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Abstract

This paper presents a technique for region matching. An image
is represented as a function f(X.Y) and a region in an image is
approximated by an elliptical paraboloid. The coefficients of the
elliptical paraboloid are usced in matching regions. It is shown that
the coefficienls can be easily computed in a pyramid type archi-
tecture using proposcd pyramid linking algorithms. Our experi-
ments demonstrate that the proposed approach is more robust
than moment-based approaches for region matching. Another
feature of the approach is that it can be used for region splitting

and merging, if required.



1. INTRODUCTION

Matching plays a vital role in many applications of image understanding. At
a low level, token matching, commonly called correspondence, is used in stereo
and structure from motion; object recognition using structural information uses
graph isomorphism at a high level. The tracking of objects and change detection
are required in many applications. Cross-correlation and statistical techniques
have been used for matching regions in such situations. If the segmentation of
images has been already performed, Lhen correlation has been suggested as a
particularly powerful lechnique for matching and displacement. A serious limita-

tion of correlation, however, is that it does not work well in the case of rotation.

In many applications, object recognition is performed based only on the
regions, or borders of regions, representing the mask of the object. Usually,
several masks for each object are stored and recognition is achieved utilizing
matching of the unknown region with each model. In tracking, also, a region for
an object is given, or obtained in a frame, and then unknown regions are

matched to it.

Assuming segmentation has been already accomplished, many of the most
wide used techniques for the shape description of regions are moment-based
|5,7,10,15,16,21,24,25]. These methods extract features which are invariant with
respect to the object's position, size, and orientation. The initial impetus in this
area was the work of Hu[16] in which 7 algebraic invariants, calculated from n-th

order moments of the image, for 0<sn<3, are described.

In this paper, we introduce a least-squares based technique which computes
various features, and compare il with that of Hu[16]. We interpret an image as
function f (X,Y) which maps X and Y coordinates to graylevels. This allows us to
consider an image, or a region representing a sub-image, as a surface

Z=f(X.Y). Aregion in a frame is represenled by finding a best-fitting elliptical



parabol Lo the graylevel surface corresponding to the region. It is observed that
this representalion allows the reliable malching of regions, and by-products of
the matching are the parameters describing the 2-D transformation of the sur-
faces. We discuss a method to fit the elliptical paraboloid to the regions and
demonstrate the efficacy of this representation. We also show how to embed the
calculations in a pyramid architecture [1,4,8,9,22,23] so that the representation
of each region in an image is at the highest possible level in the pyramid struc-
ture. It is shown that the parameters of the best-fit surfaces can be computed in
the pyramid structure while forming the connected components. Thus, by using
a special architecture, it is possible to compute the parameters of the graylevel
surfaces very quickly, so that the matching of the surfaces can be performed

without going to the raw images.

Our method is more powerful than moment-based approaches for several
reasons. Moment-based techniques lose all contact with the underlying graylevel
surface. They have no notion of the errors involved in representing a segment by
a set of real numbers. Thus, there cannot be any embedded control mechanism
which uses the error to invoke numerous possible split-and-merge techniques to
compute less errorful features. Our technique, on the other hand, has a built-in
notion of error; namely, the difference in volume between the actual graylevel
surface and the fitted one. Thus, we may use various split-and-merge techniques
to lessen the error if we so desire. This paper discusses just the overall efficacy
of our approach, so we do nol cover this topic, but in future reports such tech-

niques will become extremely importlant.

Our technique also gencralizes to 3-dimensions in that we may parametrize
coefficients of our quadric surfaces in a similar manner as we are here
parametrizing the graylevel values. Many views of a 3-D object will then be
representable in a very compact manner as a k -dimensional subspace of an m-

dimensional space, for k<m, while a single view would be a point in this m-



dimensional space. We may Lhen use exisling techniques Lo efficiently find the
best-match to an arbitrary view of some unknown object. Moment-based tech-
niques, on the other hand, cannot be generalized in such a direct fashion to han-

dle this problem.

Finally, as we shall later demonstrate, our method produces better results.
We have performed numerous experiments where various images were
translated, rotated, underwent size changes, had noise introduced, and
underwent changes in lighting. These experiments show that our approach pro-

duces better overall clusters than the moment-based ones.

Fitting a parametrized surface to a graylevel surface has been done by
other‘researchers[l1,12,13.19]. They, however, do so for reasons other than
ours, which causes their methods to be quite diséimilar to ours. Paton[19] uses
Legendre polynomial while Haralick and his co-workers use planes [11] and bi-
cubic surfaces [12,13]. These fillings are done locally, however. For each pixel
p. a fit is done over some small neighborhood of p. These researchers are trying
to discover local features such as peaks, pits, ridges, ravines, saddles, flats, and
hillsides in order to use them as a means for describing an image. Ostensibly,
these features can be used for matching purposes. Théir use in such a setting
has not been explored, however. Also, their robustness under various levels of
noise has not been examined. Our method, on the other hand, works quite well
under noise. Since matching is our primary goal, we set out to discover global
rather than local features, and global features should be more robust under
noise than local features. Thus, we fit a single surface to the entire region,

rather than many surfaces locally.

An overview of our scheme now follows. We interpret an image as a surface
Z=f(X.Y) in 3-space. kach node of the pyramid will then contain the equation of

a second-order surface, an elliplic paraboloid, which is fit through the center-



of-mass of the level-1 sub-image corresponding to this node and which minimizes
the square-error between itself and the surface Z=f (X,Y) over an appropriate

area. This will be discussed more fully in Section IL.

For each region in the image, we now want to find the highest node in the
pyramid, that is, that node closest Lo the apex, whose corresponding level-1
sub-image completely contains this region and contains no other region. If we
can find such a node, the equation contained in it will convey information
regarding the shape of the region, its position and its orientation. If we cannot
find such a node, we change some of the links of the pyramid so that a level-k
node, k>1, now delermines a not necessarily square region. This connected
region will consist of squares of sizes 2¢71 x 261, k2 x 2¥%, ., 2% x 2% which
are joined Logether across their edges. This will be discussed in Section IlI. See

[2,14,17,18,20] for other applications of pyramid relinking.

The embedding of the above calculations in the pyramid data structure will

" be discussed in Section IV.

In Section V, we will discuss the matching phase of our algorithm. This will
consist of constructing pyramids for each frame. In each pyramid, we identify
nodes corresponding to each region, as above. Two nodes whose equations are
equivalent alter a coordinate Lranslation and rotation will correspond to the
same region. This translation and rotation will then give information regarding
the translational avnd rotalional components of the 2-D orientation, respectively,

of this region.

Finally, the various experiments we performed, as well as our conclusions,

will be discussed in section VI.



2. SECOND-ORDER IMAGE APPROXIMATION

For illustratioﬁ, let us assume an B8 x B grid of pixels. Our coordinate origin
will be placed in the exact center of the grid. Thus, the point (i,7) will be in the
lower left-hand corner of the pixel in row 4—j and column 7+5, This pixel will
also have address (i,7). See Figure 1. Let us assume that this grid contains only
1 surface (1-connected region). | Now,
Z=A(X=Xo)*+B(Y-Y)?+C(X—-Xo) *(Y=Yg)+D is the equation of an elliptic para-
boloid centered at point (Xg,Yp). Let us find the values of A,5,C, and D which
minimizes the square-error between this surface and the surface Z=f(X.Y)
over a circular region centered at (X,,Yo) and with radius R larger than the
diameter of any possible region in our grid. For our example, any R>BV 2 will
suffice. (Note that f (X,Y) is assumed to be 0 outside the grid.) We have experi-
menled with fixed values of R as well as variable values. In the latter case, K is

taken to be the maximal distance from (X, Yy) to a boundary point.

We are going to pul Xo=Xgy and Yo=Yey, the coordinates of the center-of-
mass of the region. The reason for centering this surface at the center-of-mass
and fitting it over a circular region is that when this is done, the position and
orientation of the surface in the grid will not affect the final equation after a
coordinate transformation is done which puts the origin over (Xey, Yen) .and the

axes in such an orientation as to eliminate the cross-product term.
Letting =X —Xg and y = Y~Y;, we want to minimize expression (1)

0\/_y

/ j\[‘z—z [Az?+ By?+ Cey + D~ f (x+ Xy + Yo) Pdzdy (1)

which is equivalent to expression (2):
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We finally end up minimizing

tR TR, ‘ . .
f»R j.n;_Jz(x+Xo,y+ Yo) -(2Az?+20y*+2Czy +2D) f (x + Xoy + Yy) |dzdy (3)
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B

Setting the partial derivatives of expression (3) with respect to 4,B,C, and D

n R®

+(——)(A*+B¥)+(—— 51 )(Cz+2AB)+(—)D(A+B)+1r R?Dp?

equal Lo 0, we end up with equations (4a)-(4d):

(T )A+ )E+ ——-)[) 2f f+ ¥ 2Pf(x+ Xy +Yo)dzdy  (4a)
(ZE )A LSy "E’ =2 [ f YU (z+Xoy +Yo)dady  (4b)
f f:/_z__zz_yzxyf (x +Xo.y + Yo)dzdy (4c)
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with solutions (5a)-(5d):

A= ( 1rii’6 f f y+3x ~R¥f (x+ Xy + Yg)dzdy (5a)
B nRﬂ j fﬁa__zmy Ra)f(z+xo,y+}’o)dxdg (5b)
= 1\']?6 f fmxyf (z+Xqoy +Yo)dzdy (5¢)

= f f W ﬂﬁz 6;3 (22432 ]f (z + Xo.y + Yo)dzdy (5d)

From Theorem 7.8 in Apostol[3], it may easily be verified that the above

solutions do minimize (1).

Changing back lo (X,Y) coordinates, letting W= R?®—(Y-Ygy)? and putting
Xo=Xcy and Y=Yy, where

YoytR X,
2 XC" " Xf (X, V)dxay
_ H
Xew= —j%(w”‘v Xcu

and



Yeuttt Xeyt V¥

rey e Jx Yf(X Y)dXdy

You=
fy ' XCM y L f(X.Vaxdy
we have
6 16 6
A= -
= e T (62)
18 6
B = X2MEAN + - 6b
RG) (11'[1’6 (rrR4 (6b)
_ (24
C = (=5) XYMEAN (6c)
4 6
D= MEAN — X2MEAN +Y2HEAN
() (i)l ] (6d)
for
' You+tR KXoyt W
MEAN = f, " fyy T(XY)dXdY (72)
I . ¢
X2MEAN = [, ™ Jou Ny Py w " xer (x naxay (7b)
YoutR Xyt ¥ 2
v Jxw [ Xf(X.Y)dXdY]
MEAN
YoutR Xeyt¥
Y2MEAN = [, ", fxm g, YiF (X.Y)dXdY (7c)
Yout® Xey
voe Sroy "T¥r (X V)axdy )
MEAN
YeytR XeytV¥
XYMEAN = [, " Jy ~y XYT (X.V)dXdY (7d)
Yeutf Xey! W v YoutR Xeyt¥
j,,m 0 JXm Y Y)dXdY | Vg Jagy ¥ f(X.Y)dXdY]
MEAN

Thus, to compute the appropriate minimal surface, we need only compute
the zero-th, [irst and sc_cond order moments of the image. These moments can
easily be calculated in Lerms of Lhe graylevel value al each pixel, since, for i,j
integers, f(i.j)=f(i+a,j+b) for 0<a,b<1. Specifically, it can be shown that,

Yoyt X
jYCM R/XCM wf (X, Y)dXdY = Zf i.j) (Ba)
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Thus, to develop the equalion of the best fitting elliptic paraboloid to a

region, we need only be able to efficiently calculale

3 160d) (92)
?‘,: if (i.7) (9b)
L, 416.9) (60)
?f; i#(i.5) (9d)
?:, 7%(i.9) (9€)
12, ijf (i.4) (9f)

for this region.

3. SEGMENTING AN IMAGE VIA PYRAMID LINKING

Consider the image of Figurc 2. If one constructs a standard pyramid in
which each node above level 1 has precisely 4 sons, one cannot find any node in
this pyramid whose corresponding sub-image contains one and only one region.
We thus relax this requiremenl. Each node can have as few as 1 and as many as
18 sons. The way this is done is that, as necessary, nodes are relinked to neigh-
boring fathers. Given the 2 x 2 template of Figure 3, area 1 can be linked to

either its own father or Lo a neighbor of this father to the west, to the north or
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to the northwest. Similar statemenls can be made for areas 2, 3, or 4.

We first label the regions on level 1. We use the standard recursive labelling
scheme, but it fnay be done in parallel by having each pixel with a graylevel
above 0 pass its address to its northern, southern, eastern and western neigh-
bors. When a pixel with a 0 graylevel receives inputs, it ignores them. When a
pixel with a non-zero graylevel receives inputs, it changes its address to the
minimal address received. Thus, after a time proportional to the diameter of a
region, that region is labelled by the smallest address of any pixel in that region.
Then, starting at level 1 and continuing as long as necessary we do the following.
Fach 2 x 2 sub-image is examined to see how many region labels are included
among its nodes. If this sub-image conlains nodes from at most 1 region, none
of its nodes are relinked to another another father, while if it contains nodes
from 2, 3, or 4 different regions, these nodes are relinked, if possible. This
relinking is done in a disciplined lashion:

1) If 3 nodes are from 1 region, while the 4-th node is from a different region,
this latter node is the one to be relinked.

R) If 2 neighboring (41-connected) nodes are from one region, these 2 nodes are
relinked to the same father.

3) Relinking is only done to a father all of whose sons are either of graylevel 0 or
from Lthe same region.

4) We first try to relink nodes to a father whose sons contain the same region as
the to be relinked node. If this can’'t be done, we then try to relink them to a
father all of whose sons are of graylevel 0.

5) After all the relinking is accomplished, each son of a given father has a 0
region label or an equal positive region label. The father inher region label.

8) Relinking is not done Lo a node if there is no neighboring node of the same
region label. If this is the casc, we have found a node in lhe pyramid whose

corresponding sub-image completely contains just 1 region. The information
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concerning this region will be kept at this node and a flag will be set indicating
that this node is Lthe rool node of an individual connected region, but its region
label is changed Lo 0, so that higher level nodes will see it as being of graylevel 0.
Thus, higher level nodes will treat this node as background for any future relink-
ing operations, even though there is an entire connected region encompassed by
this node. This latter region is called a hidden region , and all nodes with such
regions are flagged appropriately.

7) Before the relinking starts on level 1, we place a border of graylevel 0 around
the original image. In our case, the 8 x 8 image is put in the center of a 16 x 16

image. This is done as it may be necessary Lo relink into this border.

Let us trace the sleps taken using the image of Figure 2. Each of Figures
4-8 illustrales higher levels of the pyramid. Neighboring nodes with similar
cross-hatching have Lhe same father node. Also, nodes an K written in them have
their root flag set, while nodes with an H written in them have hidden regions

included among their children.

4. EMBEDDING THE NECESSARY CALCULATIONS IN THE PYRAMID

We now indicate how lo embed the calculations of (9a)-(9f) for each 4-

connected region in Lhe pyramid.

Fach node of Lhe pyramid 'sces’ only a single 4-connected region, aside
from any hidden regions which may occur at various children of the given node.
Call this region the nodc's primary region. We will develop a method whereby
each node of the pyramid calculates (9a)-(9f) for that part of its primary region
which it encompasses. We will use recurrence formulas. Specifically, each node
will calculate its value of (9a)-(9f) in terms of the values of (9a)-(9f) of its chil-

dren, after all relinking has been done at that level.

We will illustrate this method on level 3 of the pyramid for the calculation of

(9f). Figure 9 illustrates our example. We want to calculate (9f) for node N. This
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node has 4 children after all lhe relinking has been done on level 2. its
northwest, southeast and southwest children as well as the southeast child of its
western neighbor. Areas p q, 7 and s are the regions in the image encompassed

by these children, respectively. We then have that (9f) for node N is

2 R)Ge0)fplig) L (3020209 (i) (10)
ijep Jeq
+ ) (20RO (i) Y (1420 (5RO fs(i.5)
ijer ijes

where in each region p, ¢, 7 or s the origin of the row, column indices i,j is the
respective child. Thus, whal is pixel (0,0) with respect Lo the northwest son of
node N is pixel (-1,1) wilh respect Lo node N. The functions fp, fq, fr and fs are

function f with these coordinate transformations.

Now, (10) reduces to

Y wre(ig)t X oufelg)+ Y ufrg)+ Y igfs(ig) (11)

ijep ijeg ijer 1.jes
RO Y ifplig)- ) ifqig)- Y ifrig)- Y ifs(ig))
ijep i.jeg ijer i,jes
+20( ) dfs(ig)- ) ifp(ig)- ) ifr(i.g)-3 Y ifqai.g)
ijep iJeq ijer i,jEs
L JrGg)- Y SpGig)- u Ss(ig)+3 ) fe(ig)
ijep tjeyq ijer 1jes

Thus, (9f) al node N is compuled in terms of (9a), (9b), (9¢) and (9f) at the

children of node N.

In general, in compuling (9a)-(9f) at a level n node, for nl, we use 2 *~°
instead of 2% in (11). Also, Lhe initializations of (9a)-(9f) at pixel (i,j) of level 1

are f (lj)ﬂ;—‘ui‘(;—ﬂ L.]) ,f (Z]) , and f_ﬁ%ﬂ respectively.

4

5. SHAPE MATCHING

In each node of our pyramid which completely encompasses a region, we
have the equation Z=AX*+BY*+CXY+D) of a best-filting elliptical paraboloid

through the center-of-mass of the region. In order to use this surface for match-
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ing purposes, we find the angle which the major axis of the ellipse which results
from the intersection of the elliptic paraboloid with the (X,Y)-plane makes with
the positive X-axis. This angle is restricted Lo be in the first or fourth quadrant,
and is found by calculaling through what angle to rotate the (X,Y) axis so that

the CXY term is eliminated.

The resultant X? ¥? and constant coefficients will be used in matching
regions from frame to frame. The feature we actually use is the eccentricity of
the ellipse which results from the interesection of the elliptic paraboloid with
the (X, Y)-plane. This feature should remain constant under rotation, translation
and scale changes as well as under the addition of a constant graylevel. Once we
find similar regions in 2 frames, we use the center-of-mass and the difference in
the above angles to find the 2-D translational and rotational components of
motion, respeclively. We assume thal Lhe rotational component is small, as this
melhod does not give unique results for arbitrary rotations. That is, 2 different
rotations may lead to the same answer. For example, if in frame 1, the major
axis of the above cllipse makes an angle of 30 degrees wilh the positive X-axis,
while in frame 2 Lhe angle is 60 degrees, the rotalional component could be -150

degrees, 30 degrees, 210 degrees or 330 degrees.
It is easily derived lhat if the axes are rotated by RAD radians, for

RAD=,5*a'rctan(——9——-), the CXY term disappears. Also, the equation of the

(A-B)

N e e Ay2rBYe, _a dY _ —(2AX+CY)
aforementioned ellipse is AX CXY+D=0. Thus, X~ (2BY+CX) or
dY, _ =2A .. . o , .
X | v=0= " - This implies thal if sign (A)=sign (C) then its major axis is in the

4-th quadrant, while if sign (A)sign(C), ils major axis is in the 1-st quadrant.

), if RAD<0 and sign (A)#sign(C), we add T to

Thus, for RAD =.5*urctan ( 5

C
A-17)

KAD, while if RAD>0 and sign (A)=sign(C), we subtract g— from RAD.
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6. FXPERIMENTS AND CONCILUSIONS

To see how well our melhod performed, we generated data on which we
tested how our approach compared to that of the standard moment-based
approach of Hu[16]. The data was [ormulatled as follows:

1. We started out with 19 binary images of airplanes. Each of our images was of
64 x 64 resolution.

2. Each of the 19 images was rolated by 0, 15, 30, and 45 degrees, resulting in
76 images.

3. These 76 binary images were transformed to 64-graylevel images by generat-
ing random gray-values and smoothing twice with a window size of 3 x 3.

4.5 ranges of noise were added to cach of these 76 images by adding random
values Lo each of the pixel values. These ranges were plus-minus 0, 5, 10, 15, and
20 graylevels.

5. khach graylevel g>0 of each of the 76 graylevel images was transformed to
graylevel min(63,g+12).

6. Each of the 76 graylevel regions was reduced to 32 x 32 resolution by averag-
ing once over a 2 x 2 window.

7. Each of the 76 graylevel regions was reduced to 32 x 32 resolution by averag-
ing once over a £ x 2 window, and then transformed by changing each graylevel

g>0 to graylevel max(0,g-4).

We thus had a total of 1520 64-graylevel images, each of resolution 64 x 64.
I'or each image, we calculated Lhe eccenlricily of the resulting elliptical para-
boloid using both a fixed and a variable radius, as well as the 7 invariants of
Hu[16]. Some sample images and their resulting parameters are shown in Fig-

ures 10-12.

In order to comparc the various approaches, we formed 19 clusters, 1 clus-

ter per airplane, and calculaled the ecigenvalues of (SW ~!) *SB, where SW is



15
Lhe

within-cluster scatter matriz and SH is the belween-cluster scatler matriz as
described in Duda and Harl[6]. The largest eigenvalues were 32.1, 1.3, and 44.0
for Hu's 7 invariants, our method with a fixed radius, and our method with a
variable radius, respectively. Note that partitions giving larger eigenvalues, are
more favorable. Also, note that our‘method, using a variable radius and only
moments of up to second-order, outperforms Hu's method which uses third-

order moments.

We have thus demonstraled Lhat our least-squares based method is robust
and outperforms momenl-based lechniques. We have also introduced a
pyramid-based architecture in which the computations are done quite rapidly,
especially for images containing miultiple regions.

We are currently expanding this method to include both general quadric
surfaces and error estimation techniques. The latter will be used to control vari-

ous split-and-merge schemes to be used for images of objects having multiple

surfaces.
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FIGURE 1 - AN 8 x 8 COORDINATE GRID



FIGURE 2 - A BINARY IMAGE



FIGURE 3 - A 2 x 2 TEMPLATE
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FIGURE 4 - LEVEL 1 OF THE IMAGE PYRAMID
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FIGURE 5 - LEVEL 2 OF THE IMAGE PYRAMID
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FIGURE 6 - LEVFL 3 OF THE TMAGE PYRAMID






FIGURE 8 - LEVEL 5 OF THE TMAGE PYRAMID



FIGURE 9 - THE PYRAMID CAl.CULATIONS
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