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ABSTRACT

The purpose of this study is to investigate theoretically the
variation of the low-frequency reversible susceptibility exhibited by a
ferromagnet as a function of the internal magnetization level for small
alternating fields both parallel with and normal to a static magnetic
biasing field assuming firstly that the susceptibility has its origin in
domain-wall motion and secondly that it has its origin in domain rota-
tion. An understanding of this variation is of interest for the insight
gained into the methods of magnetization processes as well as for the de=
sign of variable-inductance magnetic-core devices, Experimental data are
reported and compared with the results of the theory.

To calculate these susceptibilities, a distribution function
f£(0)de equal to the fraction of all atomic magnetic moments in the system
of interest which makes an angle between 6 and 6 + d6 with respect to the
applied biasing field must be known. This involves an effective "history™
field which cannot be known. However, such an expression can be developed
in terms of a totallized magnetic field equal to the sum of the biasing,
demagnetizing and history fields, The inherent assumptions are that the
material is polycrystalline and nonoriented, that each atamic magnetic
moment is oriented along some "easy" crystallographic direction, that the
localized demagnetizing fields act to randomize the particular "easy" di-
rection occupied, and that each cation possesses a magnetostatic energy
proportional to the cosine of the angle between its moment and the field
direction.

On the basis of the above assumptions, an expression for the
magnetization M is derived in terms of the totallized magnetic field H.
This is done for magnetization along the [100] and the [111] directions
and for isotropy. These correspond respectively to a total of six, eight
and an infinite number of easy crystallographic directions.

For the case of parallel fields and magnetization by wall
motion, the reversible susceptibility is assumed to be the derivative of
the magnetization with respect to the totallized field., For transverse
fields and magnetization by wall motion the reversible susceptibility is
derived by assuming that the total magnetic field and the moment of the
polycrystalline specimen are always aligned.

For the case of magnetization by domain rotation, it is assumed
that the Landau-Lifshitg differential equation is applicable to each
crystallite., The susceptibility parallel or transverse to the field is
calculated by setting the proper component of the alternating field equal
to zero,

The unknown totallized field can be eliminated between the sus-
ceptibilities and the magnetization since all are functions of f£(@)de.

viii



Experimental data, which are reported for three ferrite speci-
mens, are found to lie between the expected theoretical curves for the
different magnetization types. The expected curves for the cases of
domain-wall movement and domain rotation are sufficiently different to
allow an approximate experimental separation of the contribution to the
susceptibility from each type.

It is concluded that the theory here presented gives rise to a
new technique for the separation of the contribution to the measured sus-
ceptibility from each mechanism. Using this technique, it was found that
the relative importance of the two mechanisms depends upon tle ferrite
composition.






REVERSIBLE SUSCEPTIBILITY IN FERROMAGNETS

1. SCOPE OF PAPER

This paper is concerned with the reversible susceptibility as
measured on material which possesses & permanent magnetic moment in the
absence of an external magnetic field. The variation of the low-frequency
reversible susceptibility exhibited by such ferromagnetic materials as a
function of the intermal biasing level for small alternating fields both
parallel with and normal to a static magnetic biasing field is developed
on a theoretical basis. This knowledge is useful to the engineer so that
he can adequately consider it when designing a variable inductance and to
the physicist so that he can obtain a better understanding of the processes
by which the moment of a magnet is altered.

Experimental data were taken to check the theory. It is con-
cluded that the theory represents a useful approximation to the true state
inside a ferromagnet. The calculation of the precise state would require
methods presently unavailable.

Although the theory is considered applicable to all ferromagnetic
materials, the experimental work here reported was carried out using the
ferromagnetic oxides commonly called ferrites. The theoretical calcula-
tions were carried out only for cubic and for isotropic symmetries.

A total of thirteen ferrites, representing what was believed to
be widely different values of the usual magnetic parameters of magnetostric-

tion and anisotropy, were measured. Of the thirteen a total of three with
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quite different resulting susceptibility-magnetization curves were chosen
for a detailed study. The results obtained using the final three speci-
mens are included in this paper.

The theory was developed assuming firstly that the susceptibil~
ity had its origin in domain-wall movement and secondly that the suscep-
tibility had its origin in domain rotation. The difference between the
two types of behavior is large enough to allow an approximate experimental

determination of the relative contribution to the susceptibility from each

mechanism.,



2. MAGNETIC PROPERTIES OF MATERIALS. INTRODUCTORY REMARKS

The theory of magnetic materials is intimately connected with
the atomic theory. A result of the Pauli exclusion principle, when applied
to atoms in a gas, is that no two of the electrons surrounding any nucleus
can have the same quantum numbers. In other words, if any two electrons
possess the same orbital quantum numbers about the same nucleus they must
have their spin moments oriented in opposite directions. If, solely for
simplicity, we assume that the ultimate source of the magnetic moment lies
with the electron spin itself rather than any orbital motion of the elec-
trons, and if we also assume that all electrons occupy the lowest possible
orbital energy state, then a nucleus surrounded by an even number of elec-
trons in an S state5 carries no magnetic moment as & result of unbalanced
spins; that is, for every spin moment oriented in one direction there is
an equal one oriented in the opposite direction. For an odd number of
electrons there must be a net unbalanced magnetic moment.l’2

When a magnetic field H is applied to a material whose net atomic
spin magnetic moment is zero, the time-rate of change of the magnetic field
sets up an electromotive force. This force in turn sets up an atomic cur-
rent which can be considered from either a classical or a quantum-mechan-
ical point of view.l’e’5 From the point of view of classical theory it can
be considered as an adjustment of the electronic orbitals. From the quan-

tum-mechanical point of view it can be considered as a shifting of the elec-
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tronic energy levels.l’2 This current, according to Lenz's law, creates
an effective magnetic field directed in the opposite sense to the H, This
field, which originates with the material, can be considered in terms of

a magnetic moment per unit volume to which it is numerically equal. The
moment per unit volume is defined to be the magnetization M. Since no
resistance exists on the atomic scale the "currents" continue indefinitely.
Since the magnetization and the applied field are oppositely directed, the
susceptibility, which is defined to be the ratio, is negative., Material
with a negative susceptibility is defined to be diamagnetic.

Let us now consider a material in the gaseous state in which each
nucleus is surrounded by & cloud of electrons with a net spin unbalance.
Materials with an odd mmber of electrons are automatically included. As
in the case of diamagnetic material, from the Lenz' law concept there
appears & negative susceptibility. However, the unbalanced magnetic moments
will tend to align themselves with the applied field and will produce a mag-
netizetion in the same direction as the applied field. Since this magnet-
jzation is larger than the diamagnetic magnetization and is aligned with
the field, materials with a net unbalanced moment possess & positive sus-
ceptibility. Gaseous materials with a small positive susceptibility are
defined to be paramagnetic.

For many elements, the entrance into a chemical compound alters
the electronic structure of the atom to be more nearly that of the noble
gases. They therefore carry a small or zero net unbalanced moment, How-
ever, certain elements have unfilled inner shells which carry an unbalanced
magnetic moment and which enter only weakly into the chemical binding. The
elements of the most interest here fall into three groups: those with par-
tially filled 3d shells; those with partially filled 4f shells; and those

with partially filled 5f shells. Some metals for which the interaction
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between moments, defined as spin-spin interactions, are known to be impor-

9

tant are chromium39, manganese3 , iron, nickel, cobalt, gadolinium38, and

dysprosium.ho
Solids containing these elements exhibit, at elevated tempera-
tures, magnetic properties very similar to those of a gaseous paramagnet.
As these solids are cooled, many will undergo magnetic transitions of some
sort. Many oxides exhibit, below the transition temperature, a suscepti-
bility which decreases with decreasing temperature3 in contradiction to
the accepted theory of paramagnetic behavior. For the metals iron, cobalt
and nickel, the room-temperature susceptibility is many orders of magnitude

4 Many complex iron-oxide compounds (the

larger than for paramagnets.
ferrites) also possess very large room~temperature susceptibilities.

It is not possible even approximately to predict these behaviors
on the basis of classical electromagnetic field theory alone. It is poss-
ible to explain them qualitatively from the quantum theory. The overlapp-
ing wave functions of the different atoms give rise to an exchange energy.
This exchange energy, which provides the covalent binding of solids, also
acts to create an interaction between magnetic moments.

The result of this energy is that, for example, in metallic man-
genese and iron the net unbalanced moment of each atom feels an effective
magnetic field which originates at least predominantly with the unbalanced
spins of nearest-neighbor atoms. This effective field is commonly called
the exchange field® and for the case of iron acts to align the spins of
nearest-neighbor atoms parallel with each other. In the case of mangan-
ese the exchange field attempts to order the spins of nearest-neighbor
atoms antiparallel with each other., The former case is defined to be ferr-

omagnetism, the latter antiferromagnetism, The effective exchange field

is, at least in most instances, very large compared with the field pro-
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duced by any available laboratory magnet. It is so large that any in-
crease in the magnetic moment on the atomic scale because of an applied
field can be ignored. Since the magnetic energy per gram atom is given
by uo'ﬁ'°3fand the thermal energy by %RT, where R is the gas constant,
and since the magnetic ordering will cease for %Rr X potM, an approxi-
mate measure of the effective exchange field can be obtained by deter-
mining the temperature at which the ordering disappears. This tempera-
ture is defined as the Curie temperature. It is found that for the case

8

of iron the exchange field is of the order6 of 10~ ampere-turns per
meter.

An array of parallel spins in two dimensions is depicted in
Fig. 1. Each A is surrounded by nearest-neighbor B's and vice versa. Fig.
1 also represents the case of a two-dimensional antiferromagnet. The
direction of the arrows indicate the direction of the atomic moment. Note
that all A's are oriented in one direction, all B's in the oppoéite dir-
ection., Just as in this two-dimensional case an antiferromagnet can be
broken into sets of interpenetrating sublattices. Each sublattice con-
tains parallel spins but the spins of the different sublattices are
oriented antiparallel. Note that if the net spin on A were different from
that on B a resultant net M would exist., Also if the symmetry were such
that there were more B-sites than A-sites a net unbalanced moment would
exist. The latter case exists and is the usual explanation of the spon-
taneous moment of the ferri’ces.7

To find the configuration of the moments for the case of fhe
ferromagnets, it is necessary to minimize the sum of all energies in the
system.6 These energies are the magnetostatic energy, the anisotropy

energy, the magnetostrictive energy and the exchange energy. A more pre-

cise treatment of these effects is left to appendices A and D. Qualita-
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tively, it cen be seen that the magnetostatic energy acts to decrease the
net moment, the exchange energy acts to align all moments, and the aniso-
tropy energy acts to keep all material aligned along certain preferred
crystallographic directions.

The result of these effects is that certain volumes of the
material have their moments aligned parallel with each other by the ex-
change field. A volume so oriented is defined to be a domain. Each do-
main, in the absence of any macroscopic magnetic field, is very nearly
aligned along some crystallographic 'easy" direction. The boundaries
between domains are defined to be domain walls. For cubic symmetry, and
if the easy direction is the [}0@] direction, 90 and 180 degree walls are
possible, (See Fig. 2).

An applied field must be considered small when added to the ex-
change field. Thus, no net change in local moment can be expected when
the field is applied. However, the magnetostatic energy will be altered
in such & way as to demand that the net number of moments oriented favor-
ably with respect to the applied field increase at the expense of those
not so faverably oriented.

This magnetostatic-energy alteration can be accoamplished as
well as the requirement of minimization of the sum of exchange and aniso-
tropy energies by assuming that the domain walls move in such a manner as
to increase the volumes of domains oriented favorably with respect to the
applied field.8 (See Fig. 3). It is also possible that the moments of

9

the domains rotate” against the anisotropy torque to become more nearly
aligned with the field. (See Fig. 3). It is not possible a priori to
predict the most likely mechanism by which the moment will change. How-

ever, if the easy direction is the [}llj direction and if only easy direc-
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tions are occupied the largest possible macroscopic M would be, for a
nonoriented polycrystal, 0.867 Mg, where Mg is the value of the spon-
taneous moment.

The usual experimental result for the variation of the moment
of a polycrystalline material as a function of applied field is shown
in Fig. 4. A material which has not been subjected to an applied field
after being cooled from above its Curie temperature would occupy the
point J. When a field is applied the virgin curve JC is traced. When
the field is subsequently reduced to zero the material retains a value
of magnetization M, as shown at the point E. To reduce the magnetiza-
tion level to zero again it is necessary to apply a field -H, to the
specimen. The value My is defined as the remanence and the field H, as
the coercive force. The value of magnetization at the point C is the
saturation or spontaneous moment, The loop CEGAC is known as the hyster-
esis loop. The slope of the M-H curve at the point J, starting from the
virgin materiel, is known as the initial susceptibility. Consider, in
traversing the loop, the applied field, Hap, to be stopped at such a
time that the material occupies the position B. If Hap is slightly de-~
creased the top curve BI is traced. If Hap is then returned to its orig-
inal value, the lower curve from I toward B will be traversed for the
small-signal case. For a given AlHgp, the slope of a straight line drawn
through the points B and I is known as the incremental susceptibility.
The limiting value of the incremental susceptibility as AHap goes to zero
is defined to be the reversible susceptibility.

A major unsolved problem of ferromagnetism is the precise des-
cription of Fig. 4 in terms of a mathematical theory. The magnetization
cannot be given as a unique function of Hap alone and is indeed an in-

finite-valued function of Hgp depending upon the history of the material.
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If the magnetization is changed by domain-wall movement the derivation
of such a history-dependent function would require as many coupled diff-
erential equations as domain walls. The situation is no better for the
variation of the magnetic moment by the rotation of the moment of entire
domains.

Since a direct analytical approach seems impractical, some
type of statistical method seems demanded if such a function is to be
derived.

For convenience in making this discussion more quantitative,
consider an infinite cylinder of nonoriented polycrystalline material.
The radius of the cylinder may or may not also be infinite. Consider
an external field Hap to be applied along the length of the cylinder.

The resulting equation

bid
L £(8) sing cose as

M= Mg (1)

f‘l’[
5 £(0) sing 49

now describes the magnetization if f(8) d9 is a distribution function
equal to the number of atoms whose magnetic moment is oriented at an
angle between 6 and @ + d@ with respect to the applied field. Ms is
the maximum value of magnetization. The M-H loop and its ramifications,
such as the reversible susceptibility, can be calculated from Eq. 1 if

f(6) a6 is known as a function of the field Hy,, and the history of the

P
material. Although the problem is now no closer to being solved than
without Eq. 1 it has been reformulated to a question of the determina-
tion of a distribution function.

This distribution function can be easily calculated for the

case of a paramagnetic gas in thermal eq_uili‘brium.l However, this in-
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volves a system of smallest units which are maintaining equilibrium by con-
tinually exchanging energy. For the usual statistical mechanical system,
the time average of any quantity for any system in an ensemble is the same

10 This is based

as the ensemble average over the systems at a given time,
upon the so-called "ergodic' argument. In the case of the ferromagnet the
thermal disorder effect upon the domeins is considered small enough to be
negligible. The thermal effect is considered to affect the magnetic para-
meters such as My, the anisotropy coefficients and the magnetostriction
but not the disordering of the domains. The disorder must be considered
to arise from the presence of localized strains or magnetic poles in the
material, Each atomic moment is not continually exchanging energy but
rather occupies some metastable minimum energy in the presence of random
but fixed forces which vary throughout the material. Any attempt to con-
sider this problem must consider a "snapshot' of the material and the re-
sulting properties computed as an average over the system rather than a
time average of the system as it goes through all possible configurations.

Each atomic magnetic moment, then, sits in some metastable pos-
ition; the particular position depends upon the history of the material12
and may exist because of nucleation energies37 or because of wall
”snags”32. These positions depend upon the positions occupied by neigh-
boring spins. Therefore the energy of each atomic moment is not necess-
arily independent of the spatial coordinates.

The result is a history dependence of the function f£(8) d6 that
is not present when a thermal disorder is considered. This dependence

upon history is responsible for the hysteresis and is not at all negli-

gible, as is obvious from Fig. k4.



3. THE ORIGIN AND FREQUENCY DEPENDENCE OF THE INITIAL

SUSCEPTIBILITY

3.1 The Initial Susceptibility

As mentioned in Chapter 2, the spontaneous moment of the fer-
rites exists as the difference of two oppositely oriented moments, The
spontaneous moment of the ferromagnetic metals exists with all moments
oriented in parallel. It will be assumed throughout the rest of this
paper that the equations for ferrimagnetism in terms of the measured
parameters are the same as the equations for ferromagnetism. This is
to be assumed even though it has been amply demonstrated that a real
difference between the two cases exists in many properties, such as* the
g-valueslB, and the variation of the susceptibility with temperature in
the paramagnetic region.7

It was also mentioned in Chapter 2 that there are two possible
mechanisms by which the magnetization can be altered in the presence of
a magnetic field many orders of magnitude smaller than the exchege
field. These mechanisms were seen to be (1) the movement of the boun-
dary between regions of material whose magnetic moments are oriented in
different directions, and (2) the rotation of domains as & whole to more
nearly align themselves with the applied field. 1In addition the change
in magnetization can be regarded as consisting of the sum of both rever-
sible and irreversible effectslh of either type. Once initiated, irre-

versible movements are no longer controllable and go to completion at a

* For a definition of the g factor see reference 39, p. 143,
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certain minimum rate while dissipating some finite amount of energy. The
reversible processes, if carried out sufficiently slowly, are reversible
not only in the sense of continued oscillation about the same equilibrium
point but alsoc in the thermodynamic sense of no energy dissipation for
sufficiently slow movements, At a finite frequency the energy dissipa-
tion is nonzero, but the réversibility in the sense of magnetic movements
about the same equilibrium point remains and the process is still control-
lable by the applied field.

In addition to the magnitude of the reversible susceptibility,
the loss factor, or its inverse, the magnetic Q, is of interest as well
as the variation of both as a function of the gross magnetization level
for each of the two different sources of reversible magnetization.

It is obvious that an additional field AHap could be applied at
an arbitrary angle with respect to the gross applied field Hap’ which is
here defined to be the biasing field. With superposition assumed, the
resulting susceptibility is a linear combination of the susceptibility
parallel with and normal to the biasing field. It is therefore of in-
terest to investigate each of the above mentioned factors both parallel

with and normal to the biasing field.

3.2 Susceptibility Due to Domain Rotation

A direct consequence of the application of Newton's law to ro-
tating systems is that the time rate of change of angular momentum is
equal to the applied torque; furthermore L, the angular momentum per unit
volume, is related to M, the magnetic moment per unit volume, by the mag-
neto-mechanical factor y, i.e., M= y L. This equation is the sum of
similar equations valid for the individual electrons. ¢y can be calcula-

ted in terms of fundamental atomic constants for megnetization by elec-
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kil le net
tron spin. It is given by %ﬁ; where p,y is equal to 221 imgéif: ese’é‘inér

for g = 2. Now the total torque per domain must equal the sum of the

torques for each electronic moment; thus for a rotating magnetic moment,

%—fg =7Yo [MXH']. (2)
H' is the sum of all fields affecting the domain,

It is to be noted that this equation contains no damping term.
If it were literally true, a domain once set in motion by the application
of an external field would oscillate forever. This cannot represent a
physical situation, as was recognized and corrected by Landau and Lif-
shitz9 who introduced an additional term perpendicular both to the mom-
ent M and to the direction-of-motion vector (M X H'). This phenomeno-
logical term can be written as - ﬁgﬁ T [M X (MX H'X]. The M2 in the
denominator is entered to require the constant term A to be independent
of the spontaneous moment.

With the addition of the damping term, the differential equa-

tion is

M= gt x 1Y) -ﬁ-;léuo Mx MxEY] . (3)

Let it be assumed that the material has its spontaneous moment oriented

in the z-direction, and let the applied AH be given by
Hy = H\cos6,2 + Hysing x = H 2 + H, X

A A . M . .
where z and X represent unit vectors in the z-and x-direction respect-

ively; then to first order the resulting susceptibility as measured by

M,/Hg is given by
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Ms sin 8
Xp = ——E'—-—-—-——‘—’-— , (1)

where H' is the effective magnetic field consisting of the sum of all in-
ternal and applied fields. For the demagnetized case the applied field
is zero so that H' represents the effective internal field.

Now calculate the value of the initial susceptibility in terms
of the magnetic parameters, and set this result equal to Eq. 4 with a
zero applied field to obtain an approximate expression for H'. The pro-
cedure is to consider the energy of the system in the presence of a small
signal, assuming the rotational mechanism, and solve for the equilibrium
condition, Consider the total energy of the system to consist of two
terms, one due to the magnetostatic energy and the other due to the ani-

sotropy energy Uén.ls Then
U= Uy, - MH'cos (8, - @) .

Taking variations with respect to 8 gives

qu _ QUap Vo
= 0= —2= - MH' sin (6, - 0) . (5)
Thus it follows that
dUgy/de
t = -
H' = and M = Mg cos (9o 9).

Mgsin (6, - 6)

For ease in calculations assume the domains to be initially oriented in
the [boi] direction and to turn in the xz-plane. Therefore the aniso-

tropy energy, which can be written as (See Appendix A)

Uan = Ky (5%8,% + 1,220, + 1,%0,7) (6)
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where the 1, represents the direction cosine of the magnetic moment to

the x-axis, becomes

K
Ugp = Klsin2 @ cos? @ =-§£ (1L - cos L8)

dUan

= (Kl/Q) Sin heo

Solving for H' gives
K3 sin 48
2Mgsin (6, - 8)

HI

Finally solving for Xg gives

a
xF = __dM' = 90 | _ Mg® sin® 6, (7)
]
o dH dH 2Kl

=0 90 | g=0

It is also through this mechanism that the magnetostriction
and the elastic constants would enter, since they act to build up an

effective anisotropy of the form6

&Ky = 9/b [(cn T L xill] (8)

where the \'s represent the magnetostriction in the [lOO] and [lll]
direction respectively, and the cy j's represent the elastic moduli,

Eq. 4 gives the susceptibility resulting from the equation of
motion, and Eq. 7 gives the same susceptibility based upon magnetic para-
meters.

Setting these two equations equal and solving for the effec-

tive anisotropy field Hanl6 gives
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2K
" Mg sin 8,

Hon (9)

Eq. 3 then describes the motion of large groups of dipoles whose

motion gives rise directly to an externally measurable susceptibility.

3.3 Susceptibility Due to Wall Motion

The development of & differential equation of motion describing
the behavior of a domain wall arises from the application of Eq. 3 to the
moments in & domain wall. The resulting equation can be written for a

17,8,18
180° wall as: (See Appendix A).

mk + Bk + ax = 2MH, (10)

m is the effective mass of the domain wall;

B is the damping or dissipative term affecting the wall;

a represents the restoring force on the wall;

x is the direction in which the wall moves;

2 is the direction of application of the field H,.

It is to be noted that the magnetization increase, AM, resulting from the
wall movement through a distance x is directly proportional to x and to
Mg, or 2CxMg = AM, where C is a constant with dimension (length)'l.

Eq. 10 is of the form of a Hooke's law equation with added
damping and inertial temms. In well annealed and well formed material
the restoring constant a can be considered to have its origin predomin-
antly in internal strains which arose because of the magnetostrictive
forces resulting from the presence of the spontaneous moment, absent when
the material was annealed.18 In imperfectly annealed or formed material,

residual strains and local impurities must be considered as well as the
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magnetostatic energy. For certain geometries the magnetostatic forces
predaminate.19
The B term can be derived directly from Eq. 3 by applying it
to the motion of individual cations in the domain wall. The mass term
is based upon increased exchange energy due to a distortion of the moving
wall also described by Eq. 3. B is derived from the second term of Eq. 3
and m from the first term. The details of this procedure are carried out
in Appendix A.
As for the case of rotational susceptibility, the initial sus-
ceptibility for wall motion can be derived in terms of the magnetic and

20 assuned the internal strains

elastic parameters of the system. Becker
to be sinusoidal in nature with a meximum amplitude of ¢;. For 90° walls

he obtained the expression for the susceptibility:

w 16 Méz
°© 3 Meo%i

If the only strains present are due to magnetostriction, then

where
Ag represents the saturation magnetostriction, and
E represents the Young modulus,
Substituting this into the equation for the initial suscepti-

bility one obtains

8yM 2

w_ 75

X°—9>‘.§E (11)
18

as derived by Kersten.



- 21 -

Solving for the initial susceptibility from Eq. 10, and remem-

1]

bering that 2CxMg = AM yields:

2 CM 2
XX:——-g—S—- for 90° walls.

Combining the two equatious and solving for o leads to

g2 ECAg®
bx

(12)

In sumery, the differential equation (3) describes the motion
of the magnetic moment in the permanently magnetized system, even for the
case of wall motion when applied to the spins in a domain wall. However,
it is assumed that these wall moments contribute relatively little to the
measured susceptibility. The source of the susceptibility is the move-
ment of these spins in such a manner as to produce a movement of the
boundary between regions megnetized in different directions. This motion

is describable by an equation of the form of Eq. 10,

3.4 The Separation of the Magnetization Mechanisms

The experimental determination of one or the other magnetiza-
tion mechanism is difficult because of the similarity of the results.
Many attempts have been made to differentiate between them on the basis
of the different frequency dependence of the two types.21’22’23’2h’25’27
The initial zero-frequency susceptibility is an easily measurable quan-
tity of a ferromagnet. It is possible to combine this zero-frequency
susceptibility and its frequency dependence in such a fashion that a fac-

tor dependent only upon Mg and other constants of the system results.

For the case of magnetization by rotation and by highly damped wall motion
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the product of the first power of the susceptibility and the frequency

Wy at which the imaginary portion of the susceptibility is a maximum

gives:21’23’26
Rotation @, Xg - emdts (13)
3
Viscous Damped
wall motion @ Xg= uMSZC”O (14)

(See Egs. B6 and Bl13.)

For slightly damped wall motion, the product of wy®X
gives

rtial damped
Inerti P 2 W _ WM 20y

wall motion Wy, (15)

° m
(See Eq. Blh)

It is apparent from the form of Eq. 13 that a plot of log wy,
versus log Xo should yield, if My is varied, a straight line of unit
slope. The same would also be true of Eq. 14 if MS/B remained constant.
A series of experiments have been carried out on nickel-zinc ferriteal’ 26
for which a plot of log w, versus log X o yields a straight line of unit
slope. This has been interpreted as a substantiation for the domain-
rotation phenomena.

Domain arrangements should be sensitive to strain, as can be
seen from Eq. 11. However, the initial susceptibility and peak fre-
quency of the nickel-zinc ferrites are relatively insensitive to strain.
This argument has been used to try to demonstrate rotation.28 Rado has
first measured the frequency spectrum of some ferrites, then pulverized

them to a particle size which is presumed to be small enough so that only

single domains could exist and then remeasured the frequency spectrum.
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By doing this process the low-frequency dispersion was eliminated. He
therefore concluded that the magnetizetion mechanism responsible for

this dispersion was wall motion.23’2u

Unpublished work of Epstein shows
that nickel-zinc ferrites which have a high density exhibit frequency
characteristics expected from wall motion,

The situation is still not clear.

One of the objectives of the present paper is the development

of a new technique for the determination of the magnetization mechanism

and to use this technique on several different types of ferrites.



4, THEORY OF MAGNETIZATION CONSIDERING THE AVERAGING

PROCESS OVER A POLYCRYSTAL

4.1 The Calculation of £(6) d6.

As mentioned in Chapter 2, the M-H loop and its ramifications
can be quantitatively described if a function £(8) d9, equal to the num-
ber of magnetic ions which have their moments oriented at an angle between
g and 6 + 46 with respect to the applied magnetic field is known. The
present problem is, in essence, two fold. The first part is the calcula-
tion of £(8). The second is the calculation of the susceptibilities in
terms of £(8).

In an ordinary statistical mechanical problem the smallest units
considered are assumed to be constantly exchanging energies with other
similar particles in such a mamner that the energy held by one unit is in-
dependent of the energy held by its momentary nearest neighbor. In such a
problem the time average of the thermodynamic variables are taken equal to
an ensemble average over many systems. If similar arguments are to be
applied to a ferromagnet with the smallest unit considered to be the atoms
furnishing the moment, only a system average can be considered since each
atom must contain a random but fixed energy in the presence of a static
magnetic field. For the ordinary system, say a gas, the thermodynamic
quantities are calculated assuming that equilibrium exists when defined as
a minimization of the free energy, i.e., when the most probable state ex-
ists. When a ferromagnetic material is considered this state certainly

does not exist, as is made obvious by the presence of hysteresis with res-

- 24 -
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pect to Hap' The meterial must be considered to occupy some state of

locally minimized free enmergy, thus a steady state. The particular steady
state occupied must depend upon local potential minima in the form of wall
"snags" or nucleation energies or both. Thus f(6) must be a function both

of the applied field Hap and of the history of the material?g

The problem
can be handled if this history effect is considered as an effective field
which acts in addition to the applied field. For this case the magnetiza-
tion and the different susceptibilities can be calculated in terms of the
total field, and then this total field eliminated between the susceptibil-
ities and the magnetization. Appendix C considers the question in more de-
tail. The following discussions assume such a relationship exists.

Many attempts to derive an expression for £(@) have been made.
Gans3® lists his result and states that it is "not without foundation.'
Brown utilized Heisenberg's model of domains of fixed and equal volume and

derived expressions for £(@) as a function of anisotropy type%l

He later
derived the same expression for the case of no anisotropy with & model
allowing wall movement?9 Appendix D gives & derivation using the same
mathematics as Brown, but using a model based upon the spins of individual

atoms. This model makes it possible to take into account the anisotropies

and wall motion, The result is that:
£(0) d6 = exp (AHtcose) de (16)

where @ is the angle between the magnetic moment of a given domain and

Hgp, where A is a constant, and where Hy is Hgp plus any effective history
field H, and demagnetizing field -NM.
The magnetization M as a function of Hy results from substitut-

ing Eq. 16 into Eq. 1. The necessary symmetry conditions must be considered
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depending upon the anisotropy type. The resulting equations for M/MS for
an anisotropy condition such that the easy directions are along [lll] and
[100] and a similar quantity for isotropic material are given in Table 1.

The equations are derived in Appendix E,

Table 1, Magnetic Moment and Well-Motion Susceptibility

w w w W
Anisotropy Type /Mg Xeo! Xo Xrt! Xg
_ 1 (Legsinhqey 49 3d6(n) 3.6(n)

[100] o(n) = li.',?f L coshnfy dn 1
_ a3 (A3 3 a8(y) 3 E(n)

[111] E(n) = n aof u tanh u du I m
isotropic L(n) = ctnhy - & 3 &) 3 Lin)

Ui dn n

In addition to the assumptions going into the derivation of f£(@)
dg, for the case of the [lll] and [100] orientations, it is assumed that
all material in the system has its magnetic moment oriented along an easy

11,12,30 The derivation of the susceptibilities from the magnet-

direction.
ization assumes that none of the material deviates in direction from these
easy directions, i.e., the effective anisotropy fields are infinite. This
therefore implies magnetization by wall motion as opposed to magnetization
vy rotation for the small-signal susceptibility. The rotation of domains
from one easy direction to another for the change in gross magnetization
is not ruled out but presumably such a thing would not be possible for a
vanishingly small applied signal.

The situation is a little more complex for the case of assumed
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isotropy, for here the concept of wall motion ceases to be defined. In-
deed no walls should exist for zero anisotropy material. This seems diffi-
cult to reconcile with the concept of effectively infinite anisotropy
fields. (See Appendix D). However, for the [100] anisotropy there are
six possible directions of magnetization, and for the [111] anisotropy
there are eight possible directions of magnetization. The isotropic case
can be considered as the extension to an infinite number of possible dir-
ections, each with an effective infinite anisotropy field. Although the
physical formulation remains a little nebulous, mathematically passing to
the limit allows working with L(n) as opposed to E(n) or G(n). Further,
as given in Appendix E, the expansion of the three functions for small
values of n gives identical series to the seventh power of n. At high
values of 3 the applied field becomes of the same order of magnitude as
the anisotropy field, thus the assumptions of strict [LLE] or [;OO] aniso~
tropy cease to be valid. It is to be expected that the isotropic assump-

tions should remain a fair approximation for all values of M.

4,2 Reversible Susceptibility Assuming Wall Motion

The equations describing the variation of the reversible suscep-

tibility with M, assuming effectively infinite anisotropy fields, are de-
rived in Appendix E and are listed in Table 1, For completeness, the de-
rivation for isotropic material will be described here. From Table 1,
M = Mg L(n), vhere n = A(H, + Hy, - NM), A is a constant, Hy is the applied
biasing field, Hy, the effective history field, and -NM the effective demag-
netizing field., The parallel reversible susceptibility is the susceptibil-
ity seen by a vanishingly small magnetic field applied opposite to the di-
rection of the last change in H. The latter criterion is to assure the

constancy of H,. The parallel susceptibility is therefore given by:



X%:é’ﬁ,?ﬁ 91 _ au_ 4L(n) =Al4s[%§'sech2n} (17)

Defining X} as the value of Xy, when n = 0, and noticing that

lim dbln) . L ¢ rollows that:

w0 dq 3

dLSn}
X;'Ip = 3)(:’; an (18)

where
Xy = (1/3) Ay .

(Note that Hy, = By +AH)

To calculate the reversible susceptibility normal to the applied
field refer to Fig. 5. In a polycrystalline material the field and resul-
tant magnetization are assumed always to be aligned on a macroscopic scale,

thus:

MsL(n) - 3X1<«)T .I:T%_'l). (19)

Values of x‘;p, XY, and M are listed in Table 2 for material with [200],
[lllJ and isotropic orientations. Figures 6 (parallel) and 7 (transverse)
depict the variation of the susceptibilities with magnetization. Figure 8
shows a comparison of the parallel and transverse curves for isotropic
material.,

The foregoing paragraphs assume that the small changes in I,
occur slowly enough so that the material remains always in an equilibrium
position. It is also of interest to estimate the variation of these curves
from the predicted values as the frequency is increased, and to consider
the possible variation in the phase angle between the applied H and result-

ant M, or its inverse tangent, the magnetic Q. To do this Eq. 10 must be
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considered, Since o arises from local magnetic fields which may have
their origin in many different processes, it must be expected that o will
be a function of the angle between the applied biasing field Hy and the
reversible field H.. Just what function of this angle that a must be re-
mains obscure, but op for parallel fields must surely be equal to or
greater than o for transverse fields,

The coefficient B of Eq. 10 depends upon many parameters of the
system but not upon the angle between fields, The magnetic Qw, from Eq.

10 for uf <<o/m, is given by:
Qw = 2 ’ (20)

where w is 2 times the applied frequency.
Thus it is to be expected that the QY measured parallel with
the applied field be equal to or larger than the QY measured normal to

the applied field for a specified value of M.

4,3 Reversible Susceptibility Assuming Domain Rotation

To calculate the reversible susceptibility as a function of the
magnetization when its origin lies with domain rotation, consider the
Landau~Lifshitz differential equation, Eq. 3, as applied to a specific
domain., If the direction of orientation of the magnetic moment of the
domain is chosen to be the z-axis there will exist three susceptibilities,
which can be described as X, Xy and X,. The subscript indicates the
axis along which the susceptibility is to be measured. If the resulting
susceptibility is written using matrix notation a nondiagonalized matrix
results, If, on the other hand, the susceptibilities are written in terms
of Xy= X, + iXy, X_= Xq - iXy, and X, the resulting matrix is

diagonal., If the time dependent quantities all vary as exp(jat), and if



- 34 -

only the terms to first order in the ratio of M or H along the x- or y-
axis to M or H along the z-axis are kept,3l'(N& =~ M,) (See Appendix B)

one obtains:

X YuoMs
¢ = 130
Molan + He) - T
(21)
Tuolls
X_ = S

nmolfan + ) + 75

>
N
i
o

where
H,, is the effective anisotropy field acting on the domain;
H is the sum of applied, history and demagnetizing fields;
i is the imaginary operator providing spatial rotation;
J is the imaginary operator providing time dependence;
7y is the gyromagnetic constant;

e = MyuMs.

Eq. 21 gives the susceptibilities for each domain. Since the
measuring field will be applied to a macroscopic sample consisting of
many such domains it is necessary to reformulate the susceptibilities in
terms of the angle between the moment of the domain and the applied bias-
ing field. To do this consider the system g' to be a macroscopic system
whose z-axis is the direction of the biasing field. Let the system k' be

that system which has for its z-axis the direction of the moment of the

domain. Using matrix notation

Mt = Xyordyr (22)



TABILE 2 Tabulated Magnetic Moment and Wall-Motion Susceptibility

The Susceptibility and Magnetization for Isotropic Material, [}ll]

Oriented Material and for [100] Oriented Material.

Wall Motion,

n__ L{n) 3L'(n) 3L(n)/n E(n) 38'(y) 3E(n)/n &) 36'(n) 36¢(n)/n
.00 .000 1.000 1.000 .000 1.000 1.000 .000 1,000 1.000
A5 .18 ,960 .987  .148 ,960 .987 .18 .960 .987
A5 .211 .920 97k 211 .920 .97k ,211 .920 .97k
B2 o622 .878 .959 .262 .878 .959 .262 .878 .959
.95 302 L840 Ol ,302 L840 Lok 302 .8L4O .ok
1.09 .338 .801 .930 .338 .81 .930 .338 .801 .930
1.22  .371  .761 .912  .371  .761 .912 .371 .761 .912
1.35 403  .719 .89  .hk0o3  .719 .89 .LO3 .719 .89
1.47  .431  .580 880 .431  .680 .880 .431 .680 .880
1.60 .40 .6L4O .863 460 .6hO 863 W60 .6LO .863
1.73  .L87  .500 LBuys 487 .600 L8455 483 600 .880
1.86  .512 .561 826 511 .537 .84 .508 .560 .819
2.01 .539 .519 804 .538  .516  .803 .536 .520 . 800
2.15  .562 481 784 560  .480 .781 .58 U485 779
2.31 .58 .4 61 .585 435 760 .580 ubs .753
2.49 612  .LOO 737 .610  .390 .73% .603 .L405 .T27
2.6 636 .360 T2 .63k .33k L7100 .62k .365 .699
2.90 661  .329 b8k 658  .309  .681  .64T .320 .669
3.15 .686 .280 653 .682 267  .650 .669 .275 637
3.4 .711 .2kO 620 706 .225 616 .691 .233 .603
3.82  .739 .200 580  .731  .177  .5Th  .71T7 .183 .563
L.32  .,769 .160 53k L7837 L1350 L5260 LThh L1355 517
L.98 .799 .120 L8178 .09 471 767 .085 L62
5.35  .813  ,105 L56  .793  .078  Lhbs o LTTT L066 L4356
6.10 .83 .081 411,809 .054 .398  .790 .03 .389
7.10 .89 .059 .363 .84k ,03 .348 .801 .02% .338
8.10 .877 .04% .325 .833 .02k .,309 .809 .017 . 300
9.20 .891 .035 291 .84 .015 .27k .81k .012 .265
11.00 .909 .025 .28  ,848 .,009 .231 .819 .007 .223
13.00 .923 .018 213 .853 ,006 ,197 .823 .0O04 .190
15,00 .933 .013 187 .87  .003  .171  .825 ,002 .165
20.00 ,950 .007 43 0861 001 .129 .828 .001 .12k
30.00 .97 .003 .097 .86k .000 .08 .830 .000 .083
75.00 .,987 .00l .Lo0k0o .86 .000 .035 .831 .000 .033
P 1.000 .000 .000 .87 .000 .000 .831 .000 .000
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where ij. represents the nondiagonalized susceptibility metrix in terms
of x, ¥, z. If the matrix A rotates a given quantity from the g' to the
k' coordinate system, then My. = Xk'Hk' = Xk:AHq.. The observed moment

M., is thus given by

q(

My, = A Xy A H (23)

q! q' -

The transformation matrix A is the well-known Fuler matrix,
Although Eg. 23 could be used to evaluate the susceptibilities, in prac-
tice it is easier to transform to systems g and k given in terms of x + iy,
x - iy, and z. The details of this procedure are left to Appendix F.

Upon solving Eq. 23 for the case of parallel reversible and bias-

ing-fields, the resultant susceptibility is given by (See Appendix a)
Xzp = (1/2) (1 - cos®0) (X, + X.) (24)

where the r superscript on the X indicates that the susceptibility is
based upon a rotational mechanism, the r subscript indicates the rever-
sible susceptibility and the subscript p indicates that the biasing and
reversible fields are parallel. 6 is the angle between the z-axes of the
q and k systems.

The solution of Eq. 23 with the biasing field in the z-direction
of the q coordinate system and the susceptibility measured along either

the x- or the y-axis of the g coordinates system, (See Appendix G)

Xﬁt = (1/4)(1 + cos®0 + sin®0 cos 29)( X, + X.) (25)

Egs. 24 and 25 assume only that the Landau-Lifshitz differential

equation applies to each domain. It is now necessary to determine how
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these equations vary as a function of the internal magnetization level.
To do this, first assume that ()X, + X.) remains constant as the magnet-
ization is varied. This is, of coufse , an untenable assumption at the
higher field strengths and any results must be considered in that light.
The details of averaging Eqs. 24 and 25 over a nonoriented polycrystal

are carried out in Appendix H. The results are given in Table 3.
)

Table 3, Magnetic Moment and Damain-Rotation Susceptibility

r /. r r/yr
Anisotropy Type M/Mg Xr_p/ Xo Xrt/xo

[100] 6(n) 1-E(R)  1+ZH() () - [fcmZzi coshni; 1}

dx ) cosh n4y; 3
[111] E(n) 1-R(n) 1+ -]é'-R(n) R(n) =f§ L'45t5tann 4 Eitanh\/_n_ L

V3
isotropic L(n) 3%(1.12. li _E%n_)_]

O jw

where Xi = !3'-()(+ + X_).

The derivation and evaluation of the functions H(n) and R(q) are
given in Appendix H. Table 4 lists in tabular form the variation of the
susceptibilities with magnetization. The results are depicted graphically
in Fig. 9.

From Fig. 9 note that the value of the susceptibility at a given
magnetic field is very nearly independent of the anisotropy type chosen, as
was true for the case of magnetization by wall movement. Since the curves

are nearly the same for small values of M, and since for the large values
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TABLE 4 Tabulated Magnetic Moment and Domain-Rotation Susceptibility

The Susceptibility and Magnetization for Isotropic Material, [lll]
Material and for TEOO] Oriented Material. Rotation.

1 1(n) sl %@-P—%’QE(n>1-R<n> 1dR(n) G(n) 1-H(n) L+i(n)

.00 .000 1.000 1.000 .000 1.000 1.000 .000 1.000 1.000
A5 .148 .987 1.006 L1488 . 987 1.007 .148 .987 1.007
5 .211 9Tk 1.013 211 .973 1.014  .211  .973 1.014
82 L2862 .959 1.020 262,958 1.021 .262  ,952 1.021
96 .302 Ok 1,028 .302  .943 1.029 .302 .943 1.029
1.09 .338 .930 1.035 .338 .929 1.036  .338  .929 1.036
1.22 .371 .912 1.044 .371 .913 1.0k ,371  .913 1.04k4
1.35 403 896 1.052 403 ,89% 1.052 .403  .897 1.052
1.47 431 .880 1.060 431 .880 1.060  .Lk31  .881 1.059
1.60 .450 .863 1.068 460 863 1.0569 .L60  .85L4 1.068

1.73 .487 845 1,077 487 845
1.86 .512 .826 1.087 511 .828

078 482 .847 1.077
066 508 ,830 1.085

N

2.0l .539 .80k 1.098 .538 .808 L0906 .53 .811 1.095
2.15 .562 .784 1.108 .560 .788 106 .58 L7955 1.103
2.31 .586 751 1.119 535 768 .115  .580  .776 1.112
2.40 512 LT37 1.132 610 .73 1.129 .803 .755 1.123
2.68 .636 L7120 1.1h4h B34 L T17 1.1k 62k 734 1.133
2.90 .561 68L 1.158 658 .693 1.153  .647  .710 1.145
3.15 .586 653 1.173 682 .663 1,169 .669 .685 1.158
3.4 712 520 1.190 L7060 635 1.183  .691 .656 1.172
3.82 .739 .580 1.210 .731 .600 1.200  .717 .625 1.188
h.32 .769 .53% 1.233 LI3T 962 1.219 .74k .593 1.20k
h.98 .799 481 1.259 182 .523 1,239 .767 .564 1.218
5.35 .813 L4556 1.272 793 .505 1.248 777  .545 1.228
6.10 .836 A11 1.29h 809 476 1.262 .790 .522 1.239

276 .801  .503 1.249
284,809  .490 1.255
201 814k 485 1.258
.299 .819 .475 1.263
.305  .823 ko7 1.267

7.10 .859 .363 1.318 824,448
8.10 .877 .325 1.337 .833  .h3e
9.20 .891 291 1.354 841,418
11.00 .909 248 1.376 848  ,Lo3
13.00 .923 213 1.393 853 ,391

B

15,00 .933 .187  1.406 .857 .384 1,308 .825 L uoh 1,268
20.00 .950 k3 1,428 851 .375 1.313  .828 .hs6 1.272
30.00 .967 .097 1.451 88l 365 1.318 .830 .32 1.274

75.00 .987 .00 1.480 865 L3654 1,318 .831  Jhh9 1.276
« 1,000 0 1.500 867 0363 1.319 .831 Lk 1.276

¥ The values in columns six, seven, nine and ten were obtained from Egs.

H-14 and H-15 for the large and small values of 1. Values between the
extremes were obtained by graphical interpolation.
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the moments cannot be aligned in some easy direction, the isotropic equa.-
tions will be used throughout.

In addition to the variation of the susceptibility because of
averaging over the domains the susceptibility per domain will also vary.

According to Eq. 4 the susceptibility along the x-axis is given by

Mg
T
where
H' = Han + I—Lb . (22)

Thus jXO can be considered constant for each crystallite and
macroscopically constant only so long as the field Hy is much less than
the anisotropy field Hy,. (See Eq. 9). In spite of the vector character
of the addition in Eg. 22, when averaged over the polycrystal, an increased
value of Hy results in an increased value of H' and a correspondingly de-
creased value of on. Thus only for large values of the anisotropy con-
stant Ky can the averaging equations as given be considered a good approxi-
mation for values of M different from zero.

If the value of Ky is increased, according to Egs. 7 and 11, the
relative contribution of wall movement should increase. It remains to be
determined experimentally if a region exists where Kl is sufficiently high
so that the averaging equations are valid to large values of M, yet suffi-
ciently low so that rotational phenomena predominate,

The magnetic Q as calculated for low frequencies using Eq. 3 is

given by

(1+&8). (23)

SO
L2
t

¢, which is defined in Appendix B, is proportional to the power loss. If
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the fields are sufficiently small so that e can be considered constant,
Q depends directly upon the total H, and should thus increase with in-
creasing biasing field. Further, the product jfor is independent of H',

i.e.,

Xier = .2.73%?5_ (1 +e3) . (24)

Although the effect of the decreasing >(£ and the increasing QF
can be considered to result from the frequency of resonance moving farther
away from the measuring frequency as the applied field is increased, it
would seem more reasonable to state that the cause of the increased reso-
nant frequency is the same as the cause of the increased QY and the de-
creased Xg.

As the susceptibility approaches zero with a large biasing field,
the losses due to the applied field remain while the energy stored goes to

zero. Therefore, the Q in completely saturated material must be zero,

L,4 A Comparison of the Susceptibility Variation

Since the form of the averaging equation for the transverse sus-
ceptibility in the case of magnetization by wall motion is the same as the
form for the parallel susceptibility in the case of magnetization by rota-
tion, Fig. 10 illustrates the susceptibility behavior expected for both
transverse fields with wall motion and parallel fields with domain rotation.
Fig. 11 and Fig. 12 show the variation of the susceptibility with magneti-
zation as a function of magnetization mechanism for parallel and transverse
fields respectively. Figs. 13, 14 and 15 show the expected susceptibility
variation with magnetization for both magnetization types for the three

anisotropy conditions.
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Since the Q depends upon the field H' and not upon M, it is to
be expected that for the case of rotation the Q's in the parallel and
transverse fields should be equal for a specified value of M. This is in
contrast to the case of wall motion where Qp is expected to be equal to
or larger than Qt'

Note that for the case of domain wall motion the reversible sus-
ceptibility equations are related by the equation:

a X%
dn

(25)

LA
er—Xr-t+n

independently of the function £(6)de.

Even if the function £(6) as calculated were in error for any
feasible function )(¥p must decrease with increasing M away from an approx-
imately demagnetized state., Thus, from Eq. 25, ><¥t must decrease with in-
creasing M, though not so rapidly as X¥p.

For the case of domain rotation, the reversible susceptibility

equations are related by the equation:
r r
er = 3Xo - 2Xrt ’ (26)

independently of the function £(6). Thus, since any feasible function for
£(9)de gives rise to a monotonicly decreasing function of the parallel re-
versible susceptibility with increasing magnetization, the transverse rev-
ersible susceptibility must increase with M,

Because of the assumption that all domains remain oriented along
crystallographic easy directions, it must be expected that the theory will
not be valid for large values of magnetization. If My is the maximum poss-

ible value of magnetization, it will certainly not be valid for M > 0.813Mg
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for the case of [1od] orientation or for M > 0.867 Mg for the case of
ELll] orientation. The reason is that, to obtain values of M larger than
these figures indicate, the applied field must be large enough to rotate
the static direction of the domain moment out of the assumed easy direc-
tions, and thus Hy must be at least approach the value of the effective
anisotropy field Hyy,. According to Eq., B-5, the susceptibility )(g must
decrease to zero in the case of an infinite applied field. The lower
magnetization limit below which the theory is accurate cannot be set so
precisely, but will be determined by the effective anisotropy fields.
The result is, when the magnetization is altered from saturation in one
direction to saturation in the opposite direction, the transverse rever-
sible susceptibility due to domain rotation will have two peaks on diff-
erent sides of the demagnetized state and the susceptibility due to domain
wall motion will have one peak at approximately the demagnetized state.
These results are true for all feasible distribution functions £(8).

If it is assumed that the function £(9)d6 is known, then a de-
termination of the contribution to the susceptibility from each magneti-
zation mechanism can be measured independently from the parallel and the
transverse susceptibility measurements by comparing the experimental curves
with Figs. 11 and 12. The result is a new technique for distinguishing
between magnetism mechanisms. This method can be applied to individual
cores, as contrasted with the necessity for utilizing a family of cores
to determine the mechanism from the observed frequency spectra.

The effect of an extreme error in the function £(8) can be seen
by considering that all of the atomic moments are oriented either parallel

or antiparallel with the applied field., For this case it follows that,32

M = Mg tenh q, XJ, = Xy sech n; Xg (tanh n)/n; xi‘,p = 0, and
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X;& = 3/2 Xg. Both of the wall motion susceptibilities are slightly
increased, while the rotation equations are strongly altered. The latter
results since all domains are oriented parallel with the field, i.e., the
z-axis, and the susceptibility in the z-direction of the crystallites was
assumed zero in the small-signal solution to the Landau-Lifshitz differ-
ential equation.

An indication of how the susceptibility-magnetization curve
varies as a function of the precise £(6) used can be obtained by consider-
ing the anisotropies as variations. The expression for M was identical in
all three cases considered to the seventh power of 7. Further the express-
ions for the reversible susceptibility are the same to the sixth power of

n for domsin wall motion and to the fifth power of n for domain rotation.



5. EXPERIMENTAL METHODS

5.1 Specimen Shape

One phase of the work reported in this paper is the measurement
of the reversible magnetic susceptibility and Q both parallel with and
normal to an external biasing field to compare with the theory developed
in Chapter 4.

If a piece of ferromagnetic material or ferrite is surrounded
by air and placed in a magnetic field, the field effective inside the
material is, in general, not the same as the external field; that is, the
existence of a magnetization alters the effective field. In the event
that the material is of the shape of a general ellipsoid, the internal
field can be calculated exactly and is given by a term H = Hap - NM, where
H is the field inside the material, Hap is the applied field as measured
in the air, M is the internal magnetization in the material and N is a
constant defined as the demagnetizing constant. For general ellipsoids
the sum of the N's along each of the axial directions is equal to wnity.

In the practical application of ferrites to electric circuits
it is quite common to use toroidal samples. The material forms closed
flux paths around the toroid and thus has & zero demagnetizing constant.
It is not unusual to use a rod of material with & length-to-diameter ratio
much greater than one to determine magnetic qualities of a material.
Either the rod or the toroid is satisfactory for measuring magnetic quali-
ties along one direction in the macroscopic material. The rod when placed

at the center of a solenoid feels an essentially uniform field, while the

- 51 -
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toroid feels a field inversely proportional to the distance from the tor-
oidal sxis. Transverse field measurements on a rod specimen become im-
practical, but a toroid is satisfactory since the toroid as a whole can
be slipped between the pole faces of an external magnet.

An alternative method would be to have a sphere of material
with two orthogonal windings. The sphere would be placed in an external
field parallel with the field of one of the windings. This way the

and Q of both windings could be measured simultaneously.

5.2 General Procedures

For the investigation here reported a toroidal geometry was
used. A toroidal winding measured the X and @ around the ring. This
winding was connected to a Boonton Type 260-A Q Meter. The readings were
corrected for the dc resistance of the winding and for the effective area
of unit permeability enclosed by the windings. For the parallel-field
case the bias field was applied by a second toroidal winding, while for
the transverse field case it was applied along the toroidal axis by an
external electromagnet., For the parallel-field case it was necessary to
isolate the low-impedance biasing circuit from the circuit used for the
susceptibility measurement. To do this a parallel L-C circuit resonant
at the measuring frequency was‘placed in series with the biasing circuit.
In the parallel-field case, the applied field varies with position but
its average value can be accurately calculated, except for small leakage
effects, from the current. The sensing winding detects the total change
in flux which is in turn proportional to the average induction. The
equation M = (B/uo) - H gives the resulting magnetization. There is
still considerable difficulty in determining the saturation magnetization.

The plot of M is still increasing at fields over 16,000 ampere-turns/meter,
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at which value leakage is becoming important and ohmic heat excessive.

The saturation magnetization was taken to be the value obtained by fitting
a Langevin function to the last two points to obtain an estimate of Mg
that is believed good within 10 percent. Error in this value affects the
normalization of the abscissas of the )(rp vs M curves,

The essential difficulties with the parallel field case arise
from the fact that the magnetic field produced at a point within a toroi-
dal winding varies inversely with the distance of the point from the toro-
idal axis. So the magnetization and susceptibility vary with radius at
given applied fields, and the observed values of these quantities are
averages over the cross-sectional area. Given the experimental values of
the averages, it is not in general possible to solve explicitly for the
unaveraged quantities to be compared with theory. Instead the geometrical
averages of theoretical curves must be computed, which can then be com-
pared directly with the experimental data. To calculate these averages it
is necessary to know how the magnetization varies with position in the
sample. The only quantity whose geometrical dependence is known is the
applied field Hﬁp5 80 an additional assumption regarding the relationship
between M and Hap must be made before the calculation can be made.

Thus & direct check of the theoretical curves cannot be made on
a toroidal sample. However, average X vs M curves camputed under several
rather different simple assumptions for the dependence of M on H are found
to be similar to unaveraged values32. Therefore the unaveraged values will
be used in this paper.

In the transverse-field case the applied field is not known from
the bias current, here applied to the electromagnet, because of the re-

luctance and hysteresis of the magnet and the demagnetizing factor of the
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specimen to be measured. It is taken as % times the flux density through
the hole in the center of the toroid. This value is measured relative to
a reproducible starting point by observing, as the magnet current is
cycled, the flux changes in a search coil which embraces the hole, The
total flux through the core volume is measured using a girdle winding
placed snugly about the inner and outer peripheries of the toroid. The
difference between the B/ uo and Ha,p‘ readings is the apparent magnetization
Mg. M, differs from the true M because of the demagnetizing effect. The
true internal field H is the sum of the applied field Hap and the demag-

netizing field - MM, i.e., H = Hy, - MM, Since M= (B/ug) = B = (up = 1)H,

_ Hap (ur"l)Ha.E
H-1+N(ur-l) andM=l+N(ur-l) *

Now Mg + Hgp = M + H, so that:

(- 1) - N(up - 1)
Mo = 1+ N(up - 1)

Hgp. Taking the ratio Mg/M gives:

I’j.a= 1-n. (27)

The special case where the coil is saturated gives:

M% = (1 - N). (28)

Therefore M"_i._ =M if N is independent of M.

Mas Mg

Fig. 16 shows a sketch of the magnet used for the transverse-
field messurements. The pole faces were machined flat and parallel with

each other. The moving pole face was brought down against the shimmed
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ferrite by means of the thread at the top of the center shaft. The cir-
cuit used for controlling the magnet current in the transverse-field case
and for controlling the biasing current in the parallel-field case is
shown in Figure 17. All switches were heavy-duty copper knife switches.
The current was maintained steady by a battery bank, The method of oper-
ation was as follows. With switch S, closed, Sy set on zero and S, open,
the potentiometer P was adjusted for zero current through the magnet. For
measuring values around the major loop first the proper S; was closed de-
pending upon the field strength desired. An initial reading was taken at
this point on the Q-meter connected to the X-windings. (See Fig, 18).
Following this, switch Sy was thrown to position labeled "read"., Flux-
meters were connected to windings labeled H and B in the transverse case;
in the parallel case an extra winding wound in the same manner as the X -
winding was used. For the latter case the fluxmeter was connected to the
X -winding and the current through the bias winding was measured. Then
another Q-meter reading was taken, the peak switch thrown to the + posi-
tion, and the fluxmeters or the fluxmeter and ammeter read, depending upon
the type of field. The peak switch was opened next and fluxmeters or flux-
meter and ammeter again read. The Q-meter was then observed., Next switch
S, wes opened and the fluxmeter deflection noted. The Q-meter was read.
Next switch Sy was reversed and the entire process repeated. The result
is the X and Q for a specific field point. To get the entire loop the

process was repeated for each of the 2l switch positions Sj.

5.3 The Susceptibility

Using the experimental technique described in Section 5.2 velues
of the capacitance necessary for resonance and of the effective Q at the

points A, B, D, E, F, and H (See Fig. 4) were obtained around the M-H loop.
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The condition for resonance of the Q-meter is combined with the known

formuls for the inductance of a toroid, i.e.,

Nat ln r_zc..
L="Mo ¢ T (29)
or

to yield an expression for the relative permeability (see Fig. 19). Sol-

ving for the effective susceptibility,

. in T2a
on a Ta
X = T T (30)
r c T
@fu CNZE, m r2c P
1c rlc

The second term in a constant for each core and winding.

To correct for drift, an original value of permeability was
obtained from the first term of Eq. 30, defined as yu] rem. For subsequent
readings on the same sample, taken over a period of up to two hours, a

drift correction was made using the equation:

Ci
Crem is the value of capacitance necessary for resonance at the remanent

e

point taken nearest in time to the point "i" in question, and uj repre-
sents the first term of Eq. 30.
The susceptibility readings were normalized by dividing through

by the value of susceptibility measured when the magnetization was zero.

5.4 The Magnetic Q

The Q-reading taken from the Q-meter must be corrected for two

effects; (1) the effective resistance of the winding and (2) the area en-
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compassed by the windings not occupied by the ferromsgnetic material. In
general another correction for the approach of coil self-resonance should
be entered, However care was taken throughout to never use readings of
capacitance less than 1O00uufd. If Qap is the apparent Q, the Q correc-

ted for the winding resistance Qc is given by

- Sap
Qe = el _____ 2)
¢ 1 - aRLgp (3

where as usual o is the radian frequency, C the capacitance read on the
Q-meter and Ry is the measured wire resistance. For the frequencies used,
320 ke and 500 ke, the skin effect is negligible.

To correct for the area of unit-permeability material encom-

passed by the windings, note that

Q =
Xo Ap

where Aw is the effective area of air and wire encompassed. Solving for

X1
s SO

the @ of the material alone, Q = X5

Q

X+ 17 Aghs (33)

5.5 The Magnetic Moment, Transverse Field

In this case both the effective B and H were read by noting the
deflection of fluxmeters. The deflection noted is proportional to the
change in flux through an external search coil and to the number of turns

on the coil. The fluxmeters were calibrated by the manufacturer and
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checked by us for sensitivity. The B-fluxmeter was connected to the B-.
winding, and the H-fluxmeter to the H-winding. The windings are illus-
trated in Fig. 18. The assumptions inherent were discussed in Section

5.2. The total change AM = AB/ug - AH. Solving for AM,

Sgdp _ 4 2w SEOHY 1

where:
Af = area of ferrite in square meters.
Ag = area of the H-winding in square meters.
A, = area of the unit-permeability material encompassed
by the B-windings.

sensitivity of fluxmeter in linkages per division,

o
;n

used for B-, H-deflection.
SB = deflection in divisions of the fluxmeter connected
to B-, H-winding.

NB g = number of turns on the B-, H-winding.
2

The AM measures the change in M in going from the point "i" in
question to the remanence point. It should be pointed out that the rem-
anence does not represent the true remanence of the material but rather
the remanence in the presence of the remanence field of the magnet. Be-
cause of the geometry this is a function of just how the sample is mounted
in the magnet. Therefore all readings must be taken for a specific mount-
ing of the sample. It is necessary to find nn apparent remanent moment
and an apparent saturation moment. Because of the results expressed in
Eq. 28 it is considered that the normalization process can be carried out

by dividing by the apparent saturation.
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Referring to Fig. 4, two separate sets of readings were taken
on each core; one going from point G to C and one going from C to G.
The following description will consider only going from G to C, For
each switch position "j", values of AM for G-H, H-A, A-B and B-C were
obtained., The saturation moment was taken as one-half the sum averaged

over all points. The effective remanence point was taken as:

Moo = 5 |:AMA-B * oMy - Mg - AMN—AJ - (39
The effective M at any point was found in two ways. For point
H, firstly AMg gy was subtracted from the effective value of Mg derived as
above, and secondly by adding the effective Mrem derived as above to the
AMA-H. Likewise for point B the moment was obtained by subtracting AMp o
from Mg and also by subtracting M.,, from AM p. The normalized M so ob-
tained was then assigned to the corresponding switch position "j" for

plotting ¥ and Q as a function of M.

5.6 The Magnetic Moment, Parallel Fields,

The parallel-field magnetization was measured by noting the cur-
rent through & winding placed outside of the winding labeled X in Fig.
18 and by noting the deflection of a flwmmeter attached to the X -winding
when the current was changed. The value of Hb averaged over the cross-
sectional area was taken as the effective Hy. Since the variation of Hy
with r is known, the averaged H, is given as a simple function of the

applied current by:

Ny Iy
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where

In fgﬁ
e

The r's are in meters and I, is in smpere-turns/meter. The AB can be
computed from the deflection of the fluxmeter, knowing the sensitivity
of the fluxmeter and the cross-sectional ares of ferrite and unit-per-
meability material encompassed by the windings. The resulting equation

for the change in magnetization at any point is given by

— SB ta Ny Tog 1
M = 8B = b in I —
{ {%f(rEf - Tyg) NB] [tf 5(rae - r1e)  Tla | °| Mo G0

where in this case the unit of length is the meter, the current is in
amperes, Sp is the sensitivity of the fluwmeter, 5y is the deflection of
the fluxmeter, NB is the number of turns on the winding connected to the
fluxmeter and Ny is the number of turns on the winding in which the cur-
rent is applied.

As was the case for the field parallel with the axis of the tor-
oid, it is necessary to determine the saturation moment and the remanent
moment. This measurement is in considerahle error because of stray flux
at the high field strengths. The technique used here was to fit a Langevin
function to the two highest field points, that is to j = 24 and j = 23 and
solve for the maximum value of deflection going from point A to point B
and from point H to point A. This maximum value was fitted to a Langevin
function in both cases, The saturation moment was teken as one-half the

-1 -
sum., The remanence was taken as Mf = E.EAMAB AMHé]j = ok The moment

at the point j was taken to be, for points B and F, the change from rem-
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anence to the point minus the remanent value, and for points H and H was
taken to be the sum of the distance to remanence and the remanent value

obtained. Each point was plotted against its corresponding values of X
and Q.



6. EXPERIMENTAL RESULTS

Preliminary measurements were carried out, using the circuitry
and the techniques described in Chapter 5, on thirteen ferrites. These
ferrites all contained different relative amounts of the metals iron,

nickel, zinc and cobalt. It is believed’

, although no measurements
were taken, that these ferrites represented widely different values
of the magnetostrictive and anisotropic constants. Of these thirteen,
three were chosen as being representative of the group and detailed
measurements were made on them. The chemical characteristics of

each sample will be discussed in turn in Chapter 7. Table 5 lists
values of the reversible susceptibility Xo’ the magnetic-Q Q> and
the coercive force H,, all measured at zero gross magnetization. In
addition the maximum value of the magnetization Ms is listed. Ration-

alized MKS units are used with the additional definition that

B = ug(H + M).

TABIE 5 Magnetic Parameters of Measured Specimen

f = 500 kc/sec.

S le Parallel Field Data Transverse Field Data
oamp-Le
Iy

=l -
Xo Qo MS x 10 Hc xo Qo Ms x 10

F-1-2 388 13.2 31.0 20.6 | 450 13.5 26.2

F-6-2 48,0 70.9 28.9 130 *50,2 64,6% 23.2

F-10-1 331 48.9 25.8 121 304 50.1 25.2

* f = 320 ke/sec.

The different values of X, and Q, for the parallel and transverse

.46 -
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cases, aside from the inherent experimental error, arise because any
hysteresis in the X versus M curve will affect the parallel and trams -
verse values in different ways. The difference in Mg can, of course,
not be real for non-oriented material and is presumed to be due to
the effective demagnetizing factor for the transverse-field case as
well as the large expected error in the parallel-field case. A de-
magnetizing factor would make the MS measure@ in transverse fields
be less than that measured in parallel-fields.

The resulting plots of X, and Q@ as a function of magnetiza-
tion for the three samples listed in Table 5 are shown in Figs. 20,
2l and 22 for the case of parallel magnetic fields. Figs. 23, 2k
and 25 illustrate the same effects for transverse fields. All measure-
ments were taken at 500ke/sec. except Fig. 24, for which the data
were taken at 320kc/sec. Figure 23 and 24 also show the variation
of the product X Q as a function of the magnetization M.

The susceptibility results of Figs. 20 through 25 have been
sumetrized by taking half of the sum of the X, at equal values of
+ M. The hysteresis has been measured by taking half the difference
of the two readings. A positive hysteresis indicates that the sus-
ceptibility for a decreasing moment is larger thapn that for an equal,
increaéing moment. The results are plotted in Figs. 26, 27 and 28.
Note the change in sign of the hysteresis in transverse fields. Fun
ther the magnitude of the hysteresis is less for transverse than for
parallel fields.

As was observed previously32 the zero-field value of suscep-
tibility is a function of the maximum M reached during the cycle. Fig.

29 shows data taken by measuring the impedance of the toroidal sample
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at 5 ke/sec, Note that as the maximum field reached was increased,
the zero moment susceptibility decreased and moved to a larger mag-

nitude of M.
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{. INTERPRETATION OF RESULTS

The interpretation of the experimental results involves the
remaining hysteresis in the measured curve of susceptibility versus
magnetization. Fig. 29, which was taken on a sample measured and

32, illustrates the existing hysteresis in parallel

reported earlier
field measurements. This can be interpreted in terms of the effect

of wall "snags" or nucleation energies in the following manner. Consi-
der that at any point on the loop a fraction D of the material is

retained in metastable states by one of the above mechanisms. This
fraction D will then contribute little or nothing to the parallel
susceptibility and less than the amount expected to the transverse
susceptibility for wall motion. Further, this volume D will be ori-
ented, at least predominantly, in the direction of last maximum mag-
netization. The shifting peak shown in Fig. 29, and whose effects can

be seen in each of Figs. 20, 21 and 22, can be understood on the basis

of the volume D. As the peak M of the cycle increases, the fraction

D vwhich is forced into the metastable positions would evidently also
increase. This will obviously shift the susceptibility peak further

to the left and diminish its height, as observed. For ease in calculation
assume all the material in volume D to be oriented in the direction of

the last maximum magnetization. The remainder of the material (1 - D)

is taken to be oriented according to Eq. 16. Since the number of atoms
with their magnetic moments parallel with the change in biasing field

is increased at a specified M over what it would be if D were zero, and,

since from the volume D there will be more moments oriented antiparallel

-79 -
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with the change in field, there must be fewer cations with spins oriented
normal to the field.

The very extreme case of this model would therefore be with
all moments oriented either parallel or antiparallel with the applied
field. As discussed in Section 4.4, this results in an increase of
both the parallel and normal susceptibilities for the case of magneti-
zation by domain-wall motion. However, for magnetizations up to 0.4
of the saturation value, the maximum expected error for the parallel
reversible susceptibility is 16% and for the transverse reversible sus-
ceptibility reaches a maximum of only 5%. Because of the extreme model
used, it must be assumed that these figures would be much higher than
any encountered experimentally.

If the magnetization process is by domain rotation, it would
be observable experimentelly as an effective difference in the smount
contributed to the parallel and transverse susceptibilities from each
of the two magnetization mechanisms, the effect of hysteresis on the
measurement of domain rotation can be assumed negligible.

In an sttempt to eliminate the effect of the hysteresis des-
cribed above, the experimental curves have been "symmetrized" by com-
puting the susceptibility at each magnetization point as being one-half
the sum of that measured at a specific value of magnetization for de-
creasing M and for increasing M. The amount of hysteresis present is
shown by the "antisymmetrized" part, which is one-half of the difference
of the susceptibility measured at the two points of equal magnetization.

The symmetrized curves are compared directly with the theoreti-
cally expected susceptibility-magnetization curves as shown in Figures
11 and 12. From each figure the contribution to the measured suscep-

tibility from each magnetization mechanism can be read directly. It
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is assumed that the total susceptibility is a linear combination of its
parts.

The most tenuous point of the entire discussion seems to lie
in the symmetrizing technique ﬁecessary to eliminate the remaining hys-
teresis. The error that must be expected will, of course, increase with
the size of the antisymmetric susceptibility. This antisymmetric com-
ponent of the susceptibility has been plotted along with the symmetric
component in Figs. 26, 27 and 28,

Errors existing aside from those due to an imprecise knowledge
of the distribution function £(6) may arise from the imprecise knowledge
of the saturation moment and the assumption that the demagnetizing fac-

tor (See Eq. 28) is constant.

SAMPLE F-1-2 Ni  Zn _ Fey0,
467k L5326

It is generally believed that the initial susceptibility in
nickel-zinc ferrites is at least predominantly due to domain rota-

t1og,21,26,27,28

The arguments used are based upon the frequency spec-
trum of the initial susceptibility and upon the effect of magnetic sig-
nals large enough to produce irreversible movements, as outlined in Chap-
ter 3. The anisotropy constant of a nickel-zinc ferrite will, presum-
ably, be smaller than for nickel ferrite alone. The value for nickel
ferrite has been given as varying over a wide range35, but most re-
sults give the first-order anisotropy constant to be about -5 x lO3
joules/m3. The calculated polycrystalline magnetostriction of an iron-
rich nickel ferrite is on the order of -20 x 10'6.

Figs. 20, 23 and 26 show the measured susceptibilities, Q's
and the products XQ. Fig. 26 is symmetrized for a direct comparison

with the theoretical susceptibility curves as depicted in Figs. 11 and
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12,

Both the parallel and transverse data show that in this sample
about 85 percent of the susceptibility is from rotation and 15 percent
is from wall motion. The behavior of the product curve XQ, for low
values of M, is higher than the theoretical averaged curve for rotation.
The reason for this is not clear, but there seems to be two possibili-
ties. First, the contribution to the Q from the wall movement may
increase faster than that from rotation as a function of applied field.
Secondly, the assumption of a constant demagnetizing factor may be in-

valid, producing an error in the magnetization normalization.

SAMPIE F-6-2 -
[Nl 16827 .29%°°. 5 326Fe201+:|

The magnetostriction and anisotropy for core F-6-2 are both
expected to be larger than was the case for core F-1l-2. Since the
measured samples differ from those reported elsewhere35 no gquantitative
comparison of the differences can be made. The experimental curves are
shown in Figs. 21 and 24, The symmetrized curves are shown in Fig. 2T.
A major point of interest in Fig. 27 is the relatively large value of
the symmetrized function for the parallel-field case at small value
of magnetization. (Compare with the same function in Fig. 26.) Fig.
21 also shows & slight dip in the Q for the parallel-field case on
either side of the position of the peak low-field Q. The Q remains
constant to large values of M in the transverse=field case. The paral-
lel-field data were taken at 500 kc/sec, the transverse-«field data were
taken at 320 ke/sec. The reason for the frequency difference was to
avoid a position of minimum @ in the transverse-field case as described
under sample F-10-1.

From the symmetrized curve, Fig. 27, note that the
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susceptibility equations fit the theoretical curve for rotation for

the transverse-field case at all values of magnetization up to about
0.7 Mg. Further, the parallel-field case lies above the expected curve
for all domain rotation. Since the transverse-field case shows about
95% of the susceptibility is due to domain rotation, the increase in
the parallel-field case cannot all be due to an error in the effec-
tive distribution. (See Eq. 26.) Because of this, and the large

value of the antisymmetric susceptibility for small values of M, it
must be assumed that the error lies predominantly with the symmetrizing

technique.
SAMPLE F-10-1 [ Nig. 36402%, 1400%°0. 0316F%0. 1709F32°h+5]

This sample is included to illustrate a sample with an es-
timated predominant wall movement and to illustrate a resonance found
in transverse fields. Sample F-10-1 exhibits a very pronounced drift
in susceptibility after the magnetic biasing field has been altered.
Points at a value of M less than 0.7 MS were taken only after a two
minute time delay. This drift was not present at larger values of M.
The parallel-field susceptibility (Fig. 22) are typical of all material
measured to date. The Q increased monotonically from the position of
maximum susceptibility.

A comparison of Figs. 22 and 11 show that about 70% of the
susceptibility is due to domain wall motion and 30% is due to domain
rotation according to parallel-field measurements.

The behavior of the susceptibility of this sample in the
presence of a transverse biasing field gave results markedly different
from the two previous cases. Note from Fig., 25 that the susceptibility

drops rapidly with field and that the Q drops very rapidly to less than
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one percent of its initial value. The susceptibility pesks at about
0.7 Mg, then drops rapidly to zero.

This effect is strongly frequency dependent, The same type
of behavior occurs at frequencies very roughly odd multiples of the
fundamental frequency, but the higher frequencies have dips in Q very
much less pronounced than those described here. As the magnetization
is varied the frequency of the minimum Q stays the same, within our
ability to discriminate on the Q-meter, but the magnitude of the Q
varies with the magnetization as shown in Fig, 25. A comparison of
other toroids of the same material indicates that the frequency at which
the dip occurs is inversely proportional to the thickness of the toroid.
This dimensional resonance suggests that the magnetostrictive coup-
ling between the magnetic and elastic lattices is producing standing
elastic waves. However, why the effect should appear only in the
presence of a transverse biasing field is not clear. Further, at
values of M sufficiently high so that magnetization by rotation is as-
sured the effect no longer exists. It is not considered within the
scope of this paper to investigate further the effect described here,
but merely to report it as found.

Because of this effect it is not considered that the variation
of the transverse susceptibility with magnetization is, in this case,

a valid method of testing for the magnetization mechanism. Thus only

the parallel field measurements can be utilized.



8. CONCLUSIONS

This thesis develops for the first time the expected variation
of the susceptibilily and magnetic Q due to domain rotation with the mag-
netization level in a ferromagnetic material. Experimental measurements
are reported on three representative ferrite samples. The proportion of
the susceptibility due to each magnetization mechanism is estimated. The
curves for rotational susceptibility predict that when the magnetization
is changed from saturation in one direction to saturation in the other,
that the susceptibility measured normal to that magnetization will go
through two maxima. Similar plots for domain-wall motion predict dbut one
peak. The rotational curves, however, contain certain approximations
which rule out the possibility of saying if only one peak exists magneti-
zation by wall motion is present., However, if two peaks exist it is pos=-
sible to state that magnetization by domain rotation is present. These
conclusions are not critically dependent upon the character of the parti-
cular distribution function, but are valid over a wide variety of distri-
bution functions. The basic premise is that the susceptibility due to
doma.in rotation is zero when measured pearallel with the direction of the

moment and a maximum when measured normal to it. As the magnetization is

increased the fraction of material normal to the measuring field for trans-

verse susceptibility measurements must necessarily increase, It can there-

fore be stated with certainty that the origin of the susceptibility in core

F-6-2 is at least predominantly domain rotation.

The situation is not so clear for cores F-l-2 and F-10-1, For
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this case the distribution function £(6) must be considered approximately
known, Further, it must be assumed that the hysteresis remaining in the
plot of X versus M can be eliminated by the symmetrizing technique util-
ized in Chapter 5. Only then can a quantitative estimate of the relative
contribution of each magnetization mechanism be made,

For core F-1-2, the result of both parallel and transverse meas-
uring fields show that about 80 to 85 percent of the susceptibility has
its origin in domain rotation and the remainder in domain-wall movement.
For core F-10-1 only the parallel field measurements can be interpreted
in terms of domain mechanics., The result is that at least TO percent of
the susceptibility has its origin in domain-wall motion.

It has been previously reported that the origin of the suscepti-
bility in nickel-zinc ferrites was at least predominantly domain-rotation.
It has also been reported that magnesium-zinc ferrites exist which have
their susceptibility originating at least predominantly with domain-wall
movement, Since there seems to be some confusion in the literature re-
garding the relative importance of the two mechanisms, a new independent
technique should be of interest.

These results can be utilized by the engineer in several ways,

The question of the best method of varying the inductance of a sample of
ferromagnetic material by means of a biasing field can be considered.
Care must be taken as to the angle between the fields and as to the mech-
anism of magnetization if the optimum variable inductance device is to be
obtained. An additional result is that the slope of the predicted suscep-
tibilities with field at zero M is zero. Therefore the well known experi-
mental fact that two small signals can utilize the same core material with
zero coupling if the signals are applied perpendicular to each other re-

sults.



APPENDIX A
DEVELOPMENT OF THE EQUATION OF MOTION FOR THE DOMAIN WALL

IN TERMS OF MAGNETIC PARAMETERS6’27

The object of this appendix is to start with the differential
equation of motion as given by Landau and Lifshitz9 (Eq. 3), to apply
it to magnetic cations situated in a domain wall and to derive from this
the terms involving B and m in the differential equation of motion as
given in Eq. 10. Before this can be done it is first necessary to develop
the structure of a domain wall, i.e., the boundary regions separating two
regions whose magnetic moments are oriented in different directions.

It has been experimentally established that the amount of energy
necessary to align the spontaneous moment of a ferromagnet in different
crystallographic directions is a function of that direction. This energyy
difference is described by an anisotropy energy. This energy must be ex-
pressable in terms of even powers of the direction cosines, zi. Further
the expressions must be homogeneous in each of the three direction cosines

2

for cubic meterial., The first and second nontrivial terms are zxz fy +

292 1,2 + 172 1,2 and Ix® 1,2 1,2, Thus the anisotropy energy can be ex-

pressed as:

Uan = Ky (2.2 492 + 1,2 152 + 1,2 £,2) + K42 202 £53). (A-1)

Where K; and K2 are the first and second order anisotropy coefficients.
Only the first term in the expansion will be retained in the present cal-
culation.
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FIG A.l

180° - DOMAIN-WALL STRUCTURE
(AFTER VON HIPPEL, WESTPAL AND MILES)
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Uap = Ky (4,2 .ey2 + 2% 1,7+ 1% 1.7) (A-2)

In addition to the anisotropy energy in ferromagnetic material,
there is the force which originally aligns the paramagnetic cations and
allows the high values of susceptibility. This force is the exchange
force. It has its basis in quantum theory and has no classical counter-

part. The resultant exchange energy can be written as
Ve = &, [1- (20)2] (2-3)

where A, is the exchange factor if neighboring spins differ in orienta-
tion by only a small angle and that angle is given by (89).
If the geometry of Fig. A-l is assumed, the only variation in

the energies is with the variable x, so that

dVan _ . e(6) e _ , /a9 -
SRk S dax emd 2 Ae(ai) dx (A-k)

where g(0) is the angular dependence of the anisotropy and 0 is the angle
between the easy direction and the moment of the atom. The effective mag-

netic moment m per atom is given by
mg = 0, my=msin 6, my; =mcos 6§ .

If it be considered that the change in 6 with distance is uni-

form across the wall of thickness d and that the distance between cations

is a, then for an 180° wall %% = ’;—9‘ .

For equilibyium to exist the two energies must be equal; so
d d
Ky | gl) ax=4, [ (2) .
o o]

Therefore,
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[__fe |
® - k,2(6) (a-5)

The application of a field H, produces a torque whose lever arm
is proportional to sin 8, According to Eq. 3 this results initially in a
precession about the z-axis. However a precession over a finite angle re-
sults in an increased exchange energy. For the divergence of B to remain
zero a closing field in the x-direction is required, i.e., H, = - My. A
second precession then occurs about the resultant field of H, + H,. The
field H, is, for small signals, much larger than H,. Therefore the re-
sultant motion is in the z-direction with an ensuing movement of the
apparent wall,

In order to estimate the effective field H,, note that the rate
of precession of each dipole is given by o = 7u°Hx = g%-. Now

%% v = %% , where v is the velocity of the wall; so it follows that:

v d_ v V&) A-6
E Mo & Mo 5 ( )

where 5 = v A/K

l [ ]
The power dissipated per unit volume in the material is given
by =ug H ° g% . Upon solving from Eq. 3 and assuming H, >> H,,

—

“Ho H- g% = xHx?. The power generated in the magnetic lattice must equal

the power dissipated so that

a
MHEL V= [ pg A2 dx = Ho VA fﬂﬁ /e(0) as
-0 u02725 le)
and
2
v = 7o 5, . (a-7)

é.ff/ g(8) a9
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Equation A-7 is a relation between the applied field and the velocity of

the wall, so the velocity coefficient B of Eq. 10 is given by

B = —2 [ /ae) a8 (A-8)
7%0d  °

The wall distortion because of the attempted precession about
H, gives rise to an increase in the energy stored in the wall because of
the increased angles between nearest neighbor spins. This added energy
is, per unit area, given by

Ko d ) d
- Hdx = _° 2
> [ MH = J B

o)
v2 ofﬂa/g(e) dg
2

7% by 8

=

2
.If the coefficient of (%}) is set equal to an effective mass m,

m o= L [ /ale) a0 (4-9)
vaah

o® o

Note that B = Am. Thus the differential equation:
M Hu, = B X +m X

Because of local strains and magnetostatic energies, as dis-
cussed in Section 3.3, a term proportional to the displacement, not
derivable from Eq. 3, exists., Thus the final differential equation

describing wall motion is:

MB =0 x+B X +m X (A-10)



APPENDIX B

FREQUENCY DEPENDENCE OF SUSCEPTIBILITY

B.1 The Landau-Lifshitz Differential Equation

The differential equation of note here is9:

H oo oy [Mxw] -%:. [Mx [Mxﬁ'ﬂ (B-1)

Now introduce an operator i which represents a spatial'rotation from the

x to the y axis., Also define3l:

ne>

M, My + 1My

>

M. S My - 1My
N M

>

H' is the total field and is the sum of the effective internal field Hj,
and the applied alternating field H,. = (Hy + Hy). The susceptibility to
be measured is that resulting from the alternating field H,. Let all
time dependent quantities vary as exp (jwt) and let the spontaneous mom-
ent be oriented in the z direction along with the internal field Hjp.
The latter in essence requires that Hjy >> H.. Solving (B-1) and neg-

lecting second order terms;

JaMg = ug (My Hyp - Mg Hy)"%J'P.(HinMx'HxMS)
S

JaMy = g (Mg H - Hin My) - 5#9 (Hin M, - Hy M)
S
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Therefore,
jaM, = - img (1 - ie) (Hy, M, - H Mg)
JaM_ = gy (1 + ie)(Hjp M. H. M)
where:

Taking the ratios M,/H, and M_/H_ and setting them equal to X, and X_

respectively:

Mo Mg
ijw
Mo Hin - 732 Mo Hin + 7,5¢

(B-2)

The initial polycrystalline susceptibility (See Appendix H)

can be taken as:

X§ = 300+ x)

where Xi is the value of susceptibility when the applied field and in-
ternal magnetization are both zero. (This in essence assumes the mag-

netic moments to be randomly oriented.) Therefore:

_ 2w Ebia(l + %)= o® (1 - 62):| Wi - Jue [:a)iz(l + €2) + mz___l (B-3)
3

T
i
o *(L + €2)2 - 20;%? (1 - €®) + o

where:
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i3
=
o

=
g.

Wy

]
7
o]
=
w

One of the easiest results of Eg. B-3 to check experimentally
is the frequency at which the imaginary portion of the susceptibility
peaks, To solve for this analytically fram Eq. B-3 proceed in the usual
fashion by setting the partial of Im( X§:) with respect to w equal to zero

and solve for w. If this frequency is defined to be w, the result 1826:

AV | g

a = w; (1+ e2)e = Mg Hiy 1+ ¢2 (B-4)

It is also of interest to note the zero frequency value of the

real part of the susceptibility, xE, Solving (B-3)

o]
2M
T S
Xg = (B-5)
© 3Hin
Therefore the product XZ‘“& is given Dby:
X;.‘“a. = wﬁ 1+e2 = M for small e. (B-6)

3 3

Thus the product nga is a constant depending only upon MS.

B.2 The Harmonic Oscillator Equation

The frequency variation of wall motion is assumed to be des-

cribable by the differential equation
nX +Bx+ox = i, Mg H, (B-7)

The magnetization M, resulting from a wall moving a distance x is M, =

2xMsC, for 180° walls. Assuming, as in Section 3.1, a time dependence
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exp (jot) for all time dependent quantities and solving for the initial

susceptibility:

!
Ca

| 8le

Xi = Xy (8-8)

(o]

&% |2[a

where:

&
1R

@

il
IR

The zero frequency value of X;’ is:

2
XY = s Cuo (8-9)
a
It is also of interest to solve for the frequency at which the
imaginary portion of the susceptibility will peak. Proceeding in the

usual manner the frequency W, is found to be:

SEmE L (S
0® = ‘u%i [2’(%)2]<"+th o ‘% (o) >(B-10)

no

—
e

(o)
5 )

The form of Eq. B-10 is quite complex. However, two extremes
can be taken - that of very highly damped motion with 0 > W and very

lightly damped motion with Wy << .

For the lightly damped motion, with Wy < W, @, can be approx-

w2 ()

imated by:
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In the limiting case of no damping w, = dye. For the highly damped case

the peak frequency is given by:

o = %\/1+2((%>2 (B-12)

For the limiting case of zero effective mass w, = .
The product of the initisl susceptibility and the frequency of

the peak in the imaginary portion of the susceptibility is, therefore,

for the case of highly damped motion:

WMg2C
Xg oy = —5 o . (B-13)

B
The product involves a constant and M%/B.

For the case of lightly damped motion Wy = W, and the product

w o hMézcuo (B-1k)
° m

2
U.)a X

involves constants and M %/m.



APPENDIX C

CAN THE EFFECT OF SNAGS BE CONSIDERED AS AN EFFECTIVE FIELD?32

In Section 4.1 it is observed that if the history could be
treated as an effectived” field, then the total field term Hy could be
considered as a parameter and eliminated between the magnetization and
the susceptibility. This technique can be explained, if not justified,
from two standpoints,

Not for a justification, but for an explanation of the suscep-
tibility, consider what it would be in the absence of wall snags, or
wall nucleation energies, Then assume the measured susceptibility to be
linearly related to the above described susceptibility. See Fig. Cl.

The curve )(R represents the reversible susceptibility in the absence of
holes and nucleation energies, i.e., assuming only that the state occu-
pied is the most probable state as given by an

The initial point on the )% curve is given by the slope of the virgin
material as a field M is applied, and the bottom dashed curve is the
measured reversible susceptibility jxr which is here to be considered
linearly related to XR’

Assuming Eq. D-7 and isotropy, the fraction of the atomic mom-
ents oriented at an angle between 6 and 8 + d8 with respect to the applied

field is given by:

£(6) a8 = exp (n cos 6) ae (c-1)

l 'f] —1’]
- (e -
™ ( e )

_97 -



9G6-1-¢ W8 26-99-V 292¢

X XRr

N
X (VIRGIN
MAGNETIZATION
CURVE)

FIG C.I

VARIATION OF X WITH H
(X IN SAME DIRECTION AS H)

SLOPE OF THE VIRGIN MAGNETIZATION CURVE
——— SLOPE OF THE QUASI-REVERSIBLE MAGNETIZATION CURVE
-------- REVERSIBLE SUSCEPTIBILITY



- 99 -

where 7 is proportional to the applied field, Similar equations hold

for assumed anisotropies, given by:

fj = exp (ﬂ'?j) (0_2)

k
?exp(ﬂ ‘7J')

73 is a unit vector in the j-direction. Consider the case of a specific
wall, Start from the demagnetized state where fj = % and agj is the area
of a particular wall separating domains oriented in the directions y; and
7; respectively and x% is the spatial coordinate of the ¢ th wall rele-
tive to an equilibrium position. The sum over sigma is a sum over all
walls of type ij, that is separating domains oriented in the i and the J
direction, in unit volume. Now consider, using statistical arguments, the
irreversible trapping of domain walls in metastable positions by potential
holes. Each hole is to be characterized by a single number, loosely
called its "depth", d. A wall encountering such a hole will be trapped
if the total net force of the field plus reversible forces on the wall is
less than 4, but will break free irreversibly if this force exceeds d.
Actually these potential minima must surely, for finite wall areas, have
a finite radius of curvature, However, for purposes of this discussion
consider them to be infinitely sharp "snags" i.e., a wall is held rigidly
when trapped by a potential hole, A wall thus held would contribute
nothing to the susceptibility. Consider a field to be applied, from the

original position the resulting fj must be given by
1 k ¢ 0
£5 = E+§§aijx . (c-3)

Without snags, x° would be a function for & given wall only of

the pressure Pij vwhich the applied field exerts, given by
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Pi; = Mg (5 - (71"73)] Mo

The wall would seek a position for which the reversible pressure just
balanced this pressure,

When snags are present walls will become trapped in them, and
x% will no longer be a simple function of pressure. We can express the
average x9 for a large number of walls in terms of a size distribution
of these snags by arguments of the nature of & "mean free path" discuss-
ion. (See Fig. C2).

The number of snags per unit volume whose depth lies be-
tween d and d + Ad be given by § (d)Ad. Let there be an initial state
in which there is a field H, present, and all the walls occupy positions
X, determined only by this field and the reversible forces, i.e., no
walls are snagged in metastable positions. When the field is changed
to Hy, there will be a net force on each wall which will diminish again
to zero when the wall reaches & new equilibrium position x;. As a wall
of area a moves over an interval dx, it sweeps over a volume adx. If
this volume contains a snag "deeper" than the net force of the field plus
reversible forces at that place, then the wall will be caught and held
there,

Of all the walls in unit volume, let us select for attention
the group consisting of all walls of class ij with area between 8y j and
ajj + daij. By choosing the coordinates so that x, is zero for each wall,
then in first approximation the final "reversible" position x; of every
wall of this select group is equal to the average value Ei, and the net
force g(x) of field plus reversible force at each value of x for every
wall is equal to some g(x) averaged over all the walls. The subscript

ij will be assumed understood.
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Let N, be the mmber of walls in this group, and N(x) the

number not yet caught after moving a distance x from Xg. Then clearly

an(x) = = N(x) 8y ydx _ fm £ (a)ad
g(x)

x ®
N(x) = N_ exp [ - 8y (f) dxé_({c) (@] .

The fraction of the original group of walls that becomes snag-

ged in the interval x to x + dx is then

v (x)ax = ‘G.N(x)‘ N, = (exp [- 8y fxdx'
[ axt
2 e@m] ey [ €@
x aad | a;s ams ) ax,
g(x) *oE(x) )

and the average position at which the walls of the group considered be-

come snagged and stopped is

- X1
x = [ xvy(x)ax. (c-lt)

(o]

The result, whether or not the result of hysteresis can be
expressed as an effective field, can be seen fram the form of Eq. C-l.
To the same approximation as that contained in Eq. C-4, the quantity x
to be used in Eq. C-3 for the strictly reversible case is exactly the
average "final reversible" coordinate Xj that appears as the upper limit
in BEq. C-h. Now X must have a certain (perhaps quite complicated) de-
pendence on the relative directions of 75, ¥ j and the applied field H
that is consistent with the existence of Eq. C-1 for the reversible

case. Without any detailed analysis it is clear that X has additional
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dependence on these directions arising in the expression for ¥(x). So
the distribution in numbers of atoms oriented in the various possible
directions, in the presence of "snags" and metastable wall positions,
is different from that implied by an expression of the form of Eq. C-l.
Thus it is not possible to precisely define any simple vector "history
field Hy," that accurately allows a description of the system solely in

tems Of Eq_‘ C"lo



APPENDIX D

DERIVATION OF f(6) de

D.1l Genersl Formulation

The necessity for using statistical techniques for analyzing
the ferromagnetic problem of the variation of the reversible susceptibil-
ity of ferromagnetic material with the magnetization level was discussed
in the last of Chapter 2 and in Section 4,1, The difficulties involved
were also mentioned. The basic difficulty is that if an attempt is made
to carry over the usual techniques of statistical mechanics to the prob-
lem of formulating the probability of a particular magnetic moment being
oriented in a particular direction, the usual disorder because of thermal
agitation is negligible compared with the other forces involved. However,
other randomizing effects do enter but in such a way that the energy of a
particular atomic moment is not independent of its coordinates.

Let us start by considering the total energy of a system con-
sisting of a femomagnetic or ferrimagnetic polycrystalline nonoriented
material. The energy will be divided into three rather distinctly diff-
erent types: the magnetostatic energy, the exchange energy, and the mag-
netoelastic energy. Each type will be composed of a tem proportional to
the total number of atomic moments along some particular direction (a vol-
ume energy term) plus a term proportional to some type of surface area (a
surface energy term).,

Herein the magnetostatic energy will signify the mutual energy

between the magnetization and the applied field as well as the energy be-

- 104 -
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cause of effective magnetic poles and nonzero demagnetizing factors. The
energy between the applied field and the magnetic moment contained by
atoms aligned in a specified direction is proportional to the number of
atoms so aligned, In addition each grain will contain an energy propor-
tional to its demagnetizing factor which will depend upon the crystalline
orientation of nearest-neighbor grains and also, though not independently,
upon the angle between magnetic moments in neighboring grains., OQur model
assures that the orientation is random but not necessarily the angle be-
tween moments.

The exchange energy is considered to arise because of over-
lapping of wave functions associated with neighboring atoms. This energy
is assumed to be a function only of the angle between neighboring atomic
moments, At a later stage in the development of a distribution function
it will be assumed that the material is arrayed in domains so that the ex-
change energy is constant except in a domain wall. It would therefore con-
tain a constant volume term and a surface term proportional to the total
domain wall area.

The magnetoelastic energy is considered to consist of both the
anisotropy energy and the magnetostrictive energy. If it is assumed that
each moment of the system remains arrayed along some "easy'" crystallo-
graphic direction, then the anisotropy energy can and will be considered
constant. In addition, the magnetostrictive energy will contain a temm
local to each crystallite with its associated pattern of arrayed magnetic
moments, The result will be effective magnetic poles depending upon the
strains induced by moments producing changes in size of neighboring do-
mains, Once again this will depend upon both the relative crystalline
orientation of nearest neighbor grains and the angle between their mag-

netic moments.,
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In the formulation of £(6) d6 proposed by Brownll, the smallest
unit was the domain. He chose all domains to be of fixed and equal vol-
ume. His justification for such a model was that the important relation-
ships involved are the energy relationships which must vary but little
from one model to another. For purposes of this paper it is convenient
to take as the smallest unit of the system the atomic moment of the atomic
constituents of the system.

The surface energy arising from the magnetostatic term and from
the magnetoelastic term will produce fluctuations in the energy carried
by the atomic moments from spot to spot in the crystal. The system is a
static system so that each particular moment occupies & fixed energy, but
the energy per moment must vary in some random fashion throughout the
material., Any measurement on the system must asure a system average
resulting from this random variation in local forces.

Since sufficient informetion does not exist to calculate the
precise state inside the ferromagnet, it will be assumed here on the basis
of the arguments of the preceeding paragraph that the randomized forces
act to array the atomic moments in their most probable configuration.,
This is, of course, the role assigned to thermal agitation in a more con-
ventional system such as a paramagnetic gas in thermal equilibrium,., In
the present system it is assumed that all temperature effects are adequate-
ly described by incorporatinginto the system such temperature-dependent
parameters as the saturation moment, the anisotropy and the magnetostric-
tion.

If there are N magnetic atoms per unit volume, and if y is any
specific direction in the crystal, then the number of atoms per unit vol-

ume with magnetization vectors lying in the y-direction is Ny. Thus,
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N = L N (D-1)
Y 7

The number of ways that are macroscopically indistinguishable

in which magnetization vectors can be distributed among a lattice of N

atoms so that N7 have their vectors lying in the y direction is:

T, ) -

By use of Stirling's approximation,

fnW=NIinN - Z N_fnN_. (D-3)
7 7
7
The surface magnetostatic and magnetoelastic energies are assumed
to require that Eq. D-3 be stable with respect to variation in N7, which
will adequately describe their effect. The volume magnetostatic energy
remains and is given by:

vy = § N,AHycos@ (D-1) -

where A is a constant, H¢ is the total field and © is the angle between

the direction y and the field Hy. The exchange energy is given by:

o = IRhA, [1-Gen?] (-5)

where (A97) is the angle between nearest neighbor atomic moments, Ae is
the exchange interaction and %5 represents a sum over all nearest neighbor
atomic moments.

Equations D-1, D-3, D-4 and D-5 must be stable with respect to

variations in Ny, the number of atomic moments oriented in the y-direction.
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D.2 Mathematical Development

Proceeding to take variations with respect to Ny of Egs. D-1,

D-3, D-4 and D-5, and using the technique of Lagrange multipliers gives:

2
;l 8N, [- ¢nN,, + AHgcose + g.nBAe - EnNyBAe .5_(_‘_;_1’;17/.)_ + c] =0 (D-6)

d(26y)2
Ny = exp [ AHicos® + D - %$§7BAQ __Sﬁi}__]

where A, B, C are constants, Thus the normellized volume with its mag-

netic moment oriented in the y-direction is given by:

)2
exp (ANtcos - %nNyBAe _6}%9%_ )

2, exp ( ABycos6 - 1N BA, a§§92)2)
7

=

£y

The second term in the exponential is nonzero only if neighbor-
ing moments are not aligned. At this point let us introduce domain theory
into the development by requiring that all moments be aligned except at the
domain boundaries, and further require that the total domain wall area be
constant. Thus the second term is constant and f., becomes:

eAH cos@
£, = S— 1 (p-7)

y =
;%AH cosg,

where 0, is the angle between the field H and the y-direction.

4
The magnetic moment per crystallite is the sum of the component

of each atomic spin in the direction of the field; thus:

; cosg, exp (AH cosfy)

M= Mg (D-8)

Y exp (AH cosey)
7
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To get the moment for a nonoriented polycrystalline material it
is necessary to integrate Eq. D-8 over the unit sphere. The result is an
integrated relationship between H and M about a specified point, so long
as those variations do not result in altering the total wall area in the
material. Thus any reversible susceptibility should be calculable from
Eq. D-8. When the wall energy is altered its effect will be determined
by its dependence upon Ny. This is not known. However, about each point
Eq. D-8 must be valid. Thus a determination of the operating point by a
determination of the magnetization will, within the accuracy of this deri-
vation, allow the calculation of other phenomena depending upon the form
of Eq. D-6 as functions of the magnetization.

The preceeding paragraph infers that the result of different

total wall area can be treated as an effective history field.



APPENDIX E

THE DERIVATION OF THE MAGNETIC MOMENT AND THE REVERSIBLE

SUSCEPTIBILITIES IN THE PRESENCE OF INFINITE ANISOTROPY FIELDS

E.l The Derivation of the Magnetic Moment30

Appendix D considers the fraction of material £(0) d6 which
carries a magnetic moment oriented between 6 and 6 + 48 as a function
of the variable 3, where n is proportiomal to Hy, i.e., = A(Hp - MM + Hy,)
‘where A is a constant. When a magnetic field is applied to the material
it is considered that all of the material remains aligned along some
"easy" crystallographic direction. It is to be assumed that the crys-
tallites are nonoriented and that the magnetization can be obtained by
averaging over a polycrystal in which each atomic moment can be oriented
only along certain specified directions.

[iod] Orientation. Consider the direction cosines of the

applied field with respect to the crystalline axes to be li‘ Then the
direction cosines of the field with respect to the moment will be + f;.
The magnetic moment per crystallite, My, is given by MS times the

weighted-average value of the cosine as a function of n. Thus:

L5 -n4
% (4 eN*i . £i€ K i) - M 2 24 sinh 144

Mg = M . = (B-1)
KT T (et e N41) ® ¥ cosh nty
for each crystallite.
Averagirg over the nonoriented crystallites gives:
an Z ii sinh N ﬂi
= = M . -
M= Ml S ooen T I s G(n) (E-2)

- 110 ~
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The integral of Eq. E-2 has been evaluated by Brown.3o For

small values of n it is approximated by the series

_ 1.1 2 e2qf 8o’
G - see E"
(n) 3 b5 * ks 8505 * 280 665 (E-3)
For large'values of n,
G(n) = 0.831p - 1:367 _0.8816 kMg (E-4)
12 73 n?

DJJ] Orientation. The direction cosine of the magnetic moment

with respect to each crystalline axis is + lﬁf3 for this case, Thus the
direction cosine of the moment with respect to the applied field is given
by %(LLJE) P,#,, where the p; are + 1, and the f; are the direction co-
sines of the applied field with respect to the crystalline axes. Thus

the magnetization per crystallite, My, is given by:

Me | J’%%%i‘i exp ( J'g_§pi’i) ] (E-5)
M
S % exp<j§'“§pili>

The sum over p indicates the sum over all eight possible com-
binations of three plus or minus ones. To evaluate E-5 note that the de-

nominator can be written as 8I1i cosh ’J%_ £; and that the numerator can

be written:

e
rd
H
£ Y
...J
o
§
)
=T
o
o
=3
Qs
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—
&1:
L et
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o
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where the prime indicates that the product does not include i. Thus the

moment per crystallite is given by:

|3

L 3 o
= —— ), 1; tanh [} (E-7)
Mg J3 1 % 3 1
Averaging over the nonoriented polycrystal gives:
1 aQ

¥ - E(q)=:f-3-2fﬂ;zitanhjg—zi. (E-8)

Simplifying Eq. E-8 gives:

V3
E(n) = ‘?J'j' fn/ utanh udu. (E-9)
n o
The integral E-9 has been evaluated by Brown.30 For small
values of 7 it can be expanded as:
=4 7
B(n) = 1-M , . 20’ _Lln , 62 A (E-10)

3 b5 9k5 76,545 2,525,985

For large values of n it can be expanded as:

E(n) = .866’(-2\—11[% [%—(ﬁ_n+l)u+(ﬁ_n+l)g§-<%+l)l3.+"

where ) _2_11

*

u = e 43

Powers of u® have been neglected.,

Note that the largest possible value of My is larger for the
[lll] orientation than for the [100] orientation., This can be understood
as arising from there being a larger number of possible directions of

orientation for the [lll] case,
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Isotropic Material., The isotropic case must be considered as

isotropic not from the standpoint of zero anisotropy but from the stand-
point of an infinite number of possible orientations as opposed to the
six and eight in the two preceeding paragraphs. For this case the mom-

ent is given by:

‘) 1
M of d9 sin 6 cos @ e"°°° 9 ) %i(eﬂ + e M- ;5 (e - e™M)
M 7 -
° Of a0 sin @ eN €08 @ % (" - e (E-12)
1
%_ = L(n) = (ctnh n - H) (E-13)
S

To compare with the two preceding paragraphs, the expansions

for small and large values of n are given by:

1 13 . 29 ul 2n9
L = - -~ - s o » E"l)-"
() =345 * Gbs " F75 * 53,555 (B-L4)

for small values oi 7, and by:
L(n) =1 - 2 4 2(e™@M 4 ™0, ey, L) (E-15)
n

for large values of 7.

Note that the limiting M for large n is Mg as is to be expec-
ted when an infinite number of possible directions of orientation exist.
For small values of n the series for all three types are identical to the

seventh power of 7.

30

E.2 The Parallel Field Reversible Susceptibility. Wall Movement,

Mathematical functions for the magnetization in terms of the

variable n are derived in Section E.l. It is desired to derive express-
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jons for the susceptibility in terms of the same variable so it can then
be eliminated between the two functions. The functions of Section E.l
were derived assuming that the material remained at all times oriented
along some particular easy direction, i.e. the effective anisotropy fields
were infinite. If the field is decreased slightly in the opposite direc-
tion from that which brought it to the point M,H the effective history
field should remain constent. Thus the only change in the field H' will
be felt through the change in the applied measuring field H,. Thus the
derivative of the‘magnetization function will give the parallel reversible

susceptibility for the case of magnetization by wall movement. So,12

v - OM _dMdp - d F(n) -
Xp© ST R e (8-26)
since n = A(Hb + H, + Hy - NM). (E-17)

Hy represents the biasing field, Hr the applied reversible field and Hp
the effective history field. The function F(n) indicates one of the three
functions G(n), E(n), or L(n) as the anisotropy condition might warrant.
If the initial susceptibilityﬁxg is defined to be that value of
the reversible susceptibility present when the magnetization is zero, amd
since the value of g%%ﬂl for n = 0 is 1/3, for any of the three functions

derived in Section E.l,

W

Xy = %AMS (E-18)
and X:;p =3 Xz 51-—%(]3-)- . (E-19)

The subscript r on X indicates the reversible susceptibility, the sub-
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script p indicates parallel fields and the superscript w indicates wall

motion.

E.3 The Transverse Field Reversible Susceptibility. Wall Movement.

This case differs from Section E.2 by the field H, being
oriented normal to the field B, as opposed to antiparallel. The total

magnetization must remain parallel with total field. Thus (see Figure 5):

w_@_b_d___l_@___ F _ w F(qn) -
Xrt_aﬁr—Ht-Ms_%l)I—3X°_§1L. (B-20)

As before, the function F(n) will be G(n), E(n), or L(y) as the aniso-

tropy conditions might warrant,



APPENDIX F

EVALUATION OF THE TRANSFORMATION MATRICES @ AND a-t

A matrix describing the transformation from one set of axes to
another rotated at an arbitrary angle to the first is given in terms of

the Euler angles as3l’33:

cosy cosp - cosé sind siny  cosy sinf + cosé cosp siny siny sing\(F-1.
A =| -siny cosp - cos@ sind cosy -siny sind + cose cosp cosy cosy sind

sind sinp -sing cosf cos6

This matrix is for coordinates described in terms of x, y, and
z. We wish to transfomm to a system described in terms of the coordinates

x + iy, x - iy, and z. That is, we wish to solve for a matric C defined by:
¢ (x, 5, 2)" = (x+1iy, x - iy, 2)' (F-2)

Solving for C from Eq. F-2:

1 1
1 i O 5 3 0
c =f{ 1 -1 O emact =2 1 o (F-3)
2 2
o 0 © o 0 1

To solve for the transformation matrix O in the new coordinate system,

let q' and k' represent two coordinate systems based upon X,y,2 and let q

and k represent the same two coordinate systems based upon (x + iy = x

42

x - iy = x_, z). From the definition of C, for any matrix Y, CYq4: = ¥q

and CYyr = Yy; so also C'qu = Yqt. NOW’AC-qu = AY¥q: = Yg!, the last
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equality by definition of the Euler matrix. Continuing by multiplying
through by C, CAC'qu = CAYqt = CYy+ = Yy. Thus, if AYq: = Yk, then

aYq = Yk, where:
= -1
a = CAC (F-4)

The algebra is considerable in the solution of Eq. F-4 for the

matrix d. The result is

a? -b2 -28b
a = -b*2 a*2 ~Qa%b¥ (F-5)
ab% a*b aa* - bb*

where

©
il

cos (0/2) exp [~ 3 (8 + ¥)] -

o’
It

-1 sin (8/2) exp [—;— b - ﬂr)]
the asterisk (*) represents the complex conjugate.

It is also necessary to find the inverse matrix a-l., To do
this note that a = CAC™t and, upon taking the inverse, a~} = ca~lct,
One property of an orthogonal matrix is that its inverse is equal to its
transpose or Al - A', vhere the prime indicates the transpose operation.
Continuing, 0~1 =cA'c™l, but A =clac soA' =c' a'(c7l)'. Thus

at=cer a'(c-l)el = cor a'(c') e, so:

-1

a ccra '(ccr)-L (F-7)

Solving for CC' and (cC')-l from Eq. F-3:
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1
0 2 0 o 3 0
cc'=|( 2 o o] ; (cc)l= % 0 0 (F-8)
0 0 1 0 0 0

Upon combining Eqs. F-5, F-6, and F-7 and working out the

algebra,

ax2 -b2 oab¥
N a2 oab* (F-9)

-a,-x-b* ~-ab aa¥* - bb¥*
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APPENDIX G

THE REVERSIBLE SUSCEPTIBILITY ASSUMING DOMAIN ROTATION

G.1 Development of the X Matrixdt

Expressions for the X in terms of X, X_ and X, were devel-
oped in Appendix B and are given by Eq. B-2. In matrix notation, if k

denotes a reference system based upon the individual crystallites,

X+ 0 0
Xg =| © X 0 (G-1)
0 0 0

From Eq. 24, the susceptibility Xq in a coordinate system based upon the
gross sample is given by dX, a-l, The product OXKCJ‘l (from Egs. F-5,

F-9, and G-1) is given by:

(aa*)2X +(bb*)2X _ 02%2(X , + X_)  2sb(aa*X, - Bo*¥X )
Xq = | -8®0%(X , + X.) (00%)2X, + (aa%)®X _ 2a*o¥(-bbx X, + aa* X )| (6-2)

a¥b*(aa* X, - bb* X_) -ab(bb* X, - aa*X ) 28a¥b*(X, + X.)

This is the general equation for the susceptibility of a polycrystal assum-

ing only the Landau-Lifshitz differential equation.

G.2 The Reversible Susceptibility per Crystallite with Parallel Fields

For parallel fields the field matrix can be written as H= ( O O Hy)'.
Multiplying H on the left by Xgq and taking the ratio M,/H, as the observed

susceptibility, Xf,p , gives
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r
Xpp = 20a¥0¥(X, + X.) (6-3)
Substituting & and b from Eq. F-6 into Eq. G-3 gives:

xf,p = 2 cos2(6/2) sin?(8/2) (X, + X.) = (1/2) sin®0 (X4 + X_)
(G-4)

r _ 1 - 2
er -E(l cos<9) (X++ X.)

G.3 The Reversible Susceptibility per Crystallite with Transverse Fields

For transverse fields the field matrix can be written as

(1) = (Hp O O )'. Multiplying H on the left by Xg and taking the
ratio My/Hy,
Xt = %(Xll + X1+ Xo1 + Xpp) (6-5)

where the X's represent the components of the matrix Xq. The result of

combining Egs. G-5, G-2 and F-6 gives:

X;c = % (X4 + X)) [l + %;— sin2 (eew 4 e 2V -2)]

or

r . %. (X, + X.) [l + cos®@ + s5in®@ cos 2\1/] (G-6)
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APPENDIX H

THE EVALUATION OF THE AVERAGE X3, AND X7,

The equations for the susceptibility to be expécted as a func-
tion of the angle @ between the z-axis of the macroscopic sample and the
z-axis of the domain and as a function of the angle ¥ in the x-y plane
of the crystallite are given in Eqs. G-4 and G-6 of Appendix G. The only
remaining problem is to average these equations over a polycrystal con-
sidering the possible orientations of the magnetic moment. This, in
essence, assumes that the anisotropy fields are of the proper magnitude
so that all of the material, in the presence of purely static fields, is
oriented along easy directions. However, when an alternating low fre-
quency signal is applied the resultant susceptibility arises because of
the rotation of the moments of the damains against the noninfinite aniso-
tropy flelds.

By symmetry the third term of Eq. G-6 must average to zero over
the polycrystal. It is therefore necessary only to average the temms
(1 - cos®g) and (1 + cos®@) over the polycrystal., Define Xg = %‘- (X 4+ +X).

[100] Orientation. Since both susceptibilities involve averag-

ing the weighted value of cos?®9 first over a single crystal, then over a
polycrystal, it is necessary to solve for this averaged value; then each
of the susceptibilities follow trivially. Referring to the definition of
Section E.l the weighted average value for the cos?6 for a given crystal-

lite over all six possible orientations in the crystallite is given by:
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iy -ngy
(e * )

L + e

2
: (B-1)

M DM

2 £(6) cos® -
s (eTl 1y e-nli)

The sum over @ represents a sum over all possible orientations.

Averaged over a nonoriented polycrystal:

2
f%? }é: £(9) cos20 = e X £y coshn £y _ 1 . ?‘H(ﬂ) (H-2)
b ¥ cosh q 24 33

The function H(n) is defined by Eq. H-2. This function was

encountered by Brown during his work on magnetostriction3o

and was evalu-
ated by him. It cannot be expressed in an integrated closed form. Com-

bining Eq. H-2 with the expression for Xg, X;:p and Xf't gives:

XZ = X2 [1 - u)] (H-3)
Xet = X [l + %ﬂ] (5-1)
when M = Mg G(q). (See E-2).

As given by Brown for low values of 1,

H('q) = '_‘ﬁ 2.,11# 9"16 ’“IS

- - o ¢ o H"‘
15 315 * 17,000 93,555 (#-5)

and for values of 3 high enough so that e~ 1 can be neglected;
H(n) = 0.5513 = 2.721/9° - 1.527/73 + 6.266/q“ + eee (H-6)

The values of the susceptibility and magnetization are listed

in Table 4, and are illustrated in Figs. 8 and 9.
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[111] Orientation. As was the case for |:100:| orientation, the

problem is the evaluation of the average value of cos29 weighted by the

averaging function £(6). This is seen to be, for a particular crystal-

lite:
Lz @ Pklk)z exp 4y Pyly

g £(9) cos29 = 3P k 3 1 (H-7)
% 1 .
p P V3 %plli

The denominator can also be written as:

A
% exp( NE %Pili) = 8Il; cosh -—}5 Ly (5-8)

(See Section E.1)

To evaluate the numerator note that:

2
%(Z zk an?k) ( Zpiz ) "%‘%(Zpklk eXP JB—Zpizi)

so that

N

2(2 n gogy) oo A Toats ) A DR uk en(Te)

Z f(e) cos<9 = E
6 z, exp _D.... E P't'

(-9)

The first term in the numerator, upon evaluating, using Eq. H-8, becomes:

I1 cosh

8 8
= 2 A
Z L4 s:.nh J3 H cosh =2 7 Iy + 3 - NE L

V31

+-——-Z cosh -2 g4 H'zksinh Ly

V3 el J3
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The second term in the numerator of Eq. H~9 was evaluated in Section E.l
for the calculation of the magnetic moment as a function of the variable

n. It is seen to De:

-8 5 2; sinh -1 1,

IT* cosh -1 gy
3 oi NE ™ V3
Thus Eq. H-9 simplifies to:

2 £(8) cos 6 =
0

wu—'

, 2
+2 ? % 2445 tanh 1 g, tanhAjﬂ 5 (1-10)

J3
1£J

Averaging over a nonoriented polycrystal gives:

X158

aQ 1l 2
fmgf(e)cosze =3-+-3-f %;1:! jtanh—ﬂz tathlll

(H-11)

wn—‘

R(n) .

wlm

The function R(n) is defined by Eq. H-1l. It was encountered

30

by Brown-~ during his work on magnetostriction and has been evaluated by

him. Substituting into the form for the susceptibilities,

Xrp= X5 [1-R()] (5-12)
X:'t = X;‘ l:l + R—é—TL)-] (5-13)

where M = Mg E(n). (See Section E.l)

As given by Brown for the low values of 1,

2 4 6
R(p) = A2 - 200 4, 0. 46n® (H-14)
1-5 315 1701 841 995 .
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and for large values of 7,

h712 | 15.12

n° nt

R(n) = 0.6367 - (H-15)

Tabular values of the susceptibilities are given in Table L

and are depicted graphically in Figs. 8 and 9.

Isotropic Orientation. As was the case when considering the

susceptibilities for wall motion, the condition of isotropy is here con-
sidered not to mean zero effective anisotropy but rather passing to the
limit of the number of easy directions in the crystal, each of which has
a large enough effective anisotropy field to keep the material aligned in
any easy direction in the presence of static fields.

Thus when an alternating field is applied, the effective rota-
tional susceptibility is not infinite as would otherwise be expected, but
is some finite value determined by the anisotropy field.

The quantity of interest here is the expression:

£

i 46 sin 6 2g n cos 6
sin 6 cos<0 e
Z £(8) cos®e =2 (H-16)
0 £nd9 singe N cos @
Eq. H-16 can be directly integrated to:
g £(6) cos®9 = 1 - ELn ) . (H-17)

where L(n) is the langevin function, as defined in Section E.l. The re-

sulting susceptibility equations are:

3% E%nl (1-18)

il

r
><rP

(H-19)

=
:1*'5
i}
30} OV
=
o H
l|_.:l
]
-
-3~
LL
L



- 126 -

where M = MgL(n).

Values of the susceptibilities are listed tabularly in Table k&
and are depicted in Figs. 8, 9 and 10.

To make Eqs. H-18 and H-19 look more like their counterparts
for the assumed anisotropies, Egqs. H~3, H-4, H-12 and H-13, define a

function S(n) by the equations

x;;=x§[l-shﬂ (5-20)
Xrt = Xg [1 + %ﬂ] (B-21)

Then the expansion for S(n) for small values of n is given by:

2 L 6 8
s(n) = 1= _ 210 1 _ =21 -
R A Tl (8-22)
For large values of nu:
s(n) =1 -3+ H-2
n ; ;‘% (H-23)

Note that Egqs. H-5, H-1h and H-22 are identical to the sixth power of Ne

H.2 A Discussion of Xy and of QF.

The initial susceptibility as computed from 1/3 the sum of

X, and X_ is given by:

r_2moMg | moH' (L +€®) +joe
X 3 [(moH')?‘ (L+¢e®) -o® + 529 elruoH") (5-24)

H' was defined in Section 3.2 and ¢ in Appendix B. At the low-frequency

limit:

X, = —= (5-25)
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The magnetic Q, or the ratio of the real to the imaginary part

of the susceptibility is given by (from Eq. H-24):

< = TuoH' {wf(l + €2)2 + o?(e® - l)] (5-26)

we (ulz(l +€2) + o

The low-frequency limit of the qQ is thus:

Hl
Qg = 7“:E (L + €2) (H~27)

Upon comparing the expressions for the initial susceptibility and Q, both
depend upon the total field H'. Thus they can be considered constant
only so long as the applied field H, is much smaller than the anisotropy

field Hy,. However the product given by:

XeQs = ol (14 62) (5-28)
3we

does not contain H' and should obey the averaging equations of section
H.l to larger values of applied field than should the susceptibility

alone, Deviations wuld occur through the field dependence of €.
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