi



obtained in the second experiment. Both bandwidth and signal duration of
these noise signals may be accounted for by this statistical model. The

basic equation for this model is:

where d'opt is a measure of the detectability of the signal, W is the
bandwidth of the noise signal, T is the signal duration, and SO/NO is the
signal power to noise power ratio in a one cps band.

As a result of this experimental work, a general model of the receiving
mechanism is proposed stating that the ear may be likened to a series of
bandpass filters. The output of these filters may be linearly combined, with
weighting constants, so that an effectively larger bandpass can be obtained.

This adjustable bandpass model is contrasted with the fixed ecritical band

concept which Fletcher suggested.

vii






CHAPTER I

INTRODUCTION

An attempt will be made to use behavioral data as a basis for a
mechanistic and mathematical description of the auditory frequency analy-
sis process. The critical band theory, as proposed by Fletcher, is used
as an interpretive device in discussing the research in this area. While
many of the results obtained from such research are consistent and can be
integrated, still several areas need further clarification before complete
unification is possible. Because of this lack of complete integration,
no speculations as to the physiological bases of the frequency analysis
process will be attempted.

A review of the psychological data pertaining to auditory frequency
analysis will provide some definite and quantitative information on how
the mechanism of attention operates in at least this modality. Because
attention is usually considered some process or system within the percep-
tual act, its description should be in terms of the mechanisms or equations
for the process. Unfortunately most existing descriptions of this percep-
tual process are vague, general, and almost entirely verbal. One of the
common analogies used to describe the process of attention is that of some
sort of filtering process. This filtering process somehow allows for the
selection of certain informational aspects of the stimulus and for the
rejection of others. Such a description is very similar to a theory often
used in the area of hearing to explain many of the results obtained from
psychophysical experiments. In this area the concept of a filter is used
in the strict sense to refer to a mathematical operation with respect to the

variable, frequency.
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The thesis may be divided into three main sections. The first section
(Chapter II) contains a review of the research concerned with the problem of
auditory frequency analysis. This review is constructed from papers drawn
from four general areas of research on hearing. The first subsection is a
summary of masking experiments, i.e., experiments where a stimulus is to be
detected in the presence of some sort of auditory interference, usually
white noise. The second subsection includes data concerned with the ability
to detect changes in the frequency of a sine wave stimulus. In the last two
subsections some papers are briefly summarized which have to do with certain
data obtained in loudness experiments and data from masking experiments where
the signals are unknown in frequency. All of the research is viewed in terms
of a single simple model, the critical band theory.

In the second section (Chapter III) of the thesis two new experimental
studies are reported in some detail. The first of these has to do with the
detection of multiple component signals in noise. A model extending the
critical band theory, as well as two other models, is considered in analyzing
the results of this first experiment. The second study deals with an extension
of the ideas developed in the first experiment by applying thlese ideas to a
situation where the signal is a sample of noise, instead of a sinusoid. An
equation developed from theory is suggested for these noise signals. Two
parameters of the noise signal are investigated: (1) the bandwidth of the
signal; and (2) the duration of the signal.

The third section (Chapter IV) discusses what the results of these two

experiments imply about the auditory frequency analysis mechanism.



CHAPTER II
REVIEW OF STUDIES CONCERNED WITH THE

AUDITORY FREQUENCY ANALYSIS MECHANISM

2.1 Introduction: The Critical Band Concept

In 1940 Fletcher (1) introduced the critical band concept. According
to this hypothesis certain masking data may be explained by assuming that
the hearing mechanism acts as a narrow band filter when detecting sine wave
signals in noise. Data from such diverse areas as masking experiments,
frequency discrimination experiments, and even cochlear anatomy have been
snalysed according to this theory.

The assumption of some sort of filtering or resonance process in the
hearing mechanism is hardly new. Ohm's acoustic law is consistent with
such an assumption. Helmholtz speculated about the physiological and
anatomical structures which might provide a means for the analysis. For
many years after Helmholtz the means or method whereby the ear accomplished
its frequency analysis occupies & sizeable part of auditory theory. Theorists
who advanced rival views of how the frequency analysis was accomplished
marshalled physiological and anatomical data to support their positions,
while psychophysical data were not used as crucial evidence. Frequency
discrimination data, for example, were used only to indicate a lower bound
on the number of resonators. Helmholtz (8) could not find as many "reson-
ators" as discriminable pitches. He, therefore, claimed that if two adjacent
"resonators" were activated the perceived pitch would fall somewhere between
the pitches of the two active resonators. Wever (28) points out that had
Helmholtz identified the resonators with the basilar membrane fibers instead

of the rods of Corti, as he later did, this difficulty would not have arisen.
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Masking experiments are largely responsible for an increasing con-
cern regarding the way in which the auditory filters affect psychophysical
data. Wegel and Lane (27) were the first to demonstrate clearly that the
amount of masking one tone produces on another is related to the frequency
separation of the tones. More than a decade passed before another masking
experiment, this time using random noise as the interfering stimulus, led
Fletcher to postulate the critical band concept. This concept specified
in some detail equations for this frequency analysis, or filtering process,
as it operates in hearing.

Since the following sections will use the filter concept as an inter-
pretive device it seems wise at this point to define the concept. Probably
the most general manner of defining a filter is to consider it as a mathe-
matical operator. Given any linear system or mechanism with which one can
define an input and an output, it is possible to define a filter characteris-

tic of the system. Iet the input to the system be of the form
X = A sin 2nft

where f is the frequency of the input and t is time. Then the output, after

steady state conditions have been obtained, can be described in the form
Y = G(f)A sin [Enft - T(f)]

G(f) and T(f) will be defined as the filter characteristics of the device.
G(f) is the gain characteristic of the filter. T(f) is, of course, the

phase characteristic of the device. For the most part, phase effects are
not of crucial importance in the studies summarized in the review; hence,

the function T(f) will be ignored in most discussions. The function G(f)
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is the important transformation which characterizes the filter. Two types
of filter characteristics are referred to frequently in the review which

follows. One is the rectangular filter. For such a filter;

G(f)

]
o

£ - £, ]>0

G(f)

it
Q

If - f0|<¢n ’

where o and w are constants. This characteristic is impossible to build in
an analog manner, although good approximations are possible. The second
filter characteristic is the single tuned or universal resonance filter.
This filter is extremely common in simple electrical or mechanical systems
and it is described in detail by Terman (25). For this filter G(f) has a
single maximum at fo, called the center frequency or peak, and is monotonic
decreasing in either direction from fo' This definition of a filter is
adequate for the purposes of this paper. While this steady state definition
is simple, it is hardly the most powerful means of considering the concept.
Many important aspects of the problem, for example, the transient responses
of a filter, are ignored. For a more detailed discussion of the concept,
E. A, Guillemin's "Introductory Circuit Theory" is recommended.

The concept of a filter will be an extremely useful model in discussing
the data which follow. The claim is not made that this model represents the
only, or, indeed the best, model to apply to the subject matter. The model
is simple, which is a virtue, and it does provide an economical and fairly
accurate method of analysis. In any psychophysical experiment the only
statement that can be made, from the data per se, is that the subject
behaves as though something were true. No stronger statement is ever

intended.
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2.2 Masking Experiments

This section presents a review of the masking experiments inter-
preted in terms of critical bands. Fletcher's original paper is reviewed,
“and his formulation of the hypothesis is discussed. Later work has led
to a modification of the original hypothesis and this appears to provide
a better model for the data.

Fletcher (1) used a random noise source with approximately flat frequency
characteristics. He had the observer adjust the amplitude of a sine wave

"just detectable" in the presence of the masking

signal so that it was
noise. Once this determination had been made the noise was attenuated on
each side of the sine wave signal by a bandpass filter. Once again the
amplitude of the signal necessary to be Jjust detectable was determined.
Fletcher, using a variety of bandwidths to filter the masking noise,
repeated this procedure several times. He found that as long as the

noise bandwidth was wider than some critical value the amplitude neces-
sary to detect the tone was constant. Once the noise bandwidth was smaller
than this critical value the amplitude of the tone could be decreased in
magnitude and still remain detectable. This basic experiment was repeated

using several different frequencies for the signal. Fletcher summarizes

the results of the experiment by the following equation,

c = ._m (1)

where If is the intensity per cycle of the noise, Im is the intensity of a
tone of frequency, f, which is just perceptible in noise, and W is the
~width of the critical band in cps. This equation is applicable as long as

the noise bandwidth is large compared with W, or, equivalently, as long as
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If is a constant in the region of interest. If the noise bandwidth is
smaller than W, Ip will be reduced so that if a square bandpass could be
used, the intensity of the signal, Im,should be proportional to the noise
bandwidth in order for the tone to remain just detectable.

This statement of the equation was & fair first approximation. The
following simple exasmple provides a rationale for the equations. Suppose
the auditory filter is rectangular in shape with a certein width, W.

Assume further that it is possible to produce masking noise with a rectan-
gular spectrum. Let the width of this‘noise be Q- Now, for all conditions
vhere the noise spectrum is wider than W, the tone to be heard must be set

at a constant power level, Im. If the width of the noise is less than W, then

a
the tone may be reduced by the fraction _-1 , so that if the noise is one-half

——

1%)
the width of the auditory filter, then Im may be reduced by that fraction

and still be detectable.

Such an explanation of the equation follows the assumption made by
Fletcher that the auditory filter has a rectangular shape. Without such
an assumption there is no simple rationale for the equation he presents.
Such an equation leads one to expect that the data should fall along a
function consisting of two straight lines. Figure 1 shows the data
Fletcher actually obtained in his experiment. The lines display the two
relations that will obtain, depending upon whether the noise bandwidth is
wider or more narrow than a critical band. The data certainly do not
support the abrupt breaks implied by the lines, but the general trend of
the data indicates relations similar to those suggested by Fletcher. Later
“work (20, 24) has given better approximations to the actual characteristic
of the auditory filter, but the rough square bandpass assumption made by

Fletcher has served to elucidate the major result.
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From Fletcher's study it is seen that the bandwidth of the auditory filter
is strongly dependent upon the center frequency of the filter. This relation-
ship is extremely important, for it has become the major argument in extending
the concept to other areas (1, 13). The bandwidth versus center frequency
relation is displayed in Figure 2 along with other data which yield similar
functions.

It was not until 1952 that Webster, Miller, Thompson, and Davenport (26)
reported data based on the natural inverse of the method employed by
Fletcher in his original work. Fletcher demonstrated that reducing the
noise power some distance in frequency from the signal does not influence
its detectability. Webster, et al., demonstrated that lowering the noise
power in the immediate vicinity of the signal increases its detectability.
Specifically, they employed masking noise which was filtered so as to
produce a gap in the noise spectrum. By presenting pure tones in the region
of this gap they were able to demonstrate that the signal energy necessary
for detection was substantially reduced in the neighborhood of the gap. The
data almost completely supported the contention of Fletcher. The only
departures from the data involved the exact form that should be assumed for
the auditory filters. Their findings supported the position of Schafer,
Gales, Shewmaker, and Thompson (20) who claim the auditory filter is better
approximated by a simple tuned filter. This problem will be discussed
more fully later.

While the research reported above will be used to define the concept of
critical bandwidth,there is at least one other manner of measuring the width
of the critical band which Fletcher has used. This second method of determin-

ing the critical bandwidth will be called the critical ratio method, following
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Zwicker, Flottorp, and Stevens (29). It is called a critical ratio method
since it uses the ratio of Equation 1 above to determine W. This method
is most easily explained by rewriting Equation 1 in a slightly different

manner. Rewriting the Equation 1 in logarithmic form:

-K; K = logW. (2)

log C = 1log Im - log If

Now for values of Im that are at least an order of magnitude above absolute
threshold Fletcher claims C is nearly unity. Hence, by changing the level of
the noise and determining the value of Im’ the number K may be determined.
Fletcher presents data which support such a conclusion (2). Once again
the bandwidth estimates show dependence upon the frequency of the tone.
Figure 2 displays this relation by the solid curve. This solid curve appar-
ently represents an accumulation of data obtained at the Bell Telephone
Laboratories, for earlier Fletcher had presented different estimates of
bandwidth, which are displayed as circles in Figure 2. While no particulars
of the experiment are reported in this reference, the theoretical argument
is similar to that presented above.
Hawkins and Stevens (7) have determined the critical bandwidth by the
critical ratio method. They explored the masked threshold of a pure tone
for a variety of frequency and noise levels, Their noise levels ranged from
zero to a spectrum level 60 db above 0,0002 dyne/cme. Once the noise reaches
a certain level (about 10 db above absolute threshold) the signal power
necessary to just hear the tone is roughly proportional to the noise level.
This relation is, of course, consistent with Equation 1. For lower levels
of noise the data are consistent with a different equation, one which adds

some constant to the external noise. Fletcher has suggested this other
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relation in his discussion of the problem (2, p. 167). The manner in
which critical bandwidih and center frequency vary for the higher noise
levels is shown in Figure 2.

Licklider, Green,and McKey (14) also determined the masked threshold
of a gated sine wave signal in noise about 50 db re 0,0002 dyne/cm?. The
important difference between this and other studies was that in the two
previous studies the signal was left on continuously and the observer
adjusted its amplitude until it was detectable in the noise. In the study of
Licklider, Green,and McKey the signal was turned on for 0.1 seconds and
a two-alternative forced-choice method was used to measure detectability.
Equation 1 must therefore be corrected to include the varisble, signal
duration. Just how this will affect the equation is not known.

In general, for finite duration signals, equations which multiply
signal power and some function of signal duration best fit the major part
of the data (5). Thus, Equation 1 should be corrected by multiplying I,
by some function of signal duration. Since both W and duration act as
multiplying constants in Equation (1) no estimates of bandwidth alone can be
obtained. However, the form of the data when plotted against center frequency
may be compared with other experiments. Assuming duration acts only as a
multiplying factor, it is possible to obtain estimates which are directly
proportional to the bandwidth. Choosing the constant for signal duration to
be 12, the estimates of bandwidth depicted in Figure 2 are obtained.

With the exception of the paper by Webster, et al., the preceding
papers have not questioned the assumption that the auditory filter or critical
band is rectangular. That is, the function G(f) is a rectangle with a certain

height and width which represent the critical band. This agsumption was
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introduced by Fletcher as a first approximation and has had considerable
usefulness. Schafer, Gales, Shewmaker, and Thompson (20) as well as Tanner,
Swets, and Green (24) have attempted to provide a better approximation to
the actual shape of the auditory filter. One of the difficulties involved
in measuring the exact form of the auditory filter lies with certain physical
limitations imposed on electronic filters. Ideally, according to Fletcher's
assumption, he should use a perfectly rectangular filter for the masking
noise. While fairly good approximations are possible a very good electronic
filter may show an amplitude decline off center frequency of 60 db/octave.
If such is the case the response of the filter will change by only an order
of magnitude in power after a change of about 150 cycles near 1000 cps.
Since the critical band is estimated to be about 60 cycles per second at this
frequency the limitation of electronic filtering is obvious.

Schafer, Gales, Shewmaker,and Thompson tried to avoid this difficulty
by constructing their masking stimulus from a sum of sinusoids rather
than by trying to filter noise. First they determined the spacing of a
collection of sine waves in random phase that would produce effects similar
to that of noise. They then repeated Fletcher's original experiment, but
this time, in order to change the masking stimulus, they simply turned off
the outermost frequencies in the masking "noise". The model which appears
to fit the data best is one which assumed the auditory filter is of the
single tuned filter or universal resonance filter.

They obtained bandwidth estimates at three frequencies; i.e., 200,
800 and 2000 cps. Their estimates of bandwidth (in cps) are 21.5 for 200,
21.6 for 800, and 82.1 for 2000. Some difficulty is involved in comparing

these bandwidth estimates with those obtained in Fletcher's original
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experiment or those using the critical ratio method. The usual method of
specifying the bandwidth of the universal type of resonance curve is to
use the frequency difference between the half-power points of the filter.
The half-power points are those frequencies where G(f)2 is at one-half
the maximum value. This measure of bandwidth, call it W, is smaller by a
factor of n/2 than the equivalent rectangular filter width.” Hence, the
equivalent square filter width (in cps) obtained in the study are 33.8
at 200, 34.0 at 800, and 129 at 2000. [In terms of 10 log Af, 10 log
33.8 = 15.3, 10 log 3% = 15.3, 10 log 129 = Ql.lJ

Tanner, Swets,and Green (24) have also attempted to determine the
characteristic of the auditory filter. Rather than trying to construct a
filter with a rectangular characteristic, or constructing a psuedo noise,
they employed the mathematically simple single tuned filter to change the
noise. Essentially,they repeated Fletcher's procedure using a single
tuned filter to attentuate the noise components on each side of the signal.
They then considered several possible shapes for the auditory filter. The
problem is treated mathematically as two filters in series; one representing
the external single tuned filter, the other representing some form of
internal or auditory filter. They attempted to select that auditory filter
characteristic which yielded the most consistent estimates of bandwidth
for the various conditions of the experiment. The results indicate that

the single tuned filter characteristic is the best choice for the auditory

* If the rectangular filter has a characteristic Ge(f) = 1 when ]f-for<gu
W
and Ge(f) = O when If-fo|> 5 - Let the universal resonance curve be of the
W
form F(f) with center frequency f,,and (fo 5) the half power points,

(F(£_) = 1), then fwce(f) af = waQ(f) df,when = @ = W,

2
-00 =00
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filter. Only one center frequency (1000 cps) was used and the auditory
bandwidth was estimated to be about 4l cps. This yielded an equivalent
square bandwidth of 64 cps (10 log 64 = 18.06). This value is, of course,
extremely close to those obtained in the previous experiments (See Figure 2).
This exceptional agreement may be spurious, since Figure 2 contains
experiments where monaural observation was used. Tanner, Swets, and Green
used binaural observations. French and Steinberg (4) claim there is a
difference between those estimates obtained with monaural and binaural
conditions. In general, the differences between the estimates of the
10 log critical bandwidth are about 1.5 for the low frequencies with
larger differences occurring above 5000 cps. The critical bandwidths are
always smaller in the binaural than in the monaural case. This result is
cited in the French and Steinberg article (4). They refer to Fletcher and
Munson (3) as the source of the data. Fletcher and Munson do not make any
claim concerning the difference between monaural and binaural critical bands.
They do provide evidence that for absolute threshold measurements there is a
difference between monaural and binaural listening. In general, they find
binaural listening yields lower thresholds than monaural listening. Munson (17)
has stated that French and Steinberg had assumed that it was logical to
extrapolate the absolute threshold data to experiments where noise is used.
Thus, using the critical ratio assumptions of Equation 1, there would be
different functions for the monaural and binaural critical bands. No direct
evidence on this point is available. However, indirect, contrary evidence is
available since there is a great deal of similarity between the estimates of
critical bandwidth in the study of Hawkins and Stevens (7) who used monaural

observation, and Fletcher's (1) study where binaural observation was used.
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This concludes the review of masking experiments, done in this country,
which deal directly with the critical band hypothesis. There have been
several recent experiments conducted in Germany which deal with this problem.
The original papers are not available to the author, but are summarized in
Zwicker, Flottorp, and Stevens (29). Some of the data from these papers will
be discussed in the next section.

This section has reviewed two main experimental approaches to the
problem of determining the shape and width of the critical band. The
first approach involves changing the frequency characteristic of the masking
stimulus in some way and determining how the tone must be changed in inten-
sity to remain detectable, The second approach is called the critical ratio
method. This method assumes a certain equation e.g., Equation 1 to describe
the masked threshold. The data are then used to infer a parameter of the
equation, which is the critical bandwidth. The two methods yield similar
estimates of the bandwidth and a high degree of consistency in the data from
different laboratories is evident. Both methods, and all the experiments
reported, involve tasks of detecting sinusoidal signals in some sort of

masking noise.

2.3 Frequency Discrimination Experiments

If the concept of a critical band is shown to be useful in an area
of auditory research other than masking, then the degree of confidenee in
the concept will be increased. Both Fletcher (1) and Schafer et al. (20)
have suggested such an extension to the area of frequency discrimination
The argument runs as follows. If the auditory filters exist, then a change
in frequency causes a change in amplitude at the output of the various

filters. This change in amplitude pattern may be directly related to the
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apparent change in pitch. It appears reasonable that the change in amplitude
pattern should be related to the size of the bandwidth of the auditory
filter. Thus, one way to test these assumptions is to determine how the
change in frequency which is just detectable, Af, changes with frequency f.
If more detailed assumptions are made in the preceding argument, for example
concerning the shape of the filter, one can claim Af is proportional to the
critical bandwidth. Thus, a plot of critical bandwidth or of Af against
frequency should be similar, except for the constant of proportionality,

to the data from masking experiments which related bandwidth to center
frequency. This demonstration that both masking data and frequency discrim-
ination data yield similar functions has been used to show the importance

of the critical band function (1, 2 and 13).

Fletcher has used such an argument when he likens the critical band
to "patches" on the basilar membrane. The change in pitch is assumed to be
a constant change along a linear, or in a later interpretation, an areal
extent, of the basilar membrane (1, 2). The pitch discrimination data of
Shower and Biddulph (21) were used by Fletcher. Shower and Biddulph's data
and that of the critical bandwidth versus frequency, is the same except for
e constant multiplicative factor. Schafer, Gales, Shewmakey and Thompson (20)
have also presented an argument to link the width of the critical band and
the "just-detectable" increment in frequency.

While the theoretical arguments for linking bandwidth and the " just-
detectable" change in frequency are somewhat appealing, there is considerable
difficulty in determining exactly what pitch discrimination data to select.
Unfortunately, the theoretical arguments are not of sufficient precision to
dictate how frequency discrimination should be measured. The difficulty is

that there are many ways of determining the "just-detectable" change in
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frequency, for to produce a signal of some frequency one must select some
intensity for that frequency. Now it is well known that the size of the

" just-detectable" change in frequency is dependent on the intensity of the
frequency. Therefore, the question arises as to what intensity to use for
each frequency region. Usually each frequency is presented at a constant
number of decibels above absolute threshold. Whether or not such a tech-
nique is proper depends upon other assumptions made concerning the hearing
mechanism., For the most part, these assumptions have not been made
explicit.

A second major problem encountered in experiments in frequency dis-
crimination is how the frequency of the stimulvs should be changed. Two
earlier studies (11, 21) presented a signal of a certain frequency,changed
to a second frequency, and then returned to the original frequency. Shower
and Biddulph made the change in a nearly sinusodial fashion. Knudsen made
the changes abruptly. These techniques correspond to a frequency modulation
of the signal. This frequency modulation can be expressed by a Fourier
analysis. For the sinusodial modulation the stimulus can be expressed as
a series of components; i.e., one component is at a frequency which is the
average of the original frequency and the changed frequency, and the others
are at this average frequency plus or minus the rate of modulation. The exact
appearance of these spectra are, therefore, heavily determined by the rate
at which the change occurs as well as by the magnitude of the change. Using
some other nonsinusodial method of change will, of course, develop quite
different Fourier spectra. Koch (12) has, in fact, claimed that the data

could be explained on the basis of the Fourier analysis without appealing
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to the frequency analysis of the ear?.

In light of the two considerations stated above the use of frequency
discrimination data as strong evidence about the critical bands might
be viewed somewhat skeptically.

This skepticism will probably be increased as the results of several
studies from this area are reviewed. Knudsen's study was the earliest one

to try to control the intensity level of the stimuli. He found the absolute

threshold for the various frequencies and determined the Jjust detectable change

in frequency at a level 40 db above the threshold value., Knudsen abruptly
switched the stimulus between two frequencies, using the amount of change in
frequency which the observers could reliably detect to measure Af. Due to
the abrupt changes the observers heard clicks with frequencies greater than
3000 cps so that no measurements were taken above this value,

Shower and Biddulph have provided the most complete investigation of
the problem in terms of the number of frequencies, intensities, and observers
used. They varied the stimulus sinusoidally at a rate of 2 cps. The sub-

jects were again asked to state when they heard two frequencies.

Koch's paper is misleading. The opening part of the paper contains a
discussion of Heisenberg's uncertainty principle. This principle in

one form expresses an order of uncertainty which will be encountered

in determining the frequency for finite duration signals. Koch then
developes the equations for the Fourier analysis of the frequency modu-
lation used in Shower and Biddulph's experiment. By assuming some
arbitrary form of the spectra which Koch claims "would be heard as two
separate tones" he shows the data may be explained on this basis. This
arbitrary form assumed by Koch is claimed to be the frequency change just
detectable by a "perfect receiver". Why this is a perfect receiver in any
sense is not explained in the paper. Heisenberg's principle certainly

is not used to define this perfect receiver. Thus, while the paper
presents some interesting speculation about how the data might be

explained, it does not in any sense deny that the frequency analysis ability

of the ear is in fact being measured in these experiments.
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Harris, (6) in a more recent study using quite different procedures,
has provided some extremely interesting data in this area, based on & two-
alternative forced-choice technique. The subject listened to pairs of
tones and was required to judge whether the second (variable) tone was
"higher" or "lower" than the first (standard) tone. The variable stimu-
lus was chosen at random from any of 8-12 frequencies, half of which are
above and half of which are below the standard. At a sensation level of
30 db, groups ranging from 40 to 90 subjects were tested at various fre-
quencies, The data from the three experiments are displayed in Figure 3.

The differences in the form of the data obtained by the various tech-
niques are obvious. The abrupt continuous change from variable to standard
frequencies used by Knudsen produces the smallest value for Af for low
frequencies. Shower and Biddulph's data in this region yield the larger
estimates of Af. At high frequencies, the studies of Harris and Knudsen
yield larger estimates of Af than do those of Shower and Biddulph. Harris
presented the stimulus for 1.4 second duration with an interval of silence
of this same duration between the pairs. No satisfactory explanation of
why these differences should arise has been suggested. Harris suggests
that Shower and Biddulph are probably measuring a different function from
that assessed by Harris's technique. Whatever the solution, the use of
frequency discrimination data for estimating critical bandwidth is a rather
hazardous undertaking.

This section has presented an argument, first used by Fletcher, to link
the critical bandwidth and the size of the "just-detectable" increment in
frequency, Af. Theoretical considerations of this suggestion have cast

several doubts upon its validity. Moreover, the basic data on frequency



8¢-GI-1 8V €1-9-V 6§92 -21-

IO Log af

Shower & Biddulph (1931)
59 o 20db Sensation level
O ESC)(jt) n 1
14— A 40db " 1 —-25|
13— Harris (1952) ®
ol ® 30db Sensation level dsg
Knudsen (1923)
= 'k 40db Sensation level O
oL Y dioo
K a '
o+ G)
gL —6.3
7 K ]
6 o @ 0 —44.0
5_[] o) )
A
4 O % —2.9l
K
3 ®
2 —1.58
| ® K
OF 1.
< 0
_I__
®
—21;( —63
_3—
| | [ | |
100 200 500 000 2000 4000

Log Frequency cps

FIG.3 THE JUST DETECTABLE CHANGE IN
FREQUENCY vs. FREQUENCY

The points represent the change in frequency in cps which is
reliably detected. The frequency from which this change 1is noted
is the abscissa. Sensation level is the intensity of the tone
in db above absolute threshold.



-22-

discrimination are different from experiment to experiment. The use of

the critical band argument to explain the frequency discrimination data

is certainly appealing. However, until the theoretical arguments develop
to the extent that they can be used to predict the type of experiment which
should yield dsta consistent with critical band functions, the hypothesis

remains interesting but untested.

2.4 Loudness Experiments

This subsection and the following one will present still further data
which have some bearing on the critical bandwidth of the auditory system.

The data from loudness experiments have been recently obtained by German
investigators who called the bandwidth a Frequenzgruppe. Zwicker, Flottorp,
and Stevens (29)have reviewed many of the pertinent papers and have presented
data collected at the Psycho-Acoustic Laboratory which demonstrate the main
phenomena. So far as the author is able to discern, there is no logical

or theoretical argument which explains why the data from loudness experiments
behave as they do. That is to say, the critical bandwidth hypothesis, as
expressed in the earlier part of this paper, was not used to deduce the
effects found in the area of loudness. Nevertheless, the data obtained
certainly demonstrate a critical region in frequency, and the width of this
region plotted against center frequency is reminiscent of the data obtained
from masking or some frequency discrimination experiments.

In the loudness experiment, reported by Zwicker, Flottorp and Stevens,
the situation is as follows; four tones of equal spacing are selected centered
around some center frequency. The subject’s task is either to adjust a
standard tone to equal the loudness of the complex or vice versa. The width
of the spacing in the complex is varied. The results are usually of the

following form; as long as the overall spacing (that is, the frequency



-23-

difference between the highest and lowest tone) is less than some value the
loudness of the complex is constant. Once this critical frequency difference
is exceeded the loudness of the complex grows with the frequency difference
in a manner which appears to be dependent on both the center frequency of the
complex and the sound pressure level of the tones. For 1000 cps center
frequency, and a complex where all the components are within the critical
bandwidth, the loudness of the complex is the same as the loudness of the
1000 cps standard having the same sound pressure level.

A similar experiment may be performed using band limited noise in place
of the collection of sine wave signals. The loudness balance is obtained
by using another band of noise as a comparison stimulus while increasing the
bandwidth of one noise signal. The results are similar to those obtained
with pure tones. As long as the band of noise has a width less than the
critical value the loudness is constant. When the band of noise is increased
in width beyond this value the loudness increases. The point at which this
increase occurs is independent of level, to a first approximation, and is
consistent with the value obtained using sine wave stimuli. Zwicker, Flottorp,
and Stevens report other experiments. Some are concerned with masking and
some with changes in phase. The resultsof all these experiments (Figure 4)
lead them to present a relation between bandwidth and center frequency. A
sumary of this same relationship, as it is obtained from the masking
experiments and frequency discrimination experiments, is presented along
with this relation. One line represents an average of Shower and Biddulph's
data, and the other represents Harris's work.

The form of the data obtained from these different experiments is

obviously somewhat similar. They are different largely in terms of a
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constant shift in the logarithmic axis, which corresponds to a constant
multiplier. As yet, no theory explains why these different techniques yield

these different estimates of critical bandwidth.

2.5 Detection with Unknown Frequency

The three experiments reviewed in this section result from deductions
based on an auditory filter hypothesis. They pertain most directly to the
problem of attention and how the critical band concept may play an important
role in the more perceptual, as opposed to sensory, type of experimentation.

The first phenomenon to be noted was reported at the Psychophysical
Laboratory of the University of Michigan. A group of subjects had been
listening for some time to a 1000 cps gated signal imbedded in noise.

Unknown to the subjects, the frequency of the signal was changed to about

1300 cps. The subject's task was to state in which of four temporal intervals
the signal occurred. The subjects in responding to this unexpected signal,
performed near the chance level. That is, they behaved as if the signal had
been turned off. Later, when they were told to listen for the 1300 eps
signal, they obtained about 90 percent correct detections, with all physical
parameters thesame. Since this is by nature a difficult experiment to repeat,
while maintaining the subject's trust, no more elaborate investigation was
undertaken.

Karoly and Isaacson (10) have repeated this basic finding. The
experiment was conducted in an experimental laboratory section of a
psychology class. The speaker was placed in front of the room and the class
(subjects) sat at varying distances. Frequencies of 500, 1000, and 1500 cps

were used in a counterbalanced design. 1000 cps was the expected signal
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while 500 or 1500 was unexpected. Various levels were employed for all
signals. To obtain some constant detectability in a two-alternative
forced-choice test, a difference of about 10 to 15 db between the expected
and unexpected signals was required.

The second experiment (24) along this same line demonstrated that if
the subject was uncertain as to which of two signals is presented a decrease
in performance would result.

This experiment consists of three conditions. In the first condition

some frequency for the signal is selected; call it f The signal is

1°
presented in one of four time intervals and the subject is asked to detect
in which interval it was presented. The second condition is identical to
the first except some other frequency is selected, fe. Once both frequen-
cies have been adjusted in amplitude so that they are about equally detectable
the third condition of the experiment is begun. This last condition consists
in randomly presenting either fl or f2 in one of four time intervals. Once
more the subject is asked in which interval the signal occurred. The subject
knows that one and only one stimulus will be presented in any given four
intervals, and is uncertain only as to which frequency will be used. The
results indicate that for signal durations of about one tenth second and
frequency separation greater than 200 cps the subject obtains less percent
correct detections for the third condition than in either the first or the
second conditions. In fact, the data are consistent with a model which
assumes the observer can "listen" with only one critical band.

If the model is true, then, assuming the observer has no information as

to which of two frequencies will be presented, he should be "listening" at the

correct frequency one-half of the time. His percent correct in the
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experimental condition will then be one-half of the average percent

correct in the control conditions plus one-half of the chance level

(25 percent). While no great amount of data was collected, for the condi-
tions where an extreme frequency separation was used, this model appeared to
fit the data reasonably well. Both of these experiments demonstrate the
importance of some central determinants in explaining the behavior. The
critical band hypothesis suggests a mechanism which is completely

consistent with the result.

2.6 Summary of Chapter II

A review of many of the pertinent investigations concerned with the
critical band hypothesis has been presented. The main source of evidence
has come from the area of masking, where the hypothesis was formed. How-
ever, both frequency discrimination data and experiments in the ares of
loudness have added considerable support to the general concepts. There is,
as yet, no detailed theory of how the data from the several areas can be
completely integrated.

While the critical bandwidth versus center frequency functions are
somewhat similar in shape when plotted on logarithmic axes, no theory
explains in detail why the multiplicative factors have different values.
Until such a theory is forthcoming the parallel functions must remain
interesting and intriguing findings which need explanation.

Perhaps the data discussed above may be better unified under some other
type of hypothesis. The critical band hypothesis is, of course, easily
interpreted by assuming a band pass filter characteristic in the auditory
mechanism. Such a simple assumption is most easily employed to explain the

data gathered in masking experiments. Its extension to frequency
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discrimination data is made fairly easily. The main assumption needed

in such an extension is that frequency information, or, rather, a change in
frequency, is reflected in a change in amplitude. Such a property is
consistent with a filter model. Thus, the filter model asserts that
Intensity is the main variable while frequency information is obtained by
determining which filter is active. This model is, therefore, almost
exactly a place theory of hearing.

The loudness data are based mostly on empirical findings which demon-
strate a critical frequency region. This critical region acts as a
parameter in the equations for the data. If the complex sound is within
this region, one function represents the data.l If the complex sound falls
outside this region, another function applies. While the critical band
hypothesis does not present an immediate interpretation of the data, this
may be due in part to the nature of loudness judgements. As Howes, (9)
and others (29) have pointed out, the judgement of loudness depends upon the
attitudes of the subject. Two prevalent attitudes are the "analytic" and the
"integrative." The former attitude leads to a loudness judgement that is
independent of the number of components. The latter leads to a loudness
Judgement that grows as the number of components increases. Hence, the loud-
ness data may be more completely explained in terms of some central mechanism
which merely reflects the frequency analysis mechanism to some minor degree.
In short, the main problem to be explained is how the outputs of the several
critical bands are employed by the central mechanism, not how the critical
bands per se affect the judgement.

This latter question, how the outputs of the critical bands are employed

s

is the topic for the experimental data presented in the next section.



CHAPTER III

THE DETECTION OF COMPLEX SIGNALS IN NOISE

3.1 Introduction

Two experiments pertaining to the critical band concept are presented
in this section. These experiments do not test directly the critical band
concept; rather,both are extensions of this conceptto new areas. By
introducing new assumptions it will, perhaps, be possible to reconcile the
inconsistencies discussed in Chapter II. One very important area needing
clarification is the manner in which the critical bands affect the detection
of stimuli which do not have a simple sinusoidal form. It is the purpose
of the two studies reported in this section to suggest some assumptions
which will permit the critical band concept to be applied to these complex
signals. The experiments involve the detection of multiple component
signals and signals with randomly varying components, such as band limited

noise.

3.2 Experiment I: Detection of Multiple Component Auditory Signals

Most of the evidence for the critical band concept arises from situa-
tions where the observer is asked to detect a sinusoidal signal in the
presence of some sort of interference. The problem considered in the present
experiment is slightly different. Consider a complex signal generated by
adding two sinusoidal signals. The aim of this investigation is to provide
a model that will predict, from the detectability of the component sinusoids,
the performance on complex signals. This model must entail certain assump-

tions concerning the nature of the auditory mechanism. The test of these

~29-
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assumptions should therefore provide important information concerning how
the ear operates.

In order to provide a method for predicting the detectability of the
complex signals, and to provide a method of interpreting the data, three
models will be considered. The first model, the no-summation model, may
be considered the null hypothesis. This model asserts the detection of a
complex signal is no better than the detection of the most easily detectable
component of the complex. The second model, the multiple independent-
thresholds model, claims that an increase in detectability of the complex
will result because only one of several thresholds need be exceeded by
the complex signal. The third model, the statistical summation model,
asserts that the detection of the complex signal may be predicted by assum-
ing that the outputs of several critical bands are linearly combined.

In order to clarify the conditions under which the models apply, the
experimental procedure and the results will be presented first. The three
models and their predictions will then be explained. A comparison of the
obtained results and these predictions will be used to test the models.

3.2.1 History of the Problem. Fletcher's critical band concept (1)

answers the question of what are the relevant variables for predicting the
detectability of a single sinusoid in noise. The concept asserts that one
can neglect all the frequency components of the interference with the
exception of & narrow band of frequencies centered about the signal to be
detected. Thus, for sine wave signals, the auditory system can be likened

to a narrow bandpass filter. This model has been tested and appears to be
adequate.

How this model should be applied when the signal consists of two or more

sinusoids widely separated in frequency is not stated. One possibility is
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that the observer can listen with only a single critical band. When a com-
posite signal is presented the observer's behavior can be explained by
assuming he is listening to only one narrow frequency region where the signal-
to-noise ratio is most favorable for detecting the signal.

Such a hypothesis has received support from the research of Marill (15).
Marill used four frequencies: 500, 540, 1100 and 1060 cps. When presenting
the pairs with small frequency differences (i.e., 500 and 540, or 1100 and
1050 cps) his observers behaved, roughly, as if a single member of the pair
had been presented at twice the energy. That is to say, a power summation
model will predict the data. Using the frequency pair 500-1100 cps, Marill
found generally the detectability of the pair to be no greater than the
detectability of the most easily detectable single component. Certainly
the power surmation model predicts much too high for this pair of widely
separated frequencies.

Tanner, Swets, and Green (2U4) have also reported research to support the
conclusion that for widely separated frequencies the observer apparently
listens to only one frequency region. Their experimental situation required
the subject to detect one of two possible signals presented in one of four
time intervals. The observer was simply asked to detect the signal's pre-
sence, never to state which frequency it was. For signals of sufficiently
short durations, and of sufficiently wide frequency separation, the observers
behaved as if they were listening to only one or the other ¢f the two
possible frequency regions where the signal might be presented.

Schafer and Gales (19) attempted to determine the detectability of
multiple component signals. For two tones separated by a critical band or
more, they conclude, the energy of each component can be reduced O to 2 db

and the composite signal will remain as detectable as when the signals are
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presented individually. For 4 to 8 tones the value is O to 3 db. If one
accepts the O db figure in each case, then Marill's conclusion is supported.
In any event, there is some loss of efficiency due to splitting the power
into two frequency regions. If there were perfect power summation, two tones
should be 3 db, 4 tones 6 db, and 8 tones 9:db lower to maintain a constant
performance. Thus, Schafer and Gales find, on the average, that for widely
separated frequencies neither perfect power surmation nor complete lack of
summation fits the data.

It is unfortunate that all the results do not agree; for the answer to
the question of multiple tone detection is necessary if one 1s ever going
to explain the detection of anything but the simplest of auditory signals.
The research reported below is both a repeat of the previous studies and an
investigation of two more paremeters of the process which may be a source of
interaction. These two parameters are: (1) the duration of the signal and,
(2) the frequency relation of the components.

3.2.2 Experimental Procedure. The experiment was conducted at the

Psychophysical Laboratory, Electronic Defense Group, University of Michigan.
The basic apparatus has been described elsewhere (5). A four-alternative
forced-choice method was used to measure the detectability of a signal. Two
changes were made from the procedure described in (5). Each sequence of four
test intervals was preceded by an interval in which the noise dropped 10 db
in level and the signal was presented. This served to remind the observers
of the frequency characteristics and duration of the signal. Also, the signal
was simply gated for the specified duration without regard to phase.

Four frequencies were employed: 500, 1000, 1823, and 2000 cps. The
complex signal was generated by adding the voltages of two of these signals.

The frequencies were generated by two independent oscillators. All possible
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pairs were employed. For each signal duration, each frequency was used as

a signal and was adjusted in amplitude so that about 75 percent correct
detections were obtained. One of the six possible pairs of frequencies,
using the amplitudes previously determined, was then used as the complex
signal. The percentage of correct detections for this complex signal was
determined. There are therefore ten signals used in this experiment: four
single frequency signals, and six complex signals. Four blocks, each of one
hundred trials, were used to estimate the probability of a correct detection
for each signal. Each signal received one block of trials before a second
block was conducted for any other signal. The choice of conditions was
determined by a random sequence. Signal durations of 50, 200 and 1000
milliseconds were employed. Four hundred observations were completed for
each signal before another duration was selected.

Measurement of amplitude has been described in Reference (5). Measure-
ments of frequency and duration of the signals were made with a Hewlett-
Packard Model 521C Frequency Meter. Frequency drift throughout an experi-
mental session was less than asbout 3 cps. Permoflux PDR-8 headphones were
used, The observers listened binaurally. A noise level of sbout 55 db re
0.0002 dyne/cm? was used throughout all of the tests.

3.2.3 Results. The data are summarized in graphical form in Figure ST
Each entry is based upon 40O observations. For each single component signal

the percentage of correct detections is represented by a vertical line. For

The physical parameters used in the experiment are listed in the table
below. E is the signal energy, or time integral of the signal power.
N, is the noise power per unit bandwidth (dimensions of energy).

Duration
E/N, 50 200 1000
500 cps 8.7 6.2 13.2
1000 cps 10.7 8.8 19.8
1823 cps 15.6 15.4 30.8
2000 cps 15.8 15.8 33.0
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example, with the 50 millisecond, 500 cps signal, Observer I obtained 62
percent correct detections. The percentage of correct detections for the
complex signal is represented by a horizontal line connecting the two fre-
quencies which were used to generate the complex signal. For the same
conditions, and the same observer, the complex signal of 500 and 1000 cps
yielded 79 percent correct detections. The complex signal is generated by
using the same physical parameters for each component of the complex as were
used when an individual component was presented. Thus, if the horizontal
line representing the complex is above both of the vertical lines represent-
ing the single component signal, the complex is easier to detect than either
single component. These graphs show the individual data obtained from three
observers at three durations. About the only point that can be made with the
data in this form is that the detectability of the complex signal is somewhat
better than the detectability of either single component of the complex. For
a finer analysis of the data it is obvious that some procedure must be
adopted to normalize thedata so that the amount of increase in detectability
for the complex is independent of the value of detectability for the single
component stimuli. There is no accepted method of accomplishing this
result. In the next section of the paper, however, three models will be
considered. These will allow a form of normalizing the data so that the
detectability of the complex signals may be compared.

3.2.4 Models. Three models will be used to analyze the data. All of
the models make predictions which are independent of the duration or frequency
separation of the components. The predictions of two models will then be
compared with the data obtained in the various conditions of the experiment;
such a comparison will allow for the evaluation of the models and the deter-
mination of whether the amount of improvement is indeed independent of these

other factors.
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3.2.4,1 Model 1: - No-Summation Model. This model predicts

that the percentage correct obtained on the complex signal will be no greater
than the percentage correct obtained on the most easily detectable component
of the pair. This statement of the prediction assumes the conditions which
prevailed in this experiment; that is, the level of the individual components
is the same when the complex is tested as when the individual stimuli are
tested. The rationale for such a prediction might be that the observer can
listen with a critical band to only one frequency region at any given time.
When faced with detecting a complex signal, where the frequencies involved
are more than a critical-band apart, he listens at that region in frequency
where the signal is easiest to detect,

The data collected in the experiment indicate this hypothesis is incorrect.
Of the 54 complex signals tested, the detectability of the complex was
greater than the detectability of the most detectable component in 53 cases.
Thus, for the condition employed in this experiment, the no-summation model is
definitely rejected.

3.2.4.2 Model 2: The Two-Independent-Thresholds Model. Schafer

ana Gales (19) suggested that such a model predicted fairly accurately the

data collected in their experiment. This model asserts that in order to

detect a single component signal, some hypothetical variable must exceed some
critical value., This value is called a threshold. Assuming that the variable
rarely exceeds this critical value when no signal is presented, the probability
of a correct detection, P(C), in a forced choice test employing n temporal

alternatives is given by:

p(c) = p+i‘(l-p), (3)

where p is the probability of the signal causing the threshold to be exceeded.
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The second term in the equation is the probability of not obtaining a supra-
threshold value, (1-p), times the probability of correctly guessing the
correct alternative with no information, (l/n).

Now, consider the case where two or more signals are presented simul-
taneously and the hypothetical variables associated with each signal are
independent. Four cases can arise: (1) the first signal can cause a supra=-
threshold value and the second not, or (2) the second signal can lead to a
supra-threshold value and the first not, or (3 and 4) both signals can lead
to either supra-threshold or sub-threshold values for the hypothetical
variable,

Several combination rules could be used, but the one investigated is that
a correct response will result if either or both signals lead to a supra-
threshold value of the variable. The probability of either or both signals

exceeding threshold is, therefore, given by Equation 4.

m
Bp = 1-% (1-p), (4)

where py is the probability that the ith signal will be supra-threshold, and
m is the number of signals,

Hence, the probability of a correct choice Pm(C) among n temporal alter-
natives with m signals, can be written by substituting Equation 4 into 3.

P(C) = 1-% (-p)+F x (-p)- (5)
i=1 i=1

For the temporal four-alternative forced-choice method (n = 4) used in these
studies, and for complex signals using two components (m = 2), this formula

reduces to:

Py(C) = 1- % [1 - p1()] [2 - Ra(0)] - (6)
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This model allows us to predict the percentage of correct detections
obtained on the complex from the percentage correct obtained on the single
component signals.

If the hypothetical variables of this model are not independent these
predictions will not be correct. If the variables are perfectly correlated,
only two cases could arise, Both variables would either exceed the threshold
or, they would not. The predictions obtained from this model would then be
identical to those obtained with the first model.

Other changes could be made in the model. We have assumed that the
observer guesses only when both components fail to reach the threshold. If
more than two components are used for the complex signal it is possible that
the signal would be detected only when a majority of the signals cause a
supra-threshold value of the variable. Such a model becomes considerably
more complicated. Yet another alternative is to assume that, even without a
signal, the threshold is exceeded some constant percentage of the time.
Depending, then, upon the value of this constant, the model would predict
quite different values for the detectability of the complex.

3.2.4.3 Model 3: A Statistical Sumation Model, This model will

be explained in some detail because it appears to predict the data obtained

in this experiment better than either of the other two models. This model

is a logical extension of the statistical decision theory proposed by Tenner
and Swets (23), and especially of the ideas expressed by Tanner (22): The
critical band hypothesis is used as an interpretive device in explaining
several assumptions of the model. These are, strictly considered, assump-
tions, and hence do not depend upon the critical band hypothesis being correct.
However, the assumptions are consistent with some sort of auditory filtering
process, and the interpretations will be used so as to make the model less

abstract.
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Before explaining how the model is extended to encompass the problem of
detecting multi-component signals in noise, a brief review of how the model
explains the detection of a single component stimulus will be given. Presum-
ably, the energy located in a narrow frequency region (critical band) is
transformed to a single variable so that the value of this variable will be
greater when a signal is present than when noise alone is present. Let
this variable be denoted X(fy). As a convenience for a later part of the
discussion, this notation will make obvious the dependency of X on the
frequency region f;. Now, since noise is a random variable, X(fy) will
have some distribution of values. Actually it will have two distributions
of values, one when the signal (fl) is present in the noise and another when
there is no signal. When no signal is present the condition will be termed
noise alone. It is assumed that in the noise alone condition the variable
X(f]) will be normally distributed. When signal plus noise is present, X(fl)
will also be normal with a greater average value but the same variance,

The parameter of importance is (d'), the difference in the means of the
two distributions divided by the standard deviation. In order to avoid
unnecessary notation, the noise alone distribution may be normalized so that
the mean is zero and the standard deviation unity. Then the parameter 4'
becomes simply the mean of the signal plus noise distribution. This
parameter will be denoted d'fl.

In a temporal four-alternative forced-choice test the observer listens
to four temporal intervals. In one and only one of these intervals the
signal is added to the noise. The observer is instructed to choose the
interval in which the signal occurred. The model assumes that in each

interval the variable X(fl) is measured. It is assumed that the observer
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operates with a decision rule, which is equivalent to choosing the interval
in which the largest value of the variable X(fl) occurred. Hence, the proba-
bility that the largest value of X(fl) will occur when the signal (fl) plus
noise is present is simply the probability that a sample taken from a normal
deviate with mean d' and variance unity will be larger than any of the other
three samples from a normal deviate with mean zero and the same variance.

A table relating the probability of a correct decision in a four-alternative
forced-choice test and the parameter d' has been presented elsewhere (5).

In extending the model to a situation involving more than g single sine
wave stimulus the problem is essentially that of determining the distribution
associated with the complex signal plus noise and the distribution associated
with nolse alone. Particularly, the parameter which characterizes the
difference divided by the standard deviation of the distributions must be
determined. This parameter is essentially the parameter of importance for
the complex signal.

The extension of the model will be discussed for two component complex
signals. This limitation will greatly simplify the mathematics, and the
extension of this result to signals involving many component signals will be
obvious once this derivation is complete.

If two components are widely separated in frequency the output of the
critical band associated with each will be independent. This statement is
simply a way of interpreting the assumption that X(f) and X(fe) are indepen-
dent. When noise alone is presented both variables are normally distributed
with some mean and variance. When signal (fl + f2) plus noise is presented
the mean values of both variables, X(f;) and X(f,), will increase, compared
with the noise alone conditions, and will have the same variance. The corre-
lation of the variables when the complex signal plus noise is presented will

still be zero.
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One reasonable method of combination is simply to add each variable,
weighted by a constant., It is presumed that each variable is normalized so
that the noise alone distribution has zero mean and unit variance before the
summation. Actually, such normalization could be included in the constants
of the addition, but it greatly simplifies the following derivation to assume
such a nomalization at this point in the argument. The two variables, there-
fore, have the following properties:

Noise Alone:
X(fl) is normally distributed with zero mean and unit variance;
X(fz) is normally distributed with zero mean and unit variance.
Signal Plus Noise:

X(fl) is normally distributed with mean d', and unit variance;

1
X(fe) is normally distributed with mean d'f and unit variance.
2
Consider the linear combination;
7 = a.X(fl) + bX(f,), where a and b are constants.

With Niise Alone:

Z is normally distributed with mean zero and unit variance:

8% + b° + Er[x(fl)x(fE)]ab, where r[X(fl)X(fz)] is the correlation

of the variables X(fl) and X(f

variance of 7 is (a2 + bg).

,). Since r[X(fl)X(fg)] - 0, the

With Signal (fy + fp) plus Noise:

Z is normally distributed with mean ad‘f + bd'f and variance

2 ) 1 2
a + b . Hence, in the variable 7 the difference between the means of

the two distributions divided by the standard deviation or (d'Z) is

given by: ad! + bd!
f f
ar, = = 2 (7)
Z 2 2
a” + Db
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The 4' for the combination is now determined except for the constants a
and b. In order to predict anything about the detectability of the complex
from the detectability of the individual components, a and b will be chosen
so as to maximize d'Z. This is equivalent to assuming that the probability
of a correct detection is maximized since d' and this probability are mono-
tonically related.

To accomplish this maximization it is convenient to write a and b as a

function of a single variable, Consider a and b as two sides of a right

triangle.
8 = sin y (8)
az + b2
L = cos y (9)
a2 + b2
The maximum occurs when
cos y d'y, = siny d'; (10)
1 2
d!
f
1 _ _a
ET;- = tany =% (11)
2
One solution is to set a =d'y , b = d'f s (12)
1 2
then 2 2
’ (@', ) + (a', ) l//2 .
ar 11 i (ar, )"+ (ar_ )
7z ~ 5 72 © g/ T %y (13)
(@', )+ (ar, F 1 2
f f2

Thus an expression for the detectability of the complex signal has been
determined in terms of the detectability of each component of the complex. The

geometric interpretation of this result is very simple. Consider X(fl) and



-43-

X(fg) as the coordinates of a plane. If the two values associated with each
frequency region are plotted in this plane, one finds the noise alone distri-
bution centered about the point (0,0). When the complex signal plus noise is
present the values form a new distribution centered about the point

(d'fl, d'fz). Now suppose that each observation taken by the observer yields
a value for X(f,) and X(fp). The maximum 4' for the combination is obtained
by projecting such points in the space on a line running from the point

(0,0) to (d'fl, d'fe). The distribution functions for such projections is
normal when either noise alone or signal plus noise is present. The
difference in the means of these two distributions divided by the standard
deviation has the value d'Z.

If this line of argument is extended to a situation where many components
are used for the signal, and assuming each component affects independent
processes, then the maximum 4' for the linear combination is simply the
square root of the sum of the squares of d's for the individual components.

.Since the frequency separations between components used in the experiments
reported in this paper are wide compared with the width of a critical band,
r [X(fl), X(fei] will be assumed to equal zero. The model may be extended
to handle cases where the correlation is not zero. The following gives a
brief discussion of the manner in which the model handles such cases. Pre-
sumably such cases arise when the components are located near each other in
frequency so that the outputs of the critical bands associated with each
component are affected by energy which is common to both bands. In other
words, the filter bands overlap. One result of such a condition is to make
the correlation coefficient r [X(fl), X(fg)] greater than zero. The second
result is that the signal energy associated with one frequency, say fl,

influences the variable X(fp), which is associated with the other band.
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Since the frequencies fl and f2 are very close together it may be assumed
that this influence is symmetric; that is, fp affects X(fy) in the same
way f; affects X(f,).

When the signals were widely separated in frequency the mean of the

signal plus noise distribution was d’f . For the case now being considered
1

it will be assumed that the mean of the signal plus noise distribution for

X(fl) will be d'f + kd'f . The positive constant k has a value somewhere

1 2
between zero and unity. It reflects the amount of overlap between the

critical bands. Both r |X(f,), X(f,)| and k should be monotonic decreasing
1 2

function of the distance in frequency between the two components, f, and f

1
If the difference in the frequency of the two components is very small

21

both r and k should be near unity.
In order to simplify the following derivation it will be assumed that

d'fl = d{fe = d'., Proceeding as before one finds the difference in means
divided by the standard deviation, d's.

a'(a + b)(1 + k)

\//a2 + b2 + 2rab

Using the same method to maximize d'Z, the maximum occurs when a = b, letting

d'Z (14)

d' 2(1 + k) NP
A/ 2+ 2r

If both signals are nearly the same in frequency; k ® 1 and r & 1, then

(15)

d'Z = 24'. The result agrees with Marill's finding for the frequency pair

500 and 540 cps. If the frequency pair is very far apart; k ® 0, r = o,
and d'Z = 2 d', which agrees with the previous equation 13.

This model, therefore, gives a plausible derivation of the detectability
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of a complex signal using any two frequencies. No quantitative predictions
are made when the frequency pair are close together in frequency since the
relation between k, r, and frequency separation is not known. This relation
depends theoretically only upon the shape of the critical band.

In summary, the model mekes it possible to predict the detectability of
a complex signal from the detectability of each component of the complex.
The application of the model to those cases where the noise affects both
correlated and uncorrelated processes is explained. For components separated
by several critical bands one may assume k and r are zero. Once this separa-
tion has been reached, the predictions of the model are independent of any
further separation. These are the types of separations used for the complex
signals discussed in the experimental section of this paper. Thus, the pre-
dictions cited in the following sections assume both k and r equal to zero,
as in Equation 13.

3.2.5 Evaluation of the Models. Only the two independent thresholds

and the statistical decision model will be compared with the obtained data.
The "no-summation” model in this experiment could be rejected as being in-
adequate in 53 out of 54 cases as discussed previously.

For each of the three observers and three durations there are six poss-
ible pairs of tones used as the complex signal. For both models the detect-
ability for the single component stimuli was used to generate a prediction
concerning the detectability of the complex tone. The difference between the
predicted percent correct detections and those actually obtained is displayed
in Figure 6. Two points appear for each complex stimulus and condition, one
for each of the models used to generate predicted values. At the extreme
right of each condition the average error in prediction is plotted. The

average error over all conditions and subjects is about 1.5 percent for the
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statistical decision model and about 5 percent for threshold model. A "t"
test was calculated for the entire set of data. The value of the parameter
t was about 1.25 for the threshold model and about .25 for the statistical
decision model. The threshold model can thus only be rejected at the 20 per-
cent confidence limit while the statistical decision model can only be re-
jected at the 80 percent confidence limit. In terms of the likelihood ratio
the statistical decision model is to be preferred about 4 to 1 over the
threshold model. Obviously an experiment involving more than two components
will provide a stronger test of the differences between the theories. With
only two components used for the complex signal the difference between the
predictions of the two theories never exceeds 10 percent and averages much
less than that.

The predictions made by both models are independent of the frequency
separation and of the duration of the complex stimuli. Such a position can
be checked to some extent by using the graphs of Figure 7. The statistical
decision model is employed since it best predicts the available data and con-
veys essentially the same picture that one would obtain with the other model.
The percent error as plotted in the previous figures has simply been averaged
across observers and plotted as the ordinate of Figure 7. The combination
signals are plotted as the abscissa in the order of their frequency differ-
ences. The scale is arbitrary. As one can observe, there is no dependence
upon frequency separation or signal duration.

3.2.6 Discussion. The statistical decision model is tentatively accepted
as the most adequate model for predicting the detectability of a complex signal
in noise. This model is consistent with the detection theory previously pro-
posed for single component stimuli. It is also consistent with a critical

band model which asserts one can linearly combine the outputs of several crit-
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ical bands. The model has the advantage of incorporating all the variables
which affect the detectability of a single component, since the detectability
of each signal component is used in determining the detectability of the com-
plex. The manner of combination is theoretically linear and no interaction
term is used.

Since d' is roughly proportional to signal energy, the level of two
equally-detectable components can be lowered by 1.5 db in a threshold experi-
ment and the same detectability can be maintained for the complex signal.

This result agrees with the average values cited by Schafer and Gales (19), but
is inconsistent with the results obtained in Marill's work (15).

The statistical decision model has been applied to an experiment where
the observer is asked to detect one of two possible signals. If the two
variables X(fl) and X(fe) are combined the d' for the combination will be de-
creased, as compared with the d' associated with either component, since only
one signal is presented on any series of trails. Thus, the observer listens
to twice as much noise power when only one of the two signals is present.

The predictions generated by such considerations are similar to those made
when one assumes the observer listens to only a single frequency region at any
instant in time. Thus, the present model is consistent with most of the data
obtained by Tanner, Swets,and Green (24).

The use of only two components as a complex signal does not provide the
best condition for attempting to choose between models. Rather, it provides
a simple condition for formulating a theory which will work in the more
general case. The discrepancy between the results obtained in this study and
those obtained by Marill (15) provides an interesting challenge. Assuming both
results are correct, it is obvious that some factor neglected by both Marill

and the author plays an important role in this situation.
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3.3 EEEeriment 11: The Detection gg'ég_Auditory Noise Signal ig_Noise

3.3.1 Introduction. In these experiments the signal consisted of =&

burst of noise with certain frequency characteristics and of specified dura-
tion., A continuous noise of constant power was used as a masking stimulus.
The observer's task was to detect the presence of the noise signal. The

word "signal" will be used to refer to the noise signal. The masking stimu-
lus will be called "noise". When both signal and noise have idential fre-
quency characteristics the task of the subject is to detect a change in the
power of the noise. In this special case the experiment is exactly equiva-
lent to the determination of the observer's differentisl intensity sensiti-
vity to noise. The advantages of defining the terms signal and noise, as
described above, will become obvious when a theoretical model is presented.
The model can be used in the more general case when the signal power spectrum
is not the same as the noise power spectrum. The impetus for these studies
grew out of a consideration of the critical band concept and how this concept
might apply when the signal was a sample of noise,

The critical band concept was developed in experiments where the signal
wés a sine wave and the masking stimulus was wide-band noise. The results of
these experiments suggested that the observer's behavior could be explained
by assuming the auditory system resembled in some ways a narrow band-pass
filter, Such a narrow band-pass filter is clearly an effective way of exclud-
ing a great deal of interfering energy. If the signal to be detected is not
a narrow band signal, such as a sinusoid, then employing a narrow band analysis
device is not an efficient scheme for detecting such signals. Since the audi-
tory system is like a narrow band analyzer, it is possible that observers will
do rather poorly when attempting to detect a wide-band signal. A noise sig-

nal is ideal for investigating this problem, because a noise signal which has



-51-

a wide power spectrum can be used.

Two theoretical approaches could be used in considering this problem.
One approach could maintain that the auditory system is constructed in such
a way that only one critical band can be used at any instant in time to de-
tect signals. Such an approach is consistent with a model presented by
Tanner, Swets, and Green (24) for an experiment where the signal frequency was
unknown. It is also consistent with the results reported by Marill (15) in an
experiment concerned with detecting two widely separated pure tones imbedded
in noise. It is unfair to attribute such an approach to any of these
authors, since their work was confined to sine wave stimuli, and none of it
dealt explicitly with the problem of a noise signal.

The second approach assumes that the critical bandwidth, as inferred
from pure tone data, simply represents a minimum bandwidth of the auditory
system. It has been suggested, in the earlier sections, that for other types
of signals several of the bands may be linearly combined. Thus, if enough
continguous bands are combined the auditory system may become, effectively,

a wide band system.

In order to investigate these two approaches, two experiments were per-
formed. The first is most germane to the issue just discussed. The second
was an attempt to determine whether the model developed for the first experi-
ment could be extended to encompass another parameter, the duration of the
signal. Before presenting the experimental results a theoretical model will
be introduced. This model will set forth explicitly how signal bandwidth,
duration and power affect the detection of noise signals in noise. This model
is an optimum detection scheme that is extremely useful in contrasting the
two theoretical approaches just discussed.

3.3.2 The Statistical Decision Model. The statistical decision model
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was first developed by Peterson and Birdsaell in "The Theory of Signal Detect-
ability"(18). The present development borrows many of the ideas and conclusions
of that paper. The exact form of the development given here is different and
is a more convenient formulation for the research that is discussed.

The problem of detecting random signals in the presence of random inter-
ference obviously requires a statistical treatment. In particular, the detec-
tion of a Gaussian noise signal in Gaussian noise may be interpreted, mathe-
matically, in the following way. During a finite interval in time, called
the observation interval, the "receiver" obtains a sample wave form which is
some single-valued function of time. There are two possible hypothesis con-
cerning the origin of the sample. The sample either was drawn from a noise
distribution or from a distribution of signal plus noise. The frequency
characteristics and the power levels of both signal and noise are known. The
duration of the signal is equal to the observation interval and is also known.

According to Peterson and Birdsall the sampled waveform may be repre-
sented as a point in a space of n dimensions. (n = 2WT), where W is the band-
width of the signal and T is the duration of the signal. One method of ob-
taining the values for the n coordinates is to measure the magnitude of the
input waveform at n discrete units in time. By sampling in this way the mag-
nitude of the waveform at each sample point is statistically independent of
the magnitude at any other sample point. If this finite sampling procedure
is followed, and the likelihood ratio test is employed, the optimum decision
axis may be shown to be linear with the power, or energy, in the sample wave-
form. Thus, if the distribution of the power in the sample under each hy-
pothesis can be obtained, it will be possible to state exactly how the proba-
bility of a correct detection will depend on the various physical parameters.

The following arguments will derive the distributions.
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Consider the distribution of the values for the power in the sample wave-
form when noise alone is presented. Iet the magnitude of the waveform at the
ith sample point in time be Xi‘ Since Gaussian noise is used, X; will be
normally distributed with a zero mean and variance N.* The quantity N refers
only to that noise power which is in the signal band. In deriving the dis-
tribution of power in the sample waveform it will be more convenient to work

with a variable PN which is linearly related to this power:

P = X.
N i=1 *

Py is a random variable, since it is a transformation of the random variables

Xie. Since the sumation
2;? ( Xi‘)
i=1 N

To be consistent, if N is the average power of the noise, the average total
energy in the sample must be:

T 2
E{ [ X(t)at| = NT
o
where T is the duration and X(t) is the voltage waveform.

A Riemann sum must approximate this integral, thus:

n 2
E inAtzNT

i=1
where X; is the discrete approximation to X(t), and n = 2WT. Since At = é%.,
no2 21 ) ) 2
E| Z X.” At |=nX® — =T X%, where X = E(X,"),
i=1 * 2W 1

but then X2 must equal N, which is the variance of Xj.
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is distributed as chi square with 2WT degrees of freedom, the expected value

of the distribution is 2WT, or,
WL
E(Py) = E (LX.5) = owIN. (16)
i=1 *

Since the variance of a chi-squared distribution is simply twice the number

of degrees of freedom,

E [variance of PN] = LWTN® (17)

For 2WT greater than 30, a chi-squared distribution closely approximates a
normal distribution; thus, Py is normally distributed. Consider the distri-
bution of values for the power in the waveform when signal plus noise is pre-
sented. Iet the magnitude of the waveform at the ith sample point be Vi
Since both signal and noise are Gaussian, Yy will be normally distributed with
mean zero and variance S + N.¥

The quantity S + N refers only to the signal and noise power which is in
the signal band. In the case of the signal plus noise, consider the following

random variable.

Since the summation
2
2WT ¥i

L (=)

is distributed as chi-squared with 2WT degrees of freedom the expected value

of this distribution is 2WT, or,

An argument similar to that given in the first footnote s5ays E(yiz) =S + N,
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24T o
E(P ) = E(Zy.7) = 2T (S + N), (18)
S+ N ) i
i=1
and the expected value of the variance
. 2
E [Varlance of Pg N] = 4wl (s + N) . (19)

As long as 2WT is greater than 30, PS + N will also be normally distributed.

Figure 8 shows the results of these derivations. The distribution of
power in the sampled waveform, under each hypothesis, is displayed.

In the experiments presented in this paper a two-alternative forced-
choice technique was used. Two time intervals were marked off for the ob-
servers, and, in one of these intervals, the signal was added to the noise.
The ideal detector would measure the power in the two waveforms presented
during each interval. The optimum decision rule would be to say that the
sample having the largest energy measure was the one that contained the signal.
This decision rule maximizes the probability of a correct decision. Thus the
probability that this decision is correct is simply the probability that a
random sample from the signal plus noise distribution will be larger than the
drawing from the distribution of noise alone.

To determine this probability it is convenient to consider the difference
between the distributions of signal plus noise and noise alone. When the
drawing of signal plus noise is greater than the drawing from noise alone,
the difference between the signal plus noise sample minus the noise alone
sample will be greater than zero. Thus, the problem is to determine the dis-
tribution of the quantity, (PS N N) - (Py)-

Now since both Pg , y and Py have normal distributions, their difference
also has a normal distribution. The mean of the differences is the difference

of the means, and since the samples are taken at two different intervals in
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time they are uncorrelated; therefore, the variance of the difference is the
sum of the individual variances. The probability of a correct decision is
then the probability that a drawing from this normal deviate will be greater
than zero. It is convenient to normalize this difference distribution so

that the variance is unity. The mean of this normalized distribution is

then:

M =/-w_§ s 1 . (20)

N /- 2
«/&(ﬁ)Jr s .,
2\N N

Both the signal power (S) and the noise power (N) are measured in the
same bandwidth., Therefore, the noise power density, or spectrum level of the
noises, may be used in Equation (20). Since NW = N, and SH¥ = S, the

equation may be rewritten as

[ S
w =/ So 1 . (21)
2 NQV 1 E& : + 59 + 1
2 N

NO o

This is the form that is used in analyzing the data.

Let the quantity d'opt (d'optimum) be defined in the following way.

a' oot NEY (22)

The quantity d4' has been introduced in other papers on signal detection (5, 23, 24),
Previously this quantity was used only when the distribution of signal plus

noise and noise alone both had the same variance. For the types of signals
considered in the present paper this condition may not be true. However, when

the ratio of signal power to noise power per unit bandwidth becomes small (i.e.,
(SO/No << 1), the radical in Equation 21 becomes unity. Then d'o has the

pt
following value.



S S
ar = Wt =2 , = <<1 (23)
opt N, N,

In this case the variance of both the signal plus noise and noise alone distri-
butions is nearly the same (see Figure 8). This is a convenient definition,

since the quantity 4! is consistent with the previous definitions as So/No

opt
approaches zero.

Using either the quantity M or 4! , & table of the normal probability
t

op
integral can be used to determine the expected percentage of correct detections

for the ideal receiver. For example, at the value of (d'o = 1) the expected

pt
percentage correct is 75 percent,

While the mathematics have become somewhat imposing, the rational for
these equations is really quite simple. Consider Equation 23: from this
equation it is seen that the quantity d'opt is monotonically related to the

signal-to-noise ratio. Also, given a fixed signal-to-noise ratio, 4 n-

'opt 1
creases as the square root of the number of sampling points. This corresponds
to the familiar statistical result that the standard deviation of the sample
mean decreases as the square root of the number of samples. In the types of
signals considered in this paper more sample values can be obtained by ex-
tending either the duration or the bandwidth of the signal. This result can
be anticipated, since symmerty between the time and the frequency domain ex-
ists in an ideal receiver,

While the preceding derivations are strictly true only for the ideal re-
ceiver, the general results are also applicable to a variety of receivers
that are less than optimum. Any receiver which first filters the incoming

waveform, and passes it through a non-linear device that provides an output

monotonic with power, should behave roughly the same as the ideal receiver.
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In particular, if this non-optimum receiver increases its bandwidth to be more
nearly equal to the signal bandwidth, the detectability of the signal should in.
crease. Obviously, if the receiver bandwidth is increased beyond the band-
width of the signal, a decrease in performance can be expected, since the re-
ceiver is only listening to more noise which does not contain signal energy.
While it is hardly expected that the human observer will perform as well
as the ideal receiver, it is not unreasonable to expect that the human will
perform like the ideal receiver with respect to certain parameters, such as
signal bandwidth and duration. At the very least, such a hypothesis seems
to be worth investigating. The first experiment was designed to determine
if the signal bandwidth, or more precisely, if the observer's critical band,
influenced the detection of these noise signals.

3.3.3 Experiment II-A. In this first experiment the detectability of a

noise signal with a bandwidth of about 600 cps was determined as a function
of the center frequency of the signal. It is well known that the detecta-
bility of a sine wave signal masked by white noise decreases as the frequency
of the tone is raised. This is usually attributed to the fact that the crit-
ical bands are wider at the higher frequencies. For these pure tone signals,
according to the critical band theory, the observer is forced to listen to
morc noise at the higher frequencies. The signal-to-noise ratio is therefore
reduced, and higher frequency signals are harder to hear. When applying this
model to the detection of noise signals masked by noise, there are two theo-
retical approaches which may be employed as discussed earlier,

The first approach maintains that only one critical band may be used to
detect signals. All of the estimates of critical bandwidth from masking ex-

periments claim that the critical band will always be smaller than tbe band-



~60-

width of this 600 cps signal. However, the critical bandwidth will be wider

at the higher frequencies. Thus, according to the mathematical model presented
earlier, more samples should be obtained at the high frequencies than at the
lower frequencies, and the bands of noise at the higher frequencies will be
easier to hear than the bands of noise centered at the lower frequencies.
According to Fletcher's estimates of critical bandwidth, and also according

to the variation suggested by Equation 21, the signal noise centered at 400

cps will be about 8 db harder to hear than a band centered at 7500 cps.

The second approach maintains that the critical bandwidth obtained from
the pure tone data are simply minimum bandwidths. By employing several bands
in combination, the effective bandwidth of the auditory system can be adjusted
to any width greater than this minimum value. Therefore, for this 600 cps
noise signal, the auditory bendwidth should be matched to the bandwidth of the
signal, and, following the statistical model, the detectability of the signal
will then be independent of center frequency. Furthermore, if a wider band
signal is used, one which covers the entire region, the detectability of this
signal may be explained by an equation like that presented in the earlier dis-
cussion (Equation 21).

The first experiment provided a test of these views. This experiment was
conducted by the author at the Bell Telephone Laboratories, Murray Hill, New
Jersey, in 1957.

3.3.3.1 Equipment. The audio circuit is shown in Figure 9. The
noise source was a General Radio Model 1380-A; this provided a Gaussian out-
put with an approximately flat power output up to 200 ke. In order to change
the center frequency of the filtered signal without changing the linear fre-

gquency characteristics, a modulation scheme was used. The noise was filtered
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at a center frequency of 30 ke with an equivalent square bandwidth of 655 cps.
The filter characteristic is displayed in Figure 9. By setting the oscillator
at a frequency x cps above 30 ke, the audio output at the headphones would be
a band-passed noise signal with a center frequency of x cps and a bandwidth
which is, on a linear frequency scale, independent of center frequency. The
total power of the signal is, therefore, independent of the center frequency
of the band. Frequency measurement of the carrier oscillator was accomplished
by employing a Berkeley Model 5510 Universal Counter and Timer. A true rms
meter was used to establish the noise power per unit cycle for signal and
noise. The background masking noise power per cycle was equivalent to a sine
wave at 1000 cps set at about 40 db re 0.0002 dyne/cm2

3.3.3.2 Procedure and Recording Apparatus. The stimuli were pre-

sented binaurally through Permoflux PDR-8 headphones. Throughout the test
block, the subjects heard wide-band noise (the masking noise). Each subject
was seated in front of a small box. Four lights flashed on the box in se-
quence. The first light warned the subject when s test cycle was to begin.
During this warning light, the signal was presented in exactly the same fashion
as 1t would occur in one of the two following intervals. This interval, there-
fore may be interpreted as a preview of the signal to be detected. The second
and third lights then flashed in succession. During one of these intervals

the signal was presented. The selection of the interval in which the signal
was presented in each cycle was determined from a table of random numbers
which was programmed from a tape reader. The fourth light notified the sub-
Ject of the answer interval. At this time, each subject was to indicate, via
pushbottons, the interval in which he believed the signal occurred. After the
answer interval, the subjects were notified in which interval the signal had

actually been presented. The cycle was then repeated. 150 such cycles con-
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stituted a trial block. During each trial block, the signal and noise para-
meters were fixed. At each center frequency, five signal levels were em-
ployed, and two trial blocks were run at each level. All trial blocks were
run at a single center frequency before the center frequency was changed.
Before each trial block, the subjects listened to several practice trials to
acquaint them with the stimulus parameters during the test session. Random
sequences determined the order of signal levels as well as the order of cen-
ter frequencies. BEach cycle required about four seconds, permitting a trial
block to be completed in ten minutes. The observers, who were both female
employees of Bell Telephone Laboratories, Inc., were unfamiliar with the
nature of the problem. They worked one hour in the morning and one hour in
the afternoon. About 1000 observations were taken per day. A rest period
of at least five minutes was allowed between sessions. The data were re-
corded on counters which tabulated the number correct in each interval; thus
a complete matrix of the subjects' responses and the stimuli presented was
available,

3.3.3.3 Measured Quantities. The results will be presented in

terms of the following quantities, NO is the noise power per cycle (spectrum

level) of the masking noise. SO is the noise power per cycle of the signal

noise. Wg is the bandwidth of the signal. The bandwidth will be specified
in terms of the equivalent square bandwidth. The equivalent square bandpass
is a mathematical convenience. It is a mathematical filter which has a
rectangular frequency characteristic. This mathematical filter's height is
equal to the maximum gain of the physical filter, and its width is such that
total power output from each filter is the same for a white Gaussian noise

input. T is the duration of the signal. N, and So have the dimensions of

energy. The ratio of these quantities is, of course, dimensionless. (Sy'W)
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is the total power of the signal. The total energy of the signal is (SOWST).
3.3.3.4 Results. The results of this experiment are presented in
Figures 10 and 11. The data for all the conditions of the experiment are
presented for each observer. The ordinate is the percentage of correct deci-
sions in the two-alternative forced-choice tests. Three hundred observations
were used to define each point. The abscissa is the logarithm of d'0pt'
This scale is used because it permits one to plot the results of both the
narrow-band and wide-band noise signal on the seme graph. The solid line
represents the performance one would expect from the ideal receiver. The
observer's performance departs from that which would be obtained with an
ideal receiver in two ways. The observer's performance is sbout 5 to 6 db
less than optimum at the 75 percent correct detection point. Also, the ob-
servers appear to have a slightly steeper psychophysical function than that
which would be obtained with the ideal receiver. This finding is reminiscent
of the data obtained with pure tones masked by noise. In the experiments
using pure tones as the signal the observers' performance approaches the ideal
performance more closely for the more intense signals (5).

Despite these differences between the ideal performance and the observer's
performance, the parameter bandwidth appears to influence both in the same
manner. The change in bandwidth from about 650 cps to 5100 cps can be
accounted for by the theory.

Figure 12 is a summary of the data just discussed. In this figure the
ratio of signal-to-noise power in a one cycle band necessary for 75 percent
correct detections is plotted against the center frequency of the narrow-band
noise signal. The 75 percent point was chosen since, for the ideal receiver,

it corresponds to a d'o of unity. The values were obtained by plotting the

pt

psychophysical function appropriate for each condition. A smooth line was
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NARROW BAND SIGNAL

-67-

IN_WIDE BAND NOISE

W = 655cps T =1/4 SECONDS W)y, = WIDE BAND (EARPHONES)
-4 |- 75% CORRECT DETECTION —1 0.400
-5 }— — 0.316
-6 — OBSERVER | — 0.251
So/No
-7 = — 0.200
-8 - W o+ — 0.159
-9 |— — 0.126
400 800 1500 2500 4500 7500
CENTER FREQUENCY
WIDE BAND SIGNAL IN WIDE BAND NOISE , W =W, = 5143cps
T =1/4 SECONDS
OBSERVER | OBSERVER 2
10 ICQ So/No So /No (o] |Og Se/No So/No
FOR 75% -10.0 .100 -9.6 1096
CORRECT
FIG. 12 SUMMARY OF THE DATA OBTAINED IN THE

FIRST PART OF THE NOSE IN NOISE
EXPERIMENT

The points represent the Signal to Noise power per unit bandwidth
necessary to obtain 75% correct detections. The abscissa is
the center frequency of the band of noise used as the signsal.
The table below is the summary of the data when a wider band-
width is used for the signal.
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fitted to the data by eye, and the 75 percent point was determined. <Clearly,
for the narrow-band signal, the center frequency of the signal had little to
do with the signal’s detectability. This result is consistent with the second
theoretical approach discussed earlier; namely, the observer either widens the
critical band to match the signal bandwidth or, equivalently, linearly com-
bines the outputs of several critical bands to obtain the same result. Only
the data obtained at a center frequency of 7500 cps seems to disagree with
this conclusion. Here the frequency response characteristics of the head-
phones certainly contribute heavily to the results. Anomolous data at such
frequencies have been obtained in two other studies (7, 14). No complete ex-
planation of such a result can be suggested at this time,

The table beneath Figure 12 expresses the same data for the wide-band
signal. These data were obtained by passing both signal and noise through
the same filter; hence these data represent the differential intensity sensi-
tivity for a noise stimulus. SO/No is thus equivalent to the Weber function
MB/E for sound energy. In order to avoid confusion it should be pointed out
that the measure So/No is independent of signal bandwidth. This ratio is
about .251 for Observer I with the 655 cps bandwidth signals, and about .10
for the 5134 cps bandwidth signal. In terms of the total energy of the signal
(WSSOT), the wide band signal had a total energy of about 3.3 times the total
energy of the narrow band signal.

3.3.4 Experiment II-B. This experiment was undertaken at the Psycho-

*
physical Laboratory with different observers than those employed in the pre-
vious experiment., The previous experiment indicated that the observer be-

haved consistently with the equation for the ideal observer, at least with

Electronic Defense Group, University of Michigan, Ann Arbor, Michigan.,



-A9-

respect to the signal bandwidth., The parameter investigated in the present
experiment is signal duration. In this experiment, both signal and noise
were passed through the same filter. The equivalent square bandpass of this
filter was about 3800 cps. Six signal durations were used. Signal duration
and power were the independent variables. At each duration, a function re-
lating signal power to the percentage of correct detections was obtained. A
two-alternative forced-choice test was used. The experimental procedure and
the equipment used have been reported in Ref. 5. Only one change was made
in implementing the present test; instead of using an oscillator to generate
the signal, a noise source was employed. The signal and the noise were
filtered at the input to the power amplifier. The masking noise level was
about 50 db re 0,0002 dyne/cm2 in a one cycle per second band.

Figures 13, 14 and 15 show the raw data obtained in this experiment.
As in Figures 10 and 11, the percentage of correct detections is related to
the physical measure, d'opt’ About 300 observations were used to define
each point. In some of the conditions some of the observers were absent so
that less than this number of observations was obtained. These data are not
presented on the graphs. Except for an increase in the varisbility of the
data, which the author is unable to explain, the results are similar to those
obtained in the previous experiment. A summary of the data is presented in
Figure 16. The points represent the signal-to-noise ratio in a one cycle
band necessary to obtain 75 percent correct detection. The solid curve rep-
resents the same data which should be obtained by the ideal receiver. It
is seen that the difference between the ideal receiver and the observers'
performance is about 5 to 6 db. At the 1 sec. duration, Miller (16) has
obtained similar data. He found the ratio of SO/No to be .102 for one sub-

ject, and ,107 for another, at this noise level.
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The statistical decision model appears to account for the variation in
the observers' performance as a function of the signal duration. One would
expect that if even longer durations had been used, this relationship might
fail for then the memory capacity of the observer would be severely taxed.

The data from the 1 second signal duration suggest such a result.

3.4 Summary and Conclusions

For those situations where some constant detectability is determined
(e.g., threshold), the optimum receiver and the observer differ by some con-
stant number of decibels which depends only upon the definition of the thres-
hold point. Using the 75 percent point, all of the observers are about 6 db
below optimum for all of the conditions encountered in both experiments.

The change in the percentage of correct detections as a function of signal
power density is not the same for the ideal receiver and for the human ob-
server., There are, of course, many factors which could lead to this dis-
crepancy. Until further experiments are undertaken the author will refrain
from speculating on this point.

The results are completely consistent with the assumption that the band-
width of the auditory system can be adjusted over some range so as to match
the bandwidth of the signal to be detected. This is, in the author's opinion,
the most important result of the study. In many cases the auditory system is
assumed to be a fixed physical system. One then attempts to extrapolate
certain parameters of the system, which, since it is fixed, should generalize
to many experiments. Often such attempts fail. The model presented in this
paper assumes that the auditory bandwidth is a variable, rather than a fixed
parameter. In order to obtain some generality it was necessary to assume

that the parameter is changed so as to meximize the percentage of correct

detections. This experiment demonstrates the success of such an approach.



CHAPTER IV

THE IMPLICATIONS OF THE RESEARCH

Two types of signals were investigated: one was a combination of two
sine waves, and the other was a band of white Gaussian noise. Both of these
signals may be characterized by a frequency spectrum which is wider than the
nomingl width of the critical band. An adjustable bandpass model appears to
provide good predictions of the detectability of these signals. At the very
least, this model is clearly superior to a single, fixed, critical band model.

The adjustable bandpass model claims that two or more critical bands may
be used simultaneously to detect these complex signals. No restriction is
imposed as to how these multiple bands may be selected; only two bands
which are widely separated in frequency might be employed. The hearing
mechanism is, therefore, likened to a collection of simple, tuned filters
whose outputs may be added together, By employing appropriate weighting con-
stants, this linear sum provides a single combined output.

The choice of the combination to be used and the constants to be selected
is determined by some higher-order system. The model assumes that the combin-
ation is determined so as to maximize the probability of a correct detection
in a particular experimental situation. Such a scheme is quite different from
the previous notion of the critical band concept, especially that advanced by
Fletcher., In his work there appears the definite suggestion that the crit-
ical bands are simple reflections of the geography of the basilar membrane.
Such a fixed system is not consistent with the model presented by the present
author, or the results obtained in the two experiments reported in Sections

3.2 and 3.3.
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The adjustable bandpass model is, in essence, a model which claims that
parameters of the hearing mechanism are adjustable., Such a view could, there-
fore, provide the flexibility necessary to explain some of the inconsistencies
which were pointed out in the review of the literature of the critical band
concept (Chapter II). While the adjustable bandpass model has not been ex-
tended to cover these inconsistencies, it is apparent that, at least, such
a model has the potential for doing so. One method of reconciling divergent
results is to claim that the mechanism somehow changes from one experiment to
the next. The model presented provides a rational and rigorous means of
approaching such a problem.

This model is, of course, more complicated than the simple, fixed-band-
pass model, While this is unfortunate, it seems that the data have already
forced at least this level of complication upon us. The maximization assump-
tion somewhat offsets this disadvantage, since, unlike some more complicated
models, this one does not cost the experimenter any more degrees of freedom.
Indeed, for the noise signals, only one free parameter is employed.

Finally, the use of a model such as the adjustable bandpass model pro-
vides a natural division of what may be called the sensory and perceptual
categories. The maximization assumption serves to link the two. Such a
theoretical division of the two concepts, with some method of linkage, even

if not correct, is certainly a virtue of this approach.
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