THE UNIVERSITY OF MICHIGAN
COMPUTING RESEARCH LABORATORY!

RECONSIDERING TURING’S THESIS
(TOWARD MORE REALISTIC
SEMANTICS OF PROGRAMS)

Yurl G ich
ur/urevc

CRL-TR-36-84

September 1984

Room 1079, East Engineering Bullding
Ann Arbor, Michigan 48109

USA

Tel: (313) 763-8000

'Any opinions, findings, and conclusions or recommendations expressed in this publication are those of
the authors and do not necessarily reflect the views of the furiding agency.

Reconsidering Turing's thesis

(Toward more realistic semantics of programs)

Yuri Gurevich!
Department of Electrical Engineering and Computer Science -
The University of Michigan, Ann Arbor, M| 48109

Abstract. The classical computation model is based on the notion of a potentislly infinite
computing device (like a Turing machine or an idealized Pascal machine). We propose here an
alternative computation model which explicitly recognizes finiteness of computers. The new
operational semantics is especially appropriate in the case of algorithms sensitive to the bounds
on machine resources (like algorithms for operating systems).

'Supported in part by NSF grant MCS83-01022

Page 2 Yuri Gurevich Reconsidering Turing's thesis

Introduction

In the classical computation mode! algorithms are closely related to potentially infinite
computing devices (1ke Turing machines or idealized Pascal machines). These devices interleave
computing with extending the necessary resources in a manner reminiscent of human computing
with pen and paper. In S1 we explain our reservations with respect to the claim -- implicit in

Turing's thesis -~ that every Turing machine realises an algorithm. The same reservations apply
to potentially infinite devices in general.

Our alternative to the notion of a potentislly infinite machine is presented in S2. it is the
notion of a uniform family of finite machines. This notion is to remain informal (like the notion of
a potentially infinite machine in the classical case). A program for & uniform famfly of finite
machines defines a global algorithm; every machine in the family executes a local version of the
global algorithm. In particular, a progrem for a potentially infinite machine M defines a global
algorithm for the family of finite versions of M; this global algorithm is insensitive to those
resource bounds of the finite machines which vary from one machine to another. in 83 we discuss
global algorithms which are sensitive to the bounds on varied resources. Such resource sensitive
algorithms are most common in real world computing. Algorithms realized by operating systems
obviously are resourse sensitive. But also many algorithms whose input-output relation is
external to computers are resource sensitive for the sake of efficiency. An algorithm for sorting 8
large detabase, for example, may start with loading as much deta as possible into the primary
memory.

The notion of a global algorithm is to remain informal too. Its counterpart in the classical
case is the informal notion of an algorithm. Even though resource sensitive global algorithms do
not result directly from programs for potentially infinite machines, they can be simulated by
potentially infinite machines. However we prefer to study global algorithms directly. An
interesting question arises: what is a counterpart of Turing's thesis for global algorithms? This
question is addressed in S4. Finally, SS contains some additional remerks.

Page 3 Yuri Gurevich Reconsidering Turing's thesis

An important motivation for this paper is related to denotational semantics as presented in
[St]. If you are not interested in denotational semantics just skip the rest of this introduction. The
Scott-Strachey approach to the programming language theory is most impressive; | am not
completely comfortable with the present form of denotational semantics however.

It was surprising to find untyped lambda calculus as a basis for denotational semantics. This
calculus was never too popular among logicians; the underlying intuition of the calculus is not
clear. Note that untyped calculus is used in [St] mostly for foundstional purposes; when it comes
closer to applications, a much more intuitive typed calculus is used. Untyped lambda calculus does
not have (contrary to, say, Peano Arithmetic) a standard model. To be sure, untyped lambda
calculus has (attractive) models [Sc). Chesing such a model, current denotational semantics
provides meaning to programs in a consistent way. But the meaning is somewhat arbitrary
because of some arbitrariness of the underlying model.

More importantly, the finite character of a computer is not reflected properly in current
denotational semantics (in spite of the presence of finite elements in lattices and the use of error
elements). The operational counterpart of this denotational semantics is an infinite machine. It
comes as no surprise that current denotational semantics deals more easily with a compiicated
recursion than with a simple utilization of, say, the primary memory.

It is our intent to use the alternative operational semantics as a basis for a reformed
denotational semantics which provides unique mesning to programs and is able to deal neturally
with limited resources.

Acknowledgements. This paper gained much from the constructive criticism of Andreas
Blass. Issues related to hardware were an object of stimulating discussions with Gideon Frieder
and with John Patrick Hayes who contributed some exemples of uniform families of finite
machines. Saharon Shelah contributed to related complexity issues (complexity considerations

will be an object of a subsequent paper). Comments of Egon Boerger were useful as well. | am very
grateful to all these people.

Page 4 Yuri Gurevich Reconsidering Turing's thesis

S1 Another look at potentially infinite machines

Turing's thesis states that every algorithm can be simulated by an appropriate Turing
machine. An implicit (or the “trivial™) part of the thesis is that every Turing machine realises an
algorithm. This implicit part of the thesis is re-examined here.

Turing machines are potentially infinite idealised computing devices. Whenever a new
portion of a tape is needed, we go and somehow get it. In other words, computation of a Turing
machine can be interleaved with extension of its tape (or tapes). Generally, computation of a
potentially infinite computing device can be interleaved with extension of resources.

One obvious criticism of potentially infinite devices is related to finite character of many
relevant recources: eventually we will run out of tape materisl, ink or whatever. Here is another
criticism which seems to us more important: the program of a potentially infinite computing device
does not tell us how and where to get an additional portion of a needed resource.

(For proving theorems about Turing machines it is convenient sometimes to view them as
actually infinite computing devices. Actually infinite computing devices are even more impractical
and we restrict this discussion to potentially infinite machines.)

It isn't our intention to ridicule the implicit part of Turing's thesis. The finite character of
resources is a philosophical question and physical limits on resources are far removed from the
needs of ordinary computing. Moreover, in many cases computing can be interleaved with extension
of resources. Consider for example the case (analysed by Turing [Tu]) of a human computer using

pens and paper. (Juggling with more and more disks turns even the 11ttle Macintosh into a
potentially infinite machine.)

However, existing electronic computers (under usual usage) do not seem potentially
infinite to us. With all due respect to the classical computation model we would Vike to propose
another computation model which deals only with finite computing devices.

Page 5 Yuri Gurevich Reconsidering Turing's thesis

S2. Analternative to potentially infinite machines

Our basic assumption is that the hardware of a computer is essentially fixed. Changing a bolt
is not important but extending the primary memory (or adding a new processor to 8
multiprocessor machine) turns a given computer into a new one.

Since the hardware of a computer is fixed the computer can be viewed as a finite automaton:
it can be only in finitely many essentially different states. However the conventional finite
automata theory is not of much help in the case of a realistic size computer. The total number of
essentially different states is overwhelming. It is not feasible to describe the behavior of a real
computer by a state transformation table or to write down a reguler expression describing the
given computer.

Finite machines satisfy perfectly the implicit part of Turing's thesis but not the explicit
part of it. Consider for example an ordinary Pascal program for computing, say, the factorial
function. It defines an algorithm which cannot be adequately simulated by any finite machine. Of
course, the program can run on a finite machine but the intended meaning of it will be distorted
(when it comes to computing the factorial of a lsrge enough number). In other words, no finite
machine gives an adequate operational semantics to our progrem whereas an idealised potentially
infinite Pascal machine is able to do that.

We seek a computational model which allows only finite machines but is nevetheless able to
provide an adequate operational semantics for programs and algorithms. In this connection let us
emphasize that philosophical rejection of the implicit part of Turing's thesis does not shake the
strong feeling that a program for & potentially infinite machine gives a genuine algorithm that can
becarriedon as Jong as we have the necessery resources. Such program runson all
corresponding finite machines. All those finite machines together provide -- we believe ~- an
adequate operational semantics for the program. All finite (virtual) Pascal machines together
provide an adequate operational semantics for Pascal programs. Similarly all finite versions of a
given Turing machine provide an adequate semantics for its state transformation table . This brings

us to our alternative to a potentially infinite machine. It is & un/form family of finite
meachings.

Page 6 Yuri Gurevich Reconsidering Turing's thesis

The machines in a uniform femily are related by means of a common programming language.
The same programs run on all the machines. Any particular machine is specified within the family
by a bunch of parameters, the parameters reflect the resource bounds. The finite Pascal machines
form a uniform family. Finite versions of a universal Turing machine form another uniform
family. The finite versions of any potentially infinite idealised computing device form a uniform
family. But a uniform family can also be finite. The notion of uniform families of finite machines
will remain informal. Possible formalizations of this notion will be discussed later.

Here is an important criterion of uniformity of a family F of finite machines: there isa
potentially infinite machine (with a fixed program) which, given the parameters of an arbitrary
machine X in the family F, simulates X using only a finite - - and computable from the parameters
of X -- portion of its resources.

Let us elaborate on the uniform family of finite versions of & universal Turing machine U.
(An accurate description of finite Pascal machines is a complicated story. From our point of view it
amounts to providing an adequate operational semantics to Pascal itself.)

We suppose the following about U. It's only tape has a specially marked leftmost cell and is
potentially infinite to the right. Autonomous input and output devices are used. When the control is
in a special reading mode (state) the input device provides the first unread character or a special
end-of-file character. As a side effect of an instruction a character can be sent to the output device.
An input consists of a program followed by a special character and data. First U writes the program
on the tape and then executes it on the data. The data is not supposed to be necessarily finite: the
machine U can work as an operating system or somebody can keep providing data from a terminal.

For every positive integer n consider the finite version of U with tape of length nand a
specially marked rightmost cell. If this finite machine attempts to move the head (or a head if there
are several heads) to the right from the rightmost cell then it haits in a special mode of the control;
otherwise it works exactly like U. All these finite machines together form a uniform family.

Page 7 Yuri Gurevich Reconsidering Turing's thesis

S3. Olobal algorithms sensitive to resource bounds

A program for a uniform family of finite machines gives a glaba/ algorithm for the
family; a particular finite machine executes a local version of this global algorithm. Like the

notion of & uniform family of finite machines the notion of global algorithm is to remain
informal.

Let us consider more closely the uniform family of finite versions of a potentially infinite
machine. Some global algorithms for the family are given by programs for the potentially
infinite machine. Let us call them Turing global algorithms for a moment. An interesting
question arises : are there non-Turing global algorithms ? In other words, are there global
algorithms for the family of finite machines which cannot be given by a program for the original
potentially infinite machine ?

Our answer is YES. To be more specific we consider the family of finite Turing machines
from S2. Using the ability to recognize the rightmost cell the finite machines can execute
programs which are meaningless for the original machine with tape unbounded to the right. For
example the following global algorithms can be programmed.

1. Partition the free part of the tape (which is all the tape except for an initial segment
needed for the program) into two intervals of the seme length (if the free part is of odd length
let the left interval be one cel) longer). Write the incoming data on the left interval till it is full
or the symbol $ is encountered or the end-of-file is encountered. If and when $ is encountered
write the subsequent data on the right interval till it is full or the end-of-file is encountered.
Then compute relative frequences of the character a on each interval. (An algorithm of that sort
can be useful in check ing whether two parts of & text use the same code.)

2. As above, partition the free part of the tape into two intervals of the same or almost the
same length . Perform a routine L with the incoming date on the left interval till a special
symbol $ is encountered. Then perform a routine R with the incoming deta on the right interval
tilt $ is encountered. Then agatn perform L on the left interval, etc. Halt if end-of-file is
encountered. (This algorithm provides some primitive time sharing).

Page 8 Yuri Gurevich Reconsidering Turing's thesis

The examples look somewhat superficial (ike anything done with Turing machines) but
they convey, we hope, the idea. Algorithms for finite machines can use the resource bounds --
the primary memory size, the maximal size of machine words, the number of processors (in the
case of multiprocessor machines), etc. -~ in an essential way. Many practical algorithms do,
especially algorithms for operating systems.

Before we proceed let us introduce the following terminology. A global algorithm for a
uniform family of finite machines is resource insensitive 1if it does not mention the machine
resource bounds; otherwise it is resource sensitive. A resource insensitive global algorithm
runs in exactly the same Way on any two finite versions of the same potentially infinite machine
all the time that the needed resources are available. Every global Turing algorithm is resource
insensitive and, vice verss,every resource insensitive global algorithm for the family of
finite versions of a potentially infinite machine is a Turing global algorithm.

- Of course, our definition of the family of finite versions of the universal Turing machine U
was biased. By introducing the new special mark for the rightmost cells we extended the
programming language and allowed penetration of information about the recource bound into the
programming language. If the rightmost cells are not specially marked then every global
algorithm for the family is a Turing global algorithm. Was it fair to introduce a special mark for
the rightmost cell? Agein our answer is YES. After all, real programs run on finite machines
and in many cases they are resource sensitive.

Thers is no doubt of the usefulness of resourse sensitive global algorithms. Knowing the
length of machine words and the needed number of digits after the decimal point in a numeric
computation such an algorithm can figure out whether single precision or double presision, etc.
should be used. Knowing the number of processors (in the case of multiprocessor machines)
such an algorithm can figure out how to divide between the processors the job of multiplying two
matrices. Operating systems adaptable to many computers (like the kernel of UNIX) execute
resource sensitive global algorithms. The global (even global resource sensitive) algorithms can
be simulated by potentially infinite machines but we prefer to study them directly.

Page 9 Yuri Gurevich Reconsidering Turing's thesis

Some high level programming languages -- like FORTRAN -- do not reflect any
information about resource bounds. All that a finite FORTRAN machine can do is simply to mimic
the potentially infinite FORTRAN machine until one of the necessary resources is exhausted. On
the other hand Pascal has an implementation-defined constant MAXINT. Several
implementation-defined constants are found in ADA and APL; these constants reflect
considerable information about the resource bounds. There seems to be a trend to include some
implementation-defined constants in high level programming languages. We consider this trend
symptomatic. It reflects, we believe, the fact that the operstional semantics based on a uniform
family of finite machines is in many cases closer to the intended meaning of usual programs than
the operational semantics based on a potentially infinite machine. (Note thet enriching 8
programming language by names for essential resource bounds does not make it implementation
dependent. Pascal with MAXINT, for example, is not more implementation dependent than Pascal
without MAXINT).

Page 10 Yuri Gurevich Reconsidering Turing's thesis

S4. On the new thesis

Now that we know about existence of "non-Turing" algorithms we would like to formalize the
notion of global algorithms having Turing's thesis in mind as a model. Turing's thesis can be
restated as follows: every potentially infinite computing device can be simulated by a Turing
machine. It implies that every potentially infinite computing device can be simulated by a fixed
universal Turing machine equipped with an appropriate program. Thus we would like to define
formaly a special kind - - a tribe - - of uniform femilies of finite machines or a specific uniform
family -- & universal family -- of finite machines; the new thesis would then state that any
uniform family of finite machines can be simulated by an appropriate family in the tribe or by the
universal family with an appropriate program respectively.

But what does it mean that a uniform family F2 of finite machines (with an appropriete
program) simulates another uniform family F 1 of finite machines? We restrict our attention
here to the case when the F2 machines know or are able to find out their resource bounds. F2
(with a simulation progrem Q) s/mu/ates F1 if

(i) given the parameters of an F 1 machine X, an arbitrary F2 machine Y (equipped with the
program Q) computes and outputs either YES or NO; in the case of YES the machine Y is ready to
simulate X, and

(ii) for every F1 machine X there is an F2 machine Y such thet, given the parameters of X, Y
(with Q) computes YES.

The notion of simulation of one finite machine X by another finite machine Y (with a fixed
program Q) is to remain informal. Such simulation certainly implies (but not reduces to)
computing the input-output relation of X.

One obvious candidate for the role of a universal uniform family of finite mashines is the
family of finite versions of a universal Turing machines from S2. By the definition of uniform
families there exist a potentially infinite machine M which, given the parameters of an arbitrary
machine X in F, simulates X. Moreover, M spends only a finite - - and computable from the
parameters of X -~ portion of its resources for simulating X. By Turing's thesis M can be
simulated by a Turjng machine T. Hence, given the transformation table of T and the parameters of
an arbitrary machine X in F, & universal Turing machine U simulates X.

Page 11 Yuri Gurevich Reconsidering Turing's thesis

Actually, Turing's original justification of his thesis [Tu] gives more: T needs only a finite
-~ gnd computable from the parameters of X -- portion of tape in order to simulate X. Hence the
family of finite versions of U, equipped with an appropriate program Q, is able to simulate any
uniform family F of finite machines.

Instead of Turing machines it is natural to use ramdom access memory machines (which
better reflect modern computers); we skip the details here. Different formalizations of the notion
of global algorithms are considered in a forthcoming paper of Andreas Blass and Yuri Gurevich.

A somewhat weaker form of Turing's thesis states that every computable function is
computable by a Turing machine. It formalizes the notion of computable functions rather than the
notion of algorithms. The first formalization of the notion of computable functions was given by
Church's thesis [Ch]; many other formalizations of this notion are known by now.

Recall that a global algorithm is an algorithm for a uniform family of finite machines; each
particular machine executes a local version of the global algorithm. A global algorithm computes a
global function, eech particular machine computes a local version of the global funcion. A
notion of giobal functions was introduced (for a similar but different purpose) and studied in
[Gu1, Gu2] but it needs to be generalized. We restrict ourself here to the follbwing note. Suppase
that an input to machines in a family F is a sequence of characters in an alphabet A, and the output
of each F machine is a sequence of characters in an alphabet B. Fix a global algorithm for the

family. Then each particular machine X computes & specific partial function fy from sequences

over A to sequences over B, and the whole family F computes a global function {fy : X belongs to F}.

Formalizing the notion of global algorithms provides a formalization of the notion of
computable global functions. (In the classical cass this corresponds to formalizing computable
functions as Turing computable.) An interesting question of alternative formalizations of
computable global functions (like recursive global functions, etc.) arises. We put off this
question for now.

Page 12 Yuri Gurevich Reconsidering Turing's thesis

S5. Remarks

1. Intuitively speaking, uniform femilies of finite machines are finite or, at most,
potentially infinite: like the family of virtual Pascal machines realized by existing computers and
compilers, the family of fessible Pascal machinas, etc. But if our metamathematics allows actually
infinite objects like the set of all netural numbers then it is convenient, mathematically spesking,
to deal with actually infinite families like the Platonic family of all finite Pascal machines. Actual
infinity of a uniform familiy of finite machines seems to me less troublsome for semantical study of
programs than actual or potential infinity of a single machine. The reason is that a program for a
uniform family of finite machines runs separately on each machine. We are interested in behavior
of a single (but arbitrary) member of the family. Infinity is reflected only in the range of
parameters of an arbitrary member of the family.

1.1. Actually, my intuition is that even potential infinity is too much. The important
difference seems to be between a finite collection which forms a mathematical set (so that the
members can be counted) and a finite collection which does not: for example, English words in a
given dictionary versus all English words in use.

1.2. If a computer C uses 96 bit addresses and we wish to consider the uniform family of
finite machines similar to C, there is no need to generalize the address length.

2. Time is different from the resources mentioned in our examples; usually it is not
bounded by hardware in an explicit way. (It is explicitly bounded in the case of & computer on

batteries.) Nevetheless, it can be quite naturally incorporated into the picture. A computer rented
for an hour and the same computer rented for two hours are different machines in our theory.

3. Not all infinite uniform families of ,‘fiiv_,nite machines are defined as families of finite
versions of potentially infinite machines. Uniform families of boolean circuits, which are very
popular now in complexity theory, are particulary interesting in this connection.

4, Consider the tribe of uniform families of finite Turing machines (with one or several
tapes). One can formulate several versions of halting problem. Different complexity questions
could be raised. |f we stick to a fixed tape alphabet (which seems to be most natural for many
relevant questions), then the results of conventional space complexity theory do not apply. Some

questions and results related to these issues will appesr in a forthcoming paper of Yuri Gurevich
and Saharon Shelah.

Page 13

Ch

Gul

6u2

St

Tu

Yuri Gurevich Reconsidering Turing's thesis

References :

A. Church, A7 unsolvable problem of elementsry number theory.
American Journal of Mathematics 58 (1936), 345-363.

Y. Gurevich, Algebras of feasible runctions.
24th Annual Symposium on Foundations of Computer Science,
IEEE Computer Society Press, 1983, 210-214.

Y. Gurevich, 7oward logic tarlored for computetional complexily.
Technical report CRL-TR-3-84, University of Michigan, Jan 1983. To appear in
Proceedings of Eurapean Logic Colloquium, Springer Lecture Notes in Mathematics.

D. S. Scott, Moodkls rfor various lype-iree calculi,

In “Logic, Methodology and Philasophy of Science IV" (ed. P. Suppes &/ 4/),
North-Holland, Amsterdam, 1973.

J. E. Stoy, Dsnotations! semeantics : the Scott-Stréchey
approsch- lo progremming lenguages. MIT Press, 1977.

A M. Turing, On computeble numbers, with an application to the
Entscherdungsproblem. Proceedings of London Mathematical Society 2,
no. 42 (1936), 230-236, and no. 43 (1936), 544-546.

