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Abstract

A suspension design method is proposed for obtaining
statistical values of vehicle vibration and dynamic load easily.
The method is based on the random vibration analysis of a two-
degree of freedom suspension system. Concise relationships
between the RMS of vibrations, dynamic loads and corresponding
level distribution, and the design parameters are given. The
rational selection of damping and suspension stroke and the
method for estimating speed limits on rough road are studied.

Suggestions related to experimental evaluation are included.



INTRODUCTION

Roughness of road surface always stimulates the corre-
sponding vibrations and dynamic loads of vehicles. Reducing
these vibrations and dynamic loads is always a goal for auto-
mobile designers. Because of the random properties of the
road surface, vibrations and dynamic loads of a vehicle will
be random. For reducing the dynamic load tramsmitted to
passengers and cargos, 1t is necessary to reduce vibrations.

For improving the durability of loading parts and reduce vehicle
weight, 1t is necessary to reduce the dynamic loads transmitting
to the parts. For improving direction control of the vehicle at
high speed, it is necessary to reduce the dynamic load between
tires and road surface, because vibration of adhesion will cause
a reduction of "dynamic cornering stiffness."

When driving on a rough road, the vehicle speed is usually
decreased significantly, since the level of vehicle vibration
is too high and uncomfortable for the driver, especially when
heavy hitting on the suspension bumper occures. For decreasing
the probability of bumper hitting, it is necessary to design the
travel stroke of suspension appropriately while trying to reduce
the relative displacement between sprung and unsprung masses.
From the viewpoint of durability of suspension springs, this
latter part is also desirable.

No procedure and calculation method appears to having been
derived to-date which is convenient enough for engineering appli-

cation. To some extent, suspension design is still performing



with a rough calculation and experience. A more precise
calculation method is proposed in this paper. By using this
method, the statistical characteristics (such as root mean
square, by which probability levels are estimated directly by
a Gaussian hypothesis) of vibrations and dynamic loads will be
estimated easily by explicit formulas. The optimal damping
selection, estimation of speed limit on rough road and experi-

mental evaluation are discussed.

2. STATICAL CALCULATION OF VEHICLE VIBRATION AND DYNAMIC LOAD

ON ACTUAL ROAD SURFACE.

A large amount of statistical measurement data on road
roughness have been acquired in several countries. All these
data imply that a certain regularity exists behind the random
movement. The distribution of road roughness is essentially
similar to the Normal (Gaussian) distribution, and the frequency
constitution of different road surfaces are very similar to each
other. The power spectral density of different surfaces may be
expressed by anunique formula as follows

s(@) = a/2° (em®/c/m) (1)
where, : spacial frequency (circle/m)
n: frequency index (dimensionless), representing a
relative distribution of frequency components.
For most of road surface, n = 2.
A: coefficient, representing the intensity of the road

roughness (sz/c/m)



i

It has been proved that, for a linear system, if the input
is Gaussian random process then the output of the system must
be a Gaussian random process too. For a Gaussian distributed
random variable (which may represent the roughness, vibration
acceleration or dynamic load), we will have a clear understanding
about the distribution of x if and only if the mean value m and
the root mean square g, are known. The probability density will

be 2

. _ ‘

(x_mx) ’
P(x) = e 2
/ZWGX 20x (2)

The probability N(a) of x exceeding a certain level(s) may be
obtained from integrating equation (2)
N(a) = 1 - [ P(x)dx (3)
-a
The results of the integration have been made already in a form

of table in many mathmatical handbooks or books on probability

theory. For instance
x| > a = 30, N(a) = 0.0027
x| >a = 3.50 , N(a) = 0.00047
x| >a = 4o, N(a) = 0.00006
x| >a = 4.89 , w(a) = 1070

If we like the probability of vehicle vibration acceleration
z > 1g to be less than 0.00006, then we should ensure OE < 0.25¢g

(the probability of z > 402 is 0.00006)

If we like the probability of suspension bumper hitting to

be less then two point seven thousandths, then we should ensure



the RMS of suspension travel Gy less than one third of the
maximum stroke (the probability of Y > BGY is 0.27%).

If we like the probability of dynamic load P larger then
static load G to be less than 4.7 ten thousandths, then we
should ensure the RMS of dynamic load Gp less 1/3.5 times G
(the probability of |[P| > 3.5G is 0.00047) and so forth.

Thus for a random process with Gaussian distribution, a
calculation problem of level distribution of vibrations and
dynamic loads will become a calculation problem of RMS value
of vibrations and dynamic loads on the actual road.

The RMS of a random process x can be obtained by inte-
grating over its power spectral density'SX(m) as following

s 2 = L s (w)as (4)
X 2T J X '

—00

where the dimension of frequency o is rad/sec. If a dimension

of c¢/sec 1is used instead of rad/sec, let 27f =w, then,

2 ' C
o = [ s _(Hraf = 2] s (f)df (5)
’ 0

-0

where the last equality holds due to S'X(f) being an even
function.

If Sx(m) represent a power spectral density (PSD) of the
output vibration or dynamic load, then it will relate with PSD

of road surface as follows:

s () = WG| 5 (@) (6)

Here |W(jw)| is the amplitude response function which can be

obtained from the transfer function W(s) by substituting



s = Fjo, (3 = V-1).

Since the transfer function W(s) is a fraction in which
the order of numerator is always less than the order af the
denominator, and power spectrum densities are always an even

function, i.e.

s (w) = VSq(jw) . /Sq(—jw)

with regard to equation (6), equation (4) can be expressed as

«©

2 _ 1 G(jw)
% T 2= IwF(jaﬂ~ F(-Jw de 7
Letting S = Ju, we get
2 1 ‘j G(s) . ,
9% 277 J  F(s)F(-3) ds 8)
where, G(s) = bosén—2-+blzn_4 +...+b_ _; is always an even

function since all of power index of s are even.

F(s) = a.s’  + a.s + ... + a

0 0

Equation (8) represents an integration of a complex variable

function. The integration path is along the whole imaginary axis.

T o~ joe -
3 theorem, we can clos

According to Jordan ’

[}

the integrating path
by adding an infinite half circle without causing any difference
of the results, and the value along the closed path will equal to
the sum of all residues in the left half plane. After some manip-

lations, the result of equation (8) is obtained as

ALl
X 2a A

I.—l




where
—al ao 0 0 0 0 0 0
—a, a2 -2, ay 0 0 0 0
A = —a5 a4 —a3 a2 —al ao 0 0
n
;a, 4 - = = = = = m == - (-1) a
b0 aO 0 0 0 0 0 0
bl a2 —al aO 0 0 0 .. 0
Al = b2 a4 —a3 a2 —al ao 0 .. 0
; B o
b e T R (N 1 -
n—-1 n

For a Gaussian variable, once 0. is obtained, all probability

distributions will be known.

3. TYPICAL ACTUAL ROAD SURFACE AND INPUT POWER SPECTRUM DENSITY

As mentioned above, random roughness of road surfaces 1is
approximately Gaussian. The spacial PSD of road surfaces can be
expressed as follows

s@) = 5 (em/c/m) (10)
N

]

If the vehicle speed is v, the temporal PSD will be [5]

S'(f) = %—S(Q) = Av/f2 (cm2/c/sec), (11)

Letting w = 2rf(rad/s) and noting that

l(cm2/c/sec) = g% (cmz/rad/sec),
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the temporal PSD of road surface can be expressed as

S (w) = ZWAVQE (cmz/rad/sec) (12)
g w2

Noting further that the coefficient of right hand side of
equation (12) only contains A and v and both are of first order,
the input PSD (function Sq(w)) of different road surfaces are
only dependent on the product Av. Increasing road roughness
constant A is equivalent to increasing vehicle speed v at the
same rate. Once the vibration and dynamic load of any A and v
is calculated, the vibration and dynamic load for other A and v
will be directly deduced by modifying a simple constant. It is
known from equations (4) and (6) that if the value (Av) increases
n times, the output (vibration and dynamic load) will increase
n times also. In order to relate this calculation to actual road
surfaces, some typical values of A are as follows:

cross country rough road A =1 (cm2-c/m)

low quality road surface A= 0.1 ( " )

high quality road surface A = 0.01 ( " )

excellent high speed road A = 0.001 ¢ " )

4. STATISTICAL CALCULATION OF VIBRATION ACCELERATION OF VEHICLE

BODY

For most modern motor vehicles, the dynamic index of mass
distribution are approximately equal to 1. So the front and
rear suspension can be considered as separate systems as shown
in Fig. 1. The differential equations of motion for each system

are as follows



MZ + k(z -g) + c(z-z) = 0
(13)
MZ + m § + ck(c -q) = 0
where, z: vertical displacement of sprung mass (vehicle body)

z: vertical displacement of unsprung mass (wheels)
g: elevation of road surface
M: sorung mass

m: unsprung mass

c: spring constant of suspension
Cyt vertical stiffness of the tire
k: coefficient of damping

The transfer function of body acceleration z vs road input

g is as follows:

2 22
W, (2eS+w ) S~
Z _ _(Z‘Eb (L)O)S (14)

q 4 c 3 2 2. 2.2, c 2 2 2

S +2€ (1+W) S +(m0+uwo+wk)s +2 wks+momk

where, o2 = S = X 2 _ SE - M
nere. 0o M’ 2M" k m’ H m’

s: the Laplace variable.

From equation (12) the PSD of road surface may be written as

S (w) = ZWAV%L-' —%—
g Jjw -Jw
and letting S = Jjon, yields
s, _ 1.1
GF) = 2MAv 5 g (15)

Referring to equation (4), (6), (8), the RMS of body

acceleration is



— e joo .. ..
=2 _ 1 z 2 _ 2TAV Z . Z
25 = ap ] Iqee T spwae = Seem ] () g-(-s)ds
- J*® g g
jOO
= 2mAvi=—— [ - AGQ%)ﬂ ds] (18}
< ...jco A2 S =
where
_ 6 4 2
G(s) = bOS + blS + bzs + b3
F(s) = a 84 + a S3 + a 82 + a.S + a
g - 90 1 2 3 4
2 2 2 2
= 1 = = 0 o=t
ag 1, al 2e (1+u), a2 (w0+pmo+wk), aj Zawk
2 2 4 4
= sl ll | = - =
bO 0, bl l e Qk’ b2 mkwo, b3 0
Substituting these values into equation (9), yields
52 = (;;) : 7% . 271Av | (17)
0
-2 (1+u) 1 0 0
2 2 2 2
—Zewk (l+u)wo+»k -2e (1+u) (l+u)m0+m
A = .
2 2 2 2 2
0 momk 2€mk wowk
0 0 0 0
0 1 0 0
ey (141) 040> ~2¢ (14y1) (141) 0 2+0
A _ k 0 7k 0
: —w4w4 wzwz —26@2 w2w2
07k 07k k 07k
0 0 0 0
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Expanding the determinants A and A many terms are can-

l,

celed and the following simple result is obtained

o] s} A
4

Y 4T+ (I+p)w c
.2 kK TP k 1+u
= = — + .
z 2AvV =7 2wAv((1¢ 4uw) (18)
where, ¥ = £ s damping constant. Once 22 is obtained,

@
0
Ty and the probability distribution are known.
From equation (18), the following observations can be made:
(1) When M and m are constant, reduction of either suspen-

. . . , . =2
sion spring rate or tire stiffness will cause a decrease of Z7.

(2) Differentiating z vs U, we get
Y 4
az° “9
au - - which is always less than zero. So
deu”

we know that increasing U will cause a decrease of z7, i.e.
. . . . . , - =2
either 1ncreasing M or reducing m will cause a decrease of z".

(3) If we increase the damping constant ¥, the first term

of equation (18) will increase and the second term will decrease

monotonically. Only a particular value of ¥ relates to the minimum
of 22. Differentiating equation (18) and letting diz = 0 the
: dy

particular damping constant wimin 1s obtained as follows

f
1 /1+u ¢ 1 K
b, o= Lt/ e 1)k (19)
Zmin 2 U Cx 2 fs
where, fk = (MZm)g is the static deflection of tire,
X
f = M9 is the static deflection of suspension spring.



When we take ¢y = wimin’ the RMS value of body acceleration is
equal to
— c,
22 = 2wAvwg L—B 7? )
—
_ 3 1+u fs
= ZTTAV(A)O T/’f‘; (20)
c
- c /_k 1wy
= ZWAVm J ™ "

From equation (20) further observations are:

=2 . . . T
(4) where M and m are constant, Z~ is proporticnal to CvVey

and reducing spring constant c is more effective than reducing

tire stiffness Cy for reducing 22

(5) The damping constant wimin corresponding to minimum

w2 il . .
z" is Dronortlonal to / i.e., the softer the suspension

t-hi

S

spring, the smaller the ¢¥min' But the softer the tire the

largexr the wzmln

Example 1l: A medium truck (loaded) has the following
u

C
characteristics: u = o 4, 7% = 3.52, fs = 6 cm, fk = 2.13 ¢cm,

o = 2 _ radyp 2 _ rad, 2
9 12.78 rad/s, wo = 163 ( = )<, (uk = 2300 ( s

equation (19) we calculate the damping constant for minimizing
w2

4 as /"—‘
f"
K

| I
P . = =
Zmin 2v fS

From

0.298

From equation (20) the corresponding 22 is

/ C

52 = oraves /—l—i‘i K~ 97300av
min 0 u C

If the truck is driven on a road of A=1 (cm2 c/m) with a speed
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36km/h, then Av = 10 cm“"S/s and

oy = /3% = 522 cm/s2 = 0.533 g

. . . . . . . ]
From the Gaussian distribution table the probability of }zl>lg

(when the cargo begins to 1ift up from the bed) is equal to 6%.

Example 2: A large-size car, (with normal load) has the

c
following characteristics: u = 6.12, 7? = 8.35 suspension
static deflection fS = 18 cm, tire static deflection
fk = 2.51 cm, wg = 54.6, wi = 2790. The damping constant corre-

sponding to the minimum of vertical acceleration of spring mass

is now

- 1 -
) = 3 = 0.187

Zmin

The corresponding RMS value of vertical acceleration of sprung

mass 1is
— /1o Cp
5 = omaves / EE K o 2900av
0v u c

If the car is driven on the same road with same speed as
the truck in example 1, (A=1, v=10), then -02 = 0.288g, which is
only at level of 56% of the truck in example 1. From the Gaussian
distribution table, we found that probability of |Z|>1g is equal
to 0.05% which is a value of a hundredth compared with the truck
mentioned in exampled 1.

As explained later, for a high speed car, from the viewpoint
of direction control, it is preferred to choose a value U larger

than wzmin’ especially for the rear suspension.
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5. THE STATISTICAL CALCULATION OF SUSPENSION TRAVEL.

From equation (13), letting z - ¢ = Y, the differential

equations becomes

MY + kY + cY + ML

} (21)
k 4

It
(@]

MY + (M4m)Z + o,z

il

From this, the transfer function of suspension travel Y vs road

input q is found as

2

g(s) ! 3 ;Mksz 2. 2. 2. 72 e

2 S +2¢(1+y)S +(m0+umo+mk)5ﬁ2€wks+wowk
Referring to equations (4) and (6), the RMS of suspension travel
will be

2o A ae|Ps mae = b [Eaw P 2
Letting 0 = %, yields

Y2 = 27TAV[2Tlrj {;:F(§;§1—s) ds
where, G(s) = bOS6 + blS4 + b282 + b3
F(s) = aOS4 + alS3 + a282 + a3S + a,

aO = 1, al = 2€(l+u), a2 = (l+u)wg+wi, a; = 2€mi, a, = wgmi
bo = 0, bl = 0, b2 = wi, b3 = 0.

Substituting the above values into equation (9) we have

4 A
2 (-1) 1
4 = 2mAV 5a N (23a)

0
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where,
-2 (1+u) 1 0 0
2 2. 2
-2 HBEAPE I - !
o _emk (l+g)m0 wk 2¢ (1+uw) 1
- 22 2 2 2
0 wowk —2€wk (l+u)wo+mk
2 2
0 0 0 womk
0 1 0 0
, 2 2 - ,
0 \l+u)mo+wk -2 (1+u) 1
A =
1
4 2 2 2 2,2
mk wowk Zemk (l+u)wo+wk
2 2
0 0 0 wowk
Expanding A and Al, many terms are canceled and a simple
result is obtained as follows:
2
v? = o2mav iHH (24)
4eu

It 1s seen that, under a certain operating condition (A and

v kept constant), the value gj only depends on € and Y. When
U = % is constant, v2 will be inversely proportional to € = g%.

Increasing damping € will cause an effective approach for reducing
the RMS of suspension travel.

Once Oy = /55 is obtained, the probability distribution of
suspension travel will be obtained also, by referring to a
Gaussian distribution table.

Example 3: The same truck as in example 1, u = 4, € = Yo, =

0.298 - 12.78 = 3.8 rad/s (corresponding to ¢ = wﬁmin)' driven
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on the same road (A=1, v=10m/s), the bumping stroke [Y]=6 cm.
Calculate the probability of bumper hitting and Y>4cm as follows:

From eguation (24)

2

4 —_— . E = E - =

Y = AV 5 e AV2 138 0.516AvV
o, = vZ = 0.719 JAv = 2.27 cm

Yl o 5. ea

C

v
4

Referring to Gaussian distribution table, the probability of

lv|>2.64 o is 0.008.

6. THE SPEED LIMIT ON ROUGH ROAD

When a vehicle is driven on a rough road, it usually has
to slow down to avoid unacceptable vibrations. Some particular
vehicles, e.g. ambulances or trucks carrying somé fragile cargo,
even driven on a smoother road, regquire a low level of vibration,
and can only be driven under a certain low speed. Thus, the
speed limit on rough road is usually a significant index of
vehicle ride quality.

There are two cases which the vehicle speed is restricted
with no regard to the engine power,

(1) Bumping stroke [Y] is large enough, but the accel-
eration of body vibration g, exceeds a certain level which is
unacceptable for driver or passengers. In other words, in this
case, the probability of Z being larger than a certain value, is

too large.



(2) Bumping stroke [Y] is not large enough, while o
exceeds an allowable value so that the probability of bumper
hitting reaches an endurance limit, because intense bumper
hitting causes an unacceptable shock.

Suppose the enduraﬁce limit of RMS of vehicle vibration

is [Gé]. From equation (18), letting 52 = [GZ]Z, the first

kind of speed limit (related to case (1)) is obtained as follows

2
{V’ ] = 0.573 {U:Z.]
a A 2 4
1 %k o, Yo 14w
U de
or (25)
2
fo.]
(v ] _ 0.573 - ; |
a 1 A @3[-—~kw l—t-u]
0" c¢c Ay

Determining [Gy] according to bumping stroke and acceptable

bumper hitting probability, substitution into equation (24),

gives the second kind of speed limit (related to case (2)) as
follows
. 2.29 U 2
[Va]2 = Tx 1+ [cy] (26)

Obviously, the actual speed limit will be the smaller one of
these two limit values.

Now we introduce two parameters &, n, defined by [02] = g,

¥l

and [oy] = The value of £ and n imply the probability of

|Z2|>1g (cargo throwing) and |Y|>[Y] (bumper hitting). For an
ordinary truck or an off-road vehicle, it is chosen that £ = 2,

n = 3.



Example 4: The same truck as in example 1 and 3, driven
on a rough road A=1l(cm-c/m). To calculate the first speed
limit: we substitute 0y = % = % into equation (25) and get:
o2 : 980 2
v ] = . __Z = . 2 = 31.45 km/h
a’ A Y 14y 3.8 2300 2600 >
e 40 .27 : 4 43.8° 4
uo de U

The second kind of speed limit is found by substituting

[Oy] = 5 = 2(cm) into equation (26) vyielding,
_2.29 _ ep 2 0 3.8-4...2 _
vl = = o Lo 17 = 2.29 ==[21% = 27.8 Xi/h

It is seen that the speed limit of this truck depends on
bumper hitting and its value is equal to 27.8 km/h. It is
noticable that in order to increase vehicle speed on rough road,
it i1s important tc reduce the suspensioﬁ spring constant c and

the tire stiffness c, and to select the damping constant properly.

k
In the case that the bumping stroke is large enough, it is
—
acceptable to choose y = % y f& (see equation (19)). However,
S

it is seen from equation (26), that in the case when the bumping
stroke is not large enough, changing c¢ and Cy will not affect
the [Va]z. In this case, the only effective way is to increase

damping. As a result of increased damping, the [V4]., will increase,

2

but [V,] may decrease, if ¢ > .. So the optimum value of

zmin’

damping will be obtained according to the condition [V4] [Val,,

l:

when the condition for bumper hitting is dominant. This reason-

able value of damping will be obtained by equating (25) (26), i.e.



—— 0. ]
. VSE=Y / 5 , e e
O .

In the case that the tire stiffness Cy is constant,
decreasing the spring constant ¢ and choosing damping according

to equation (27) (if ¢ > ¢ ) will cause an increase of speed

Zmin
limit. For example, in the case of example 4 (wzwimiq = 0.298,
[Y] = 6cm, [Gy] = 2 cm), according to eguation (27): ¢y = 0.334,
e = mow = 4.26(1/s) and substituting into equation (26) yields
[Va]l = [Va]2 = 31.2 km/h. Comparing with the speed limit
under U = Y. . = 0.298, it is increased by 12%. However,
Zmin
when we decide to reduce the spring constant, besides properly
choosing damping and bumping stroke, some appropriate arrange-

ments should be made to avoid having rolling pitching and chang-

ing of body height become unaccevtable.

7. DESIGN OF BUMPING STROKE.

According to the above discussion, to guarantee the desir-
able high speed limit, it is needed to choose different bumping
stroke [Y] for different types of vehicles.

Of course, choosing the bumping stroke as large as possible
may have the advantage of enhancing the second speed limit. But
if the [Y] is chosen so large that the [Va]2 becomes larger than

(Va] then increased [Y] will be no longer helpful, but rather

l 14

lead to very high center of gravity height and very large spring

stress. Thus, it is reasonable to choose [Y] such that (val, = [v,]

1 L
Equating (25) (26) yields
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EGEE
[o.] = : (28)
2
/2
4e 1+u u)O
. a . Tyl | . ,
Substituting LUEJ = g and {Gy} = ;;- into equation (28),
gives
[yl = = = = (29)
/7 wg 4 - / 2 tg
As mentioned before, in most cases it is chosen £ = 2, n = 3,
therefore
1.5f4
(vl = y (30)
f
Jap? S+l
k
If the damping 1is chosen such that the condition of minimum 22
is satisfied. 1.e. Y = 5/F 7 substituting into equation (29)
s
we have
£
vl o= % — (31)
V32
Taking & = 2, n = 3, we find
[y] = 1.06 fs (32)

This means that we should design the bumping stroke as

. . . 1/t
large as 1.06 times the static deflection under y = 5//fk
s

condition. For the suspension with relatively small static
deflection (e.g. fs < 6 cm), such a design is feasible. But
for softer suspensions, because of other considerations (reduc-

ing e.g. height and spring stress, proper wheel guidance etc.),



it is necessary to choose smaller [Y] and try to reduce the
bumper hitting probability by means of increasing damping .

In this case, the [Y] is given and damping ¥ will be calculated

P
by equation (27), while accepting a certain increase of Z°.

However, 1if damping { is determined in advance for scme reasons,
then [Y] will be calculated by equation (30) or eguation (29).

Example 5: Same truck as in example 1, suspension static

deflection, fg = 6 cm, damping ¥ is chosen to meet the minimum
z¢ condition i.e. ¥ Vyin 5 fs 0.298.
Originally choosing [Y] = 6 cm, the second speed limit con-
dition becomes dominant. In this case, the speed limit (in
A=1 road) is [Vg], = 27.8 km (see example). If we redesign

the bumping stroke according to equation (32), theﬁ the bumping
stroke will be [Y¥] = 1.06 x 6 = 6.36 cm. From equation (25) or
equation (26) we have [Va]l =‘[Va]2 = 31.45 km/h. Comparing
with original value, the speed limit is increased by 13%.

8. THE PROBABILITY DISTRIBUTION OF DYNAMIC LOAD BETWEEN TIRE

AND ROAD SURFACE

The dynamic load between tire and road surface is P = MZ4+mz .
After solving the transfer function %(s) and %(s), the transfer
function of the relative dynamic load between tire and road
surface ? (G is the static load) vs road input g, is obtained

G

as follows. 5

S 2, .2
——— qQ
P/G(s) _ (l+u + 28 + mo)s (33)
q Z 3., 2, 2 2 .2 5 2. 272
S +2e (14+u)S +km0+gwo+ k)S +4emks+w0wk
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ft

Referring to equation (4) and equation (6) the RMS of the

relative dynamic load will be

|

2 o 2
£y - 2+ [ Kji;%m)l S {(wydo
ek amo L, 'Gqg T Ta T
Recalling Sq(w) = Zﬂév , and letting o = § vields,
w J
4 .
—_—2 ® Joo
P k 1 r G(s)
{— = —_— A
L 2nav = o3 {ij(s)F(—s) ds] (34)
where,
5 a2
G(s) = DOS + blS + Dzb + b3
_ 4 3 2
F(s) = aOS + alS + aZS + aBS + a,
2
20
-1 2 0 4
b, = b, = 4e” - — , b5 = - b, =0
f)l -1 1 14 2 7 -
o t ik v
a,. = 1, a, = 2¢(1+y), a, = (l+u)m2 + m2 a, = 7¢m2 a
0 "1 T2 ’ 0 k" 73 Tk T4

Subsituting these into equation (8) and equation (9) yields

(=) = 27AV

v
IS

where A, A are the determinants defined by equation (9).
After expanding there determinants, many terms are cancelled

and finally the following result is obtained:

2 wz 2
P _ TAV k 2 4 2 2
(5) = T [(lJrU mo) + Moy + 4e mk] (35)
.29 gl
. g _ 1+u € .

Notice that £ = =, £ = —=— g, y = — , Equation (35)

S 2 k 2 W

W Wy 0

may be rewritten as follows:
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2 t f

p A 2 2 ,
@) = S L - D% w4t (e 2 (36)
2fswouw k k
2

by equation (35) or (36), the RMS

value of the dynamic load will be obtained as
T
Pé
o = o/ 2
p G (G) (37)

From this and the probability tables, the probability distri-
bution of the relative dvnamic load will be obtained.

Example 6: To find the probability distribution of the
dynamic load between the tire and road surface for the same
car as 1in example 2, u = 6.12, fS = 18 cm, fk = 2.51 cm,

w, = 7.39 rad/s, Y = 0.187 (the minimum 2z condition). From

0

equation (36) we have

—, '
&) = iEi [(7.18-1)°+6.1244(0.187)%.7.12-7.18]
G 2-1.8%.7.39 -6.12 - 0.187
= 0.0295aV
OP L
= = 0.172 VAV

If the car is driven at a speed v = 40m/s (l44km/h) on a low

o}
quality road surface of A=0.1 cm2-c/m, then 7? = 0.172vVAv=0.334.

The probability distribution can be found in the available
Gaussian distribution table. For example, the probability of the

wheel leaving the road surface is equal to the probability of
OP
0.344

The damping value which relates to the minimum dyvnamic load

P <-G or P<~- , which is equal to 0.00185.

between tire and road surface can be found by differentiating
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|

2
¢ P
equation (36) with respect to y. Letting é% (E) = 0, we have
2
e’
YPmin 2 (1+a) 8 (38)

Obviously, in general, this U is only relating to minimum

2 DL
P” but 1t 1s not necessarv to be the same as wimin

Pmin

relating to

o 2 , : C o ,
minimum z . In most cases, 1s larger than ., the

d . 3 I
Pmin ZHin

larger the fs compared with fk' the larger the difference

d ¢.. . will be. Some compromise may be possible

between Y_ . an
Pmin Zmin

from global considerations. Substituting equation (38) into

equation (36), at the minimum point the RMS of tire dynamic load

will be
P 2 2TAV ! 2
() = =5 S L= T+ul (1+u) 8 (39)
a _1:!-'- | i
EWoH
Example 7: To find the optimum damping from the viewpoint

of minimum dynamic load between tire and road surface and the

corresponding RMS value and probability distribution of the

f
dynamic load. Substituting ef = fﬁ = 7.18, u = 6.12 into
, k
equation (38) yields
2
L /8D Y
1[)Pmin ) //{l+u}8F = 0.466
However, wimin = 0.187 (see example 2) which is smaller

than ¢

Yomin® From the viewpoint of dynamic load, the damping
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should be much larger than that from the viewpoint of body

vibration. When designing, it is preferable to plot out the

2
-y curves, then decide a best value of damping which

0Q,
| rd|

Z .Y an
may be a compromise of both requirements.

Generally a value close to U..

. 1s more preferable when
Zmin

ride comfort is being emphasized, and the value close to mein
is more preferable, when the road holding consideration is

dominant.

From equation (39) the RMS value of dynamic load between

tire and road surface mayv be obtained for y = mein as follows
— | ,
(2 = — 2TAY /1(6.18)2+6.12] - 7.12 - 7.18 = 0.0204Av
18%-7.39-6.12 /

I

If (Av) = 4 cmz-c/s, then o 0.286G. Compared with example

P

6, the dynamic load is decreased by 17%.

9. THE PROBABILITY DISTRIBUTION OF DYNAMIC LOAD OF OTHER

LOADING PARTS

The dynamic load transmitted by a connecting element 3
(Fig. 2) to a cargo or an eguipment (M;) which is a part of
the sprung mass, may be counted as an inertial force by Newton's

Second Law:

So when oy and the probability distribution of Z is obtained,
these are just the RMS and probability distribution of the

P
relative dynamic load (6%) transmitted to Ml’ e.g. 1in example

1, 0., = 0.533g, thereby, Opl = 0.533 M,qg.
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arts m
2 1

element 3
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the dynamic load of some unsprung parts, an extra
is needed.
imagining that the unsprung mass is divided into two

and m,

4

(Fig. 3), the force transmitted by connecting

will be considered as the dynamic load between part

1 and part 2.
— T . + se
PX mlC Mz
P . -
._i = Z (C )
D - BT T ul'
29 1+ »ll) g z
where | - 4 P = (M+m.)g
! 1 m, ' 0 1
z _ 82+2€S+w5
e 2
2€S+a)O
_ s2 5egiy?
Txo_ 22 T o5
=i — ?
PO gk 2eS5+w .
0
Referring to equation (1l4) vields
52 2, .2
P/ ( + 2¢
X/PO(S> _ \HU 2 S-+wO)S
q 4+ + 3+ 2 2, 2 2+ 2., 2 2
S +2e (14+u)S (m0+uw0+wk)8 Zewkb+m0mk
Notice that My only appears in the numerator while p
only appears in the denominator.
From equaticn (4) and equation (6):
pucnamne 1
Px 2 1 PK |
(55 = 3= §~§(3m)§ S, (w)du (41)
0 -0l 70
Recalling S (w) = ZﬂAV/wz, and w = ?, this becomes
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D JooF p
(" x) 1 x/7 0 x/ 0 s
_ = s) ., (-s) S(=)ds
PO 213 {jw g ( q J
2 .
Wy ) 37 Gls) :
= ZTAV —5 [5== | - — 45 ]
g 273 . F(s)F({-s
where,
_ 6 4 2
G(s) = bOS + blS + bus + b3
F(s) = a S4 + a 53 + a.5" + a_.5 + a
B 0 1" 2 3 4
2
2 ?MQ
bﬂ -7 L 37 b, = 47 - :Lp 4 bﬁ = —méi b, =0

U -!+] Vo i LT < ~

(4 Ml) i
_ _ _ 2 2 _ 2 _ 22

ao =1, al = 2¢ (1+y), a2 = (l+p)w0+wk, a3 = 2€mk, a4 = wowk

Comparing these with equation (33) and (34), for dynamic

load between tlire and road, the onlv difference is that in
G(s), u substituted by ul = %ﬂ From equation (8) and (9)
1 ,
we get
' A
PO g2 2a0 A
Expanding A and Al, we have .
P2 mz 2
5 TAV k 2 2 2 2
(55 = [ -~ ©5) +ues + 4e 0]
PO 292?U L+ul 0 0 k
f f
A 1+ 2 2
= o e - 72 - D w4t 2 ] (42)
fswouw 1 k k

Comparing it with equation (35) and (36), the only difference

w2 Ay f.
. KN . :{ B (14 ,i, + ~ 1 ’d —:3_ x
1s that the first term THr 1s substituted by II?I {or fk is
Fs 14y Py 7242
substituted by = ). When —= = (=) 1is calculated by
k l+ul PO PO
equation (42), referring to a Gaussian distribution table, the
P
X

probability of = will be obtained.
0
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Example 8: To find the probability distribution of

dynamic load transmitted to rear axle for the same car in example

6. The value m, can pbe determined by subtracting the wheel
welght from unsprung mass m. It is given ;i =y = .12
u=26.12, £, = 18 cm, fp = 2.51 cm, Wy = 7.39 1/s,

v o= wémin = 0.187.

From equation (42)

P 5 £ £
(P‘) = EAV {(1ﬁf“ . fﬁ-- 12+ 4+ 4¢2(1+u)fi 1 = 0.01253Av
0 2F%w i Hy Kk k
s 0
GPX = 0.112 PO/AV

Suppose the car is driven on an intensified proving track of

-

A=1 cm”-c/m, at a speed v = 16 m/s (58km/h) op = 0.112 P /T6 = 0.448P
X

From this the whole probability distribution can be found by

referring to a Caussian distribution table, e.g. the probability

of P > P_ is 0.025.
x — 0

10. INDOOR ENDURANCE TEST AND DURABILITY PREDICTION OF LOADING

PARTS.

Recently, the technique of quickening the indoor endurance
test is being developed. Besides the random loading endurance
test by means of an expansive electro-hydraulic loading system,
an effective method is the mixed circulation loading method.

A stable durability index can be obtained by this loading method
such that ZNo;{ = const., and k ~ 6.8 (N - amount of loading

(8]

circles, Ga - stress amplitude). Thereby, a durability

prediction may be expected.
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Usually, an eight-step loading program is adopted which
is drawn up according to the RMS value ¢, of the load measured

by rocad test. The load levels and cycles o

(a3
m
o)}
(@]
o)
Ul
ct
[
T
h
@)
=]
W

big cycle is shown in Table 1. For quickening the test pro-
cess, sometimes, the first three steps (g% < 1.75), which
have only little influence on the durability are neglected.
Thus, a big cycle will consist of only 497 cycles instead of
4000 cycles. In this way, the testing process will be much
quicker.

To date, the simplest constant amplitude endurance test
is still adopted 1n many cases. Obviously for estimating
durability, it is reasonable to determine the loadinq amplitude
according to RMS value of actual load in operation, e.g. B.SGX
or 36X may be selected as a lcading amplitude. Hereby, the
dynamic effects to durability may be included.

Using the method to calculate the RMS of dynamic loads,
it 1s possible to estimate the durability of the loading parts.
For example, after redesigning suspension system of a vehicle,
the RMS value of dynamic load of the axle decreases by 10%, and
since the durability index k = 6.8, (l+0.l)6'8 x 2, we may expect
that the durability, under new suspension system will be as long
as twice than that before.

From above analysis, it is noted that the RMS of dynamic
loads are always proportional to vVAv. Therefore the influence

of road roughness and operating speed to the durability of loading

parts may be estimated, e.g. if operating speed keeps constant,



the coefficient A decreases to 50%, then o, will decrease to

_l of original value. Since (/5)6'8 10, then the durability

P2

10

Thus the importance of improving road surface is seen.

V2
of loading parts will decrease to of original value.

The influence of operating speed is Jjust the same as the
coefficient A. Improperly increasing operating speed for 20%

will cause a reduction of durability of loading part to a half.

11. EVALUATION BY STEP RESPONSE TEST

When a vehicle is driven on a certain road surface, the
probability distribution of vertical acceleration %, suspen-
sion travel Y, and dynamic load on road P or on any point PX
can be calculated according‘to the method deduced in this paper.
Usually, it is necessary to make a final check by the actual
load on a proving track and to figure out the RMS or prcobability
distribution. Certainly, this is reliable but expansive. A
simpler experimental evaluation method is suggested-as follows.

Suppose that step from road input function (with an
altitude of H) is simulated at the wheel contact point, (by
driving over a step, or given a step function by a hydraulic

actuator), and output x (mav be Z, Y, P, P_ 2tc.) is recorded

X
as shown in Fig. 4. There is no difficulty to calculate an
integral of
?ox(£),?
E =/ [~ dt (43)
0

On the other hand, the value E may also be calculated by input

g(t) and transfer function W(s). The Laplace transform of



30

step input g(t) is g, so that Laplace transform of output x(t)
will be

x(s) = W(s)g (44)

C e . 77
According to the integral theorem of the original function (7]
o
;o x (t)dt = 5T [ X(s)x(-s)ds (45)
T ¢ .
0 co~jw

Since the system is stable, there is no pole on right side of

the S plane. So, we may consider the integrating path such

that cO = 0, thus
o0 2 joo
[ oxPae = A Wis) W) 4 (46)
0 T3 4 s -S
—jm
Comparing equation (46) with equation (16), (23), (34), (41)
vields . 5
E l ! 2(t)dt Ov
N S = 33
H2 0 ZmAvV
2 2 ®
g © = ZTAV / xz(t)dt = 2TAVE (47)
X H2 0

The equation (47) showing that, because the PSD is proportional

to which is the same as the energy spectral density with a

L
w2’
proportionality constant. Therefore, the RMS of any output

(z, ¥, P, PX etc.) may be obtained from the square integral of
the step input response. For example, from a step input test,

the transient curve of 7 is recorded and the related square

integral is figured out as
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, . 5
E. = | fa} dt = 0.00254 - g2 sec/cm”

. 2 : :
uppose a certain road surface of A=1 cm 'c/m and a vehicle

W

[oN)
[

of

wn

pee 0m/sec are considered, the RMS value of Z will be

22 = ZWAin = 0.16g2, g, = 0.4g

And if, meanwhile, the stress at a certain point T (t) is

recorded the related sguare integral is calculated as

g o=/ (28758 - 3980 kg% - cm® - sec.

Under the operating condition (AV)=lQ cm2 . ¢ / sec, the RMS

of the stress will be

—
I

2
ZTrAvET = 250000 kg“/cm4

500 kg/cm2

Q
Il

By referring to Gaussian distribution table, the probability
distribution of Z and 17 will be obtained. e.g. the probability
of Z > 1g equal to 0.0124 and the probability of t > 1500 kg/cm2
is equal to 0.0027.

It is necessary to discuss the problem of magnitude and
direction of step input. Because of the different damping
coefficient in different direction of the damper, it is pre-
ferable to do both upward and downward step input test and to
take the average value. For a linear system, the different
value of H will be no influence on the related square integral
E, while a larger H will reduce the measuring error. However

too large an H will cause the system to go beyvond the linear
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