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ABSTRACT

A statistical decision model is applied to the recognition
of voice signals in noise. Certain strong simplifying assumptions
are made to make the mathematics of the model manageable. The
model is compared with the data of Miller, et. al. (Reference 1).
The main problem dealt with is how the size of the vocabulary
affects the articulation score. A discussion is included of the
physical parameters involved in such tests. An appendix presents
various approximations to the problem involved in predicting
the percent correct recognition for the conditions considered by
the model.
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THE EFFECT OF VOCABULARY SIZE ON ARTICULATTION SCORE

1. INTRODUCTION

The dependence of the articulation score upon vocabulary size has been
studied empirically by Miller, Heise and Lichten (Reference 1). This paper will
attempt to account for the data obtained in terms of a statistical decision model.
The main virtue of the application will be to show how a single set of transforma-
tions of the data yield a single function relating an inferred variable, d', to the
physical measure employed in the study.

The model will not be developed in full: rather, one plausible manner of
interpreting the model will be explained. The results derived, while encouraging,
need confirmation from other studies. The problems involved in checking the model

with other data will be discussed.

2. THE MODEL

Let the set of words be denoted W, and a particular word of the set
Wi(t). Wi(t) may be interpreted as the voltage wave form of the word. Suppose the
receiver is a cross correlation type where the received input Si(t) (the ith stimu-
lus wave form) is correlated with every expected word. Now Si(t) may be considered
as composed of two parts:
Si(t) = Wi(t) + n(t)
where Wi(t) is the ith word and n(t) is random noise. ILet us further assume that

all words in set W are orthogonal with equal energy; that is:
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O for i #

T
of wi(t) wj(t)dt

E fori=]j

]

T
of Wi(t) wj(t)dt

where T 1s the duration of the word and E is the energy of the word. Note that
the E is independent of i. All words are assumed to have the same energy. Now
if a stimulus word Sk(t) is presented, the receiver will cross correlate every
stored word W(t) with the received input. Suppose that n such words may be

presented. There will be n correlations, (n-1) will be of the type
C = fT S, (t) w.(t)dt = fT(w (t) + n(t)) w,(t)at = fT n(t)W,(t)dt
kftj ~ 00k 3 o’ ‘k J 0 3

and one cross correlation of the type:
cJ. = Oan(t) Wj(t)dt +E for j = k.

These correlations can be transformed so that (n-1) correlations of the type Ck#j
will be normally distributed with zero mean and unit variance, while the one
correlation Cj will be normally distributed with a non-zero mean and unit variancef
This normalized mean is called d', and increases as E increases.

Iet us assume that the receiver selects the largest correlation value and
reports the corresponding word as the stimulus received. Then the probability of

this response being correct is the probabllity that the correlation C is larger

k=]
than the largest of the (n-1) correlations of the type Ck#j'

Using the transform of these correlations this is the probability that
the largest of (n-1) drawing from a normal deviate with mean zero and unit variance
is smaller than the drawing from a single normal deviate with mean d' and unit

variance. Birdsall and Peterson (Reference 3) have calculated a graphic answer

for this problem to provide the relation between d' and percent correct

*
C, is normally distributed. This can most eagily be seen by considering this
integral as a sum using the sampling theorem. It then becomes a linear sum of
normal variables. The sum therefore is a normal variable (Reference 4).

2
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responses for various size vocabularies. Appendix 1 discusses these calculations
in detail.

Figure 1 shows the results of these computations. The graph shows that
if there are 32 possible words, the mean of the "word-sent'" distribution must be
3 times greater than the variance in order to be correctly chosen 80 percent of
the time.

For the receiver discussed previously d'474557ﬁ0, where E is the energy

in each word and No is the noise power in a one cycle per seeond band.

3. APPLICATION OF THE MODEL

In Miller, Heise and Lichten's study (Reference 1) we find the articula-
tion score plotted as a function of signal-to-noise ratio with vocabulary size as
a parameter.

From the raw data each percent correct identification was used to enter
Figure 1. Using the line appropriate for this vocabulary size, a d' value was
obtained. These values for d' were then plotted against the signal-to-noise ratio
which was used in the study. Figure 2 shows the result of this work.

The following examples illustrate this procedure: for a vocabulary size
of two, -12 db gave 87 percent correct; using Figure 1, 87 percent corresponds to
a d' = 1.60 for a 2 word vocabulary. For a vocabulary of size 32, -12 db gives
39 percent correct; using Figure 1, 39 percent yields d' of 1.73 for a 32 word
vocabulary. The actual data obtained in the experiment, not the smoothed curves,
was used to construct Figure 2.

On Figure 2 a smooth line was drawn by eye through the cluster of points.

The line drawn is presented below in table form.
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S/N (in db) -18 -15 -12 -9 -6 -3, 0 ] 3 l 6
|

a’ 27 .80 1.55| 2.4%0 | 3.00 | 3.4

S/N (in db) 9 12 15 18 21
4.0 h.1 .o 4.3 L4

In order to evaluate the fit of the line to the data, the following
procedure was employed. For each value of S/N the d' given in the table was assum-
ed. This was used to reenter Figure 1 and predict the articulation score. One
therefore obtains a set of percent correct values as inferred from the line and
those obtained in the experiment. These two values (of predicted and obtained
percent correct) are displayed in Figure 3. As can be seen, the line drawn in
Flgure 2 appears to fit the data fairly well. Several data points do not appear
on the graph. For a vocabulary of size two, the points obtained with the smallest
signal-to-noise ratio were 49 percent and 51 percent. These led to estimates of 4!
which are too small to appear on Figure 2. Only one is displayed in Figure 3 since
the other would have about the same value.

The points obtained with the monosyllables (M) depart considerably from
the predicted value. One reason for this divergence is that the condition under
which this data was collected is different from the procedure used with the other
vocabulary size. The monosyllables were selected from a list of 1000 words, but
the subjects had no list of the 1000 words. Therefore, he could not possibly per-
form the operations assumed for the model. If one assumes the apparent vocabulary
size is between 2000 to 4000 words a better prediction of this data is obtained.

We now arrive at the knotty problem of what the measure (S/N in db) means.
According to the article (Reference 1, page 330) "A S/N of zero db means, therefore |
that the electrical measurements indicated the two voltages, speech and noise, were

equal in magnitude.” A consideration of the time wave form of speech and noise

6
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leads us to believe that these voltages were not equal in magnitude for any period
of time. What was done was the familiar monitoring of the speech by a volume

" was held constant by

indicator (VU). The carrier phrase "You will write ....
this method and the words spoken in their natural manner. The peak deflection of
the meter were used to measure the individual words and the average, therefore,
gave us a definition of S in db. The noise was then measured on the same meter and
this gives us a definition of N in db.

If one interprets the S/N in db as varying linearly with log (2E/N,) then
one would expect log d' to vary linearly with S/N in db. Hence, in Figure 2, if
the observer acts as an ideal receiver, one would expect a single straight line to
fit the data. It must be remembered, however, that two assumptions were made in
deriving the equation for the ideal receiver. First, the words were assumed to be
orthogonal, and, secondly, they were assumed to be equal in energy. Both assump-
tions appear unlikely, especially for the larger vocabulary sizes.

The exact manner in which a violation of these assumptions affects the
expected percent correct detections is difficult to evaluate. Once can say with
some certainty that they will decrease the expected percent correct. Beyond this
trivial statement little of a concrete nature can be stated. The equations for the

percent correct answers with correlated’words or words of quite different energies

are rather complex and no simplifying forms have been discovered as yet.

4. CONCLUSION

While the assumptions made by the model are obviously too strong, the
present analysis provides a logical way of transforming the articulation score with
different vocabulary size to a single function. The single function is derived

empirically from the data and hence the main question remains, will the function

8
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work in other experiments? It is rather difficult to apply the functions to other
experiments when the measure of the noise is dependent on the bandwidth of the

system employed in the experiment. Also, until some relation is determined between

"the peak VU meter deflection" and the energy in a word it remains impossible to

test the model in any detailed way.
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APPENDIX 1

PROBABILITY OF BEING CORRECT IN A CHOICE OF N ORTHOGONAL SIGNALS

Figure 1 of the report displays the probability of a correct choice among
N orthogonal alternatives. Mathematically this is equivalent to the probability
that a single drawing from a normal deviate, with mean d' and variance one, will
be larger than the largest of (n-1) drawings from normal deviate with mean zero and
variance one. Let this probability be devoted Pn(d').

The original computation for this problem were done by Birdsall and
Peterson (Reference 3). They used an approximate integration technique which had
an error no greater than about 2%.

Table 1 shows the results of these computations.

Their results indicated that Pn(d') could be approximated by a rather

simple form; 1.e.,

Pn(d') = & (and‘ -b.) (1)
where & is the (area) normal distribution function, i.e.,
| +2/2
5(x) =[5 = at

e
-0 Nox
The value b is obtained by setting d' = O then Pn(O) = & (an) = 1/n.

The value a was computed for several values of n and is listed in Table 2.

,TABLE 2

n | 2 | % | 8 | 16 | 32 | 256 1000
| .T07 |.827 |.855 I .88k l .890 | 916 | .96k

a
n

For values of n between those listed, a, may be obtained by graphic interpolation.
Recently some work has been in progress which allows us to check partially

the accuracy of these computations and extend the range on n.

10
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Tippett's tables (Reference 2) have the distribution function for the
largest of n drawings from a normal deviate with mean zero and unit variance. By
convoluting this distribution function with the normal density function having
mean d' and unit variance it is possible to obtain Pn(d’).

That is
P(a') = [0 . (x) 0(x-d') ax (2)

where Tn_l(x) is Tippetts distribution and ¢(x—d')is the normal density function
with mean 4' and unit variance.
Table 3 shows the values obtained by convolution and those obtained from

the report of Birdsall and Peterson.

TABLE 3
at 0 1 35
P__(a') 03225 | 17497k .903456 | Convolution with
3L Tippett's Function
P32(d') .03125 | 1747 .89480 Birdsall and Peterson
q 0 2 3.5 5 6
P (a*) [.000999 | .120231| .59818 | .950594 | .99484 Convolution with
1001 Tippett's Function
Plooo(d') .001 1247 61179 | .9506 .9948 Birdsall and Peterson

If one is not satisfied with a graphic interpolation for the values of a s
a second method may be suggested which perhaps is somewhat interpolation for the
values of a a second method may be suggested which perhaps is somewhat more
accurate. To obtain Pn(d') for n 230, Tippetts distribution may be approximated

by a normal distribution function, for values of .01 < Tn(x) < .99. That is:

T (x) » a(x_mn> (3)

%n

where

12
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m =11m[b-fT(x)dx] n > 30 (%)
n b = o
2 . 2 b 2
o = blimm [b -2 Of X Tn(x) dx] - m n > 30 (5)
Then, x-m_
00
Pn+l(d') = L a( = )cp (x-d') dx (6)
d’—m
»Jl+02
m
n 1
Note that plays a role like b_ in equation 1 and is like
Jl+52n n Viso?

a in Equation 1.
For larger n (n>lOOO) the approximations suggested by the Bureau of

Standards (Reference 4) are useful. They suggest:

() = @ (X_._'mn) (1)
a
n
wherem =U_+ 2122
! " % s = s _ 1.28255
" fa | %
and U_is such that & (U ) =1 - =
n n n
o = n¢(u)
Since for large x (x24)
@ (x) =1-a(-x)= ¢ (x)
. 1
¢ (u) = =
n
n ¢ (v,) = U,
o = Un for n>lO3

Using the Bureau of Standards approximations as the constants in

Equation 1

13
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n = 1o6 Pn(d') = & (.96796 d' - L.71416)
n = 10° Pn(d') = & (.97885 d' - 5.96303)
n = 1072 Pn(d') = @ (.98434 4' - 7.00358)

The term an—-l for very large n, that is, the variance of the extreme value distri-
bution (Tippett's distribution) approaches zero for very large n.

To summarize, Birdsall and Peterson’'s calculations provide good approxi-
mations to the probability Pn(d’) for moderate values of n, n<1000, and for
practical ranges of d', (Equation 1). Better accuracy is guaranteed using
convolutions with Tippetts tables, (Equation 2). Another method similar to
Birdsall and Petersons, but employing Tippetts table is demonstrated (Equation 6).
Finally, for large n (n>-lOOO), the Bureau of Standards approximations are useful

(Equations 3, 4, and 5).

1k
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