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DIGITAL COMPUTER ANALYSIS OF CONDENSATION
IN HIGHLY EXPANDED FLOWS

SUMMARY

The application of the IBM 7090 Digital Computer to the theoretical
prediction of condensation in highly expanded flows is presented. The
equations of the spontaneous nucleation theory of Frenkel (13) are com-
bined with the steady one-dimensional diabatic flow equations for a solu-
tion of the expansion of a pure vapor. A digital computer program for

the solution of these equations is compiled and presented.

The theoretical prediction of the condensation of nitrogen is com-
pared to experimental results and variations in specific heat, latent
heat of vaporization, surface tension, and rate of expansion are inves-
tigated. The theoretical calculation is applied to metal vapors and

the results for copper and zinc vapors are presented.

The results indicate that the theoretical solution gives a reason-
able prediction of the condensation in highly expanded flows. The
degree of supersaturation increases with an increased rate of expan-
sion and for a proper set of initial conditions ''condensation free" flow
is obtainable. The rate of expansion and the surface tension are the
most critical parameters in the equations for condensing flow. Vari-
ations of specific heat and latent heat of vaporization show only minor

effects on the end result.
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1. INTRODUCTION AND SURVEY OF THE LITERATURE

The phenomenon of the spontanecus condensation of a gas or vapor
into the liquid phase has been the subject of numerous theoretical and
experimental investigations for the past three-quarters of a century.
The condensation of an expanding vapor was first noted in 1887 by
R. von Helmholtz; however, this phenomenon did not enter the field of
aeronautics until about 1940 when its occurrence was noted in the

supersonic wind tunnel.

In a supersonic nozzle, the gas or vapor undergoes an isentropic
expansion which results accordingly in a decrease in the temperature
and pressure. Generally the saturation vapor pressure decreases with
temperature more rapidiy than does the static pressure of the isen-
tropic expansion, hence saturation conditions are approached. If the
rate of expansion is very rapid the flow will pass through the point at
which saturation temperature and pressure are reached without any
condensate being formed. The vapor is then in a non-equilibrium state,
supersaturated, in which the existing vapor pressure is higher than the

corresponding equilibrium saturation. pressure.

The first person to note that a supersaturated vapor can exist was
R. von Helmholtz, who showed that saturated steam expanding through
an orifice into the atmosphere would remain clear for scme distance
before becoming cloudy. Stodola (1) furthered this by devising experi-
ments on superheated steam which would detect the onset of condensa-

tion and provide eviderce of supersaturation.
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In the late 1940‘s and the early 1950's an intensive series of inves-
tigations were conducted to determine the condensation of air, water
vapor in air, and nitrogen. Many of these were conducted at the Cal-
ifornia Institute of Technology, and worthy of note are the investiga-
tions of Head (2) on water vapor in air, Willmarth and Nagamatsu (3)
on nitrogen, and a summary report of GALCIT work by Nagamatsu (4).
A series of investigations of air in high speed wind tunnels conducted
during this era include the works of Stever and Rathbun (5), Wegener

and Reed (6), McLellan (7) and Bogdonoff and Lees (8).

There was a lag of interest in this area in the middle to late 1950's.
However, with the advent of the nuclear space propulsion system and
the use of metallic vapors as the working fluid for hypersonic wind
tunnels, the interest has been renewed. The Office of Naval Research
sponsored the recent review of existing theories by Courtney (9) in an
effort to stimulate this interest. Many of these theories are built
around the spontaneous self-nucleation concept, and they base the
collapse of the supersaturated state upon the determination of the rate
of droplet growth to the critical drop size. The complexity of the
nucleation phenomenon requires that many simplifying assumptions
be made in order to evaluate the problem by hand calculations.
Courtney (9) attempts to obtain a more complete evaluation of the
nucleation theories by carrying out the calculations on a digital

computer.

A recent study of air in hypersonic wind tunnels by F. L. Daum (10)
indicates that, as yet, there is no proven available theory for predict-
ing the amount of supersaturation expected in a hypersonic nozzle from

which may be determined the point of onset of condensation.



-3-

Until recently none of the investigations had included the problem
of metal vapors. The investigation by Hill, et al, (11) in 1962 adapted
the existing theory to the case of metal vapors and provided results
which indicate that this is a valid extension of the theory. The devel-
opment of the nucleation equations and flow equations did not prohibit
their application to metals, but since the need had not existed the
application was not attempted. The authors noted have not mentioned
any adaptation of the digital computer to the hypersonic flow problem.
Hill suggests that this is the next logical step and that a computer pro-
gram should be used to investigate the effect of variations in surface
tension, nozzle length, area distribution, inlet conditions, and other

parameters as well,

Purpose of the Present Investigation

At the inception of this study there was no known application of
condensation theory to the case of metal vapors. The Hypersonic
Wind Tunnel Group of The University of Michigan was undertaking
the experimental investigation of the condensation of metal vapors in
highly expanded flows, and thus arose the need of a method for the

theoretical prediction of the onset and magnitude of condensing flow.

Of greater importance was the need for an understanding of the
effect a variation in any of the various parameters might have on the
end result. Thereby arose the need for a digital computer program
from which numerous results can be obtained for multiple combina-

tions of the various parameters.

The extent of the present study is to:
(a) review the literature to determine which of the more promis-
ing theories will most readily adapt to the IBM 7090 digital

computer,



e

(b) write the program and test against some known experimental
results to validate the method,

(c) obtain theoretical results for several metal vapors under
reasonable hypersonic test conditions,

(d) vary surface tension, specific heat, heat of vaporization, and
nozzle parameters to show the magnitude of influence on the

problem.

The first approach was one toward a general problem with all
quantities variable and with multicomponent working fluids. This
rapidly exceeded the capabilities of the computer, and of the author,
and dictated the simplified approach which is employed. The system
will be developed for one-dimensional expansion of pure vapors which
obey the perfect gas law and which have a constant ratio of specific
heats. Initially the specific heat, latent heat, and surface tension will

be taken as constant and later will be varied to observe the effect.



II. THERMODYNAMIC FUNDAMENTALS

A. Isentropic Expansion of a Vapor

The assumption that the vapor follows the perfect gas law is, in
general, well justified and the pressure and temperature can be related

by

(2.1)

Any vapor whose latent heat 1s large, 1. e., L> CpT, will approach
saturation as the temperature is decreased by an isentropic expansion,
and if the expansion is rapid enough there will be a thermal lag so that

a supersaturated region will be reached.

The Clausius-Clapeyron equation can be used to relate the variation
of the saturation vapor pressure with temperature to the latent heat of

vaporization.

e (2.2)

where poo is the saturation vapor pressure corresponding to a partic-
ular temperature and for an infinite droplet radius, L(T) is the latent
heat of vaporization, and v, and vy, are the specific volumes of the

vapor phase and liquid phase, respectively.

Since the liouid cccupies a very small portion of the total volumnie,

we will assume vy~ = vy and v, © Assuming L = constant,

L
equation (2. 2) becomes

T =



o L p Lu
dT "V T 2 (2.3)

where, u = the molecular weight of the vapor
R = universal gas constant.

In order to compare the slope of the isentrope with (2. 3) we will

differentiate (2. 1) logarithmically,

dp LY dT

L. T (2. 4)
from which,
C N
dp _p"p (2. 5)
iT " R T °

by virtue of v = Cp/ Cv and R/ u = Cp - CV . The ratio of sliopes is

therefore

ar/ar ¢ (2.6)
Thus for the case of L/T > Cp the saturation vapor pressure decreases
with decreasing temperature more rapidly than does the vapor pressure
in an isentropic expansion, and the supersaturation ratio, p/poo, contin-
ually increases until saturation and, eventually, supersaturation are

obtained.

Head (2) gives slope ratios for several vapors and shows a typical
value of 2 for nitrogen nozzles operating at normal reservoir conditions.
Similarly, he shows that if a vapor had a small latent heat of vaporiza-
tion, L/T < Cps an isentropic compression is necessary for the approach

to saturation conditions.
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Upon reaching the saturation point the fluid has a choice of two
routes by which to continue the expansion. One, the saturated equilib-
rium expansion, involves a gradual process of condensation which com-
mences at the saturation point and maintains thermodynamic equilibrium
throughout the expansion. The other, a supersaturated expansion, is
characterized by a delay in the onset of condensation to some point down-
stream of the saturation point at which the vapor temperature is well

below the corresponding saturation temperature.

Before continuing further with these alternatives it will be neces-
sary to develop the diabatic flow eqguations which account for the effect

of the condensate.

B. One-Dimensional Steady Flow Equations With Condensation

The equations have been derived by many authors; however, we are
interested here in a specific case which includes the following assump-

tions:

1. The vapor phase is a pure vapor and may be treated as a per-
fect gas.

2. The condensed mass is a liquid, is uniformly distributed
throughout the gaseous compeonents, and has the same speed
and temperature as the stream.

3. The volume of the condensed phase is negligible compared to
the total volume.

4, The nozzle flow is frictionless and is without heat transfer.

5. The saturation curve fcr the vapor may be adequately approxi-
mated by the Clausius-Clapeyron equation.

6. The latént heat of vaporization and the specific heat at constant

pressure remain constant.



Assumption 2 requires some discussicn, in that the crystallization
of the liquid drops cr the sublimation directly to the solid state is prob-
able at the lower temperatures. In the area concerned, the available
experimental data on the properties of the vapor and the liquid phases
is extremely limited, and for the crystalline phase it is practically
non-existent. Highly extrapolated curves are the only sources, in many

_instances, so the liquid assumption will be as good as the available
data. The zero drag approximation is supported by Stever (12) in cit-
ing numerous investigations which verify high fractional condensation
rates. From the equations c¢f Frenkel (123) it is noted that a small crit-
ical drop radius is necessary for a high condensation rate. In high
speed flow the drops are in the nozzle for only a short period of time,
so there is only time for a small increase in size due to growth. Thus,
for high speed expansions with supersaturation, the drop size will be
small, and the logical assumption is that the condensate and the vapor

travel at the same velocity.

Only the major steps ir the development of the flow equations for
a pure vapor are presented in this section. A more complete develop-

ment is presented in Wegener (14).

The continuity equation can be written in its usuval form, since the
volume of the liquid is negligible and the vapor and drops travel at the
same velocity. With g taken as the density of the mixture and m as the

total mass which passes a given location in unit time:

pUA = m = constant
(continuity) ST AT 0 (2.7)

As a result of the assumptions 2 and 3 the equations of momentum and

state are:



(momentum) %E = - UdU (2. 8)

dp _dp dT _dg 2.9)

(state) D ") + 77 T-g

From the first law of thermodynamics, with no external heat sources,

the energy equation is

d(h+U%/2)=0. (2.10)

The density of the mixture, p, used in the above equations is
defined by the equation, p = p,+ p'L, The density pr is the mass
of liquid condensate per unit volume of the vapor. This requires an
assumption that the liquid droplets be uniformly distributed throughout
the vapor so that the densities of the vapor and of the liquid may be
referenced to the same volume. ¢ is the mass fraction of the working

fluid which has condensed into the liquid phase,

By use of the assumption that the vapor and the liquid are at the

same temperature, and for constant Cp and L equation (2. 10) becomes,

d (u/2+ C,T - gL) =0 (2.11)

and

(energy) UdU + deT -Ldg=0 (2.12)

By introducing the sound speed by the perfect gas formula in

terms of vapor density, A2 =y % T, an alternate form of (2. 12) is

2dU dT Ldg _
(y-1)M Tt T —=———cpT—0 (2,13)
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The four equations, (2.7), (2.8), (2.9), and (2. 12) involve the six
unknowns, p, p, T, U, g, and A. For this particular problem, it will
be assumed that g and A are determined from other sources and p, p,

T and U are obtained from the above equations.

Area will be known for a given nozzle, or the area distribution
must be determined from a given Mach number or pressure distribu-
tion. The question of determining the condensation, g, depends on the
assumed flow conditions. If it is assumed that thermodynamic equilib-
rium exists at all times the Clausius-Clapeyron equation can be used.
This method will be developed in Section V. However, in the event
supersaturation takes place, the determination of g is not so simple

and nucleation theory must provide the missing equation.

After devoting one section to the determination of the onset of
condensation, and one to nucleation theory, the flow equations will be

married to the condensation equations for a complete solution.



III. PREDICTION OF THE ONSET OF CONDENSATION

A review of the literature shows that indeed there is no proven
available theory which is valid for predicting the onset of condensation
in a supersaturated flow. A solution of the equations for predicting
this point always requires an assumption as to the amount of condensate
formed, the droplet formation rate, or the deviation from isentropic

flow.

A marriage of the flow equations (thermodynamic) and the conder.-
sation equation from nucleation theory provide a means of computing
the flow properties for a given area distribution. A plot of a flow pararm-
eter during the period of condensation shows a sharp deviation from a
plot of the same parameter undergoing isentropic expansion. Experi-
mental investigations have determined that static pressure, p, and pitot
pressure, p"o, are strongly affected by condensation and a jump in these

quantities usually is used to detect the onset of condensation.

Here we are defining the point of onset of condensation as that point
along the flow at which the initial condensate formed is sufficient to
cause the computed value of p or T to differ a detectable amount frcm

its corresponding value for the isentropic expansion.

The complete solution could be solved for very small steps stariing
at the saturation point and continuing throughout the length of the nozzle.
From a plot of actual pressure, p, compared to the pressure distribu-
tion for an isentropic expansion the point of onset of condensation cculd
be determined. However; this would require an excessive number of
calculations, and for certain combinations of nozzle parameters and
stagnation conditions the vapor may traverse the nozzle without ever

condensing and several minutes of computer time would be wasted.

-11-
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Therefore, it would seem expedient to establish a criterion for estimat-
ing the point of onset of condensation and then to continue the stepwise

computation of the full set of equations from this point onward.

Since the expansion of the vapor, in which there is no condensed
liquid, will be assumed isentropic, any deviation from isentropic con-
ditions should serve as an indication of condensation. As previously
stated, the static pressure is sensitive to condensation and this will
be used as an indicator. From the calculations of Hill (11) the static
temperature, T, also appears to give a strong indication. At certain
times it is quite possible that the temperature might give a better i,ndi-‘

cation than the pressure, and this factor now will be investigated.

The flow equations from thermodynamics, (2.7), (2.8), (2.9), and
(2. 13), relate isentropic conditions when there is no condensate present,
g = Ag = 0, and relate actual conditions when the vapor is condensing.
A proper combination of these equations should produce a parameter
which indicates the deviation from the isentrope. Since we are inter-

ested in temperature and pressure we will recombine the flow equations

to obtain expressions for %2 and %I: .
dp,dU dA _
+ T + N =0 (2.7)
dp = - pUdU (2.8)
dp dp dT dg
b S AT - 2.9
p p T 1-g (2.9)
(y-l)Mz%E+£~-——Ldgz (2.13)

T CT
p

Substitute equations (2. 7) and (2. 13) into (2. 9) to obtain
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dp _dU dA 2 dU dg _ dg

p = T A - U-UM U+CpT 1- g
dp _ /dU 2. dA [ L 1| )
! -iU 1+ - DM + -A+§CpT-1_g;dg (3.1)

{,
F'F’yMz TUTRTICT T
. RENER)
dp _ vy M [d_A_+§ L 1 zdgf\
- 2 2, " ATICT 1-g| °
PbM™-(-g-0-g@F-1)M] | p 8

For this particular problem we are interested only in the point of
onset of condensation. Therefore, we assume isentropic conditions
exist up to the point and the only condensate present will be the dg
formed over the incremental step at which we are considering the
onset to take place. The calculations will be accomplished in a step by
step manner on a digital computer, so we write all increments as A
and set g = 0 to get '

ap_ yM® | AA L

- \ i
p M2—1 ; A ;CpT

~

i
- 1jAg) (3. 3)

From (3. 3) it can be seen that over steps in which there is no conden-
sate (Ag = 0) the stepwise change in pressure will be isentropic. How-
ever if Ag # 0 then the step change in p will differ from isentropic.

We therefore rewrite (3. 3) as
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Ap yM~ AA A L )
—— — (1l-—|==-1 Ag (3. 4)
p M2 _q A AA(CpT
We now can define
A L
= AA (_CpT - 1) Ag (3. 5)

as the fractional deviation from isentropic of the pressure change over
an increment Ax. The magnitude of ep which can be considered a sig-

nificant deviation is yet to be determined.

Now we examine a similar analysis of the temperature as a possible
indicator. From equations (2. 13) and (2. 8) we obtain
df _y-1 _,dp,

T = o T C,T

dg : (3. 6)

By substituting the value of Ap/p from (3. 4) the equation becomes

2 -~
AT v-1) yM AA[ Al L J L
= -1+ — === - 1 Ag|) + Ag
T y M2.1 A AA CpT _ CpT
2 - ) ' L
AT (y-1)M° AA L AL ), M -1 L Ag
T 2 A Y “TaAAllC T 2C T
M -1 p (y-1)M" 7p f
ATz_(Y‘l)MzAA oA, L y-l//Mz}Ag (3.7
T 2.1 A AA CpT v -1 :
Again we define
e - A y—l/Mz\ L ‘JA 3.8)
TOAA|| -1 JC T &

as the fractional deviation from isentropic of the temperature change

over AXx.
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Note: A comparison of (3. 5) and(3 8) shows a difference only of

the coefficient of L/CpTo Thus as }/IM -1, i.e., as M =1,

approaches the value of epo However9 an examination of € and ep

€

for given conditions of L/ Cst AA, Ag produces:

(a) for condensation in the supersonic portion (M >1) — € > €p9

(b) for condensation in the subsonic portion (M < 1) —— ep > €rpe

As an example we consider reasonable values of L/CpT dand M - 10:

the result gives €& " (2) A 3 Ag and €r = (9. 5) AA:A Therefore, a

dual criteria will be selected so that ET will determine the onset of

condensation when M >1 and ep will be used when M < 1.



IV, NUCLEATION THEORY

A. Condensation Nuclei

In the process of condensation, the saturated state is referenced
to a plane liquid phase and the vapor is considered to condense on a
flat liquid surface or on a ''cold" container wall such as the moisture
formed on the outside surface of a glass of ice water. However, in
highly expanded flows the liquid surface is not present and the "'cold"
wall is not available, due either to the ""hot" boundary layer surrounding
the flow in a nozzle or to the total absence of a wall in the case of the

free jet.

The vapor then must look for other surfaces on which to condense.
These surfaces appear either in the form of impurities, such as par-
ticles of dust, etc., or as small drops formed of clusters of molecules

of the vapor itself united by statistical collision.

Obviously, for a truly pure vapor there would be no foreign nuclei;
however, dust particles in clean air have been estimated upward of 103
particles per cubic centimeter, so this possibility must be considered.
Head (2) has shown that these foreign nuclei do play an important role
in the onset of condensation, However, for highly expanded flows
where the stay time is very short, Stever (12) has shown that the high
rate of condensation could not be caused by condensation onto the for-
eign nuclei alone. Stever (12) quotes an example from Oswatitsch’s
study of water vapor which considers 105 foreign nuclei per cubic cen-
timeter traveling in a gas for a distance of 10 centimeters where there

4
is super cooling of 30°C. A slightly supersonic velocity of 3.3 x 10

centimeters per second would traverse this 10 centimeters in 3 x 10“4

seconds. Using the faster growth formula for droplet growth gives a

-16-
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radius of growth of about 3 x 10_5 centimeters in this distance. The
amount of water condensed over this span then is 10-8 grams per cubic
centimeter, which releases an amount of heat that is very slight and
which has an insignificant effect on the flow quantities. The actual
condensation process has a marked effect upon the flow properties;
therefore it must be concluded that the number of drops far exceeds
the number of foreign nuclei. We must then resort to the spontaneous

formation of the droplets onto which condensate growth occurs.

There is an opening in the above argument, in that the growth rate
onto the foreign nuclei could be grossly in error. However, Head (2)
found droplet formation rates on the order of 1016 drops per cubic
centimeter per second in his investigation of water vapor; thus, the

high particle formation rate tends to support Stever's argument.

For this analysis it will be assumed that the condensation phenome-
non is one of spontaneously formed nuclei and is triggered by the attain-
ment of critical size droplets onto which the supersaturated vapor

condenses.

The concept of the critical drop size as developed in Stever (12)
stems from the energy required to evaporate a drop of liquid which

contains n molecules.
2
E(n)anoo -47r°0 (4.1)

In (4.1) EOo is the energy required to remove by evaporation a single
molecule from an infinite surface of liquid and o is the surface tension.

To evaporate one molecule would require
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where V.. is the volume of a molecule of the liquid. An application

liq
of Boltzmann's law gives vapor pressure
_AE
kT

p=K-e

and the equilibrium vapor pressure for a plane surface

Combining these gives the Thompson-Gibbs equation

2V1 O'/rkT
P 4, 3)
Py
Expressing the molecular volume th as /'N AP, and rewriting it as
a log function, (4. 3) becomes :
i 2u0 2u0 ,
Inp/p, = rp kN, T - rp; RT (4. 4)

Note that with the occurrence of r in the denominator of equation
(4. 4) the equilibrium between the vapor and the liquid drop is urstable,
For a vapor which is saturated with respect to a given drcp size, if
one molecule sticks to the drop the radius increases and the existing
vapor pressure is greater than the new equilibrium vapor pressure:
thus, condensation will continue. The reverse is true for evaporation,
in that if one molecule evaporates the existing pressure is lower than

equilibrium and evaporation continues.

Thus arises the concept of the critical drop radius, r*, for which
r < r* the droplet vaporizes and for r > r* the droplet grows. Solving

(4. 4) gives
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r¥ = ;)I_‘R’I%‘L]fr(ljp/pOo (4.5)

Hill (11) points out that in a constant environment; if the critical
radius was used to specify the initial drop size then the growth rate
would be zero and there would be no condensation because at critical
size the decay and growth are equally probable. Hill bases his use
of 1. 3 times the critical radius on Becker and Doering's conclusion
that at that size the probability of decay is close to zero. In this anal-
ysis the vapor will be flowing and any critical drops formed will not
remain in a constant environment very long since the guasi-steady
steps for the calculations will be very small. Therefore, the com-

monly used r* of equation (4. 5) will be used as the initial druop size.

B. Kinetics of Nucleation and Condensation

As implied previously, the spontaneous nucleation approach will
be the only one considered in this analysis. There have been volumes
written in the development of this area and no attempt at reproduction
will be made here. The general approach and final result of the most

frequently referenced authors will be stated, however.

In highly expanded flows the state of the vapor car change very
rapidly from the unsaturated state to the highly supersaturated state.
Frenkel (13) treats the equilibrium distribution of drops in an unsatu-
rated state as a dilute solution of different substances in the vapor as
a solvent. By classifying the different solutes by the number of mole-
cules, n, they have in a drop, he obtained the expression for the
number of drops containing n molecules;

1 2
- == [(¢,. -9 )n-4drro]
Nn _ NV o kT lig \% 4 6)
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where NV = number of molecules in the vapor state

¢liq’ qu = thermodynamic potential of single molecule

4 r20 = surface energy term.

This droplet distribution is based on the assumption of equilibrium

(¢V < qbliq); however, it is generally assumed that the same distribu-
tion can be used for supersaturated conditions (¢liq < ¢>V)o Note that
for the supersaturated condition the number of drops increases with
increasing radius and the distribution is unstable. Thus, it becomes
essential to determine the rate at which the distribution changes from
the stable distribution of the unsaturated state to the unstable distribu-

tion of the supersaturated state.

This requires a determination of the rate of formation of critical

sized drops, J, in drops per cubic centimeter per second.

Head (2) states the equilibrium equation of Volmer

AW 47 r*zg

J=K-e szKue SkT (4. 7)

where AW is the total work of the formation of the droplet.

The determination of the constant, K, has been developed by sev-
eral authors, including Volmer, Becker and Doring; and Frenkel.
All assume a quasi-stationary phase transition process in which the
number of molecules which condense are instantly replaced in the
vapor such that the number of vapor molecules is maintained constant.
Volmer considered only the number of drops reaching critical size,
the number of vapor molecules striking the surface of the critical size
drop per unit time, and the number of molecules in a drop of critical

size.
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Becker and Doring derive the nuclei formation frequency purely
from kinetic considerations and take into account the evaporation from
the surface of the drop, as well as the condensation onto it. This ap-
proach is considered by most authors to be better than others; however

their solution is rather difficult to apply.

Frenkel uses the method of Zeldovich to integrate the differential
equations of Becker and Doring and gets a much simpler derivation of
an equation that is almost identical to that of Becker and Doring. The
ratio of the result of Frenkel to that of Becker-Doring is ({n"‘)z“"/3 and
this is considered minor. n* is the number of molecules in a critical

sized drop.

A partial derivation of the nucleation rate equation is presented
in Appendix A. This derivation is necessitated by an apparent error

of 7 in the original equation presented by Frenkel {13).

For this analysis, equation (A. 7) will be applied as the nucleation

rate equation.

47 @rr*z

2 —_—
J:(I:;T) _L\/Eﬁg N 4. 8)
PL V7 7a

where J = number of critical drops formed per unit volume per unit

time.

C. Limitations

1. Generally o as a function of temperature is not knowr. and this
is a large factor in the result. Surface tension appears to
the third power in the exponent; hence a small error will have

a large effect upon J.



-99-

2. The rapidity of expansion will show marked deviations from
the assumed quasi-stationary condition.
3. The condensing flow may have sublimation directly from vapor
to solid which is not considered.
4, At high degrees of supersaturation the drop radius will be small,
and Head (2) has shown that the variation of ¢ with r is large
for drops of few molecules. Stever and Rathbun (5) have included

this effect into the Frenkel equation tc obtain

r‘*
8 j’ rodr - 1 r”“2
oV kT | ) T3
g 2 g e e ‘\J‘; e 0 (4.9)
(kT) “ CTipX

Bogdonoff and Lees (8) have an apprcach which is entirely dif-
ferent from that of Head and Stever and which produces quite
different results. Until these theories have been developed

further, it is not practical to include either theorem in this

analysis.

From the previous discussion of the assumptions made in the fecrmu-
lation of the nucleation theory and of the limitations above, it is apparent
that the best one can expect in an analysis such as this will be an order

of magnitude estimate of the condensation parameters and a qualitative

analysis of the flow conditions.

D. Growth Estimates

Heretofore, in order to calculate the formation of the critical drops,
we have considered the temperature of the liquid drops to be the same

as the surrounding vapor. In actuality, the impinging and vapcrizing «f
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molecules onto and away from the droplet leave a surface temperature
that approaches the saturated equilibrium value for the surrounding
vapor. This temperature difference allows for growth of the particle.
The growth of small drops, i.e., r << mean free path, occurs by the
molecular transport of molecules onto the surface, some of which con-
dense, and by the conduction away of latent heat of vaporization by the
evaporation of a fewer number of molecules which leave at higher kinetic

energies.

Oswatitsch laid the basic groundwork for growth in a flowing vapor.
Stever (12) follows the method of Oswatitsch to develop an equation for

the growth rate of the small drop.

The development presented by Stever makes use of the kinetic
theory of free molecule flow (See Patterson (15)). Consider a drop
of radius r, temperature Tliq’ and saturation pressure (psoo)hq with
a surrounding vapor of pressure p and temperature T. The heat trans-

fer from drop to vapor per unit time is
2 [k
@ =2 o\ My - D

where @ is an accommodation coefficient which varies from 0 to 1,

depending on the vapor and liquid surface.

Also from kinetic theory the heat transferred to the drop surface
due to condensation is Lfp VKT/2rm where p VkT/2rm is the amount
of vapor (in the form of molecules) impinging on a unit surface and f is
the fraction which condenses. The energy being transferred to the sur-
face is equated to the energy being transported away to obtain an expres-

sion for f;
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. 20 (Tliq - T)
LT
the mass MD of the drop is then increased by
dM
D_1 2\/2 [k
G ST VTPVt Tyg - T

Since M, = 4 nr3 p and dM_ = 47 r2 dr

D~ 3 L p~*F PL

If the calculation is made in quasi-steady steps, time can be expressed

as a function of step length and

. E_ZL\/Z T Ax ‘,
ar \E Lp, VmT Mo - D5 4.10)

where the accommodation coefficient, @, is a constant, approximately

equal to 1 and T] iq is the temperature of the surface of the liquid drop.

The accommodation coefficient @ is expressed by Kennard (16) as

where Ei = Energy brought up to a unit area per unit time by the
impinging molecules
Er = Energy carried away from the molecules leaving a
unit surface per unit time
Ew = Energy that the departing molecules would carry away
if they carried away the same mean energy per mole-
cule as does a stream issuing from a gas in equilibrium

at the surface temperature.
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Patterson (15) lists coefficients of the range from .8 to 1. 0,
and Stalder (17) found that for free molecule flow an accommodation
coefficient of 0.9 checks well with test results. Thus we arrive at
the statement, "approximately equal tc 1. " This only applies for cases

where free molecule flow can be assumed to prevail.

On the other hand, where r approaches the magnitude of the mean
free path the heat removal is controlled by normal gaseous heat con-
duction. For this large drop Stever (12} gives the growth equation for

period of time, t,

!21{ (Tliq - T)

Ar = . | t . (4. 11)
N by

Other authors have made similar analyses, and Wegener (14) re-

cords the quasi-steady solution of Buhler {18) which includes an expres-

sion for the condensation coefficiert.

(4.12)

where TS, the surface temperature of the drop, may be chosen as the
equilibrium saturation temperature of the vapor with respect to the
drop. As in the previous case, Wegener states (4. 12) is valid only
for small drops and the equation recommended for large drops is

merely a revised form of {4. 11).

Hill (11) notes that typical calculations of condersation nuclei indi-
cate very small sizes which are generally much smaller than the mean

free paths; thus only the free molecule equations need be considered.
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His analysis produces a growth rate expression of

gtE - 3p [RT,, - RT] (4.13)
ZUfg p,L\/ 2rRT
in which Ufg = change of internal energy due to condensation. The
term T, is droplet temperature, ard Hil! presents calculations to show

D
that the rate of drop temperature change is enormous compared to the

rate of growth. For water vapor the temperature approaches wet bulb
temperature in approximately the same time that it takes the number
of mclecules in the drop to increase by a factor of 10. Hill uses this
in expanation of the assumption used by Oswatitsch that the drops al-

ways have wet bulb temperature during the growth period.

After a displacement, the drop temperature will rapidly approach
the temperature at which d TD/ dt = 0 at a much greater rate of change

than dr/dt . Hill uses this to form an expression for T., which depends

D
only upon the instantaneous values of r, p and T.

U, ¢ p
2 fg” ;@ |
3 RT ' P e"p[ RT " \/} (4.14)

where £ is the fraction of impinging molecules which condense.

From the investigations on water vapor, nitrogen, air and a few
metal vapors it appears that for highly expanded flows the small drop
size is the general rule. The calculations will then be iritiated by
applying (4. 10) as the growth rate equation and choosing drop tempera-
ture as the equilibrium saturation temperature of the vapor. The ac-
commodation coefficient in (4. 10) will be varied to study the effect and
a will be placed into the computer program as a data input so that accu-

rate values, when known, can be used for the calculation.



V. ANALYSIS

The basic equations are established in Sections II through IV. The
proper combination of these equations produces a theoretical solution
for the hypersonic expansion of a pure vapor in which a supersaturated
state occurs. Another solution is obtained for which there is saturated
equilibrium expansion in lieu of the supersaturated portion. Both solu-

tions, however, stem from the same basic model.

The basic model considered here consists of assuming:

1. '"One-dimensional nozzle' with geometrically specified inlet
and diffuser.

2. A pure vapor with specified stagnation conditions and known:
constant specific heats, latent heat of vaporization; surface
tension, for infinite radius as a function of temperature; and
saturation curve.

3. An isentropic expansion to the point of onset of condensation
and then diabatic flow through the region in which condensa-

tion is taking place.

A. Basic Assumptions

In addition to the assumptions of the basic model, this aralysis
also embodies the multitude of simplifying assumptions which have
been included in the derivation of the basic equations. The type of
equations and the specific assumptions made are:

1. Flow equations

Mass flow is constant
b, Flow is one-dimensional and steady state
¢. Volume of condensed phase is negligible when compared

to the total volume

-
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Nozzle is frictionless with no heat transfer across nozzle
wall

Condensed mass is liquid, is uniformly distributed through-
out the gaseous components, and has same speed and tem-

perature as the stream

Prediction of onset of condensation equations

.

b.

This embodies same assumptiors as flow equations
No condensate is formed prior to the predicted point of

onset of condensation

Nucleation equations

aﬂ

b.

Drops are formed by spontaneous nucleation only

Orly drops reaching critical drop size continue tc grow
Number of molecules of vapor is maintained constant
Saturation pressure correspernds to saturation pressure
of a droplet of infinite radius

The ordered velocity of the particles is neglected
Equilibrium values of the probabilities that one molecule
will leave from or cordense cn a unit surface and equilib-
rium particle distributions are assumed valid for the

non-equilibrium case

Growth rate equations

‘aD

b.

Drop radius is much less than mean free path
Accommodation coefficient, a, is approximately equal to
1.0

Drop temperature is assumed equal to the saturation tem-

perature that corresponds tc the pressure of the vapor
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B. Supersaturated Expansion

The supersaturated expansion passes the saturation point without
any condensate being formed; therefore, a four step solution is required:
1. Isentropic equations from Shapiro (19) and NACA Report 1135,

are used to calculate the expansion of the vapor to the point of

condensation.
Y
Yy -1
T
P—POQT;} (5.1)
1
_ -2
T
2 %o
el o
.
Yy -1
-1_2
p=pOJ1+ 5 M] (5.3)
v+ 1
‘ 12 (y-1)
CA¥[ 2 o y-12)
1
2
U—[2Cp(TO—T)] (5. 5)

At any particular value of T the above equations are readily
evaluated for given P TO, Py Vs Cp and A*, The station at
which these values apply is then determined from the given noz-
zle geometry?

2. The saturation point is established by an iterative balance of

the saturation curve equation with the isentropic flow equation.
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The saturation curve can generally be expressed in the
form In P, = B - 7(1;" , in which B and C are constants whose
value depend upon the choice of units for p and T. The equa-

tions which require joint solution are

C
T Ee=—— (5. 6)
sat B - In psat

Y
Y =1

(5.7)

The isentropic relations above are then utilized to calcu-

late M and U .
sa sa

t’ Psat’ Tsat’ Asat; Psat’ i

The point of onset of condensation is determined by taking
steps, AT, of supersaturation and computing the flow param-
eters from the isentropic relations for each successive step.
The isentropic values of each incremental step in temperature
are introduced into the nucleation equations for critical drop

size and formation rate.

, 2.0 ,
r*, . = (4. 5)
T py RTIn p/pOo
9 4 or”“2
p 1 o /20u 3kT
T kT Py, (i NA

Note that choice of a very small AT will cause the first
step to remain very near the saturation point and the resultant
p/pOo =1 will cause r* to approach an infinite radius. r* falls
off very rapidly, however, as the degree of supersaturation

: . 0. . .
increases, and for most cases a choice of AT > 57k is sufficient.
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The growth rate is zero for the critical droplet at the instant

of formation; therefore the nucleation rate for this increment is

(5. 8)

N gJTATAxT )

T

The mass fraction of condensate formed in this increment is

i AT

- *
AgT 3 NT ¥ (5.9)

The epsilon equations from the onset of condensation develop-
ment, (3.5) and (3. 8), are now used to determine if this amount
of condensate is sufficient to cause an appreciable deviation

from the isentropic expansion.

AL ,
ep_AA CT 11 Ag | (3. 5)
p
Al M3 L
‘v Ak 7o1)c,T e 8

If the € is less than the assumed critical value then the same
calculations are carried out at step T + AT until the critical
value of € is equalled or exceeded. If exceeded, a bracketing

procedure is employed to improve the estimate.

All quantities computed for Ag at values of e < € ...
critical
are discarded, and it is assumed that there has been ro con-

densate formed priorto e =¢_ ...
eritical

The choice of Ax in equation (5. 8) will effect direcily the
magnitude of N and of Ag in equation (5.9). AA in equations
(3.5) and (3. 8) is also a function of Ax so that in the evalua-

tion of € the effect of Ax is nullified. Calculations have been
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performed for values of Ax ranging from . 01 to 1. 0 cm to verify
that the quantity has no effect on the prediction of the point of
onset of condensation. Since the Ax that will be used for incre-
menting the calculations through the condensing portion of the
nozzle will be a required input to the computer program, it is

advantageous to use that same Ax in evaluating (5. 8).

4. The condensing portion of the flow requires a joint solution of
the nucleation and gfowth equations and the diabatic flow equa-
tions. The calculétions are performed for increments of Ax
starting from the onset of condensation. Values are estimated

of p, T and U at the point i and Agi is calculated from the

equations
20 U »
r* = 4,5
i py RTIn p/poo 2 (4.5)
2 1/2 - 210ET
p 1 [ 20u 3kT
J, = T{T — W— e (4. 8)
! PL{" ™A
N. =J. A, Ax, (5. 8)
i i1
1/2
1/2 [k N
=2Dp (2 _A _ Ty Ax
Ar]. =7 pr |7 0T (TS T) = (4. 10)
ij = r, G - 1) + Arj (5.10)
j-1
4r p . .
L 2 1 %3
Agj = [ Z Ni rij ,Arj + 3 Nj r j ] (5.11)

g =g 4+ Ag. (5.12)
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The subscripts i and j are numbered increments of x
starting from the condensation point. i acts as a label for
each group of droplets of a particular size and denotes the
particular increment in which these drops originated as crit-
ical sized drops. j denotes the increments presently under

consideration. Thus a designation r., denotes droplets

13
which were formed as critical drops in increment 1, have
undergone the growth Arz, and are now undergoing the

growth ArS.

Using the above approximate values of Ag and g and the
unknown values of AA and A the equations from Section II

are solved for p, T, p and U.

Ap AU AA |
> G+ A 0 (2.7)
Ap ___UAU (2. 8a)
p R ’
1-¢g)—T
( g)u
Ap Ap AT Ag e
ap _ap - 2.9
p p T (1-g (2.9)
CAU + Cp AT - LAg = 0 (2.12)

The solution of the flow equations is accomplished by the
following iterative proccedure:

a. assume AU and compute Uj = Uj 1" AU

b. solve (2.12) for AT and compute Tj = T]. 17 AT

c. solve (2.7) for Ap/p

d. solve (2.9) for Ap/p

e. solve (2.8a) for AU and check with value from step (a).
Improve the assumed AU and continue until a solution is

obtained.



-34-

These corrected values of p, T and U are now used to
resolve the equations for Ag, and the process is continued
until a set of flow parameters which satisfy both sets of

equations is obtained.

This iterative procedure is continued for each increment

Ax up to a specified X nax’ usually the end of the nozzle.

This set of equations could be evaluated from the satura-
tion point onward in order to obtain a more accurate predic-
tion of the onset of condensation. It is obvious, however, that
the magnitude of the calculations involved is formidable; and,
the slight error induced by attempting to predict the point of
onset of condensation, does not justify the refinement. This
is especially true since the approximations in the basic

equations are so gross.

C. Saturated Equilibrium Expansion

The saturated equilibrium expansion is a gradual process with
condensation starting at the saturation point and equilibrium flow
being maintained throughout. This occasionally occurs for slow
expansions of certain vapors and for cases in which the impurity
content is high. In this analysis the saturated equilibrium expansion

is presented only as a comparison with the supersaturated case.

The calculations are greatly simplified in that the mass fraction
of condensate can now be specified by the Clausius-Clapeyron

equation

Q.

p _Lu

S (2.3)
R T2

Q.
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This equation and the flow equations (2. 7), (2.8), (2.9) and (2. 12)
usually are integrated and expressions are written for each param-
eter (see Wegener (14) or Daum (10)). By proper manipulation and

combination the integrated equations can be reduced to one involving

g.

T o

1- (5.13)

+
Tsat

However, in this analysis the flow equations are programmed in the
incremental form for the supersaturated case, so it is convenient to

write (5. 13) in the form

C T,

=P !
Ag = 1, Ti In Tsat

T,

1 - ——

Tsat

+ -8 4 (5. 14)

1-

and to use this for the Ag expression in a soluticn similar to that

used for supersaturation.

1. The saturation point is established in the same manner as
for the supersaturated case. Small increments of length,
A x, are started at the saturated point.

2. An incremental increase in the mass fraction of condensate,
Ag, is assumed for the step Ax. With assumed value of Ag
and known value of A the flow equaticns are solved for p, p,

and T.

Ap AU AA_
>t Ut A (2.7

ap___UaU (2. 8a)

p R
1- =T
( g)“



P p T U-g (2.9)

UAU+C AT - LAg =0 (2.12)

Equation (5. 14) is solved to check and correct the assumed value of
Ag and an iterative procedure is established to obtain a satisfactory
solution of the five equations. Again this is continued in a step by

step process until the solution is complete..



VI DIGITAL COMPUTER PROGRAM

A major task in this study has been the adaptation of the mathematical
analysis of Section V to the digital computer. The description contained
herein is presented for the future user of the program and in no way
covers the myriad of detours encountered between the input and output

statements.

The Computer Center of The University of Michigan has developed
a Michigan Algorithmic Decoder (MAD) computer program which com-
piles much faster than the commonly used FORTRAN program. The
computer program for this investigation has been written in the MAD
language and can be translated into FORTRAN if desired. The IBM 7090
computer program for the condensation of a pure vapor is presented in

Appendix B.

The program has been subdivided into a main program and six
subroutines. The subroutines enable easier modification of the program
and provide a greater flexibility in its use. Statements as to the func-
tion of each of the calculations, the input parameters, and the obtainable
results are provided in the program at the beginning of each subroutine.
Appendix B also includes a list of the program symbolic names assigned

to the parameters used in the equations of Section V.
A brief summary of the subroutines follows:

1. Isentropic flows (IFLOWS)—Given T, this program solves
the isentropic flow equations for p, p, U, M, and A.

2. Condensation Flow (CFLOW)—For given g and A, this pro-
gram solves the diabatic flow equations (2. 7 through 2. 12)
forp, T, p, M, and U.

-37-
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3. Nucleation Theory I (NUCLE1)— From nucleation theory equa-
tions (4.5, 4.8, 5.8 and 5.9), NUCLE1 computes the condensate
formed due to the nucleation of critical sized drops only, i.e,,
growth is not included in this portion. This subroutine is used
to determine condensate formed for that portion of the main
program which determines the point of onset of condensation.

4, Nucleation Theory II (NUCLE2)— This subroutine evaluates
the growth equation (4. 10). NUCLE2 is used in conjunction
with NUCLE1 to determine the amount of condensate present
for all calculations downstream from the point of onset of
condensation.

5. Nozzle (NOZZLE)— The geometry of the nozzle is placed in
this subroutine, from which A, AA, or x can be de}termined.

6. Vapor Parameters (FRHOL, FL, FSIGMA)— The parameters
Py, L and o are placed in this subroutine as functions of T

or as constants and are evaluated as called upon by the

Main Program.

The Main Program consists primarily of a proper utilization of
the subroutines. The operations by the Main Program appear in the

following order:

1. Read in the input data.

2. Use IFLOWS to expand isentropically from stagnation condi-
tions.

3. Match isentropic equations to saturation curve to determine
saturation point.

4, Use IFLOWS for expansion past the saturation point and
calculate Ag from NUCLEL.

5. Evaluate epsilon equations (3. 5 or 3. 8) to determine onset

of condensation.
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6. Downstream of the onset of condensation, a joint solution of
NUCLE1, NUCLE2, and CFLOW is obtained at each incre-
ment, Ax, and the parameters x, N, Ax, A, AA, P, p, T,

U, M, r*, r,,, Ar, Ag and g are stored for later print out.

The saturated equilibrium expansion is compiled in a very simple

program and need not be presented at this time.

The Nozzle and Vapor Parameter Subroutines are included in a
Program Common such that any of the included parameters, when used

in the Main Program, are automatically evaluated and returned.

Conditional statements are inserted in the program to account
for the possibility of condensation occurring in either the converging
or diverging portions of the nozzle, the possibility of reaching the end
of the nozzle without any condensation having occurred, and‘ the failure

of the iteration of NUCLE1 and NUCLE2 with CFLOW to converge.

The development of the equations is such that any consistent set
of units can be used for the proplem. However, it was found that
minimum scaling was necessary if the problem was worked in a cgs
system of units. The problem, as written, is compatible with the
cgs system of units and a list of the proper input data is presented

in Appendix C.



VII. CALCULATIONS AND RESULTS

The calculations performed in this study are divided into four

parts:

1.

A test of the program by hand calculations and a test of the
method by comparing the results for a nitrogen expansion
with the experimental results of Willmarth (3).

Justification of the assumptions of small radii, no drag, and
accommodation coefficient approximately equal to one in the
basic assumptions. Verification of the prediction procedure
for the onset of condensation.,

A variation of latent heat, specific heat, surface tension, and
nozzle geometry for the nitrogen expansion to observe the
induced effect of each parameter. |
Application of the theory to metal vapors by computing the
expansion from an initial pressure of approximately one

atmosphere of copper, tin, lead, and zinc vapors.

A, Validation of the Program

The input data for the calculations performed in this study are

tabulated in Table C-1 of Appendix C. A reference to Nitrogen (1),

Zinc (I), etc., indicates the set of input data from which the indicated

results were obtained. Any additional modifications of the input data,

such as a change in 0, L, or nozzle geometry, are listed directly on

the plot of results. An explanation of the input data required, the

proper units for each parameter, and the references (20-24) from

which the vapor properties were obtained is also presented in

Appendix C.

-40-
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Initially the computer program was divided into small segments
and hand calculations were performed for Nitrogen (I) to verify the
computer results. With the assurance that each small segment was
working properly, the entire program was assembled and hand calcu-
lations were performed to spot check the calculations of the saturation
point, the point of onset of condensation, and the first few incremental

steps of the condensing flow regime.

With this degree of confidence in the program, the next step was
to check the theoretical results with known experimental results. The
Nitrogen {I) input data is designed to approximate an experimental

test of the condensation of nitrogen performed by Willmarth (3).

Nitrogen properties from NBS Circular 564 (24) and the Interna-
tional Critical Tables (23) required extrapolation below 70°K for the
surface tension and the latent heat of vaporization. These values are
generally valid only to within +10% and, as will be shown later, this
becomes extremely critical in the case of the surface tension. The
vapor pressure curve for nitrogen is reasonably well known, and it

was approximated by the Clausius-Clapeyron equation (see Fig. C-1).

For comparison with experiment the calculations for nitrogen were
carried out in full from the saturation point onward and no attempt was
made to predict the point of onset of condensation. A comparison of
the experimental results of Willmarth (3) to the theoretical prediction
of the condensation of Nitrogen (I) is presented in Figure 1. The the-
oretical curve for Nitrogen (I) shows a degree of supersaturation of
approximately 3. 5 degrees (20%) lower than is indicated by experimental
results. This is expected in that the amount of impurities in the experi-
mental nitrogen was unknown and this advanced nucleation would cause

an early break. However, of greater importance is the degree of
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uncertainty in the extrapolation of the available surface tension data.
In anticipation of the effect of o on the theoretical results, a second
extrapolation was chosen for 0. The ¢ equation for Nitrogen (II) re-
mains within the + 10% accuracy of the original surface tension data
and, in actuality, gives a value for o which is only 7% less than the

o from Nitrogen (I) at the onset of condensation.

The theoretical prediction for the condensation of Nitrogen (1I1)
compares most favorably with the experimental results in Figure 1.
The strong influence shown by only a 7% change in ¢ will be discussed
more fully at a later point in the discussion. Figure 2 presents a
more complete comparison of the theoretical results for Nitrogen (11)
as compared to the experimental results of Willmarth (3). The isen-
tropic and saturated equilibrium expansions are also presented in this
figure. The theoretically calculated results presented in Figure 2
employ the full calculation of the nucleation and flow equations for the
entire length of the nozzle. This is significant in that the flow prop-
erties prior to the ""condensation shock'" lie on the isentrope and the
flow properties after the ''shock' tend to approach the saturated
equilibrium expansion. This is the expected result, and it gives

further confidence in the program.

The experimental points of Willmarth (3) fall on the isentrope as
well as along the "condensation shock'; which indicates a proper esti-
mate of the physical expansion and validates the program. The close
correlation between theoretical and experimental results within the
""shock' itself lends further support to the basic nucleation theory of

the condensation process.
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Willmarth (3) obtained the pressure results, p, P, and pb' by

direct measurement. The effective area ratio, (A/ A*)eff’ tempera-

ture, T, and mass fraction of condensate, g, were then calculated

from the measured quantities by a joint solution of the flow equations.

B.

Justification of Assumptions

1. Drop Size

A typical distribution of maximum and minimum droplet
radius is presented in Figure 3 for the Nitrogen (I) expansion.
Note the very short span over which the nucleation of critical
sized drops, J curve, takes place. The average critical sized
drop has a radius of 4. 5 x 10_8 cm, and the largest particles
which leave the nozzle have a radius of 8 x 10_7 cm. The radius
of the nitrogen molecule from Loeb (25) is approximately
1.5 x 10_8 cm and calculated mean free paths vary from the
order of 10™% cm at the onset of condensation to 10> cm near
the nozzle exit. According to Stever (5) the drop radius is
larger than the minimum required to contain the 10-12 molecules

necessary for the application of macroscopic theory.

Therefore it is not unreasonable to assume that small drops
are the general rule, that the no drag approximation is valid,
and that since r << mean free path the samll drop growth equa-

tion can be used.

2. Accommodation Coefficient

The effect of a variation in @ is presented in Figure 4. Small
variations near the value of @ = 1. 0 have very little effect. How-
ever, since the growth equation is a direct function of @, the curve
for a = 0. 1 differs markedly from a = 1. 0. Fortunately, the known

values for a are from 0. 8 to 1. 0 so that the choice of a = 1.0 is a
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reasonable one. The computer program is so constructed that
accurate values of o, when gnown, can be inserted as input
data.

An additional feature of Figure 4 is the indication that growth
has little effect up to the ""break' point but thereafter controls the
remainder of the condensation process. This is further brought
out by the plot of J in Figure 3, which indicates the rapid nuclea-
tion of a large number of particles to start the "shock' and then
a continuing growth of these particles until saturated equilibrium

conditions are met.
3. Point of Onset of Condensation

From the previous discussion and from Figure 3, it appears
that little or nothing happens in regard to condensation until a
degree of supersaturation is reached for which the critical drop
radius is very small. As r* from equation (4. 5) becomes small
the exponential term, which contains r*z, ceases to be the pre-

dominant term in equation (4. 8) and J increases rapidly.

H 2u0
r* = 4.5
pRT Inp/p (4.5)

47 0r*2

2 -
p 1 20 1L 3kT
Js(—w) — O\ /=— € (4. 8)
kT P1, nNA

The epsilon of Section III should then predict the approximate
point of onset of condensation. Several calculations for various
values of € are presented in Figure 5. € = 0 indicates that the full
calculation of the nucleation and flow equations was carried out

from the saturation point onward. The choice of epsilon results
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in only a minor error when compared to the possible 10% error
in surface tension. Epsilon values of 1073 and 1072 give almost
identical results, thus € = . 001 appears to be a suitable choice

for the expansion of nitrogen.

Also in agreement are Head's (2) calculations for water vapor
in which he indicates that the attainment of J = 1016 droplets per
centimeter cubed per second signifies the point at which the con-
densation shock will break away from the isentrope. Several
calculations on the computer indicate that J = 1016 at the break-
away point for nitrogen also. At present, however, this author
sees no justification for predicting that this will be true for other

vapors as well.

Variation of Parameters

1. Surface Tension

As indicated previously, the variation of ¢ is the most critical
aspect of the theoretical prediction of the condensation phenomenon.
From equations (4. 5) and (4. 8) it can be seen that ¢ enters the
exponential term of J as a third power. Thus for a 10% change
in o the nucleation rate changes by several orders of magnitude.
Figure 6 and Figure 7 present several variations in ¢ to show the
large effect that this parameter has on the degree of supersatura-
tion. Later results will show that the effect of other parameters

is minor when compred to surface tension.

There appears here a possible method of improving the surface
tension data. The results of a closely controlled experimental vapor
expansion could be used as a reference plot and surface tension

varied on the computer until a matching plot is obtained. Providing
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the other parameters are reasonably well known, this should pro-
vide a better estimate of o than merely extrapolating a curve far
away from the few experimentally determined values that are

available.

2. Specific Heat

C]O is reasonably well known and only varies a few percent
over the range considered in this analysis. For this analysis
Cp is chosen as a constant, and from the plot in Figure 8 the
constant assumption for Cp appears reasonable. The effect of
a 10% variation in Cp is negligible when compared to an equiva-

lent uncertainty in o.

3. Latent Heat of Vaporization

Latent heat is generally a weak function of temperature. For
Nitrogen (I) the variation in L is only 9% over the range of tem-
perature from saturation to the nozzle exit. From the plot of
variations in L presented in Figure 9 it is evident that the con-
stant latent heat assumption in the basic equations is a reasonable
assumption and any variation in L is negligible when compared

to the effect of an equivalent variation in o.

4, Nozzle Geometry

The condensation process is a function of time, so it is ex-
pected that the rate of expansion should have some effect on the
""condensation shock. " Theoretical calculations were performed
for the Nitrogen (I) expansion in a two dimensional nozzle for which
the exit half-angle was varied from 9. 75 to 45 degrees. Nozzle
lengths were selected so that a Mach 8 nozzle was used for each
run. The results of varying the rate of expansion for Nitrogen (1)

are presented in Figure 10 and Figure 11. In Figure 10 it is noted
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that the faster expansion causes the vapor to supersaturate to a
lower temperature before the onset of condensation. The "conden-
sation shock" is thinner for the fast expansion, it is (in physical
dimensions) 3 cm for the 9 1/2 = 45° expansion versus 5 cm for

N o} . . . _
the 0 /2" 9.75 expansion. 6 1/2 is the nozzle exit half-angle.

This is somewhat misleading because, for Figure 11, in which
all nozzles are referenced to a non-dimensional length for a Mach
8 nozzle, the faster expansion tends to smear out over a broader
relative length. The plot of the percent of condensed vapor in
Figure 11 indicates that the higher the rate of expansion the less
moisture is formed in the nozzle. It appears that for sufficiently
high rates of expansion a condensation free flow can be obtained.
This has been borne out by ""condensation free' experiments in

the past.

D. Application to Metal Vapors

As stated in Section V, the theory as developed herein should apply
to metal vapors. The primary interest here is in the finding of a metal
vapor that will condense in a highly expanded flow and that is suitable for
laboratory experimental use. Hill (11) has predicted that sodium and
potassium will condense; however, these vapors introduce critical han--
dling problems. Copper, zinc, tin and lead appear to have possible experi-

mental use, with copper being the preferred vapor of the four.

Theoretical calculations were performed for a two-dimensional nozzle
with a constant slope diffuser for the metal vapor input data listed in

Appendix C.



-48-

1. Copper

Fortunately, copper vapor is theoretically predicted to condense
for a fairly rapid expansion in a two-dimensional nozzle with a 20
degree diffuser half-angle. The results are presented in Figure 12
for an expansion in a Mach 10 nozzle from an initial pressure of
approximately one atmosphere and an initial temperature of 3OOOOK.
The "condensation shock' occurs very near the throat, and the change
is very rapid with the ""shock' spanning less than a centimeter of
nozzle length. The average critical drop radius is approximately
3 x 10_8 cm and the maximum droplet formation rate is of the order
of 1019 drops per centimeter cubed per second. Again the onset of
the condensation appears to be marked by a value of J = 1016 or
1017 drops per centimeter cubed per second. Copper could be a
suitable choice for experimental work in rapid expansions because
the large fraction of condensate formed in this theoretical solution
indicates that higher rates of expansion and higher initial tempera-
tures and pressures probably could be used without resulting in a

"condensation free' expansion.

2. Zinc
Two computer runs were made for zinc, and neither run pre-

dicted any detectable amount of condensate. Zinc (I) was computed
for a 45 degree diffuser half-angle and initial pressure and tempera-
ture of approximately one atmosphere and 1500°K respectively. The
results of this calculation are presented in Figure 13 where a suffi-
cient number of the calculated points are plotted along the isentrope
to show that the expansion is essentially isentropic. This indicates
a negligible amount of condensation. The tabulated calculations from

the computer give a maximum g of 1. 48 x 10m8 at the nozzle exit.
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The maximum nucleation rate obtained is J = 2 x 1012 drops per
centimeter cubed per second and the critical drop radius is

2 x 10-8 cm. It was anticipated that a slower expansion with a
lower starting temperature would predict a detectable amount of
condensate, Zinc (II) was run on the computer for a 20 degree
diffuser and a pressure and temperature of one atmosphere and
1300°K respectively. The results in Figure 13 again plot along

the isentrope and indicate no condensate. The maximum g of

4,8 x 10'25 for the Zinc (II) run indicates some movement toward
condensation. The maximum nucleation rate of J = 3 x 1014 drops
per cubic centimeter per second is obtained at a vapor temperature
of 375°K and the critical drop radius is again 2 x 1078 em. The

J = 1014 value with no condensate formed lends support to the

J = 1016 criterion for the onset of condensation. A slower expan-
sion of zinc probably would produce a condensation shock; however,
this would be out of the desired rapid expansion regime. From

the results of the Zinc (I) and Zinc (II) runs it appears that for

rapidly expanding flows zinc vapor may not condense.

3. Tin and Lead

Unfortunately, the computer runs for tin and lead failed to
converge in the CFLOWS Subrcutine. The reason for this is not
immediately apparent, and a further investigation will have to be
made before any definite conclusions can be drawn. However, the
few points that were calculated show promise that both tin and lead

will condense in a rapid expansion.



VIII. CONCLUSIONS

An adaptation of the digital computer to the analysis of the condensation

of a flowing vapor is possible, and the program for a pure vapor is pre-

sented herein. Theoretical predictions of the condensation of nitrogen,

copper and zinc indicate the following:

1.

The nucleation theory of Frenkel (13) provides a reasonable
approximation to the rate of formation of condensate in a flow-A
ing vapor.

The theoretical prediction for the condensation of nitrogen
compares surprisingly well with the experimental results of
Willmarth (3).

A small drop size is the general rule. The critical drop radius
is of the order of 108 cm and droplets of maximum growth
rarely exceed 1075 cm.

The nucleation rate controls the onset of condensation, and a
prediction procedure based on this parameter might prove more
useful than the one proposed herein.

The growth equation plays a predominant role once condensation
has started and a more accurate expression would be beneficial.
The surface tension is the most influential parameter. Generally
the value of o is uncertain and this leads to the largest source
of error in the program.

Values of specific heat and latent heat of vaporization are not
critical, and treating these parameters as constants is a rea-
sonable assumption.

The condensation process is very sensitive to rates of expan-
sion, and for rapidly expanding vapors a "condensation free”

expansion is possible.
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Copper vapor will condense in rapidly expanding flows and
appears suitable for experimental work in the condensation

of metal vapors.

Zinc vapor does not condense for high rates of expansion from
one atmosphere pressure, and runs for lower pressures and

temperatures are recommended.
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Appendix A
DERIVATION OF THE NUCLEATION RATE EQUATION

This is in no way intended to be a complete derivation of the nuclea-
tion rate equation. The full derivation can be found in complete detail
on pages 366 through 400 of Frenkel (13). A scant derivation is presented
in Stever (12), pages 532 to 540.

There appears to be an error of 7 in the final equation presented
by Frenkel, so enough of the derivation will be reproduced here to clear
up this discrepancy. The solution is a statistical problem of kinetic

theory.

In an equilibrium distribution of droplets where ¢v < ¢1iq the fol-

lowing relation must hold.

annan=Nn—lsn—1Bn—1 (A.1)
where ¢>V and ¢liq are the thermodynamic potentials of the vapor and
liquid drops, respectively. Nn and Nn _qare the number of droplets
containing n and (n - 1) molecules, respectively. Srl and S_n _qare
the surface areas of droplets containing n and (n - 1) molecules, respec-
tively. a is the probability that one molecule leaves a unit surface

area of a droplet containing n molecules.

Bn -1 is the probability that one molecule condenses on a unit surface

area. Assume ozn and to remain valid for the non-equilibrium case

n-1
(¢liq < qbv) and modify the distribution Nn to a non-equilibrium distribu-

tion fn’ The equation will no longer balance so (A. 1) become s
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J =1 S B

n n-1 n—ln—l_fnsnan'#0 (A. 2)

where Jn represents the increase per unit time of the class (n) due to
condensation of the vapor on the surface of droplets in class (n - 1) over
the number, which, owing to evaporation, pass from the class (n) to

the class (n - 1).

The rate of change of the number of drops of a given class is deter-

mined from (A. 1) and (A. 2) to be

21
—2=J -7
n

T (A. 3)

n-1

Frenkel employs the method of Zeldovich which utilizes the feature of
the sharp maximum of A® at n* to solve the equation. By chsidering
only values of n> 10 say, quantities appearing in the equation will

only vary slightly when n is changed by 1 and can be treated as functions
of a continuous variable. Equation (A. 3) can then be integrated and the

result is presented as equation {27b) on page 396 of Frenkel (13).

o A (n*)\_ [ ¥
= & _ 7 ‘
J Nn Din )(exp KT )‘\/ 57 T (A. 4)

where Nn -2 . number of melecules in the supersaturated vapor

kT ,
D(n*) = S{n*) B = diffusion coefficient = {47 )1/3 32’(3 Vliq2/3 n*2/3 B
8= I
v 27 mkT

Ad ==«§-7'# or*z

1 .
Y = —§ ((pliq - ¢V)/n*

substituting these values into (A. 4) produces the equation

2 N N A S 3
J = or*? —p—~(exp-=4““ )‘\/l g ¥ (A. 5)

kT 3kT 3 mn*
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or, writing in the form of Frenkel's final equation (28a)

{
* *2 \\¢ s T ¢ )
nJ 2r*2 2 (exP _4nor )\/l _lig v n* (A. 6)

Nn kT 3kT 3 m

In comparing (A. 6) with Frenkel's equation (28a), it is noted that Frenkel
does have an extra factor of 7 in the ccefficient as noted by Courtney (9)

and others.

The desired equation for this analysis is obtained by substituting

20V,
the value of (cbhq - ¢V) from the critical radius equation r* = (b——l_l—%
lig %
and the value n* = V—l—— % 7 r‘*3 into equation (A. 5)
liq
J e 2r*2 P | exp - 4_ﬂorr*2 1 20V11q Vliq3
kT| |~ 73T | V3 mr* .3
4rr
- 2r*2 \% (_Em ? exp - 47@;1.*2)1 [20
zr*z lig | kT 3kT T m
2 2
_ |2 29 _4mor*
J = (kT) Viig Vom P~ 73kT (A.7)
To eliminate the necessity of calculating molecular values of
V,. = B and m = s , the equation for computing J in this
lig N,p N
A"L A
analysis is written
Jr_(_;_)_)z_lm 2 ue 1/2 m4m‘(r*)2 (A. 8)
kT PL, 7TNA 3kT




Appendix B

IBM 7090 DIGITAL COMPUTER PROGRAM FOR
CONDENSATION IN HIGHLY EXPANDED FLOWS

Written in Michigan Algorithmic Decoder (MAD) Language

This program is valid for a pure vapor with constant specific heat

and constant latent heat of vaporization.

The cgs system of units is utilized throughout and cgs values for
the universal gas constant, Boltzmann's gas constant, and Avogadro's

number have been included within the program.

The symbolic names of parameters used in the program are listed

and defined at the beginning of each applicable section of the program.

The units for and input data required for utilization of this program

are presented in Appendix C.

-71-
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$COMPILE MADsPRINT OBJECTsPUNCH OBJECT MAIN OOLMAIN 000
R AERONAJTICAL ENGINEERING
R NOZZLE CONDENSATION RESEARCH
R
"R MAIN PROGRAM T
R
"RRESEARCH-- Jo GRIFFIN PROGRAMMING-- L. HARDING ~ ~JULY 1963
R
"PROGRAM COMMON™ "GAMMA, MUs Bs Cy CPs Ls RHOLy SIGMA
R
START " READ DATA T T

R
“RTHIS DATA SHOULD INCLUDE
R

TRIPZERGT =TINITIAL PRESSURE
R RHZERO = INITIAL DENSITY

TRTTZERO T =T INITIAL TEMPERATURE T T
R PE = ISENTROPIC EXIT PRESSURE. THIS IS USED AS AN

TR T TTINITIAU APPROXIMATION TO THE SATURATION PRESSURE.
R

TRTGAMMAT T =T RATIOTOF THE SPECIFIC HEATS — 77 o
R MU = MOLECULAR WEIGHT OF THE VAPOR

TRTCP T = SPECIFIC HEAT AT CONSTANT PRESSURE T T
R L = LATENT HEAT (NOTE VAPOR PARAMETERS SUBROUTINE)

TRSIGMA T = SURFACE "TENSTION (NOTE VAPOR PARAMETERS SUBROUTINE)
R

TRUCTTTT =TSATURATIONTCURVE CONSTANT - i
R B = SATURATION CURVE CONSTANT

TR AUPHA = ACCOMODATION COEFFICIENT T
R

TRTDELX T = INCREMENTAL STEP TN X. THE NOZZLE CONDITIONS WILL

BE COMPUTED AT XCON+DELXsXCON+2*DELXseee WHERE

XCON 1S THE CONDENSATION POINT.
XRANGE = LENGTH OF INTERVALs STARTING AT THE CONDENSATION

R
R
R
R~ TPOINTs IN WHICH THE FLOW CONDITIONS WILL BE
R COMPUTED. v
TR XPOINT = THE CONDENSATION POINT IS ASSIGNED A SUBSCRIPT OF
R
R
R
R

ZEROs ONLY THOSE POINTS WITH SUBSCRIPTS XPOINTs
2% XPOINTseee WILL BE PRINTED.

R TRANGE = PROGRAM WILL LOOK FOR A CONDENSATION POINT IN THE
R INTERVAL (TSAT»TSAT-TRANGE)»s WHERE TSAT IS THE
TR UEOMPUTED SATURATION TEMPERATURES

R DELTAT = INITIAL STEP SIZE USED IN LOOKING FOR CONDENSATION
TRTTTOT TPOINT TN THE INTERVAL (TSATsTSAT-TRANGE) o
R PERCNT = IF EPSLON(T) EXCEEDS PERCNT IT IS ASSUMED THAT
TR "CONDENSATION HAS STARTED.
R
TPRINT COMMENT $1 T T NOZ
1ZLE CONDENSATION RESEARCH % o
TTTPRINT COMMENT $0 T INTTIAL CONDITIONSS

PRINT RESULTS PZEROsRHZEROsTZERO,PE -
CTTPRINT COMMENT 30777 T CONSTANTS DEPENDING ON THE VAPORS
PRINT RESULTS MU»sCPsGAMMA»SIGMA L

PRINT COMMENT 30 SATURATION CURVE CONSTANTSS
PRINT RESULTS CsB o
PRTNT COMMENT 30 PROGRAM PARAMETERSS

PRINT RESULTS DELXsXRANGE s XPOINT s ALPHA
T EXECUTE NOZZLE.($THROAT®,0.sASTAR) =
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R

R FIND SATURATION PUINI BY MATCHING ISENTRUPIC PRESSURE
R SOLUTION Tu THE SATURATION CURVE PRESSURE.

N

p=p:

Z=CGANMMA/ (GAMMA=1 )

T=C/(3-ZL0Ge (P))

PSAT=PZERI¥( (T/TZERO) oPe Z )
TESTZQABSQ(]o-pSAT/P)‘OOOl

WHENSVER TCSTeLeCoas IRANSFER 10 52

P=P+ 5% (PSAT=P)

TRANSFER TO S1

TSAT=T

EXECUTE IFLOWSe (ASTARSCP9sGAMMASPZEROSRHZEROSTZERO)
EXECUTE [FLOWe (ASATsMSAT sPSATSRHOSAT S TSATsUSAT)
Z=MSAT

EXECUTE NOZZLE«(SINVERSDSsZ9ASAT)

WHENEVER Z(1)eEeles TRANSFER TO 53

PRINT COMMENT $4 THE SATURATION POINT FOUND IS NOT INSIDE
1 THE NOZZLEs THE PROGRAM WILL CONTINUE.$
XSAT=Z
MDOT=ASAT*#RHOSAT#USAT
PRINT COMMENT $2 COMPUTED SATURATION CONDITIONSS

PRINT RESULTS PSATsRHOSATTSAT
PRINT RESULTS M3ATsUSAT .
PRINT RESULTS XSATsASAT

PRINT RESULTS MDCT

FIND CONDENSATION POINT BY MATCHING ISENTROPIC FLOW
SOLUTION TC THE NUCLEATION THEORY SOLUTION GIVING THE
AMOUNT OF CONDENSATE AS A FUNCTION OF AN ASSUMED FLOW.

000 A0

DELT=DELTAT
ITERF=0.
 TMIN=TSAT-TRANGE
WHENEVER THMINeLoeQesTHIN=O4
TTTPRINT COMMENT 82 PARAMETERS DETERMINING CONDENSATIO
IN POINT SEARCH3 o
PRINT RESULTS TSAT s TMINSDILT '
PRINT RESULTS PERCNT
N Nt
R
T=TSAT

WHENEVER T eLe TMIN
~ ysy, NEVE -
ITERF=ITERF+1.
T DELT=e5%#DFLT
WHENEVER ITFRFeLelOes TRANSFER TC 5S4
TTWHENEVER ZeFe0esTRANSFER TO ST
PRINT COMMENT $0 TEN PASSES OVER TEMPERATURE RANGE SPECIFIEDS
1 NO CONDENSATION POINT INDICATEDWS
TRANSFER TO START
' END OF CONDITIONAL
EXECUTE IFLOWe (A sMsPsRHOsTsU)
=M
EXECUTE NOZZLE o (SINVERSDsZ9A)
WHENEVER Z(1) «Ee Qo




wr

[09]

— =74-
Z2=0e
TRANSFER TO S6

TPRINT COMMENT $0 TEN PASSES OVER THE FULL RANGE

‘15> NO CONDENSATION POINT INDICATEDe$

OF THE NOZZILct

"TRANSFER TO START e
END OF CONDITIONAL

EXECUTE NOZZLE. (SAREASsX=DELXyZ)
TDELA=A-Z
R

TLEFLGTY

TDROP=C/ (B=ELOG (P))

RHOL=FRHOL « (TDROP)
SIGMA=FSIGMA.(TDROP) o

EXECUTE NUCLEle (AyDELX3sMDOTsPsTsRADINDOTHDELG)
R

'R COMPUTATION OF EPSILON (T)
2 :

T EPSLON=(GAMMA=(1e/(M*M)})/ (GAMMA=14)
__WHENEVER MelLelesEPSLON=14

TEPSLON=A% (1= (L/(CP*T))*EPSLON)
EPSLON=EPSLON*(DELG/DELA)

"EPSLON=.ABSs EPSLON
R

"T"WHENEVER EPSLONL.PERCNTsTRANSFER T0 S5
T=T+DELT
"DELT=e5%DELT
ITER=ITER+1e

"WHENEVER ITERCL.LITERSTRANSFER TO §5

D 0D/ DO

A CONDENSATION TEMPERATURE HAS BEEN FOUND.

LITER HALF-INTERVAL STEPS HAVE BEEN PERFORMED AND

PRINT COMMENT $0 HAVE FOUND TEMPERATURE THAT SATISFIES THE CO

INDITIONS FOR THE CONDENSATICN POINTS
PRINT RESULTS THDELT
TCON=T

EXECUTE IFLOWe (ACONsMCON3PCONyRHOCONs TCONSUCON)

S ENCGNT T
EXECUTE NOZZLE«(SINVERS®+ZyACON)
WHENEVER Z(1)eEelss TRANSFER TO S8

PRINT COMMENT $4 THE CONDENSATION POINT FCUND IS NOT INSI

1DE THE NOZZLE, THE PROGRAM WILL CONTINUE.S®
XCON=Z
L=FCe(T)
TDROP=C/ (B=ELOGe (PCON) )
"RHOL=FRHOL . (TDROP)
SIGMA=FSIGMAS(TDROP)

TEXECUTE NUCLEl1e (ACONSDELXsMDOT sPCONsTCONSRADSNDOT sDELG)

G=DELG
TTTPRINT COMMENT %4
PRINT RESULTS PCONsRHOCONsTCON
T PRINT RESULTS MCONsUCON
PRINT RESULTS XCONsACON
PRINT RESULTS SIGMASRHOLsLsCP
PRINT COMMENT $ NUCLEATION THEORY QUANTITIESS
TTPRINT RESULTS RADZNDOTSDELGSG '
R

COMPUTED CONDENSATION CONDITIONSS

RINITIALIZE FOR NOZZLE COMPUTATIONS STARTING AT THE CONDENS=
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RATION PCINTe THE VECTOR X CONTAINS THE POINTS ALONG THE
RAXIS OF THE NOZZLE AT WHICH THE QUANTITIES DESIRED ARE TO
RLE COMPUTELS NOTE THAT IT 15 NOT NECESSARY THAT THE SPACING
RBE UNIFORM SINCE A VECTCOR DELX IS PROVIDEDe AT EACH POINT
ROF THE MESH WE WANT TO CALCULATE

R P = VAPOR PRESSURE
R RHO = MIXTURE DENSITY
R T = TEMPERATURE
R U = FLOW VELOCITY
R M = MACH NUMBER
R DELG = CONDENSATE INCREASE SINCE THE LAoT ME3H POINT
R 5 = FRACTIONs BY MASSs OF THE VAPOR THAT 1S IN THE
R CONDENsSED oTATE
ROELR (1) = THE INCREASE IN RADIUSs SINCE THE LAST POINT, CF
R THE DROPS INITIALLY FORMED AT POINT I
R RAD(I) = RADIUS5 OF DROPS INITIALLY FORMED AT X(I)
RNDOT (1) = THE NUMBER OF DROPS PER SECOND THAT ARE NEWLY
R FORMED FRONM X(I-1) TO X(I)
R SIGMA = SURFACE TENSION
R RHOL = LIQUID DENSITY
R T CP = SPECIFIC HEAT AT CONSTANT PRESSURE
R L = LATENT HEAT -
RALSO THE IDENTIFYING GUANTITIES
R X = POINT OF EVALUATION
R DELX = DISTANCE FROM LAST MESH POINT
R A = NOZZLE AREA _ )
“R™ DELA = ARFA INCREASE FROM LAST MESH POINT

RONLY THE POINTSs THEIR INCREMENTS AND THE INTEGER INDEX N
"RARE KEPT 1IN CORE, ALL THE REST OF THE INFORMATION IS MAIN-
RTAINED ON TAPE. ALL QUANTITIES FOR POINT N» HOWEVER, ARE
RREQUIRED TO OBTAIN THOSE FOR POINT N+1s HENCE THEY ARE

RTEMPORARILY IN CORE AS UNINDEXED GUANTITIES WITH THE ABOVE

" RNAMESe
R

"R TTTINITIALIZE TO CONDENSATION POINT
R

T OT=TCEON
P=PCON
RHO=RHOCON’
U=UCON

TTM=MCON
X=XCON

A=ACON
EXECUTE NOZZLE. (SAREAS,XCON-DELXyA(1))
"DELA=A-A(T) '
N=0
"PPCINT=0
EXECUTE IOCTRL.
T DELU=.0001%UCON
XLIMIT=XCON+XRANGE

R
R

U(1)=U+DELU
WHENEVER U(1)eLeOo

1CITY AT THE NEXT MESH POINT IS NEGATIVE.S
TTTTTRANSFER TO $34 '
END OF CONDITIONAL
e

TTTPRINT COMMENT 34 THE INTTIAL APPROXIMATION TO THE VELO
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R BEGIN ITERATION CN DELG UNTIL NUCLEATICN THEORY AND

R FLOW EQUATIONS AGREEs A MAXIMUM OF GITLR [TtRATIUNS ARE

R ALLOWED PER MESH PCINT.

R

539 ITFR=GITER
N=N+1

WHENEVER NeGe1lC00 .
PRINT COMMENT %4 NUMBER OF MESH PUINTS LxXCFEDS THE PRO

IGRAMMED LIMIT.3
TRANSFER TO S34
END OF CONDITIONAL ' cee
DELX (N)=DFLX
AKIN)=X{N=1)+DELX(N)
WHENEVER XOGOXLIMIT e e
PRINT CCMMENT 34 THE NEXT POINT WOULD EXCELD THE RANGE
1 DESIRFD3%
TRANSFER TO S34

END OF CONDITICNAL .
EXECUTE NOZZLF o (BAREADsXIN) sA(1))

WHENFVER A(1)eFeQs coe

PRINT CCMMENT $4 NOZZLF SUBROUTINE ERRCR INDICATICON -

IMESH POINT DOES NOT LIE INSIDF NOZZLFEW$%
PRINT RESULTS X(N)
TRANSFER TO S34 o
END OF CONDITIONAL cee
DELA(1)=A(1)=A
DELG(1)=DELG
G(1)=G+DELG(1) L
EXECUTE CFLOWe (A(1)sDELA(L)»G(1)sDELG(L) 9P sRHUSTIUSM)
L=FLe(T(21))
TOROP=C/ (B=ELQG«(P(1)))
RHOL=FRHOL + ( TDROP)
SIGMA=FSIGMA (TDROP)
TEST=G(1)
TEXECUTE NUCLE2e (X(N)sDELX(N)9sA(L)sDELACL)sP(1)sRHO(L) 9T (1)
1UCL) sM(1)sMDOT sALPHA sNsRADsDRAD SNDUT s DELG( L))
TG{1)=G+DELGI(1)
TEST=eABSe ( TEST-G(1))
" WHENEVER TrSTelLe 00001 » TRANSFER TO 532
ITER=ITIR=-1
TWHENEVER ITEReGEOes TRANSFER TO S$31
PRINT COMV‘EI\!T $ ..0.....00$
532 TX=X(N)
DELX=DFLX{N)
TA=A(L)
DELA=DFLA(1)
TP=P(1)
RHO=RHC (1)
T=T(1)
DELU=U(1)=-U
Usu(l)
M=M(1)
T DELG=DFLG(1)
G=GI(1)
TTHRCOUGH S2343F0R I=0s1sleGe(N=-1)
833 RAD (1)=RAD(I)+DRAD(IT)
=
EXECUTE TQCTRL
=

[(Va]
W
—
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TRANSFER TO S29
R
TRANSFER TO START
R
R
R INTERNAL FUNCTION FOR QUTPUT OF THE FLOW QUANTITIES AT
R MFSH POINT Xe LATER THIS SECTION MAY ALSC SAVE THIS
R INFORMATION FOR FURTHER PROCESSINGe
R

INTERNAL FUNCTION

R

_ ENTRY TO 10CTRLs

R

WHENEVER NeESPPOINT N , o
PRINT COMMENT %4 NOZZLE CONDITIONS -= %

 PRINT RESULTS NsXsDELXsAsDELASPsRHOsTsUsMsRAD(N) sNDOT (N)
1DELG G

__ . WHENEVER NeGeO
PRINT RESULTS RAD(0Q)eeeRAD(N=1)

_ END OF CONDITIONAL
"PPOINT=N+XPOINT

_ END OF CONDITIONAL
FUNCTION RETURN

R

“END OF FUNCTION

R

"TINTEGER IsNsPPOINT
DIMENSION DELX(1000)sDRAD(10C0) sNDOT(1000) sRAD(1000) sX(1000)
DIMENSION A(1) sDELACT) sDELG(1)»G(1)sM(1)sP(1)sRHO(L)sT (1)

1 Ull)sZ(l) o
VECTOR VALUES XPOINT = 1

_VECTOR VALUES LITER = 10.
VECTOR VALUFS GITER = 10
R

" END OF PROGRAM
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"$COMPTLE MADSPRINT OBJECTsPUNCH OBJECT ’ ~ IFLOWOOLIFLOWOO*
R .. .. AERONAUTICAL ENGINEERING —
R NOZZLE CONDENSATION RESEARCH
R
R TSENTROPIC FLOW
R
RRESEARCH-- Je GRIFFIN PROGRAMMING~= L+ HARDING JULY 1963
R

RISENTROPIC FLOW EQUATIONS FOR COMPUTING PRESSUREs MACH NUMBER
RAREAs VELOCITY AND DENSITY GIVEN THE TEMPERATURE AND THE

‘RFOLLOWING PARAMETERS oo
R ASTAR — THROAT AREA OF NOZZLE

RTTTT T CP =T SPECIFIC HEAT AT CONSTANT PRESSURE
R GAMMA - VAPOR EXPONENT
e
R

UPZEROT - INITIAL PRESSURE — 7 7
RHZERO - INITIAL DENSITY
RTTUTTZERO - INITIAL TEMPERATURE i

R
TTEXTERNAL FUNCTION (A19A2sA3.A45A5,A06)
R
"R TTHLS ENTRY PROVIDES FOR PICKING UP THE PARAMETERS LISTED
R ABOVEs THEY ARE THEN SAVED INTERNALLY FOR LATER USE.
Lt
ENTRY TO IFLOWSe
TASTAR=AL T T
CP=A2
GAMMA=A3 T B ) -
PZERO=AL
“RHZERO=AS5 - B
TZERO=A6
FUNCTION RETURN T i
R
RO7T7TTTHIS ENTRY COMPUTES THE UNKNOWN QUANTITIES
R Al = NOZZLE AREA
R A2 = MACH NUMBER™
R A3 = PRESSURE
R A4 = DENSTTY ( RHO 7V T
R A6 = VELOCITY
R IN TERMS OF THE PARAMETERS SAVED FROM THE LAST CALL.
R OF '"IFLOWS!' AND
R 7T UAS = TEMPERATURE T T T
R NOTE THAT THE LIST OF ARGUMENTS IS ALPHABETICAL.
= - rAAT TRE CARLDUMENTS 1
ENTRY TO IFLOWe
bl o FLOWe —_—
R PRE SSURE
TTEXP=GAMMA/ (GAMMA=1.)
Z=(T/TZERO) «Pe EXP
TA3=PZERO¥*Zz T T - R
R VELOCITY AND MACH NUMBER e

TTZEZGHITZERO-T) T
A6=SQRT« (CP*Z)

TTZEZ7IGAMMA-T,Y T T o e e e
A2=SQRT«(Z2/T)

R DENSITY AND NOZZLE AREA
EXP=1e/(GAMMA=14)
ZET FSFATFAZTEXP
A4=RHZERO/(Z «Pe EXP)

T EXPEGSFIGAMMA+T ¢ VXEXP R




*27 (GAMMA+14)
Z oPe EXP)/A2
ASTAR%Z

“UNCTION RETURN

END OF FUNCTION
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$COMPILE MADSPRINT ORJECTsPUNCH OBJECT CFLOWOO1CFLOWQO™*
R AERCNAUTICAL ENGINEERING
R NOZZLE CONDENSATION RESEARCH
R
R CCNDENSATION FLOW
R
RRESEARCH==- Je GRIFFIN PROGRAMMING-~ Le HARDING JULY 1963
R

RCOMPUTATION OF VALUES OF PRESSURE sDENSITY,TEMPERATURE sMACH
RNUMBER AND VFLCCITY THAT SATISFY THE FLOW EQUATIONS THAT
RAPPLY AFTER THE ONSET OF CONDENSATIONe IT IS ASSUMED THAT WF
RHAVE COMPUTLD THE CONDITICNS AT X AND DESIRE THOSE AT X+DELX
RTHE ARGUMFNTQ REQUIRED ARt

R DELA = AREA INCREASE FROM X TO X+DELX
[ A = AREA AT X+DELX
R DFELG = CONDENSATE MASS INCREASE FROM X TO X+DELX
R~ 7 G = CONDENSATE MASS AT X+DELX
R P = PRESSURE AT X
R RHC = DENSITY AT X -
R T = TEMPERATURE AT X
R U = VELOCITY AT X
R M = MACH NUMBER AT X

RTHE PARAMETERS CP,L AND MU ARE REQUIRED FRCM PROGRAM COMMON.
RTHE FUNCTION FlLe(T) MUST BE USED HOWEVER SINCE ITERATION ON
RT IS NECESSARYe THE UNKNOWN GUANTITIES ARE RETURNED IN P(1)s
RRHO(1)sT(1)sU(1) AND M(1l)e IT 15 ASSUMED THAT U(1l) CONTAINS
RAN INITIAL APPRCXIYMATION TG THE VELOCITY AT THt NEXT MESH
RPOINT ON ENTRY.

R
EXTERNAL FUNCTION (AsDELASGsDELGPASRHCASTASUASMA)
R .
. PROGRAM COMMON  GAMMASs MUs By Cs CPy Ls RHOLs SIGMA
R
ENTRY TO CFLOW. B
U=sUA (1)
DELU=U-UA

MDGG=DELG/(1e=G)
DQA=DELA/A
L=FLe(TA)
R
THRGUGH S24FOR I=19191eGel00
QuU=DELU/U
MR
R ~ COMPUTATION OF DCLT AND T FROM THE ENERGY EQUATION
R
DELT=(L*¥DFLG=-U*DELU)/CP
T=TA+DFELT
L=FL4(T)
s
R COMPUTE DELRHO/RHO FRCM CONTINUITY EQUATION
g , Ll
DQRHO=DQA+DQU
~ DQRHO=-DQRHO

R
R COMPUTE DELP/P FROM THE EQUATICN OF STATE T
R
—BOP=OTRHOTTOEL T/ Ty =MbaG " T T
R

R "7 WE CAN NOW COMPUTE THE VELOCITY CORRESPONDING TO
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R THESE DIFFERENCE QUOTIENTS FROM THE MOMENTUM EQUATION
R

DELU=~(DQP*R*¥T*(1e=G) )/ (MU*UY)

NEWU=UA+DELU

TEST=eABSe (1e=NEWU/U)

U=NEWU
S2 WHENEVER TESTeLeEPSLONs TRANSFER TO S3
R
R ITERATION LIMIT HAS BEEN REACHED WITHOUT CONVERGENCE
R
PRINT COMMENT % "CFLOW!' - ITERATION FAILED TO CONVERGES
EXECUTE ERROR.
-
R CONVERGENCE CRITERIA SATISFIED
R
S3 TA(1)=T
UA(L)=U
DQRHO=1+~DQRHO
DQP=1.-DQP

PA(1)=PA/DQP
RHOA(1)=RHOA/DQRHO
NEWT =R#*GAMMA*T /MU
MA(L)=U/SQRTe (NEWT)
FUNCTION RETURN
R

VECTOR VALUES R=84314E+07
VECTOR VALUES EPSLON=1.E~06
INTEGER 1

R
END OF FUNCTION
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SCOMPILE MARSPRINT CRUECTPUNCH 03JECT ‘ NUCL100INUCL1OO*
R AERONAUTICAL ENGINEERING
R NOZZLE CONDENSATION RESEARCH
R
R NUCLEATION THEORY - 1
R
RRESEARCH=- Je GRIFFIN  PRCGRAMMING—-- Le HARDING JULY 19062

R
RCOMPUTATION OF THE MASS PUE TO INITIAL CONDENSATION AS GIVEN
RBY NUCLEATION THEORYe THE FOLLCWING QUANTITIES MUST BE AVAIL-

RABLE

R(1) CONSTANTS

R NA = AVOGADROS NUMEER (MOLECULES/GRAM MCLE)

R K = BCLTZMANN CONSTANT (DYNE*CM/DEGREEK)

R R o= UNIVERSAL GAS CONSTANT (DYNE*CM/GRAM MOLE*DEGREEK)
R(2) PARAMETERS

R B = SATURATION CURVE CONSTANT

k C = SATURATICN CURVE CCNSTANT

R DELX = DELTA X FOR VOLUME

R MDOT = RHOSATH*ASATHUSAT

R MU = MOLECULAR WEIGHT OF VAPOR

R(3) VARTACLES

N A = NOZZLE AREA

R P = PRESSURE

R T = TEMPERATURE

R RHCL = LIQUID DENSITY DEPENDENT ON TEMPERATURE
R SIGMA = SURFACE TENSION DEPENDENT ON TEMPERATURE
R

EXTERNAL FUNCTION (AlsA29sA39A4sA53A6ATAB)

R

PROGRAM COMMCN GAMMASs MUs Bs Cs CPs Ls RHOLs OIGMA
R

RCOMPUTE THE RADIUS OF THE DRCPS CONDENSING UNDER THESE
RCCNDITIONSs THEIR NUMBER AND HENCE THE CONDENSATE MASS
RFORMFED IN A VOLUME ELEMENT OF LENGTH DELXe THE PROGRAM
RCOMMON PARAMETERS RHCL AND SIGMA ARE ASSUMED TO CORRESPCND
RTC THE DROP TEMPERATURE FOR THE GIVEN FLOW CONDITIONS.
R

ENTRY TO NUCLE1l.

A=A1

DELX=A2

MDOT=A3

P=A4
T=A5
o

R COMPUTE RADIUS ( CMe ) OF THE DROPS THAT ARE CONDENSING
R

RADIUS= (24 *SIGMA#*MU) / (RHOL*T)

RADIUS=RADIUS/ (R*(ELOGe (P)=B+C/T))

R
R~ = COMPUTE THE NUMBER OF DRCPS OF THIS SIZE THAT ARE
R CONDENSING PER CENTIMETER CUBED PER SECOND.

A\ :

TEXP=RADIUS*RADIUS/K

TTEXPE-T4 1887502 %XSIGMARTEXP) /T
N=SQRTe (STGMA¥MU/NA(1)) o

B
N=P*N*EXP, (TEXP) / (K*T#*RHOL )

T N=e7978846%N ’ ‘




NDOT =N#*A#*DEL X
R

R COMPUTATION OF PERCENT OF LIQUID MASSs DELTAG
R

DELG=4+1887902*RHOL*NDOT*RADIUS
DELG=DELG#RADIUS*RADIUS/MDOT

R
A6=RADIUS

A7=NDOT
A8=DELG

FUNCTICN RETURN

R .
VECTOR VALUFS NA=6.027E+23+6e027E+03
VECTOR VALUES K=14379E~16914379E-06
VECTOR VALUES R=84314E+07

R

END OF FUNCTION
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$COMPILE MADsPRINT OBJECTsPUNCH OBJECT NUCL2001NUCL200*
R __AERCNAUTICAL ENGINEERING
R NOZZLE CONDENSATION RESEARCH
R
R o NUCLEATION THEORY - 2
R .
"RRESEARCH-- Je GRIFFIN PROGRAMMING--"Les HARDING JULY 1963
R

RCOMPUTATION OF THE QUANTITIES ARISING DUE TO CONDENSATION
RUNDER THE FOLLOWING CONDITIONS

R X = NOZZLE COORDINATE
R DELX = INCREMENT SINCE LAST MESH POINT
R A = NOZZLE AREA AT X
R__DELA = NOZZLE AREA INCREASE SINCE X=DELX B
R P = PRESSURE AT X
R RHO = MIXTURE DENSITY AT X
R T = TEMPERATURE AT X
R U = VELOCITY OF FLOW AT X
R M = MACH NUMBER AT X
R___MDOT = TOTAL MASS FLOW RATE
R ALPHA = ACCOMODATION COEFFICIENT
R N = MESH POINT NUMBER SINCE CONDENSATIONe THE POINT
R OF CONDENSATION IS MESH POINT ZERO.
RTHE QUANTITIES TO BE COMPUTED ARE
"R RAD(NT = RADIUS OF NEW DROPS FORMED AT Xe ( RAD(I) IS RADIUS
R AT X-DELX OF DROPS INITIALLY FORMED AT MESH POINT .
"R T AND 1S NECESSARY INPUT )
RNDOT (N) = NUMBER OF DROPS OF RADIUS RAD(N) FORMED BETWEEN
R X-DELX AND X. ( NDOT(I) IS THE NUMBER OF DROPS
R INITIALLY FORMED BETWEEN MESH POINTS I-1 AND I AND
R IS NECESSARY INPUTe )
RDELR(0) = DELR(I) IS THE RADIUS INCREASE BETWEEN X=DELX AND X
R THRU OF THOSE DROPS INITTALLY FORMED BETWEEN MESH
RDELR(N-1) POINTS I-1 AND I, THESE QUANTITIES MUST ALL BE
R COMPUTED. )
R DELG = CONDENSATE MASS INCREASE FROM X-DELX TO X DUE TO
R NEWLY FORMED DROPS AND GROWTH OF OLD DROPS.
R

"RTHE ARGUMENTS ARE THE QUANTITIES GIVEN ABOVE IN THAT ORDER.
RNOTE THAT THE ZEROTH WORD OF THE VECTOR ARGUMENTS ARE TO BE
RGIVENs FURTHER THESE VECTORS CONTAIN REQUIRED INPUT AS WELL
RAS SPACE TO PUT THE DESIRED OUTPUTe FURTHER THE USUAL
RPROGRAM COMMON PARAMETERS ARE ASSUMED TO CORRESPOND TO THE
RARGUMENT TEMPERATURE.
- _
EXTERNAL FUNCTION (XsDELXsAsDELAsPsSRHO»T sUsMsMDOT»ALPHASN
~1 RADSDELRsNDOTsDELG )
R
PROGRAM COMMON GAMMAs MUs Bs Cs CPs Ls RHOL»s» SIGMA
INTEGER N
N3
ENTRY TO NUCLE2.
R
EXECUTE NUCLEle (AsDELXsMDOTsPsTsRAD(N)sNDOT(N) sDELG)

WE HAVE NOW ONLY TO COMPUTE THE RADIAL INCREMENTS AND
THEIR CONTRIBUTION TO THE CONDENSATE MASS INCREASE. THE
DROP TEMPERATURE IS TAKEN AS THE SATURATION CURVE
TEMPERATURE CORRESPONDING TO THE GIVEN PRESSURE.
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R

__TDRCP=C/ (B-ELOGe (P)) e
DELR="79784.846 * SQRTe( 1e379%.6027/(T*MU)) * ( TDROP-T )
DELR=DEL X# (ALPHA/L)* (P/RHOL)* (DELR/U)

T THROUGH S1+FOR I=1s19I1eGe(N=-1)
DELR(1)=DELR

R
R COMPUTATION OF RESULTANT TOTAL CONDENSATE MASS INCREASE
R

_DELGZ2=0.
THROUGH S29FOR 1=0slsleGe(N-1)
_ DELG2=DELG2+ RAD(I)*RAD(I)*NDOT(I)*DELR(I)
DELG=DFLG+12.5663706%RHOL*DELG2/MDOT
R
“FUNCTION RETURN
R
INTEGER I
R
END OF FUNCTION
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SCUMPILE VADSPRINT CBJECTsPUNCH C3JECT NOZLEQOLINGZLECO™*
R AERCONAUTICAL ENGINEERING
R NOZZLE CONDENSATION RESEARCH
R
R NOZZLE
R
RRESEARCH=- Jo GRIFFIN PRCGRAMMING=-- Le HARDING JuLY 1963
R
RORIGIN COF THE COORDINATE SYSTEM FCOR THE NOZZLE IS THt CENTER
ROF THE THROATs leEes A(C) = ASTAR. THE VARIABLE X INCREASES

RPOSITIVELY IN THE DIRECTION OF FLOW AND IS NEGATIVE UPSTREAM
RFROM THE THROAT. THE NOZZLE PARAMETZRS ARE
R ASTAR = THRCAT AREA

R XMIN = X-COCRDINATE CF INTAKE

R XMAX = X—=COCRUINATE CF £XIT

R INANG = INTAKE HALF ANGLE IN DEGREES

R QUTANG = FXIT SIDE HALF ANGLE IN DEGREES

RTHE ENTRY THRCAT RFAZS AND PRINTS THESE PARAMETERS.
R

EXTERNAL FUNCTION (AlsA25A3)
R
ENTRY TO NOZZLEs

A

WHENEVER Al +Ee $THROATS

R
R RETURN THRCAT AREA AND INITIALIZE IF NECCZSSARY
READ DATA

PRINT COMMENT %0 NCZZLE PARAMETERSS

PRINT RESULTS ASTARsINANGsCUTANG
PRINT RESULTS XMINgsXMAX
A=INANG/RADIAN

INTAN=SINe (A)/COSe(A)
A=QUTANG/RADIAN
OQUTTAN=SIN«(A)/COSe(A)

A3=ASTAR
FUNCTION RETURN
R
OR WHENEVER Al «Ees $AREAD
R
R COMPYUTE THE AREA AT A2 AND RETURN IN A3

WHENFVER (XMINeLeA2) «ANDe (A2elLe0s)
E=INTAN* (4 ARSe A2)

CR WHENEVER (A2e¢Ge0e) oANDs (A2e¢L e XMAX)
A=DJUTTAN*AZ2

OTHERWISE

A2=C.

WHENEVER A2eFeQesA3=ASTAR

FUNCTION RETURN

END OF CONDITIONAL

A3=ASTAR+2 ¢ #A

FUNCTICN RETURN

-

OR WHENEVER Al «Ee $INVERSS

COMPUTE THAT POINT ON THE X-AXIS OF THE NOUZZLE THAT
HAS AREA 1A3t'e THIS POINT DEPENDS ON THE MACH NUMBER
WHICH MUST BF IN A2 ON ENTRY,s SEE THE PROGRAM FOR

ThE PARTICULARS. IF A2(1) IS le ON RETURN THEN THE
SOLUTION IS IN A2, IF IT IS ZERO THEN THE SOLUTION IS

0T AT
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"R STORED IN A2 BUT DUES NOT LIE INSIDE THE NOZZLE.
_A=e5%(A3-ASTAR)
WHENEVER AelLoeOQs ,A'-'O-
X(1)=1o
MACH=A?
WHENEVER MACHeLoele
X==A7INTAN
WHENEVER XMINeGeXsX(1)=0a
TTUOTHERWISE T T T
X=A/OUTTAN
WHENEVER XeGeXMAXsX(1)=0e
END OF CONDITIONAL
A7=X -
A2(1)=Xx(1) . e
TTFUNCTION RETUR
R

END OF CONDITIONAL
R

INTEGER A1l
DIMENSION X (1)

TTVECTOR VALUES RADTAN=5742957795
R

END OF FUNCTION
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SCOMPILE MADSPRINT OBJECTsPUNCH CBJECT VAPOROO1VAPOROO*
R AERONAUTICAL ENGINEERING L
R NOZZLE CONDENSATION RESEARCH
R
R “TVAPOR PARAMETERS
R
RRESEARCH-= Js GRIFFIN PROGRAMMING-- Le HARDING JULY 1963
R

RCOMPUTE AS A FUNCTION OF TEMPERATURE THE FUNCTIONS

R RHOL = LIQUID DENSITY
R L = LATENT HEAT
R SIGMA = SURFACE TENSION

RNOTE THAT EACH OF THE QUANTITIES MAY BE COMPUTED SINGLY AND
RTHAT THEIR VALUES ARE STORED IN_LOW COREe. THIS PERMITS THEM
'RTO BE HELD CONSTANT WITHOUT INTTIALTIZING THESE SUBROUTINES.
RANY ONEs CR ALL», OF THESE PARAMETERS MAY BE HELD CONSTANT BY
“RSTMPLY RETURNING THE VALUE FROM PROGRAM COMMONe
RIT IS TO BE NOTED THAT SIGMA AND RHOL ARE FUNCTIONS OF THE
RDROP TEMPERATURESs NOT THE VAPOR TEMPERATURE. IT IS THE DROP
RTEMPERATURE THEN THAT MUST BE USED IN CALLING ON THESE TWO
“RENTRIES, WHERFAS THE VAPOR TEMPERATURE 1S USED WHEN COMPUTING
RTHE LATENT HEAT.

R

EXTERNAL FUNCTION (T)
e

PROGRAM COMMON GAMMAs MUs Bs Cs CPs L» RHOL» SIGMA

-
ENTRY TO FRHOL.
R~ COMPUTE THE VALUE OF THE LIQUID DENSITY
FUNCTION RETURN VALUE _

o _

__ENTRY TO FL. _—

R TTCOMPUTE THE VALUE OF THE LATENT HEAT
FUNCTION RETURN VALUE

L DRCTEOR RS VALUE
ENTRY TO FSIGMA. -

"R TTCOMPUTE THE VALUE OF THE SURFACE TENSION
FUNCTION RETURN_ VALUE

Rl 20 RN VALUE .

END OF FUNCTION




APPENDIX C

INPUT DATA

Summary of input data and units required.

Table of input data used to obtain results plotted in Figures 1
through 13.

Plots of vapor properties obtained from References 20 through
24,
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Parameter

PZERO
RHZERO
TZERO
PE

GAMMA
MU
CPp

SIGMA
RHOL

ALPHA

DELX

XRANGE

XPOINT

TRANGE

DELTAT

PERCNT

ASTAR
XMIN
XMAX
INANG

Summary of Input Data Requirements

Definition Units
Initial pressure (Po) dyne/ cm2
Initial density (po) gm/ em®
Initial temperature (T ) °k
Initial approximation to saturation pres- dyne/ cm2
sure (Pe)
Ratio of specific heats (y) N. D.
Molecular weight of the vapor (u) gm/gmol

Specific heat (Cp)

Latent heat (L) dyne-cm/gm
Surface tension (o) dyne/cm
Liquid density (pL) gm/cm
. dyne/cm?

Saturation curve constants

and °K
Accommodation coefficient (@) N. D.
Incremental step in X (Ax) cm
Length of interval, starting with conden- cm
sation point, over which flow conditions
will be computed
Points which will be printed out; i. e., N. D.
every fifth, tenth, etc., point.
Temperature range over which program °k
will search for condensation point
Initial step size in condensation point °k

search over TRANGE

Value of epsilon for determination of onset of)Jdecimal
condensation raction

Throat area (A¥) cm2
X-coordinate of intake cm
X-coordinate of exit cm
Inlet half angle degrees

-90-

dyne-cm/gm-"K
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Summary of Input Data Requirements (continued)

OUTANG Diffuser half angle (8 1 /2) degrees

NA Avogadro's number (in program) molecules/gmol
6. 027 x 1023

R Universal gas constant (in program) dyne-cm/ gmoloK
8.314 x 107

K Boltzmann's constant (in program) dyne-cm/ °k

1.379 x 10-16
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Table C-1. Input Data
NZG) Nzﬂn Cu Zn(I) Zn(II)
8.45x10° 8. 45x10° 1x10° 1x10° 1x10°
. 00952 . 00961 2.54x 10" % 3,93 x 10°% 6.04x107%
298 295 3000 1500 1300
2000 2000 166. 7 166. 7 166. 7
1. 4 1.4 1. 667 1. 667 1. 667
28. 02 28, 02 63. 54 65. 37 65. 37
Lo7x100  1.07x100 3.26x10° 3.18x10° 3.18x10°
2.3 x 10° 2.3x10°  4.94x100 1.82x10'° 1.82x10%°
95, 8-. 22T 24, 25-. 22T 1300 1000-. 26T  1000-. 26T
1,177-. 00476T 1.177-. 00476T 8.9-.0007T 7.4-.0008T T.4-, 0008T
882 882 34, 200 13, 800 13, 800
95, 7 95,7 95, 46 95. 3 95. 3
1,0 1.0 1.0 1.0 1.0
. 0645 . 0645 . 645 . 645 . 645
-5 -5 -5 _5 -5
25 25 58 21.1 58
45 45 45 45 45
9.75 9. 75 20 45 20
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Figure C-2. Surface Tension and Liquid Density versus

Temperature for Nitrogen
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