The Evolving Algebra Semantics of C
Preliminary Version

Yuri Gurevich and James K. Huggins
z

October 6, 1992



0 Introduction

0.1 Overview of the Method

Evolving algebras were first proposed in [Gul] (and more recently discussed in [Gu3]) as an im-
provement upon (a stronger version of ) Turing’s thesis. One may use an evolving algebra to model
any computation. In particular, one may describe an evolving algebra which models a particular
computation in “lock-step”; that is, for every step taken by the modeled computation, the evolving
algebra takes one step. In addition, one may describe an evolving algebra which models a partic-
ular computation at any desired level of abstraction. This is an improvement upon the traditional
Turing machine model, where the abstraction level is fixed at a low level and may require many
Turing machine steps to simulate one step of an algorithm.

An evolving algebra contains a description of a first-order logical signature which describes
the states of an abstract machine, along with a collection of transition rules which describe the
temporal relationships between states. Once combined with a description of the initial state (that is,
a structure of the corresponding signature), a computation (or set of computations) is determined.

Evolving algebras may be used to provide operational semantics for a programming language.
A programming language may be viewed as a kind of universal algorithm. It takes a program
and data as input and runs the program on the data. An evolving algebra for a programming
langauge describes this type of universal algorithm, thus giving an operational semantics for the
programming language. ,

These types of semantic specifications may be provided on several abstraction levels for the
same language. Having several such algebras is useful, for one can examine the semantics of a
particular feature of a programming language at any desired level of abstraction, with unnecessary
details omitted.

Evolving algebras have been used to provide operational semantics for Modula-2 [Mor], Occam
[GMs], Prolog [Bol, Bo2, Bo3, BR1, BR2], Prolog III [BS], and Smalltalk [Bl]. This technical
report describes such a universal machine for the C programming language [KR].

0.2 Required Knowledge

We assume a basic familiarity with evolving algebras; no knowledge beyond that given in [Gu3]
wiii ba assumed. Knowledge of C is not necessarily for understanding (though it may be helpful),
since we exp: in all relevant aspects of C as we proceed.

0.3 Separation of Concerns

Our primary concern here is with programming language semantics, not syntax. Consequently, we
will assume that all syntactic information regarding a given program is available to us at the be-
ginning of the computation through static functions of the algebra which contain that information.

We will also assume that our algebra will evolve without regard to resource bounds; while such
an assumption does not reflect the resource constraints present during any computational activity,
it allows us to focus more clearly on our interest in semantics. Resource management may be added
to an evolving algebra without undue difficulty: see [Gu2] for further information and [Mor] for an
example of resource management in an evolving algebra.



0.4 Abstraction Levels

In our report we will present a series of evolving algebras which model fragments of the C program-
ming language. Each algebra will be presented as a refinement of the previous algebra. The final
revised algebra will describe the C programming language in its entirety.

Our algebras will describe the C programming language at the following levels of abstraction.

1. Statements (e.g. if, for)
Expressions
Memory allocation and initialization

Function invocation and return

oo @

. Memory structure

Note: This is a preliminary version of this report. We gratefully acknowledge the comments
made on earlier drafts of this report by Raghu Mani, Arnd Poetzsch-Heffter, and Dean Rosenzweig.



1 Algebra One: C Statement Algebra

We now present our first evolving algebra: an algebra concerned with modeling control statements
within C. In our presentation of this algebra (as with all succeeding algebras), we will occasionally
present the context-free grammar rules from [KR] to show the syntactic form of the construct under
consideration.

1.1 Initial Universes and Functions

There are certain common universes and functions which will be used in our algebras. We present
most of those elements (whose usefulness hopefully is apparent to the reader) in the following
sections.

1.1.1 Program Values

We define a universe results to be the universe of values which may appear as the “result” of a
computation. We will specify more precisely the constituents of this universe in Algebra Two.

1.1.2 Program Representation and Execution

We define a universe tasks of elements representing tasks which must be accomplished by the
program interpreter. The notion of “task” is a general one: a task may be the execution of a
statement, initialization of a variable, or the evaluation of an expression. As new types of tasks are
added to this universe, we will describe them.

At various times, we will need certain internal information to describe the nature of a given
task or computational process. We accordingly will define a universe internals, whose elements will
be used to represent this information. We will specify the elements of internals as we proceed.

We define dynamic zero-ary functions (hereafter distinguished elements) CurTask: tasks and
PrevTask: tasks (that is, functions with null domain and range tasks) which indicate the current
and previous task being executed, respectively.

To maintain the sequence of tasks to be accomplished, we define a function NeztTask: tasks —
.>sks which indicates the next task (i.e. statement or expression) to be performed once the specified
task has been completed. We will further constrain NeztTask as we proceed.

We define a function TestValue: tasks — values which indicates the value of certain expression
tasks. For purposes of this algebra, we will assume that the TestValue function is an external
function, whose values are determined by an oracle external to the evolving algebra. This will
allow us to show how computed values are used by control statements in C while delaying our
discussion of how those values are computed.

1.2 Abbreviation: Moveto

As we present our algebras, we will occasionally define some transition rule abbreviations which
will improve the readability of our transition rules. These notations are used solely for readability;
it is assumed that the abbreviations may be replaced at any time by the appropriate transition
rules.

An event which occurs frequently within our transition rules is the following: We wish to
transfer control to a particular task, modifying the CurTask and PrevTask distinguished elements
appropriately. The Moveto(Task) abbreviation will be used to accomplish this task. Its definition
is given in Figure 1.



CurTask := Task
PrevTask := CurTask

Figure 1: Definition of the abbreviation Moveto(Task).

1.3 Statement Classification in C
According to [KR], there are six categories of statements in C:
1. Expression statements, which call for the evaluation of the associated expression.

2. Compound statements, consisting of a (possibly empty) list of local variable declarations and
a (possibly empty) list of statements.

Selection statements (if and switch statements).
Iteration statements (for, while, and do-while statements).

Jump statements (goto, continue, break, and return statements).
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Labeled statements (case and default statements used within the scope of a switch state-
ment, and targets of goto statements).

Eacl of these statement categories will be represented in our transition rules by a set of tasks,
linked together by certain functions (such as NeztTask). We define a static function TaskType:
tasks — internals which indicates the action to be performed by the task. We will describe the
range of the TaskType function as we proceed.

We now consider each of these statement categories in turn.

1.4 Expression Statements

The relevant context-free grammar rules are as follows:

ezpression-statement — ;
ezpression-statement — ezrpression ;

To process an expression statement, we need to evaluate the attached expression (if any),
although we will not use the result of the evaluation. While this may seem wasteful, note that the
evaluation of an expression in C may generate desirable “side-effects” (such as assigning a value to
a variable).

We have asserted that at this level of abstraction, the Test Value function will indicate the proper
values of any expressions encountered in the program. Consequently, our algebra will simply proceed
to the next task in the execution sequence without performing any additional tasks.

The transition rules for expression tasks are shown in Figure 2.



if TaskType(CurTask) = ezpression then
Moveto(NeztTask(CurTask))
endif

Figure 2: Transition rules for expression tasks.

1.5 Compound Statements

The most general form of the relevant context-free grammar rule is as follows:
compound-statement — { declaration-list statement-list }

(Note that the declaration list and/or the statement list may be empty.)

Since we have defined the NeztTask function as our means of controlling the order in which
tasks are processed, we have no direct need for rules concerning compound statements. We simply
assume that each statement or declaration in a compound statement is linked to the others by
means of the NeztTask function, and allow our standard procedure of moving between tasks (i.e.
Moveto(Nezt Task(CurTask))) to handle the problem of maintaing the proper task sequence for a
compound statement.

1.6 Selection Statements

There are two major types of selection statements: if statements and switch statements. We
consis °t each in turn.

1.8.1 Th. if Statement

The relevant countext-free grammar rules are as follows:

selection-statement — if ( ezpression ) statement
selection-statement — if ( ezpression ) statemen! else statement

The semantics of the if statement are fairly simple; one begins execution of an if statement
by evaluating the attached expression. If the value of the expression is non-zero (i.e. true), the
statement immediately following the expression is executed. If the value of the expression is zero
and an else clause is present, the statement following the else is executed. Otherwise, control
passes to the statement following the if statement.

We define static functions TrueTask: tasks — tasks and False Task: tasks — tasks which indicate
the task to be performed if the guard of the if statement evaluates to true (or false). (We will
also use these functions in other contexts in our algebra).

We will represent the branching decision made in the if statement by an element of the tasks
universe for which the TaskType function returns test.

We will represent an if statement in our algebra by the graph shown in Figure 3, where the
ovals represent tasks, the arcs represent unary functions, and the boxes represent subgraphs.
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Figure 3: Pictorial description of the if statement.

If an else clause is not present in an if statement, the corresponding task graph omits the
right-hand side of Figure 3, with the FalseTask function connecting the test node to the next task
outside of the if statement.

Thus, all that remains is to describe the transition rules for tasks of type test. These transition

rules are shown in Figure 4.

if TaskType(CurTask) = test then
if TestValue(CurTask) # 0 then
Moveto(TrueTask(Cu Task))
endif
if TestValue(CurTask) = 0 then
Moveto(FalseTask(CurTask))
endif
endif

Figure 4: Transition rules for test tasks.

1.6.2 The switch statement

The context-free grammar rule for a switch statement is as follows:
selection-statement — switch ( ezpression ) statement

The desired behavior of the switch statement is as follows: the expression is evaluated, and
within the attached statement (usually a statement block), all statements are skipped (i.e. not
executed) until a labeled statement is found whose label matches the value of the expression, or



until a statement labeled default is found. Once such a statement has been found, statement
execution continues normally.

Since all labels on case statements are constant expressions, once the expression of a switch
statement has been evaluated, there is exactly one statement within the scope of the switch to
which control can pass. If there is a case statement within the switch which matches the value of
the expression, control passes to the first such case statement, or to the first default statement if
it occurs before the first matching case. If no case statements match the target expression, control
passes to the first default statement (if one exists). If none of these apply, control proceeds to the
first statement following the switch.

Consequently, we define a function SwitchTask: tasks x results — tasks which indicates the
task to be executed next for the given switch statement and expression value.

We will represent a switch statement in our algebra by the graph shown in Figure 5.
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Figure 5: Pictorial description of the switch statement.

The rules for switch tasks are given in Figure 6.

if TaskType(CurTask) = switch t.en
Moveto(SwitchTask(CurTask, Test Value(CurTask)))
endif

Figure 6: Transition rules for switch tasks.

1.7 The while Statement
There are three different types of iteration statements in C. We consider each of them in turn.
The relevant context-free grammar rule is as follows:

iteration-statement — while ( ezpression ) statement

To process a while statement, we repeatedly evaluate the attached expression until the value
of the expression becomes zero. Each time that the evaluated expression has a non-zero value, we
execute the attached statement.



We will represent a while statement in our algebra by the graph shown in Figure 7. Since we
have re-used the test task first introduced in our consideration of if statements, we do not need
to add any transition rules to our algebra at this time to handle while statements.

Note that it is possible to enter a while loop by means of a goto statement, thus circumventing
the initial test of the expression at the beginning of the loop. [KR] do not give specific semantics
for such behavior. Under our model, execution would continue as if the loop had been entered
normally (i.e., after completion of the attached statement, control returns to the expression to be
re-evaluated). We believe this is a reasonable interpretation of such an event.
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NextTask FalseTask

TrueTask

hesnssasccssesssussssunsnusavaacnasan suee sesssssussascessesseesonanana

Figure 7: Pictorial description of the while statement.

1.8 The do-while Statement

The relevant context-free grammar rule is as follows:
iteration-statement — do statement while ( expression ) ;

Processing a do-while statement is identical to processing a while statement except that the
expression and attached statement are visited in the opposite order. We will thus represent a
do-while statement in our algebra by the graph shown in Figure 8. Note the similarity between

this structure and that of the while loop.
Again, since we have re-used elements of the algebra previously introduced, we will not need to

add additional transition rules to correctly handle do-while statements.

1.9 The for Statement

The most general form of the relevant context-free grammar rule is as follows:
iteration-statement — for ( ezpression ; erpression ; erpression ) statement

For convenience in the following discussion, we will refer to the three expressions of the for
loop as the initializing, testing, and updating expressions, respectively.

The behavior of a for loop may be described as follows: first, the initializing expression is
evaluated. Afterwards, the testing expression is evaluated. If the value of the testing expression is
non-zero (i.e., true), the sub-statement and the updating expression are evaluated, in that order,
and the testing expression is re-evaluated. If the value of the testing expression is zero (i.e., false),
control passes to the statement following the for loop.
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Figure 8: Pictorial description of the do-while statement.

We will represent the structure of a for statement in our algebra by the graph shown in
Figure 9. Again, since we have re-used elements of the algebra previously presented, we will not
need to present any further transition rules at this time.
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Figure 9: Pictorial description of the for statement.

Note that in C, any (or all) of the three expressions (initializing, testing, and updating) may
be omitted. We assert that the algebra structures for for loops missing one or more of these
expressions simply omit the corresponding task, with the NeztTask function indicating the correct
task to be executed next. In the event that the testing expression is omitted, we omit both the
testing expression and the test branching task, creating an infinite loop (which may still be broken
through the use of jump statements).

1.10 Jump Statements

The relevant context-free grammar rules are as follows:

jump-statement — goto identifier ;
jump-statement — continue ;
jump-statement — break ;
jump-statement — return ;



jump-statement — return ezpression ;

We defer discussion of the return statement until our discussion of function invocation and

return.

Fach of these jump statements (with the exception of the goto statement) may be considered
as a command indicating that another task in the task graph is to be considered as “completed”.
This statement may be uniquely identified through a syntactic analysis of the program:

o If the jump statement is a continue statement, the jump statement indicates that control
should be passed to the closest iteration statement enclosing the jump statement, and the
statement block associated with the iteration statement should be considered as completed

(i.e. reporting).

o If the jump statement is a break statement, the jump statement indicates that the closest
iteration statement should be considered as completed (i.e. reporting), and control should be
passed to the parent task of that iteration statement.

The goto statement itself indicates directly the next statement which should receive computational

control.
We assume that the NeztTaskfunction contains the above information for jump statement tasks.

Thus, the transition rule for jump statements (shown in Figure 10) is trivial.

if TaskType(CurTask) = jump then
Moveto(NeztTask(CurTask))
endif

Figure 10: Transition rules for jump statements

1.11 Labeled Statements

The context-free grammar rules for labeled statements are as follows:

labeled-statement — identifier : statement
labeled-statement — case constant-ezpression : statement
labeled-statement — default : statement

Labeled statements provide a means for identifying the targets for control transfer in goto and
switch statements, and are otherwise ignored by a running C program. We thus assume that
the NeztTask and SwitchTask functions will return the appropriate un-labeled statement (task)
for a given argument, thus eliminating the need for transition rules to explicitly process labels on
statements.
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1.12 Initial State

It remains to describe the initial state of the relevant dynamic functions of the algebra. The only
dynamic functions we have described to this point are CurTask and PrevTask.

We assert that initially, CurTaskindicates the first subtask of the first statement of the program.
PrevTask has the distinguished value L, indicating no previous task.

This concludes our presentation of an evolving algebra for statements.

2 Algebra Two: C Statements and Expressions

We now present a second evolving algebra, a refinement of the first, which handles the evaluation

of expressions.
We will replace each occurrence of a task of type ezpression from the first algebra with a

collection of tasks describing the structure of the expression. Our transition rules will describe how
such expressions should be evaluated.
Consequently, we will now treat the TestValue function as an internal, dynamic function which

we will update directly.

2.1 Abstraction Level of C

We will consider the evaluation of expressions in C at a fairly high level in this algebra. This high
level of abstraction can be described by the following simplifying assumptions:

e Memory is organized into arbitrarily large units, each of which can hold any value which a C
program might wish to store in memory.

¢ No function invocations are allowed.

o All local and global variables are automatically allocated m»mory (and initialized, if neces-
sary).

As we refine our evolving algebra descriptions, we will gradually elim’nate these abstractions,
resulting ultimately in an evolving algebra for C in its entirety.

2.2 New Universes and Functions
2.2.1 Computational Results

The definition of C provides for several different types of fixed-point integer variables, such as int,
short int, unsigned int, etc., whose possible values are determined by the specific implementation
being modeled. We define the universe integer to be the set of integers (e {...2,1,0,1,2,...}).
We define universes int, short-int, unsigned-int, etc. to be disjoint sets corresponding to those
integers that may be stored in a variable of the corresponding type (int, short int, unsigned
int, etc.).

Similarly, the definition of C provides for three different types of floating-point integer vari-
ables: float, double, and long double, whose possible values are determined by the specific
implementation being modeled. We define three universes float, double, and long-double, disjoint
sets corresponding to those numbers which may be stored in a variable of the corresponding type.

We define a universe bytes which consists of those values which may be stored in a variable
of type char. (This universe is usually identical to {0,1,.. .,255}, but we prefer the more general
definition.)

11



We define a universe addresses which consists of elements corresponding to those positive in-
tegers corresponding to valid memory locations in the computer system being modeled. This
universe is also the universe of values which may be stored in a pointer-type variable.

All of the above universes come with the usual ordering function < and arithmetic functions +,
-, X, and / (division), as well as the unary negation operation defined upon them. Integer sets also
come with the additional functions & (bitwise AND), | (bitwise inclusive OR), = (bitwise exclusive
OR), and ~ (bitwise one’s complementation) defined upon them. (We will use conventional infix
notation for these functions as they are used in our evolving algebra.)

We define universes array, struct, and union to contain all possible arrays, structures, and
unions which may be represented in a program to be modeled by our abstract machine. Note that
we will not directly describe the members of these universes; for example, an array need not be
represented as an ordered set or a struct as a tuple.

We finally define the universe results to be the union of all previous universes in this section:
that is, the universe of values which may appear as the “result” of a computation.

To represent the memory store of the system, we define a dynamic function Memory: addresses
— results which indicates the values stored at different locations in memory. (Note that in this
algebra, an entire value of interest may be stored in one memory cell. When we create further
refinements of this algebra we will modify the definition of Memory to accomodate a byte-based
view of memory.)

For tasks which involve the evaluation of an expression, we define a universe typename whose ele-
ments represent the different types of storable elements. We also define a static function ValueType:
tasks — typename which indicates, for an expression task, the type of the resulting value when the
expression has been evaluated.

2.2.2 Functions Relating To Tasks

We define a static function ConstVal: tasks — results which indicates the values of constants
embedded within the program.

We define functions LeftTask, RightTask: tasks — tasks which indicate the left and right oper-
ands of binary operators whose order of evaluation is not defined within C.

We define functions LeftValue, RightValue: tasks — results which indicate the results of evalu-
ating the left and right operands of binary operators with ambiguous evaluation order. We assert
that LeftValue and RightValue are initially defined to be equal to L everywhere.

Similarly, we define a function OnlyValue: tasks — results which indicates the result of evalu-
ating the single operand of a unary operator.

We define a function Parent: tasks — tasks which indicates for a given task representing an
expression which is part of another expression (i.e. a task representing a subexpression) the cor-
responding “parent” expression (if any). We assert that for expressions which are not contained
in any other expressions, Parent returns the corresponding test task which uses the expression (if
one exists) or L (if none exists). We define a corresponding function WhichChild: tasks — {left,
right, only, test, none} (where left, etc. are members of the internals universe) to indicate which
sub-expression of the parent expression (if any) is being considered.

2.3 Abbreviation: Memory Assignments

With our current assertions regarding the size of individual memory units, the action of updating a
memory location (for example, due to the affects of an assignment operator) can be modeled by a
simple assignment statement involving the Memory function. It turns out to be convenient to define

12



an abbreviation DoAssign (address, value, type) to use in our transition rules. When we re-visit
our assumptions regarding memory, we will need to re-define this abbreviation to account for the
added complexity. For now, we may safely assume the definition of the Memory abbreviation given

in Figure 11.

Memory(address) := value
CurTask := NeztTask(CurTask)

Figure 11: Definition of the DoAssign (address, value, type) abbreviation

2.4 Abbreviation: SetValue

During the processing of tasks corresponding to expression evaluation in our algebra, we will often

need to assign the value of an evaluated expression (say CurTask) to the appropriate storage function

in the parent expression (either LeftValue(Parent(CurTask))or Right Value(Parent(CurTask))).
We will use the Set Value abbreviation to accomplish this task. Its definition is given in Figure 12.

if WhichChild(CurTask) = left then
LeftValue(Parent(CurTask)) := value
endif
if WhichChild(CurTask) = right then
Right Value(Parent(CurTask)) := value
endif
if WhichChild(CurTask) = only then
OnlyValue(Parent(CurTask)) := value
endif
if WhichChild(CurTask) = test then
Test Value(Parent(CurTask)) := value
endif

Figure 12: Definition of the SetValue(value) abbreviation.

2.5 Abbreviation and Definitions: EvaluateOperands

In C, many binary operators (including the assignment operator “=") do not have a defined order
of evaluation: that is, either the left operand or the right operand may be evaluated first. While in
many expressions this ambiguity in evaluation order is irrelevant, it is relevant in other situations
where the operands may generate conflicting side-effects, such as the statement “a[i] = i++;”,
where the variable i is both accessed and updated.

13



Such ambiguities in operator evaluation order may be used by optimizing compilers, for ex-
ample, to generate code which minimizes the total quantity of resources required to perform a
particular computation [ASU]. Thus, [KR] deliberately does not specify an evaluation order for
certain operands, leaving that decision to each particular implementation of a compiler for C.

Thus, it is perfectly legal within C to write expressions such as “a[i] = i++;”, although the
results of such an evaluation may vary from compiler to compiler (or even within a given compiler).
Writing code that depends upon the order of evaluation of expressions such as these is therefore
unwise; however, it is legal code, and thus our algebra must take this ambiguity into account in its
descriptions.

In particular, since the order of evaluation of such operators is undefined, our algebraic descrip-
tion will need to be powerful enough to accomodate any possible means of deciding the evaluation
order of an expression’s operands. In particular, our algebra must be able to handle the situation
where this decision is made dynamically during the course of the computation. While we believe
most compilers make this decision at compile-time and not at run-time, [KR] do not specifically
address this issue. We will thus provide a mechanism for making this decision dynamically. (If this
decision is always made statically in a particular system, the algebra may be explicitly structured
to incorporate those structures into the task graph).

We assert that expressions with binary operators of ambiguous evaluation order are represented
in our algebra as shown in Figure 13.

NextTask
&,
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Figure 13: Pictorial representation of binary operators.

We define « function Visited: tasks — {left,right, both,neither} which will indicate which subex-
pressions have been evaluated at a given moment. Initially, Visited has the value neither for all

tasks in the algebra.
Our algebra will operate on tasks corresponding to such operators as follows:

1. Upon first encountering the task, an external function ChooseTask will be consulted to de-
termine which subtask to evaluate first.

2. When that subtask is about to complete its work and return control to the operator task,
control will be passed directly to the appropriate other subtask.

3. When both subtasks have been evaluated, control will return to the operator task, which will
perform the desired operation and proceed to the next task in the algebra.

To handle the part of this behavior focused upon the operator task, we define the EVALUATE

OPERANDS abbreviation as shown in Figure 14.
To handle the part of this behavior focused upon movement within the subtasks, we redefine
the Moveto(Task) abbreviation as shown in Figure 15.

14



EVALUATE OPERANDS WITH
statements
END EVALUATFE

if Visited(CurTask) = neither then
if Choose Task(CurTask) = LeftTask(CurTask) then
Visited(CurTask) := left
endif
if ChooseTask(CurTask) = RightTask(CurTask) then
Visited(CurTask) := right
endif
Moveto(Choose Task(CurTask))
endif
if Visited(CurTask) = both then
Visited(CurTask) := neither
statements
endif

Figure 14: Definition of the EVALUATE OPERANDS abbreviation.

PrevTask := CurTask

if Visited(Task) = neither then
CurTask := Task

endif

if Visitea, Task) = both then
CurTask .-~ NeztTask(Task)

endif

if Visited(Task) = left then
CurTask := RightTask(Task)

endif

if Visited(Task) = right then
CurTask := LeftTask(Task)

endif

Figure 15: Revised definition of the Moveto(Task) abbreviation.
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2.6 Comma Operators

The relevant context-free grammar rule is as follows:
erpression — expression , assignment-erpression

In 2 comma-delimited expression, both expressions are evaluated, left to right, and the value of
the second expression becomes the value of the parent expression. (Though it may seem wasteful
to evaluate the first expression and discard its value, recall that expressions in C may generate
side-effects, such as assignment, which can be desirable.)

We will thus represent comma expressions simply as a sequence of two expressions, linked by
the NeztTask function. Thus, no specific additional transition rules are needed to process a comma
operator.

2.7 Assignment Expressions

There are several types of assignment operators in C. These operators may be placed into two
general categories: those that perform a mathematical operation as well as an assignment, and
those that only perform an assignment. We call the later a “simple assignment” operator.

The context-free grammar rule for a simple assignment is as follows:

assignment-expression — unary-erpression = assignment-erpression

In a simple assignment expression, the value of the right expression is copied directly into the
specified memory location (the value of the left expression). The value of the expression is the

copied value.
The transition rules for assignment operators are given in Figure 16.

if TaskType(CurTask) = simple-assignment then
EVALUATE OPERANDS WITH
Set Value(Right Value(CurTask))
DoAssign (Left Value(CurTask), Right Value(CurTask), Value Type(CurTask))
END EVALUATE
endif

Figure 16: Transition rules for simple assignments.

There are several other assignment operators (“*=", /=", “+=” “-=" and so on) which apply
the specified mathematic operation to the value of the right expression and the value stored in
memory at the location specified by the left expression. The resulting value is then copied into
memory at the location specified by the left expression. (Thus, “i *= 2;” has the same effect as
“1 =i x2;7)

We present the transition rules for the multiplicative assignment operator “*=" in Figure 17 as
a representative example for this group of operators.

One should note that in C, one may add to and subtract from pointers using the “+=” and “-="
operators, with the result incrementing (or decrementing) the pointer variable the specified number
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if TaskType(CurTask) = multiplicative-assignment then
EVALUATE OPERANDS WITH
Set Value(Right Value(CurTask) * Memory(Left Value(CurTask)))
DoAssign(Left Value(CurTask)),
Right Value(CurTask) * Memory(LeftValue(CurTask)),
Value Type(CurTask))
END EVALUATE
endif

Figure 17: Transition rules for multiplicative assignments.

of positions (dependent upon the size of the object to which the pointer points). Since our current
abstraction of C asserts that all objects may reside in a single memory location, this behavior may
be simulated by normal addition and subtraction. We will need to refine this rule when we refine
our model of memory.

2.8 Conditional Expressions

The context-free grammar rule for conditional expressions is as follows:
conditional-ezpression — logical-OR-ezpression 7 ezpression : conditional-expression

To evaluate a conditional expression, one begins by evaluating the left expression. If the resulting
value is non-zero (i.e. true), the center expression is evaluated and the resulting value becomes the
value of the conditional expression. Otherwise, the right expression is evaluated and the resulting
value becomes the value of the conditional expression. Exactly one of the expressions following the
question mark is evaluated.

We will 1cpresent conditional expression in our algebra in a manner similar to that in which we
represent conditional st tements, as shown in Figure 18.

We assert that the task< corresponding to the second and third sub-expressions will update
the appropriate Value function for the parent expression upon completion of the evaluation of the
subexpression.

Since we have used constructs previously introduced in our algebra, we do not need to present
any new transition rules at this time.

2.9 Logical OR Expressions
The context-free grammar rule for logical OR expressions is as follows:
logical-OR-ezpression — logical-OR-ezpression || logical-AND-ezpression

To evaluate a logical OR expression, we begin by evaluating the leftmost expression. If the
resulting value is non-zero, the value of the expression is one (1) and the second expression is not
evaluated. If the resulting value is zero, the value of the logical-OR-expression is the value returned
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Figure 18: Pictorial description of a conditional expression.

by the right expression, coerced to the logical values zero (for false) or one (for true). Any non-zero
value is coerced to one.

To represent a logical OR expression, we will introduce two new task types, OR and makeBool,
whose behavior will be described in a moment. We will represent a logical OR expression as shown
in Figure 19.

/_\ --------------- NextTask TrueTask
: ) leftexp : :
F alseTask)
§ g rightexp makeBool K i
: L. as* i
P _NextTask_ N""df i

Figure 19: Pictorial description of a logical OR expression.

It remains to describe the behavior of the OR and makeBool tasks. The OR task will examine
the value of the left expression. If the value is non-zero, the OR task will set the value of the
expression to 1 and end processing of the expression. If the value is zero, the OR task will pass
control to the tasks which evaluate the right expression.

The makeBool task will examine the value of the right expression and convert it into a Boolean
value. If the value of the right expression is non-zero, makeBool will yield the value 1. Otherwise,
makeBool will yield the value 0.

The transition rules for OR and makeBool tasks are given in Figures 20 and 21.

2.10 Logical AND expressions

The context-free grammar rule for logical AND expressions is as follows:
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if TaskType(CurTask) = OR then
if OnlyValue(CurTask) # 0 then
Set Value(1)
Moveto(True Task(CurTask))
endif
if OnlyValue(CurTask) = 0 then
Moveto(FalseTask(CurTask))
endif
endif

Figure 20: Transition rules for OR tasks.

if Taskl ;pe(CurTask) = makeBool then
if OnlyValue(CurTask) # 0 then
SetValue(1)
endif
if OnlyValue(CurTask) = 0 then
SetValue(0)
endif
Moveto(Nexzt Task(CurTask))
endif

Figure 21: Transition rules for makeBool tasks.
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logical-AND-ezpression — logical-AND-ezpression && inclusive-OR-ezpression

Processing here is similar to the case for logical OR expressions. The left expression is evaluated,
and if the resulting value is zero, the value of the parent expression becomes zero. Otherwise, the
value of the right expression becomes the value of the logical AND expression.

We will represent a logical AND expression in an identical manner to a logical OR expression,
with a task of a new type AN D replacing the OR task, and with the reversal of the values of the
TrueTask and False Task functions upon that new task. A pictorial representation of this structure
is given in Figure 22.

Figure 22: Pictorial description of a logical AND expression.

The transition rules for AN D tasks are given in Figure 23.

if TaskType(CurTask) = AND then
if OnlyValue(CurTask) = 0 then
Set Value{?)
Moveto(False Task(CurTask))
endif
if OnlyValue(CurTask) # 0 then
Moveto(TrueTask(CurTask))
endif
endif

Figure 23: Transition rules for AND tasks.

2.11 General Mathematic Expressions

There are a large number of mathematic expressions in C involving binary operators (“*”, “/”,
“g” -7 etc.) whose semantics are virtually identical.

We assume that these operators are available to us as infix functions within our evolving al-
gebras. Thus, evaluation of these expressions is handled by evaluating both of the operands and
applying the appropriate operator. We present the transition rules for multiplication in Figure 24
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as a representative of these types of expressions. (We omit the transition rules for the other binary
operators of this form to save space.)

if TaskType(CurTask) = multiplication then
EVALUATE OPERANDS WITH
Set Value(Left Value(CurTask) * RightValue(CurTask))
Moveto(NeztTask(CurTask))
END FVALUATE
endif

Figure 24: Transition rules for multiplication expressions.

2.12 Casting Expressions

The context-free grammar rule for casting expressions is as follows:

cast-ezpression — ( type-name ) cast-erpression

In order to cast an expression from one type into another, we need a static function Convert:
typename X typename X values — values which converts elements from one universe into the
corresponding elements of another universe. For example, Convert(float,int,X) would return the
“closest” integer to X (assuming X is a floating-point value). Note that the meaning of “closest” is
implementatio. -defined.

Thus, to peruosm a cast, we evaluate the expression to be cast and use the Convert function to
generate the proper veturn value. We assume our task sequence presents the expression to be cast
before the task which , erforms the casting; thus, we may assume the expression to be evaluated
already and its value accessible to us.

The transition rules for casting expressions are shown in Figure 25.

if TaskType(CurTask) = cast then
Set Value(Convert(Value Type(PrevTask),
Value Type(CurTask),
OnlyValue(CurTask)))
Moveto(NeztTask(CurTask))
endif

Figure 25: Transition rules for casting expressions.
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2.13 Pre-Increment and Pre-Decrement

The transition rules for pre-increment and pre-decrement expressions are as follows:

unary-ezpression — ++ postfiz-erpression
unary-expression — -- postfiz-expression

In a pre-increment (resp. pre-decrement) expression, the value stored at the memory loca-
tion indicated by the postfix expression is incremented (decremented) by one and stored into that
memory location; the incremented (decremented) value then becomes the value of the unary ex-
pression. (Note again that these rules will need to be modified slightly when we revise our model
of memory.)

The transition rules for pre-increment expressions are shown in Figure 26. The transition rules
for pre-decrement expressions are similar to those presented here, and thus omitted.

if TaskType(CurTask) = pre-increment then
Set Value(Memory(OnlyValue(CurTask))+1)
DoAssign(OnlyValue(CurTask),
Memory(OnlyValue(CurTask)) + 1,
Value Type(CurTask))
endif

Figure 26: Transition rules for the pre-increment operator.

2.14 Addresses

The context-free grammar rule for the address operator is as follows:

unary-erpression — & cast-expression

The & operator passes back as its result the address of the memory location indicated by the
cast expression.

As we evaluate different expressions, it becomes important to determine for expressions referring
to objects in memory (that is, lvalues), whether we desire to use the memory reference or the object
being referenced in our calculations. (For example, in the assignment statement “a = b;”, we need
the memory reference or lvalue of variable a, but the object being referenced or rvalue of variable
b.)

We thus add two new elements lvalue and rvalue to the internals universe and define a static
function LRValueType: tasks — {lvalue, rvalue} which indicates which of the two pieces of inform-
ation should be computed for a given task.

We will assert that the static LRValueType function has the value lvalue throughout the cast
expression’s subtasks; thus, the value returned through evaluation of the cast expression is the
address (and not the value) of the cast expression in memory. We simply pass this address up the
task graph. The resulting simple transition rule for the addressing operator is shown in Figure 27.
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if TaskType(CurTask) = address then
Set Value(Only Value(CurTask))
Moveto(NeztTask(CurTask))
endif

Figure 27: Transition rules for the addressing operator.

2.15 De-Referencing

The context-free grammar rule for de-referencing expressions is as follows:
unary-ezpression — * cast-expression

To de-reference an expression, if the unary-expression is an rvalue, we evaluate the expression
and then use the Memory function to return the value stored in memory at the indicated location.
Otherwise, we simply return the address indicated by the cast expression (since the expression is
an lvalue and requires that a pointer be returned to the parent expression). The transition rules
for de-referencing are presented in Figure 28.

if TaskType(CurTask) = de-referencing then
if LRValueType(CurTask) = rvalue then
Set Value(Memory(Only Value(CurTask)))
endif
if LRValueType(CurTask) = lvalue th n
Set Value(Only Value(CurTask))
endif
Moveto(Nezt Task(CurTask))
endif

Figure 28: Transition rules for de-referencing expressions.

2.16 Mathematical Unary Operators

The context-free grammar rules for mathematical unary operators are as follows:
unary-erpression — + cast-erpression
unary-ezpression — - cast-erpression

unary-expression — ~ cast-erpression
unary-erpression — ! cast-erpression
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We assume that these four unary operators (identity, negation, bitwise negation, and Boolean
negation) are available in our algebra. Thus, processing these expressions takes a form similar
to that for binary mathematical operators: we evaluate the attached expression and apply the
appropriate operator to the resulting value. We present the transition rules for negation in Figure 29
as a representative example of the transition rules for this group.

if TaskType(CurTask) = negation then
SetValue( - OnlyValue(CurTask))
Moveto(Nezt Task(CurTask))
endif

Figure 29: Transition rules for the negation unary operator.

2.17 The sizeof Operator

The relevant context-free grammar rules are as follows:

unary-ezpression — sizeof unary-ezpression
unary-erpression — sizeof ( type-name )

Under our current level of abstraction, since all memory locations are large enough to hold any
single value, we will assume that the sizeof operator, which indicates how many bytes are needed
to represent the specified expression or type, always returns the imteger one. The relevant transition
rules (which will need to be revised when we reconsider the nature of memory locations) are shown
in Figure 30.

if TaskType(CurTask) = sizeof then
SetValue(1)
Moveto(NeztTask(CurTask))
endif

Figure 30: Transition rules for the sizeof operator.

2.18 Array References

The context-free grammar rule for array references is as follows:

postfiz-ezpression — postfiz-ezpression [ ezpression ]
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According to [KR], an array reference of the form a[b] is identical, by definition, to the ex-
pression *((a)+(b)).! This definition is valid because the name of an array in C may be used as
a pointer to the first element of the array.

The transition rules for array references, shown in Figure 31, perform all the work of addition
and dereferencing accomplished by the + and * operators. We present the transition rules without
discussion, referring the reader to previous sections regarding these operators.

if TaskType(CurTask) = array-reference then
EVALUATE OPERANDS WITH
if LRValueType(CurTask) = lvalue then
Set Value(Left Value(CurTask) + RightValue(CurTask))
endif
if LRValueType(CurTask) = rvalue then
Set Value(Memory(Left Value(CurTask) + RightValue(CurTask)))
endif
Moveto(NeztTask(CurTask))
END EVALUATE
endif

Figure 31: Transition rules for array references.

2.19 Function Invocations

The context-free grammar rule for function invocations is 1s follows:
postfiz-ezpression — postfiz-ezpression ( argument-ezpre-sion-list )

Since we have disallowed function invocations for the moment, we will assume that the appropri-
ate Value function applied to this node returns an appropriate value for the C function abstraction
being modeled; that is, the appropriate Value function acts as an external function for this node
at this time. Thus, we do not need to perform any activity here at this time and we return control
to the parent node. The appropriate transition rules are presented in Figure 32.

2.20 Struct or Union References

The context-free grammar rules for struct references are as follows:

postfiz-ezpression — postfiz-ezpression . identifier
postfiz-ezpression — postfiz-erpression -> identifier

The former rule is used when the postfix expression refers to a struct or union directly; the
latter rule is used when the postfix expression refers to a pointer to a struct or union. Thus,
“a-»b” is equivalent to “(*a).b”.

1Note that this means that a[b] and b[a] evaluate to the same value.
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if TaskType(CurTask) = function-invoke then
Moveto(Nezt Task(CurTask))
endif

Figure 32: Transition rules for function invocations.

We assert that the Const Valfunction applied to the struct reference task returns the offset from
the beginning of the specified structure to be used in obtaining the address or value of the specified
field of the structure. We use this information to return the corresponding memory address or
memory value, as specified by the LRValue Type function. The transition rules for struct references
are presented in Figures 33 and 34.

if TaskType(CurTask) = struct-plain-reference then
if LRValueType(CurTask) = lvalue then
SetValue(OnlyValue(CurTask) + ConstVal(CurTask))
endif
if LRValue Type(CurTask) = rvalue then
Set Value(Memory(OnlyValue(CurTask) + ConstVal(CurTask)))
endif
Moveto(NeztTask(CurTask))
endif

Figure 33: Transition rules for plain structure references.

2.21 Post-Increment and Post-Decrement
The context-free grammar rules for post-increment and post-decrement are as follows:

postfiz-expression — postfiz-ezpression ++
postfiz-expression — postfiz-ezpression ==

Post-increment (resp. post-decrement) operators are handled in the same manner as pre-
increment (pre-decrement) operators except that the sequence of operations is reversed: that is, the
value of the parent expression is established before the incrementing (decrementing) takes place.

The transition rules for the post-increment operator are shown in Figure 35. (As before, the
transition rules for the post-decrement operator are similar and thus omitted.)

2.22 Identifiers

In order to handle expressions consisting solely of identifiers, we need to have a means of mapping
identifiers to their corresponding memory locations. However, in our presentation we have not yet

26



if TaskType(CurTask) = struct-pointer-reference then
if LRValueType(CurTask) = lvalue then

Set Value(Memory(Only Value(CurTask) + ConstVal(CurTask)))
endif

if LRValueType(CurTask) = rvalue then
Set Value(Memory(Memory(Only Value(CurTask)) + ConstVal(CurTask)))
endif
Moveto(Nezt Task(CurTask))
endif

Figure 34: Transition rules for pointer structure references.

if TaskType(CurTask) = post-increment then
SetValue(Memory(OnlyValue(CurTask)))
DoAssign(OnlyValue(CurTask),
Memory(OnlyValue(CurTask))+1,
Value Type(CurTask))
endif

Figure 35: Transition rules for the post-increment operator.
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discussed how memory is allocated to variables.

For now, we shall make use of an external function FindID: tasks — addresses which yield this
information. In later algebras we shall eliminate the use of this function.

Having now accounted for addresses in memory, the task of handling an identifier expression is
reduced to returning the appropriate address or value, as specified by the LRValue Type function.
The transition rules for identifiers are shown in Figure 36.

if TaskType(CurTask) = identifier then
if LRValue Type(CurTask) = lvalue then
Set Value(FindID(CurTask))
endif
if LRValueType(CurTask) = rvalue then
Set Value(Memory(FindID(CurTask)))
endif
 Moveto(NeztTask(CurTask))
endif

Figure 36: Transition rules for identifiers.

2.23 Constants and Strings

In the case of either a constant or string expression, we assume that the ConstVal function, when
applied to the string or constant task, returns the appropriate value. The transition rules for
constants and strings are given in Figure 37.

if TaskType(CurTask) = constant then
SetValue(Const Val(CurTask))
Moveto(NeztTask(CurTask))
endif

if TaskType(CurTask) = string then
SetValue(ConstVal(CurTask))
Moveto(NeztTask(CurTask))
endif

Figure 37: Transition rules for constants and strings.

This concludes our second evolving algebra dealing with expressions.
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3 Algebra Three: Memory Allocation and Initialization

We now present a third algebra, a refinement of the second algebra, which include the tasks of C
dealing with memory allocation and initialization of local variables (called automatic variables in
C parlance).

3.1 Declarations

As with statements and expressions, we will represent declarations in C as elements of the tasks
universe, along with several “decoration” functions which describe the nature of the declarations
to be performed. We assume that these declarations are linked with their surrounding statement
tasks by the NextTask function, occuring in their proper sequence at the beginning of compound
statements, as well as at the uppermost (i.e. global) level.

Under normal situations, when processing a task corresponding to a declaration, we would like
to allocate an appropriate portion of memory and, if an initializing value is present, assign that
value to the memory location. We thus define a static function Initializer: tasks — tasks indicating
the initializing expression (if any) present. We assert that if no such initializer is present, Initializer
takes the value L.

One added complication arises at this time: the presence of static variables (which are alloc-
ated and initialized only once). Consequently, we add two new values static and normal to the
internals universe and define a static function DecType: tasks — {static, normal} which contains
this information. (Note that there are declarations in C which do not reserve memory but serve as
syntactic linkage between variables. We omit consideration of such declarations, since their function
is wholly syntactic in nature.)

We will need some place to store the current address (if any) that has been assigned for a static
variable; consequently, we define a dynamic function StaticAddr: tasks — addresses which will
indicate the currently allocated address for the static variable. (L indicates no allocation has been
performed.)

We introduce an external function NewMemory: tasks — addresses which returns an addres: in
memory to be used for the given declarator node. We use this function, along with the informatior
conveyed by the DecType function, to perform the necessary memory allocation.

Finally, we can discuss the transition rules for declarations.

o I the variable is a static variable which has not been established before (indicated by Stat-
icAddr having the value L), we allocate new memory for the variable and (if necessary)
evaluate the initializer and assign its value to that memory location.

o If the variable is a static variable which has been established before (indicated by StaticAddr
having a value other than L), we use the previous address assigned to the static variable as
the new address for the variable, and ignore any initializer present.

o Otherwise, we allocate new memory and (if necessary) evaluate the initializer and assign its
value to that memory location.

The transition rules for declarations are presented in Figures 38 and 39.

3.2 Initializers

Initializers in C come in two forms: simple expressions (for variables of the basic types) and lists of
expressions (for variables representing arrays and structures). We must dynamically evaluate these

29



if TaskType(CurTask) = declaration then
if DecType(CurTask) = static then
if StaticAddr(CurTask) # L then
OnlyValue(CurTask) := StaticAddr(CurTask)
Moveto(NextTask(CurTask))
endif
if StaticAddr(CurTask) = L then
if Initializer(CurTask) # L and
OnlyValue(CurTask) = L then
Moveto(Initializer(CurTask))

else
OnlyValue(CurTask) := NewMemory(CurTask)

StaticAddr(CurTask) := NewMemory(CurTask)
if Initializer(CurTask) # 1 then
DoAssign(NewMemory(CurTask),
OnlyValue(CurTask),
Value Type(CurTask))
else
Moveto(NeztTask(CurTask))
endif
endif
endif
endif
endif

Figure 38: Transition rules for static declarations.
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if TaskType(CurTask) = declaration then
if Dec Type(CurTask) = normal then

if Initializer(CurTask) # L and
OnlyValue(CurTask) = L then
Moveto(Initializer(CurTask))

else
OnlyValue(CurTask) := NewMemory(CurTask)
if Initializer(CurTask) # L then

DoAssign(NewMemory(CurTask),

OnlyValue(CurTask),
Value Type(CurTask))

else

Moveto(NeztTask(CurTask))
endif
endif
endif
endif

Figure 39: Transition rules for non-static declarations.

initializing expression(s) each time the variable is created, since such expressions are not restricted
to constants.

Our previous rules for evaluating expressions will suffice to handle initializers for simple expres-
sions. To assist in handling aggregate expressions, we will define a function AddTo: typename X res-
ults X results — results, which appends a value onto the end of an aggregate structure of the specified
type. (For example, if [1] is an array containing the integer 1, then AddTo(array,[1],2) = [1,2].)

We ~dd a new element aggregate to our signals universe and specify that the WhichChild
function will reiurn aggregate when the expression being evaluated is a component of an aggregate
initializer. We extend mr SetValue abbreviation as shown in Figure 40 to correctly compose the
desired aggregate expressiou.

3.3 Revision: Identifiers

Having now described how identifiers have memory allocated to them, we can revise our previous
rules for evaluating identifier expressions.

We define the static function Decl: tasks — tasks which maps tasks corresponding to occurences
of an identifier to the task corresponding to the declaration task for that variable.

The revised rules are shown in Figure 41.

4 Algebra Four: Functions

Our fourth algebra re-introduces function abstractions into the C programming language. With
this information, we will also now (formally) present rules for beginning a C program, since the
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if WhichChild(CurTask) = aggregate then
OnlyValue(Parent(CurTask)) :=
AddTo(Value Type(Parent(CurTask)),
Value(Parent(CurTask)),
value)
endif

Figure 40: Extension of the SetValue(value) abbreviation.

if TaskType(CurTask) = identifier then
if LRValueType(CurTask) = lvalue then
Set Value(OnlyValue(Decl(CurTask)))
endif
if LRValueType(CurTask) = rvalue then
Set Value(Memory(OnlyValue(Decl(CurTask))))
endif
endif

Figure 41: Revised transition rules for identifier expressions.
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distinguished starting function main() may be viewed as simply another C function (with special
parameters).

4.1 Modeling The Stack

Since functions in C may be recursive, it becomes necessary to revise our model for storing compu-
tational values (both internal and external). Clearly, we must have some means for storing multiple
values at a given task, if the task falls within a function which may have several active instantiations
at a given moment.

We accomplish this by simulating a stack in our algebra. We thus add a new universe stack,
equinumerous with the positive integers, with a distinguished element StackRoot: stack which cor-
responds to the integer one. We also add static functions StackPrev: stack — stack and StackNext:
stack — stack which correspond to the predecessor and successor functions for the positive integers.
We will use a distinguished element StackTop to indicate the current element at the top of the stack.

To store state-associated information on the stack, we modify the various Value functions to
be binary functions of the form LeftValue, RightValue, OnlyValue, TestValue: tasks x stack —
results. This requires us to rewrite almost every rule that has appeared up until this point;
we will simplify matters by stating that every reference to LeftValue(X), RightValue(X), Only-
Value(X), or TestValue(X) up until this point should be replaced by LeftValue(X,StackTop), Right-
Value(X,StackTop), OnlyValue(X,StackTop), or Test Value(X,StackTop), respectively.

4.2 Function Invocation and Return: The Caller

We are now ready to discuss function invocation and return from the perspective of the caller. The
context-free grammar rules governing function invocations are as follows:

postfiz-ezpression — postfiz-ezpression ( )
postfiz-expression — postfiz-ezpression ( argument-ezpression-list )

Note that the “name” of the function is actually a postfix expression, referring to the “address”
of the function. (The significance of the “address” of a function is implementation-dependent.) We
will thus need the use of a static function AddrToFunc: addresses — tasks, which maps function
addresses to the root task of the function definition. .

As we proceed, we will want to copy the value ? of each parameter to an appropriate place
in the task space for the callee to process. We thus assert that the Parent function (utilized by
our SetValue abbreviation) maps argument expressions to tasks corresponding to the appropriate
function parameters. We add an element param to the internals universe and add a function
Param Value: tasks — results to store the values of parameters being passed. Finally, we extend
the definition of the SetValue abbreviation as shown in Figure 42.

We will also want to store on the stack our current location within the task graph, so that we
will be able to resume execution at this point after the called function is completed. We thus define
a function StackTask: stack — tasks which indicates the task which should become the value of
CurTask when the current function terminates.

To process a function invocation, we evaluate the postfix expression corresponding to the pointer
to the function along with all of the arguments in the expression list, and then transfer control to
the specified function, placing a new element upon the function invocation stack. When control
returns from the function, all values will be reset and the function’s return value will be returned

to the parent expression.

2In C, all function parameters are call-by-value.
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if WhichChild(CurTask) = param then
Param Value(Parent(CurTask),StackTop) := value
endif

Figure 42: Extension of the SetValue(value) abbreviation.

As with the operands to most arithmetic operators, [KR] do not specify the order in which
arguments to a function are evaluated. We thus must present specialized rules for evaluating the
expressions associated with a function invocation.

We assert that the Choose Task external function will indicate at each moment which expression
associated with a function invocation should be evaluated next. Thus, our transition rules will
simply make repeated calls to ChooseTask until all expressions have been evaluated, which we
assert will occur when ChooseTask returns L.

The transition rules for function invocation are presented in Figure 43.

if TaskType(CurTask) = function-invocation then
if ChooseTask(CurTask) # L then
Moveto(ChooseTask(CurTask))
endif
if ChooseTask(CurTask) = L then
if OnlyValue(CurTask,StackTop) = 1 then
StackTop := StackNexzt(StackTop)
Stack Task(StackNezt(StackTop)) := CurTask
Moveto(AddrToTask(Left Value(CurTask,StackTop)))
endif
if OnlyValue(CurTask,StackTop) # L then
Set Value(Only Value(CurTask,StackTop))
Moveto(NeztTask(CurTask))
endif
endif
endif

Figure 43: Transition rules for function invocations.

4.3 Function Invocation and Return: The Callee

A function definition in C consists of a list of parameters and a compound statement (which contains
local variable declarations and a sequence of statements to be executed).
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For parameter declaration tasks, we must allocate new memory for each parameter and assign
the appropriate value (stored here by the function invocation transition rules) to that new memory
location. The transition rules for parameter declarations are shown in Figure 44.

if TaskType(CurTask) = parameter-declaration then
Set Value(NewMemory(CurTask))
DoAssign(NewMemory(CurTask),
Param Value(CurTask,StackPrev(StackTop)),
Value Type(CurTask))
endif

Figure 44: Transition rules for parameter declarations.

4.4 The return Statement

We can now consider the transition rules for the return statement, whose context-free grammar
rules appears below:

jump-staetement — return ;
jump-statement — return erpression ;

If an expression is present, our transition rules will (implicitly) evaluate the attached expression,
and copy ti 't value to the appropriate function task, which we assert is returned by the NeztTask
function. The i-ansition rules for return statements are given in Figure 45.

if Task I'ype(CurTask) = return then
OnlyValue(StackTask(StackTop),StackPrev(StackTop)) :=
OnlyValue(CurTask,StackTop)
StackTop := StackPrev(StackTop)
PrevTask := CurTask
CurTask := StackTask(StackTop)
endif

Figure 45: Transition rules for return statements.

If a return statement is not explicitly present at the end of a function, our algebra will contain
still contain a return task as the last task of the function, as if a return statement were implicitly
present as the last statement of the function.
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4.5 Global Variables

With the introduction of the function stack, we now must consider how references to global variables
within C will be modeled by our evolving algebra, and revise our rules for handling identifiers in
expressions.

Lexical scoping within C is relatively simple, since function definitions may not contain other
function definitions. Thus, a given variable identifier refers either to a variable local to the current
function or to a variable global to the entire program. We will thus use a static function GlobalVar:
tasks — {true, false} to indicate whether or not a given identifier refers to a global variable. We
present the modified transition rules for identifiers in Figure 46.

if TaskType(CurTask) = identifier then
if LRValueType(CurTask) = lvalue then
if GlobalVar(CurTask) = true then
Set Value(Only Value(Decl(Current),StackRoot))
endif
if GlobalVar(CurTask) = false then
Set Value(OnlyValue(Decl(Current),StackTop))
endif
endif
if LRValueType(CurTask) = rvalue then
if GlobalVar(CurTask) = true then
Set Value(Memory Value(Only Value(Decl(CurTask),StackRoot),
Value Type(CurTask)))
endif
if GlobalVar(CurTask) = false then
Set Value(Memory Value(Only Value(Decl(CurTask),StackTop),

Value Type(urTask)))
endif
endif
Moveto(NeztTask(CurTask))

endif

Figure 46: Revised transition rules for identifiers.

5 Algebra Five: Memory Structure

We now present our fifth and final algebra, which will revise our assumptions regarding the structure

of memory.

One of C’s more powerful features is the ability to “cast” memory elements from one type into
another. For example, one may cast a pointer to a structure into a pointer to an array of characters,
as long as the structure and the array are identical in size (with respect to their individual memory
representations). Thus, one can access the individual bytes of most “values” which might exist
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during the execution of the program.?

Clearly, we will need to have a byte-based model of memory. Thus, we now re-define the
memory function as Memory: addresses — bytes. This now creates a number of difficulties, since
most memory elements will not fit into a single byte.

Accordingly, we define an n+1-ary function ByteToResult: typename X byte” — results which
converts the memory representation of a value of the specified type into its corresponding value
in the results universe. n is the maximum number of bytes used by the memory representation of
any particular type. For types whose memory representations are less than n bytes in length, we
may fill any unused parameters with don’t care terms (e.g., 0). We also define a partial function
Result ToByte: results X integer X typename — byte which yields the specified byte of the memory
representation of the specified value from the specified universe. This function can be thought of
as the inverse of ByteToResult.

In addition, we define a static function Size: typename — integer which indicates how many
bytes are used by a particular value type in memory.

5.1 References to Memory

Retrieving elements of the values universe from memory is now slightly more complicated than
before. We define an abbreviation MemoryValue: address X typename — results, which indicate the
value of the specified type being stored in memory beginning at the indicated address. Memory Value
(addr,type) abbreviates ByteToResult (type, Memory(addr), Memory(addr+1), ..., Memory(addr
+ Size(type) - 1)).

Having done this, it now becomes necessary to revise all previous references to the Memory
function. We need to replace each occurrence of Memory(address) in previous transition rules with
an occurrence of Memory Value(address, ValueType(X)), where X is an “appropriate” node of the
task graph for the conversion. The exact replacement for X should be clear from context in each
case, and thus we omit the details.

5.2 Assignment to Meniory

Rules for assignment to memory now become more complicated, since a given assignment may

require an arbitrarily large number of updates to the Memory function. We will need to have rules

which perform a loop to make those arbitrarily large number of updates in a systematic fashion.*
To facilitate this loop, we define the following distinguished elements:

CopyValue: results denotes the value to be copied.

CopyType: typename denotes the type of value to be copied.

CopyLocation: address denotes the location to which the value is to be copied.

CopyByte: integer denotes which byte of the representation of CopyValue is being copied into
memory.

o OldTask: tasks denotes the task which invoked the memory copying procedure.

3The distinguished value void is an example of a value in a C program which cannot be accessed in this manner.

“Most computer systems provide a means for memory assignments in units larger than a byte, but the partic-
ular sizes available for assignment are implementation-dependent. We thus present rules using the lowest-common
denominator, the byte.
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We also add a distinguished element CopyTask to the tasks universe, to indicate that a memory

copying procedure is in progress.
We will invoke the copying procedure using the DoAssign(address, value, type) macro, re-defined

here in Figure 47.

DoAssign(address, value, type)

CopyValue := value
CopyType := type
CopyLocation := address
CopyByte := 0

OldTask := CurTask
CurTask := CopyTask

Figure 47: Revisied definition of the DoAssign macro.

The copying process is relatively straight forward. We utilize the distinguished element Copy-
Byte to denote which byte of the memory representation of CopyValue we are copying into memory
at a given moment in time. We copy bytes singly, incrementing the value of CopyBuyte after each
assignment to memory, halting when all bytes have been copied. The transition rules for copying
to memory are presented in Figure 48.

if CurTask = CopyTask then
if CopyByte < Size(CopyType) then
Memory(CopyLocation + CopyByte) :=
Result ToByte(CopyValue, CopyByte, CopyType)
CopyByte := CopyByte + 1
endif
if CopyByte = Size(CopyType) then
PrevTask := OldTask
CurTask := NextTask(OldTask)
endif
endif

Figure 48: Transition rules for copying values to memory.

5.3 Pointer Arithmetic: Addition and Subtraction

We must also re-visit the transition rules dealing with pointer arithmetic at this time. In C, one
may add an integer i to a pointer variable p with the following effect: the result is a pointer which
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is 4 units forward in memory from p. (For example, since the name of an array is equivalent to a
pointer to its first element, the expressions “p[i]” and “p + i” are equivalent.)

One may also subtract an integer ¢ from a pointer variable p, with the result being a pointer ¢
units in memory preceding p. In addition, one may subtract two pointers, resulting in the number
of units of memory lying between the two pointers. The size of a “unit” of memory is determined
by the size of the object type to which the pointer points.

This requires revisions to our rules for both the additive and subtractive assignment operators
(“+=" and “-=") as well as the addition and subtraction operators. As we process each of these
operators, it now becomes necessary to know whether or not a given variable is a pointer. We
thus define new static functions PointerType: tasks — {true, false} which convey this information.
For tasks for which Pointer Type returns true, we define a static function PointsToType : tasks —
typename which indicates the object type to which the pointer points.

We give modified transition rules for the additive assignment, the simple addition operator, and
the simple subtraction operator in Figures 49, 50, and 51, respectively. (The rules for subtractive
assignment are similar to those for additive assignment and are thus omitted.)

if TaskType(CurTask) = additive-assignment then
if Pointer Type(LeftOperand(CurTask)) = true then
Set Value(Memory Value(Left Value(Cur Task, StackTop), Value Type (CurTask))
+ (Size(PointsToType(CurTask)) * Right Value(CurTask, StackTop)))
DoAssign(Left Value(CurTask,StackTop),
Memory Value(Left Value(CurTask, Stack Top), Value Type( CurTask))
+ (Size(PointsToType(CurTask)) * RightValue(CurTask, StackTop)),
Value Type(CurTask))
endif
if Pointer Type(LeftOperand(CurTask)) = false then
Set Value(Memory Value (Left Value(Curlask, Stack Top), Value Type (CurTask))
+ RightValue(CurTask,StackTop))
DoAssign (Left Value(CurTask,StackTop),
Memory Value(Left Value(CurTask, StackTop), Value Type( CurTask))
+ RightValue(CurTask,StackTop),
Value Type(CurTask))
endif
endif

Figure 49: Revised transition rules for additive assignments.

5.4 Pointer Arithmetic: Array References

Since array references are defined in terms of pointer arithmetic, we must revise our rules for array

references as well.
For convenience, we expand our previous tasks of type array-reference into two tasks of type
left-array-reference and right-array-reference, which are distinguished by the presence of the array
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if TaskType(CurTask) = addition then
if Pointer Type(LeftOperand(CurTask)) = true then
Set Value(Left Value(CurTask,StackTop) + (Size(PointsToType(CurTask))
* Right Value(CurTask,StackTop)))
endif
if Pointer Type(RightOperand(CurTask)) = true then
Set Value(Right Value(CurTask,StackTop) + (Size(PointsToType(CurTask))
* LeftValue(CurTask,StackTop)))
endif
if Pointer Type(LeftOperand(CurTask)) = false and
Pointer Type(RightOperand(CurTask)) = false then
Set Value(Left Value(CurTask,StackTop) + RightValue(CurTask,StackTop ))
endif
Moveto(NeztTask(CurTask))
endif

Figure 50: Revised transition rules for addition expressions.

if TaskType(CurTask) = subtraction then
if Pointer Type(LeftOperand(CurTask)) = true and
Pointer Type(RightOperand(CurTask)) = true then
Set Value((MemoryValue(Left Value(CurTask,Stack Top), Value Type(CurTask))
- MemoryValue(Right Value(CurTask,StackTop), Value Type(CurTask)))
/ Size(PointsToType(CurTask)))
endif
if Pointer Type(LeftOperand(CurTask)) = true and
Pointer Type(RightOperand(CurTask)) = false then
Set Value (Left Value(CurTask,StackTop) - (Size(PointsToType(CurTask))
* RightValue(CurTask,StackTop)))
endif
if Pointer Type(LeftOperand(CurTask)) = false and
Pointer Type(RightOperand(CurTask)) = false then
Set Value(Left Value(CurTask,StackTop) - RightValue(CurTask,StackTop))
endif
Moveto(NeztTask(CurTask))
endif

Figure 51: Revised transition rules for subtraction expressions.
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(i.e. pointer) operand to the left (resp., right) of the other operand.
The revised transition rules for array references are given in Figure 52.

if TaskType(CurTask) = left-array-reference then
if LRValueType(CurTask) = lvalue then
Set Value(Left Value(CurTask,StackTop) + (Size(PointsToType( CurTask))
* Right Value(CurTask,StackTop)))
endif
if LRValue Type(CurTask) = rvalue then
Set Value(Memory Value(Left Value(CurTask,Stack Top)
+ (Size(PointsToType(CurTask))* RightValue(CurTask,StackTop )),

Value Type(CurTask)))
endif
Moveto(Nezt Task(CurTask))
endif

if TaskType(CurTask) = right-array-reference then

if LRValueType(CurTask) = lvalue then

Set Value(Right Value(CurTask,StackTop) + (Size(PointsToType( CurTask))
* LeftValue(CurTask,StackTop)))

endif

if LRValueType(CurTask) = rvalue then
Set Value(Memory Value(Right Value(CurTask,StackTop)
+ (Size(PointsToType(CurTask))* LeftValue(CurTask, StackTop)),

Value Type(CurTask)))
endif
Moveto(NexztTask(CurTask))

endif

Figure 52: Revised transition rules for array references.

5.5 The sizeof Operator

Finally, we must revise our rules dealing with the sizeof operator. We repeat the relevant context-
free grammar rules:

unary-ezpression — sizeof unary-erpression
unary-ezpression — sizeof ( type-name )

The ValueType function allows us to convert either expansion into a value in the typename
universe. With that information, we may use the Size function to determine the size, in bytes, of
an element of that particular type and return that number as the value of the unary expression.
The transition rules for size operators are shown in Figure 53.

This concludes our presentation of an evolving algebra for C.
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if TaskType(CurTask) = sizeof then
Set Value(Size(Value Type(CurTask)))
Moveto(NeztTask(CurTask))

endif

Figure 53: Transition rules for size operators.
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