T HE UNIVERSITY OF MICHTIGAN

Memorandum 26

THE DISCRETE, LOGICAL DESIGN, SIMULATION SYSTEM

J.R. Guskin
T.J. Dingwall

CONCOMP: Research in Conversational: Use of Computers
F.H. Westervelt, Project Director
ORA Project 17449

supporited by},
ADVANCED RESEARCH PROJECTS AGENCY

DEPARTMENT OF DEFENSE
WASHINGTON, D.C.

CONTRACT NO. DA-49-083 OSA-3050
ARPA ORDER NO. 716

administered through:

OFFICE OF RESEARCH ADMINISTRATION ANN ARBOR

April 1970

Appendix A.
Appendix B.
Appendix C.
Appendix D.
Appendix E.
Appendix F.
Appendix G.

Appendix H.

TABLE OF CONTENTS

Introduction. « .« « « « ¢ « o« . . .
Command Language Interpreter. .

The Data Structure. . . « « + .+ « « &
The Ordering Algorithm.
The Simulator « + « « « « « o« o o « =

Possible Additions and Extensions
to the Current System . -

Syntax of Initialization.
Basic Information Commands.
Data Structure Manipulation Commands.
Stored Program Control Commands . . .
Other CommandsS. e« « o ¢ o o o o o o
System Subroutines. + « « ¢ o « . o
Sample Run. « « « « o « + &

Modifications and Additions to
Data-Structure Routines

iii

1. INTRODUCTION

The Discrete, Logical Design, Simulation System is a
relatively straightforward, high-speed method for simu-
lating combinatorial and delay logic. Such a programming
system weuld provide a relatively quick way for the logic
designer to determine any flaws in his network. He can,
thus, debug his design and immediately test his correc-
tions.

The programs are structurally divided into four
main parts: the Command Language Interpreter, the Data
Structure Manipulation Routines, the Simulator and various
specialized input and output routines which communicate
directly with the data structure routines. The primary
programming language used was the System/360 G-level
assembler language; however, we used the FORTRAN IV G-
level compiler along with an extended runtime system to
write the Command Language Interpreter because it enabled
us to quickly and inexpensively make alterations to the
program.

The algorithm which allowed the construction of a
very fast simulator is described under the section dealing

with the "Ordering Algorithm."

2. COMMAND LANGUAGE INTERPRETER

A highly interactive and versatile command language
interpreter was included in the package as an interface
between the programs themselves and the user. The commands
are designed to be simple to use and quickly expandable.

A complete error-detection system has been incorporated
so that the user needn't worry about "blowing the system
down." He is reminded, if he forgets, for example, that
certain signal and package names have been used before.
Besides this interactive mode there is a stored command
mode and a batch mode, which allow a whole data-structure
(network) to be efficiently loaded into the system.

The CLI consists of three primary parts: the Parser,
the Input Control Program, and the Command Execution Con-
trol, all of which are interrelated and which communicate
with each other through a series of subprogram calls.

The parser is the only one of the routines which is
fully input—device-independeht. It retrieves an input
line from the Input Control Program (INSEPT) and breaks
it up into a four-character command néme and a set of
four-character arguments, all of which are either padded
with trailing blanks or truncated at four characters if
necessary. Commands are decoded using a table supplied
by the Command Execution Control. Matches between entries

in the table and commands entered are attempted using the

the number of characters entered as long as that number
is four or less. Ambiguities which arise are not resolved
and are returned to the user as an error. For example:

Real command Names

(entries in the table)

INPUT INIT
Ambiguous matches
I IN
If three characters are entered
INP => INPUT
INI => INIT
if an argument list is null, a.count of zero is returned
to the execution control,Aotherwise the total number of
arguments (up to thirty) is returned with the argument
array. If a null argument is entered, it is replaced
by four blanks. If a number is requested as an argument,
then it must be an unsigned integer between 0 and 9999.
Any violation of this syntax (in all cases it is actually
similar to the syntax of a FORTRAN CALL statement) halts
parsing immediately (except for numerical conversion) and
generates an error comment.

The Input Control Program provides for the entry of a
command from the master console (the teletype or card-reader)
or from a file or other device (see SOURCE command). If a
line is being read in the interactive Master Command Mode,

then each line (except the first) is preceded by the

characters FEED ME ?. Otherwise the prefix character is

a "?". If this program is in Store Command Mode, and end
of file will perform an automatic TERM command which re-
stores the program to Master Command Mode. The statute

of the program is controlled by a set of subroutines which
provide addresses for the reading routines and status
switches.

The Command Execution Control is the prime unit of
the CLI. It is here that the commands are really executed
and most errors are detected. This is really the inter-
face to the data structure and simulation package routines.

The parser returns the decoded number of the command
and an array of arguments. The control program then per-
forms a branch to the appropriate routine to execute the
command.

For complete descriptions of all the available com-
mands see Appendix B.

There is one thing in particular to note about the
error detection facility in the Command Execution Control:
as soon as an error is detected the command execution is
aborted and, in general, if the user is in Stored Command
Mode he is returned to Master Command Mode (commands are

read on the master console).

3. THE DATA STRUCTURE

The data structure used to describe a network
internally consists of three chained lists with various
interconnections. The lists are as follows:

A. Package Definition Chain

Each element of this chain describes one possible
package type in the circuit, such as an AND or

a DELAY gate. Fields in a package definition

are as follows:

NEXTDEF - fullword pointer to the next package
definition.

SWITDEF - l-byte set of switches used to ini-
tialize the switches in a package
instance of this type.

TYPEDEF - a l-byte code indicating the type
of package this element represents.

Possible wvalues are:

CODE GATE TYPE
4 AND
8 OR
12 | NAND
16 EXCLUSIVE OR
20 NOT
24 UNIT DELAY

NAMEDEF - 4-character name of the package type.

-5=

#0OUTS - l-byte field giving the number of
outputs of the package.

#INS - l-byte field giving the number of
inputs to the package.

TOTSTORE - Halfword integer giving the total
amount of storage needed for each

package instance of this type.

NEXTDEF
SWIT TYPE NAMEDEF
DEF DEF
NAMEDEF #0UTS #INS
(continued)
TOTSTORE

A package definition may be referenced through the

subroutine 'DEFTN'.

B.

Package Instance Chain

Each element of this list represents an actual
instance of a combinational logic module in a
circuit. The chain is arranged so that simula-
tion of the packages may be performed in the
given order. In addition to regular logic
modules, the chain includes special blocks

for defining primary inputs. These special
blocks are identical to instances with a type

code of zero, 8 outputs, and no inputs.

-7-

Fields in a package instance are:

NEXTINST

SWITINST

TYPEINST

NAMEINST

ORDER

BACKINST

PKRGDEF

OUTSIGS

fullword pointer to the next package
instance.

l-byte set of switches; presently
only the high-order bit is used
during ordering of the network.
l-byte type code indicating the

kind of gate. This field is identical
to the type code in a package defini-
tion.

4-character name of the package
instance.

halfword integer giving the relative
order in which this gate should be
simulated. This information is re-
dundant with the ordering of the
chain itself, but is convenient to
use when ordering the network. Note
that more than one instance may have
a given numerical order.

fullwora back-pointer to the previous
instance.

fullword pointer to the corresponding
package definition for this instance.
1l or more 8-byte fields defining the

outputs of this module. The field

consists of a l-byte signal value,

a 3-byte pointer to a connection block,
and a 4-character signal name. The
signal field has the possible values

0, 1, or 2, standing for 0, 1, and X
respectively. Also the high-order

bit is used to indicate whether or

not the signal was changed in the

last time-interval.

The 3-byte pointer is an anchor
for a chain of connector blocks indi-
cating what packages this signal is
connected to. Each connector block
consists of 7 fullword pointers to
package instances, and an eighth
fullword pointing to the next con-
nector block. Zeros are used in the
pointers to indicate no connection.

These connector blocks are used
only during ordering, and not during
simulation.

After the output signals is one four-byte field for
each input to the instance. The field is split into a 3-
byte pointer to the head of a package instance, and a l-byte
displacement from the start of that instance to the signal

connected to the given input. If no connection is made,

the field i1s zero.

The input pointers are used only

during simulation and not during the ordering of the

network.
NEXTINST
SWIT TYPE NAMEINST
INST INST
| NAMEINST
(continued) ORDER
BACKINST
PKGDEF
T T
SIGNAL CONNECTOR 8<n
; VALUE BLOCK POINTER e— U)g
= o ==
54 SIGNAL NAME K
[Z 0
H O H =z
5 , 2 o H
ow 2 5 By
| 2 3
! ' POINTER TO |
; NEXT BLOCK
o giiéE POINTER TO
SR - ~
|
Z =7 - P
HO &
O ; j

Instances may be referenced via the subroutine PACKAG.

C.

Delay Instance Chain

All delays in a network are on this chain. The

chain elements have exactly the same format as

instances in the combinational chain.

Delays are

put on a separate chain only for convenience

-10-

during simulation.

There is no ordering of delays in the chain.

4, THE ORDERING ALGORITHM

The network is ordered dynamically as connections
between packages are made. In this way cycles are de-
tected immediately and an ordering need not be done be-
fore each simulation.

All delays and blocks defining primary inputs have
order O. All combinational modules are given the order
1 initially and have their orders increased as connections
are made.

Assume an output of package A has just been connected
to an input of package B. The following algorithm is
applied to A and B:

(1) If B is a delay, the network is ordered, and we

may stop.

(2) If the order of A is less than the order of B,

then we are done.

(3) Otherwise, set the order of B equal to the order

of A+1.

(4) Apply this algorithm recursively to B and each

package connected to an output of B.

Cycles are discovered in the following manner: at
step 4 in the algorithm a switch is set in B indicating
that B has been reordered.

If at some lower level of application, a switch is

found to be on, then a cycle exists in the network. When

-11-

-12-

a cycle is discovered, normally the newest connection is
broken, and an error comment is printed. It is possible,
however, that before a cycle is discovered, many packages
may be given too high an order; this does not hurt any-

thing, since only too low an order will cause errors in

simulation.

5. THE SIMULATOR

Simulation is performed in three separate passes.

In pass one, the outputs of all delays are set.
The value is obtained from an internal étorage area
which was set in the previous pass 3.

In pass two, all combinational logic modules are
evaluated. Since the chain has the proper ordering,
each package can be evaluated without concern as to
whether its inputs have been set. Because the types
of packages are so similar, the evaluation of combinational
packages is almost totally table-driven. The evaluation
is also arranged so that an unconneéted input is consid-
ered to be "tied down" and hence has no effect on the
simulation.

In pass three, the input to each delay package is
stored in a field inside the package instance. This
method of handling delays makes it unnecessary to order
delays.

All simulations are three-valued, i.e., a signal may
take on the value 0, 4, or X. This allows one to make
sure certain events occur independently of other conditions.
For instance, a register should be able to be cleared
regardless of its contents. Another advantage of three-
valued simulation which was not implemented is the ability

to propagate an X between any signal changes and thereby

-13-

-14-

determine any possible SPIKES. This feature would not

be too difficult to implement in our system.

APPENDIX A. SYNTAX OF INITIALIZATION

STATEMENTS

A special mode for the definition of a network is
entered under the command INIT. The format of the state-
ments accepted is giveﬁ below:

Each statement defines one package instance and all
its connections. The statements are in free-format in
that the four fields may be separated by any number of
blanks.

The first field is the name of the instance this
statement refers to. It may be 1 to 4 characters and is
padded with blanks to 4 characters.

The second field is the name of the package type.
Presently, the only acceptable entries are: DELY, AND,

OR, NOT, EXOR, NAND, and NOR.

The third field defines the signals connected to
the inputs of the package. It consists of a list of
signal names, separated by commas and all enclosed in
parentheses:

(SIG1, SIG2, ...)

The named signals are connected to the inputs of
the package in the order given. Two consecutive commas
indicate the corresponding input is to be left unconnected.

The fourth field gives the names of the output signals
associated with the package. As in the case of inputs, the
field consists of a list of signal names separated by

A-1

6. POSSIBLE ADDITIONS AND EXTENSIONS TO THE SYSTEM

The following are suggestions for possible additions

and extensions to the system.

l.

The use of a CRT for interaction both in de-
fining a network and simulating it.

The use of a plotter for output of both circuit
diagrams and simulation output.

Addition of partitioned logic, so that extensively
used circuits could be defined once and then used
in many different places. Modules such as flip-
flops could then be used.

Addition of generalized combinatorial logic
modules, defined only by a truth table.

Inclusion of such package types as cére storage
and microprogram storage.

The ability to generate various reports, such as
cross reference listings, propagation delay and
fan-out listings, etc.

Addition ofbfurther design aids, as packaging,
placement, and wire routing algorithms.

The implementation of a parser to allow networks
to be defined in a higher level language.

The inclusion of more aids during simulation, such
as more sophisticated conditionals and looping,

and the ability to dump the entire structure.

-15-

commas and enclosed in parentheses. It should be noted,
however, that in the present version no package has more
than one output.

A special format is used to define primary inputs.
It consists of the word INPUTS, followed by a list of
signal names, separated by commas and enclosed in paren-
theses. There can be no confusion with an ordinary state-
ment, since INPUTS contains more than 4 characters.

The initialization process takes place in two passes.
In the first pass, the statements are read in and the
proper packages created. Also in this pass, a numbered
listing of the statements is produced and any errors found
at that time are printed under the proper statement.

In the second pass, the various connections are made.
Any errors in this pass are printed with the number of
the statement at fault. At the end of each pass, the
number of statements flagged in that pass is printed.

Below is an example of a set of statements defining
a simple set-reset flip-flop. The signals ON and OFF,
respectively, set and reset the flip-flop, and the signal
OUT is the output of the circuit. All other signals are
internal.

INPUTS (ON,OFF)

NOT1 NOT (OFF) (T1)
AND1 AND (T1,T3) (T2)
OR1 OR (ON,T2) (OUT)
DEL1 DELY (OUT) (T3)

APPENDIX B. BASIC INFORMATION COMMANDS

NAME: HELP
ARGUMENTS: The number of arguments is variable; each
is the full four-character name of the

command about which a description is

desired.
PURPOSE : To provide information about commands.
PROTOTYPE: HELP (CREA,HELP)
NAME : TYPES
ARGUMENTS: The number is variable; each is the name

of a package definition.

PURPOSE: To provide information about package
types.
PROTOTYPE: TYPE (@R, X@R)

APPENDIX C. DATA STRUCTURE MANIPULATION COMMANDS

NAME: ‘ CREATE
ARGUMENTS: At least three
(1): the package type
(2): name to give instance
(3): name of an output V
(4)etc., same as (3)
PURPOSE: To create a gate, name it, and name its
outputs.
POSSIBLE ERRORS: (1) Type doesn't exist.
(2) Package name already exists.

(3) Output name already exists.

NAME: DESTROY
ARGUMENTS:: One
(1) : package name
PURPOSE: To remove a gate from the network and

"garbage collect" its storage.
NOTE: This is the only way to delete a gate

or signal name from the system.
POSSIBLE ERRORS:. (1) Package name doesn't exist.

(2) Everything is not disconnected
PROTOTYPES: CREA (AND,AND1,@UT1)

DEST (AND1)

NAME : CONNECT
ARGUMENTS : Three
(1): name of output signal.
(2): name of package which has input.
(3): sequence number of input signal.
PURPOSE: To connect one gate to another and

perform necessary reordering of the
network.

POSSIBLE ERRORS: (1) Signal or package doesn't exist.

(2) Cycle detected in structure.

(3) Bad sequence number.

NAME: DISCONNECT
ARGUMENTS: Two
(1) : name of package which has input.
(2);. sequence number of input signal.
PURPOSE: To disconnect one input lead from an

output signal.
POSSIBLE ERRORS: (1) Package doesn't exist.
(2) Bad sequence number.

PROTOTYPES: C@NN (gUT1,AND2,1)

DISC (AND2,1)

NAME : SIMULATE

ARGUMENTS: Variable (up to 30)

(n): Name of signal to print out after
simulation.

PURPOSE: To actually perform the simulation of

combinatorial and delay logic over one
clock period.
NOTE: If a trace is active (see TRACE command),
then the signals named here are added
to the others for one simulation only.
POSSIBLE ERRORS: Signal name does not exist.
PROTOTYPES: SIMULATE

SIMU (@UT1)

NAME :
ARGUMENTS:
(n) :

PURPOSE:

POSSIBLE ERRORS:

PROTOTYPE:

TRACE

Variable (up to 30)

Signal name.

To print out the values of signals after
each call to SIMULATE automatically. If
no arguments are present this feature

is turned off. Every call to this com-
mand deletes the previous ones.

No error checking is performed here,
although errors might pop up when the
signal values are printed out.

TRACE (@UT2,QUT3)

TRACE

NAME : INIT

ARGUMENTS: None (however a file or device name
must be given when it is asked for).

PURPOSE: To allow the bulk entry of gates and
the connections between them (for
further information see Appendix A

and the subroutine description for

INITAL).
PROTOTYPES: INIT
NAME : SAVE
ARGUMENTS None (same as for INIT)
PURPOSE: To save a data structure on a file or

other device (for further information

see the subroutine description for SAVE).

PROTOTYPES: SAVE

NAME : INPUTS

ARGUMENTS: Variable (up to 30)

(n): Name of signal to create.

PURPOSE: To create primary input signals into

the network.

POSSIBLE ERRORS: (1) Signal already exists.

PROTOTYPE: INPUTS (INP1,INP2)

NAME: SET

ARGUMENTS: Variable (up to 15)
(1) : name of signal to set.
(2): wvalue to set signal to: 9,1, or x
ETC.

PURPOSE: To set the value of a signal.

POSSIBLE ERRORS: (1) Signal doesn't exist.

(2) vValue is not 0, 1, or X.

PROTOTYPE: SET (¢UT1,0,@UT5, X)

NAME:
ARGUMENTS:
(n):

PURPOSE:

POSSIBLE ERRORS:

PROTOTYPE:

NAME :
ARGUMENTS :

PURPOSE:

POSSIBLE ERRORS:

PROTOTYPE:

PRINT
Variable (up to 30)

Name of signal.

To print out the value of the desired
signal.

(1) Signal doesn't exist

PRINT (@UT1, @UT2)

OUTPUT

None

To print out the values of all those
signals whose value has changed during
the last simulation. All the package
names currently in the data structure
are printed out also.

None

GUTPUT

APPENDIX D.

NAME :
ARGUMENTS:

PURPOSE:

PROTOTYPES:

NAME:
ARGUMENTS:

PURPOSE:

PROTOTYPES:

NAME:
ARGUMENTS:

PURPOSE:

PROTOTYPES:

STORED PROGRAM CONTROL COMMANDS

S@PURCE

None (é file or device name is requested).
To alter the source stream so that
commands may now be read from any file

or device.

S@URCE

TERM

None.

To switch back to master command mode
(i.e., to read commands from GUSER).

TERM

C@NT

None.

To switch back to stored command mode.
If SOURCE has never been given then
this has no effect.

C@NT

NAME : GPTP

ARGUMENTS : At least 1 (up to 29).
(1): line number to transfer to
(2): name of signal
(3): value to use in comparison

(any number of signals and values may
be given)

PURPOSE: To provide an unconditional transfer
to the line number specified on (1) if
only 1 argument is present.

If more than 1 argument is présent
then a conditional transfer is made if
and only if all the signals' current
values are equal to those stated in the
GOTO.

POSSIBLE ERRORS: (1) Signal name doesn't exist.
(2) Invalid value specified.
PROTOTYPES: G@T@ (1000)
G@gT@(5,A,1,B,X)
NOTE: Line number is an unsigned integer between

0 and 9999.

NAME :

ARGUMENTS:

PURPOSE:

PROTOTYPE:

NAME :

ARGUMENTS:

PURPOSE:

PROTOTYPE:

ECH@
1 argument
(1) : switch
To turn on and off a global switch
which determines whether command lines
read in stored command mode are to be
printed out.
If switch=0 the echo is turned on.
If switch=1l tﬁe echo is turned off.

ECH@ (0) (this is the default).

PREFIX

None.

To turn prefixing off in general
command mode.

PREFIX

APPENDIX E. OTHER COMMANDS

NAME : MTS
ARGUMENTS:: None.
PURPOSE: To return to the system with the option

of reentering the command mode of this

package by issuing a SRESTART.

PROTOTYPES - MTS

NAME : END

ARGUMENTS : None.

PURPOSE: To return the system and say goodbye to

this package.

PROTOTYPES: END

APPENDIX F. SYSTEM SUBROUTINES

NAME :

PURPOSE:

CALLING SEQUENCE:

RETURN:

NOTE:

PACKAG
To search through the data structure
and return the pointer to the package
requested.
FORTRAN IV
PTR=PACKAG (NAME)
NAME=4-character name of gate to look for
PTR=value returned by routine PTR to the
package found).
RC=0 everything O.K.
RC=4 didn't find NAME
PTR is set to O

Must be declared INTEGER*4

NAME :

PURPOSE:

CALLING SEQUENCE:

RETURN:

NOTE:

DEFTN

To search through the data structure

and return the pointer to the package

definition requested.

FORTRAN IV

PTR=DEFTN (NAME)

NAME=4-character name of package
definition

PTR=pointer to the definition (returned
by routine).

RC=0 everything O.K.

RC=4 didn't find name NAME, PTR is

set to O.

Must be declared INTEGER*4

NAME :

PURPOSE:

CALLING SEQUENCE:

RETURN:

NOTE:

SIGNAL

To search through the data structure

for a desired signal name and return

a pointer to the instance which con-

tains it with a displacement to the

particular signal found.

FORTRAN IV

PTR=SIGNAL (NAME)

NAME=4-character name of signal to look for.

PTR =return value - the low-order 24 bits
is the address of the gate containing
the signal. The high-order 8 bits
provides the displacement to the
signal.

RC=0 everything O.K.

RC=4 didn't find NAME; PTR is set to 0.

Must be declared INTEGER*4

NAME :

PURPOSE:

CALLING SEQUENCE:

RETURN CODES:

CREATE

To enter an instance of a package

definition (i.e., a gate) into the

system data structure.

FPRTRAN IV |

CALL CREATE (TYPE,NAME,PTR,ARRAY)

TYPE=pointer to the package definition
as returned by DEFTN.

NAME=4-character name of this gate.

PTR =fullword PTR to the package created.

ARRAY=array of 4-character output signal
names.

RC=0 everything is O.K.

RC=4 bad arguments.

(TYPE is equal to 0)

NAME : SETSIG

PURPOSE: To set the values of signals already
defined in the data structure.

CALLING SEQUENCE: F@RTRAN IV
CALL SETSIG(PTR,VALUE,...)
PTR=pointer (as returned by SIGNAL)

to signal desired.

VALUE=0,1, or 2 which stand for 0, 1 or X.
PTR & VALUE may be repeated as many times
as desired.

RETURN: RC=0 always.

NAME : GETSIG
PURPOSE: To return the value of a particular
signal.

CALLING SEQUENCE: F@RTRAN IV
VALUE=GETSIG (PTR)
PTR=P@INTER to signal desired (as re-—
turned by SIGNAL).
VALUE=0, 1 or 2 - this is the current

value of the signal.

RETURN: RC=0 always.

NOTE: This must be declared INTEGER*4.

NAME : ouTsl.

PURPOSE: To output all the values of all those

signals whose value had changed since
the last simulation. Also all the names
of all the curreht combinatorial gates
are printed.

CALLING SEQUENCE: F@RTRAN IV
CALL @UTS1

RETURN: RC=0 always.

NAME :

FUNCTION:

CALLING SEQUENCE:

ARGUMENTS :

RETURN CODES:

COMMENTS::

DELAY
To create a delay package.
FPRTRAN IV

CALL DELAY (PKGNAME,SIGNAME,PKGPTR,INSTPTR)

PKGNAME - 4-character name of package to
be created.

SIGNAME - 4-character name of output
signal package.

PKGPTR - Pointer to delay package
definition.

INSTPTR - Pointer to instance created
(returned).

None.

The instance is created but no connections
are made. The output signal is given the

value X.

NAME :

FUNCTION:

CALLING SEQUENCE:

ARGUMENTS :

RETURN CODES:

COMMENTS :

NAME:

FUNCTION:

CALLING SEQUENCE:

RETURN CODES:

COMMENTS:

INPUT

To create primary input signals to
the network.

FPRTRAN IV

CALL INPUT(SIGl,SIG2,...)
SI1G1,SIG2,... Each argument is a
4-character signal name. Any number
of arguments may be given.

None.

Each signal is created but not connected.

Each signal is initialized to the value X.

REORDER

To update the ordering of a network

after a connection is made.

GR1 points to the oﬁtput package supplying
the signal.

GR2 points to the package receiving the
signal in the new connection.

RC=4 - A cycle was found in the circuit.
Some orderings may have been updated.

1. This routine is for internal use only.

2. This subroutine calls on itself.

NAME : INSERT

FUNCTION: To insert an instance in the proper
place on the instance chain, according
to its order.

CALLING SEQUENCE: NON-STANDARD

ARGUMENTS: GR1l points to the instance to be
inserted.
RETURN CODES: None.

COMMENTS : This routine is for internal use only.

NAME: CONECT
FUNCTION: To connect two package instances and
update the network ordering.
CALLING SEQUENCE: F@RTRAN IV
CALL CONECT (SIGPTR,PKGPTR,SEQNO.&1,&2)
ARGUMENTS: SIGPTR - A 4-byte pointer and displace-
ment to a signal as returned
by 'SIGNAL'.
PKGPTR - Fullword pointer to the in-
stance receiving the signal.
SEQNO - Fullword integer indicating
which input is to be used (0
is the first input, 1 the

second, etc.).

RETURN CODES: &1 - Cycle found in circuit, connection
not made.
§2 - Invalid sequence number of input

already connected.
COMMENTS: To connect a signal named 'SIG' to the
third input of a package named 'PKG',
the following call would be used.

CALL CONECT (SIGNAL('SIG'), PACKAG('PKG'),2)

NAME :

FUNCTION:

CALLING SEQUENCE:

ARGUMENTS:

RETURN CODES:

COMMENTS ¢

NAME :

FUNCTION:

CALLING SEQUENCE:

ARGUMENTS:

RETURN CODES:

COMMENTS:

SIMULT

To perform a simulation through one
time interval.

FORTRAN IV

CALL SIMULT

None.

None.

This routine updates all signal values

for the next time interval.

SAVEDS

To preserve the data structure in

a form suitable for input to INITAL.

FORTRAN IV -

CALL SAVEDS (FDVB)

FDVB - Pointer to file or device usage
block onto which statements are
to be written.

None.

" For a description of the syntax of the

statements, see Appendix A.

NAME :

FUNCTION:

CALLING SEQUENCE:

ARGUMENTS:

RETURN CODES:

COMMENTS:

DISCNT

To break the connection between two

instances.

FORTRAN IV

CALL DISCNT (PKGPTR,SEQNO,&1)

PKGPTR - Pointer to package receiving
signal.

SEQNO - Fullword integer sequence number
of input.

&1 - Invalid sequence number or input

not connected.

To destroy a connection to the third

input of a package named 'PKG' the

following call would be used.

CALL DISCNT (PACKAG ('PKGE') 2)

(0 is the first input, 1 the second, etc.)

NAME :

FUNCTION:

CALLING SEQUENCE:

ARGUMENTS:

RETURN CODES:

COMMENTS :

NAME :

FUNCTION:

CALLING SEQUENCE:

ARGUMENTS:

RETURN CODES:

COMMENTS :

DESTRY

To destroy a package instance.

FORTRAN IV

CALL DESTRY (PKGPTR, &1)

PKGPTR - Pointer to instance to be
destroyed.

&1 - All connections not broken.

All connections to a package must be

broken before it can be destroyed.

INITAL

To read in definitional statements and

to create the corresponding network.

FORTRAN IV

CALL INITAL (FDUB)

FDUB - Fullword pointer to file or
device usage block from which
statements are to be read.

ane.

For a description of the syntax of

statements read, see Appendix A.

APPENDIX G. SAMPLE RUN

Given below is a simulation of a four bit accumu-
lator. The circuit has four input signals, BITO through
BIT3, four output signals ACCO-ACC3, and three control
signals, CLR, ADD, and CARY. The CLR signal clears
the accumulator in one time step. An add is performed
in two cycles, the first with ADD on, and the second

with CARY on.

In the run below, the system is initialized with
the network from a file. Then the network is simulata2d
with various inputs. Statements entered by the user

are underlined, while responses from the system are not.

G-2

SYSTEM 360/67 SIMULATTION
IN LOGICAL DESIGN PACKAGSESE

PRODUCED BY: TOM DINGWALL AND JACK GUSKIN
DIRECTED BY: PROFESSOR EUGENE L. LAWLER

SUBMITTED IN FULLFILLMENT

OF THE REQUIREMENTS FOR THE

C.I.C.E . LOGICAL DESIGN COURSE
NO. 5 6 5

WELL HERE IT GOES
FEED ME
HELP
COMMAND HELP
TO GET INFORMATION ABOUT COMMANDS
TYPE HELP (COMMAND,...) ‘
COMMANDS AVAILABLE ARE: CREATE,CONNECT,INPUT,
HELP , DISCONNECT , DESTROY ,MTS , END, OUTPUT,
PRINT,SET,INIT,SAVE,GOTO,SOURCE,TERM,CONT, READ, TYPE
TYPE

———

AVAILABLE PACKAGE DEFINITIONS ARE:
AND , OR , NOR , NAND, NOT , DELY, XOR,

INIT

&ENTER FILE NAME ?

SOURCE

SCURCE LISTING

1 INPUTS (CLR ,ADD sCARY BITO,8IT1,8IT2,BIT3)
2 NO15 NOT (D&) (Cl5) -
3 ANL6 AND (ADD +BIT3,49999) (N1€)
4 NOl4 NUT (CLR) (Cl4) - -
5 NO12 NCT (05) (Cl2)
8 ANl1 AND (ACD 9BITZ2y090e0e) (N11)
7 NO10O NOT (CLR) (Cl10)
§ NGT8 NOT (D3) (CB)
9 AND6 ANG (ADD 4BITlyssssss) (NT)
10 NOT5 NGT (CLR) (C5) B
11 NOT4& NOT (B2) (C4)
12 AND3 AND (ADD +8ITOys9999e) (N3)
13 NOT2 NOT {CLR) (C2)
14 NOT1 NGT (DL) (Cl) - -
15 ANIS8 AND (CARY,BIT2,C15 sa9r9e) (N18)
16 NOT3 NOT (N3) (C3 0 -
17 AND1 AND (N3 'C1 evyr ey) (N1)
18 ANDZ2 AND (C2 o3 +Cl reeer) IN2)
19 (R1 OR (N1 oN2 sever9) (ACCO)
20 NOT7 NUT_ (ACCO) (CT b o
21 ANDS8 AND (CARY,BITO+C7 4re99e) (N8)
22 OR3 OR (NT oN8 wyeayed (N6) . -
23 NOTe6 NOT (N6) (C6)
26 AND4 AND (N6 +C4 499999) (N4)
25 ANDS AND (C5 21 L6 yD2 yee9e) (NS)
26 OR2 OR {N4 yN5 ya99eee) (ACCLY
27 NOL11 NCT (D4) (C11) '
28 ANLZ2 AND (CARY D4 4NE 99909) (N12) -
29 AN13 ANU (CARY,BIT14CL1 s9r9vy) {N13)
30 0RS5 OR (N1l oN12 oN13 ,4999) (R1)
31 AN17 AND {CARY D6 +R1 srvee) (N1T)
32 NOT9 NOT (RL) (CO O o o
33 AND9 AND (R1 C8B svr999) (NG)
34 GCR7 OR (NL6 oNLT oN1B see9es) (R2)) B
35 AN1O AND (C9 LCl0 ,D3 29999) (N1O)
36 NO13 NOCT (R2)y (C13)
37 ANT4 AND O (R2 4C12 seseee) (N14)
38 0R4 UR (N9 4NLO g9y9e) (ACC2)
39 AN1S AND (Cl3 +Cl14 4C5 vseey) (N1S)
40 OR6 OR (NL4 oN15 s99999) (ACC3))
41 DEL6 DELY (ACC2) (D6)
42 DELS DELY (ACC3) (D5)
43 DEL4 DELY (ACC1l) (D4)
44 DEL3 DeLY (ACC2) (D3) -
4% DEL2 DELY (ACCLl) (D2)
46 DELL DELY (ACCO) (DL)
0 STATEMENTS FLAGGED IN PASS 1
O STATEMENTS FLAGGED IN PASS 2 == e

TRACE (ACCO,ACC1,ACC2,ACC3)

READ (CLR)
CLR =1

SET (ADD, 0,CARY,0)

SIMULATE
ACCO = 0
ACCL = 0
acc2 = 0
ACC3 = 0
SET (CLR, 0)

READ (BITO0,BIT1,BIT2,BIT3)

BITO= 1
BITl= 0
BIT2= 0
BIT3= 0

SET (ADD, 1,CARY,0)

SIMULATE
ACCO =1
accl = 0
acc2 = 0
acc3 =0

SET (ADD, 0,CARY, 1)

SIMULATE
ACCO =1
ACCl = 0
ACC2 = 0
ACC3 =0

READ (BITO,BIT1,BIT2,BIT3)

BITO= 1
BIT1l= O
BIT2= 1
BIT3= 1

SET (ADD, 1,CARY,0)

SIMULATE
ACCO = 0
ACCl1 = 0
ACC2 =1
ACC3 =1

SET (ADD,0,CARY, 1)

SIMULATE
ACCO = 0
ACCl =1
ACC2 =1
ACC3 =1

READ (BITO,BIT1,BIT2,BIT3)

BITO= 1
BITl= 1
BIT2= 1
BIT3= 1

SET (ADD,1,CARY,0)

SIMULATE

ACCO 1

il

ACCl 0

il

ACC2

ACC3

SET (ADD, 0,CARY, 1)

Il

i

0

0

SIMULATE
ACCO = 1
ACCl = 0
ACC2 = 1
ACC3 =1

END

_wOOw

P _woow

< < < ACCO
\/ V \ \
eowm DEL5 OR4 _ DEL3 _ OR2 UMbN_ OR1 DELL
” a_ D5 D3 D2
!) I U“_.
N15 N14 N10 no Y _ N5 N4 N2 N1 W
~ . ! Y
wszV wzww/ AN10O \\wzo@ N\MmWWJ_ AND4 AND2) (AND1
]
Cl4 13 Ccl2 | €10 ?@ (of: C5| Omm N6| |C4
014 4 b wo NO | : NOj | ~__4NOT8| Iyo) n NO
b 21 , | 14
c i 13 12} 10 Wzoem R1 Hm“ _ |
N
R ‘& b

N16

o ow
wHHo

Circuit Diagram of Network Used in Sample Run -

A Four-Bit Accumulator

APPENDIX H. MODIFICATIONS AND ADDITIONS TO

DATA-STRUCTURE ROUTINES

Modifications to the existing data structure routines
and the addition of new subroutines were made to provide
the following capabilities: eight-character package and
signal names, the simulation of delays in all packages, and
a macro definition capability.

The implementation of eight-character names merely
involved the expansion of all name fields from four to eight
bytes, and corresponding changes to existing subroutines.

Delay simulation encompassed slightly more extensive
changes. First, the delay package type was eliminated,
along with its chain and creation subroutine 'DELAY'. Next
the ordering algorithm was scrapped, resulting in the dele-
tion of the 'REORDER' and 'INSERT' subroutines. The order
field in each package was replaced by two single byte fields
giving the rise and fall delays of each package. Finally,
each input signal area in each package was expanded from
four to eight bytes. The extra four bytes holdvthe value
and duration of the signal connected to the given input.
Only minor modifications were necessary to the subroutines

retained.

MACRO CAPABILITY

The macro capability allows the user to define more
complicated packages, such as flip4flops, from the basic
package types in the system. Once a user defines a pack-
age from a network, he can use the new package definition
just like any other.

The concept is similar to that of macros in an assem-
bly language. A macro package consists of one or more
component packages and various internal connections.

When a macro is "expanded" by the CREATE routine, a

dummy package is created to represent the instance, all
component packages are created, and internal connections
are made between the component packages. All component
packages and internal signals have hexadecimal zero names;

hence their existence is completely hidden from the user.

DEFINITION OF MACROS

Macros are defined in a manner similar to a network.
Whenever the network initialization or single statement
routines encounter a "MACRO" statement, the subroutine
DEFMAC is called and macro definitional statements are
read. The first statement read gives the name of the new
package and the output signals of the macro, separated by
commas and enclosed in parentheses. The rest of the state-
ments are of the form processed by the network initializa-
tion routine. An "EXTERNAL" statément identifies the in-

puts to the defined package. Each other statement defines

a single component package. Package names in these state-
ments are ignored. Any signal names occurring in these state-
ments which do not occur in the first statement or in an
EXTERNAL statement are considered to be internal. A defini-
tion is terminated by an end-of-file, a "MEND" statement, or
another "MACRO" staﬁement.

The following example defines an R-S flip-flop by the

name FLIPFLOP:

FLIPFLOP (ON, OFF)
EXTERNAL (SET,RESET)
GATEl NOR (RESET, OFF) (ON)
GATE2 NOR (SET,ON) (OFF)
'MEND

NEW DATA TYPES

Several new data types were required to implement the
macro capability. A dummy instance was required for each
use of a macro in the system. These dummy instances are
similar to normal instances but are held on a separate chain.
In a dummy instance, the type and delay fields are zero, and
the signal value and connector block pointer are zero for
each output signal. The second four bytes of each input
field are zero, whereas the first four are anchors for chains
of 32-byte blocks. The first 28 bytes of each block are

seven four-byte fields containing a three-byte pointer to a

component package of the macro and a one-byte sequence number

of an input in the component package. The last four bytes
of the block are a chain’pointer to the next block. By this
means one can determine, given an input to a macro package,
what the corresponding connections to component packages
are.

Component packages can occur on either the regular
chain or the macro chain. They are identified by the low-
order bit (X'0l') on the switch field, and also by a zero
name field and zero signal names for internal signals. A
component package may contain one Or more non-zero signal
names, corresponding to an output of the entire macro.

Finally, additional fields had te be added to package
definitions for macros. The normal fields for a definition
were left unchanged; and the following entries were tacked
on the end: a halfword count of the number of component
packages in the macro and a halfword count of the number
of internal signals involved in the macro. Next there
an entry describing the creation of each component package.
Each entry consists of an eight-byte package type name
(AND,OR) , two one-byte delay entries, abhalfword count of
the number of output signals for the component package,
and a four-byte entry for each output signal. Each four-
byte field consists of a one-byte flag and a three-byte
sequence number. If the flag is X'00', the sequence hum—
ber is padded to eight bytes and used as a signal package.
If the flag is X'FF', the sequence number is used as an

index into the table of output signals provided for the

H-5
creation of the macro. This signal name is then
used in the creation of the component package.
Using this information, each component package can be
created. The instance name used is an eight-byte binary
integer which starts at one and is incremented for each
component entry. Later these names are zeroed out.

Following the component package information, a field
is provided for the connections to each component package.
The order of connection information is the same as that
for each component package creation. Each field contains
a halfword count of the number of input connections to the
component package followed by a four-byte field for each
connection. Each four-byte field consists of two one-byte
flags and a halfword sequence number. If the first byte
is X'FF' the sequence number is used as an index into the
output vector supplied to the CREATE routine. The package
input is then connected to the signal found.

If the second byte is X'FF', the component package is
to be used‘as an external input to the macro package. The
sequence number tells which macro input is to be used, and
an entry is made in the proper input chain on the dummy in-
stance.

If both flags are zero, the sequence number is padded
to eight bytes and used as a signal name for connection to
the input.

In this way, all interconnections between component

packages are represented.

NEW SUBROUTINES
Three new subroutines were added to the data structure
routines:
PARSE - this subroutine is identical to the old INITAL
with the following exceptions:

a) it accepts as arguments all the data struc-
ture routines and I/O routines it needs to
call. Thus the subroutine calls can be inter-
cepted and PARSE can be used for macro defin-
ition as well as initialization.

b) if no package name occurs on a package state-
ment, a binary zero name 1is generated.

c) the 'MACRO' statement is accepted and a call
to DEFMAC made.

d) the 'INPUT' statement was renamed 'EXTERNAL'.

DEFMAC - this subroutine parses the first statement of a
macro definition itself and calls PARSE to analyze
all following statements. It intercepts necessary
subroutine calls and creates a package definition

for the given macro.

SINGLE - this subroutine calls PARSE with one package state-
ment. Thus packages may be created and connected

individually.

The
routines

CONECT -

CREATE -

PACKAG -

SIGNAL -

DISCNT -

MODIFICATIONS TO EXISTING ROUTINES

following modifications were made to sub-

already written:

if CONECT is called with a macro package as

an input the routine calls itself using every

componeht package input associated with the macro

input.

if a macro package is to be created, the following

steps are taken:

a) a dummy instance is created and inserted on
the dummy chain.

b) all component packages for the macro are
created.

c) all interconnections between component
packages are made.

d) all component package names and internal
signals are zeroed.

this subroutine searches both the dummy‘chain

and the "real" chain. Also zero package names

cause an error return even if a package with a

zero name exists.

zero signal names cause an error return even

if a zero signal exists in the network.

if a macro package input is to be disconnected,

DISCNT is called recursively for each compon-

the package input corresponding to the macro

input.

DESTRY - an addition to destroy macros was planned but never
implemented.

SAVEDS - component packages are ignored. The dummy chain
is also scanned.

INITAL - this routine now calls PARSE to do all the work.

Also included in this extended system is a fbrm of
partition, which allows the user to define sets of gates
which are to be simulated together. Using this concept
the user can simulate large scale parallel processing and
other asynchronoué logic.

In this system each partition is referred to as a
Network. Associated with each Network is a user-defined
set of macros, a clock, a scale-factor, a list of signals
to be traced when this Network is simulated, a set of pack-
age instances (gates) and a unique name. Some new subrou-
tines were needed in order to implement the Network concept.
Also additional commands were added to the Command Language
Interpreter to provide the facility to the system user.

Other additions to the system included a better signal
value printing scheme, a way to print the names of all the
package instances currently defined in the active Network,
and a way to look at and alter data included in a package

instance and its definition.

NEW COMMANDS

LOOP CONTROL

CALL: LSET (NUMBER,MIN,MAX,INCR,LOC)
PURPOSE: To provide looping information to the system.

ARGS: NUMBER the number of the loop this informa-

tion is for (1 £ NUMBER £ 25)

MIN - the starting number for this loop

MAX the final number for this loop

INCR the increment used to get from MIN to
MAX

LoC the MTS line number to transfer to if

MAX is not reached
OPERATION: Whenever the LOOP command is given with the same
number as NUMBER the INCR is added to MIN and
the result is checked against MAX. If the new
MIN is larger than MAX no branch is taken. How-
ever if it is smaller a transfer in the command

stream is made to LOC.

CALL: LOOP (NUMBER)

PURPOSE: To éctually perform the looping incremental up-
data, compare and transfer. (See LSET for further
information.)

ARGS: NUMBER the identification of the loop data to be

processed

EXAMPLE OF LOOPING
MIN MAX INCR
1 LSET(1,1,10,1,5)
2 SET(A,1,B,1)

3 CLKSET(0)

4 SCALE (5)
5 SIMULATE
6 PRINT (D,E,F)

7 GOTO(10,G,0)
8 READ (G)

9 GOTO (5)

10 LOOP (1)

At statement 10 a transfer is made to statement 5

iff (MIN=MIN+INCR) S (MAX)

CALL:

PURPOSE :

ARGS:

CALL:

PURPOSE:

ARGS:

CALL:

PURPOSE:

ARGS:

NETWORK HANDLING

NCRE (NETWRK)

To create a new network but not make it the
active network

NETWRK the 8 character name of the new net-

work

NSET (NETWRK)
To make a network the active network

NETWRK the 8 character name of the network

NCON (NETWRK , SIGNAL, PACKAG, SEQNO)

To connect an input signal in the current net-

work to an output signal in another network

NETWRK name of network to find output signal in

SIGNAL the name of the output signal

PACKAG the name of the package in the current
network which contains the input signal

SEQNO the sequence number for the input sig-

nal

CALL: CLKSET (CLOCK)
PURPOSE: To alter the value found in the current net-

work's clock

ARG: CLOCK the new value for the currént network's
clock
CALL: SCALE (SCALE)

PURPOSE: To alter the value found in the current net-
work's scale factor

ARG: SCALE the new value for the current network's

scale factor

SERVICE COMMANDS

CALL: ALLP

PURPOSE: To list the names of all the instances in the
current network

ARGS: none

CALL: DATA (PACKAGE)

PURPOSE: To print all pertinent data about PACKAGE.

This is primarily used for system debugging.

ARGS: PACKAGE the name of the package to get data
from
CALL: DSET (PACKAG,DELY1,DELY2)

PURPOSE: To alter the high to low and low to high input
delay "times" in a package. In the case of a
SINGSHOT this chaﬁges the amount of "time" the
signal remains high.

ARGS: PACKAG the name of the package to change
DELY1 the new low to high delay value

DELY2 the new high to low delay value

CALL: TSIM (NUMBER, SIGNALS)

PURPOSE: To simulate a network a number of "time scale"
times, during each time unit printing the values
for a set of signals.

ARGS: NUMBER number of times to simulate active
network (for each of these times the
network is simulated "SCALE" number
of times

SIGNALS a string of signal names whose values

are to be printed

UNCLASSIFIED

Security Classification

16

DOCUMENT CONTROL DATA -R& D

Security classification of title, body of 2ostract and indexins érnoracion musr be enyeril

wier the overall report is classified)

1. ORIGINATING ACTIVITY (Corporate author)

THE UNIVERSITY OF MICHIGAN
CONCOMP PROJECT

?2&. REPORT SECURITY CLASSIFICATION

Unclassified
20. GROUP

3. REPORT TITLE

THE DISCRETE, LOGICAL DESIGN, SIMULATION SYSTEM

2, DESCRIPTIVE NOTES (Type of report and inciusive dates)
Memorandum 26

5. AUTHORIS! (First name, middle initial, last name)

J.R. Guskin and T.J. Dingwall

]

k1
1

{16. REPORT DATE

April 1970

§7é-. TOTAL NO. OF PAGES 7b. NO. OF REFS

!
i

v

15 0

8a. CONTRACT OR GRANT NO.

DA-49-083 OSA-3050

b, PROJECT NO.

C,

d.

Sa. ORIGINATOR'S REPORT NUMBERI(S)

Memorandum 26

9b. OTHER REPORT NOI(S) (Any other numbers that may be assigned
this report)

10. DISTRIBUTION STATEMENT

Qualified requesters may obtain copies of this report from DDC.

o A AR i

11 SUPBLEMENTARY NOTES

‘2. SPONSORING MILITARY ACTIVITY

Advanced Research Projects Agency

13. ABSTRACT

sign.

This paper describes the design and implementation of a program-
ming system for simulating a logical network. It is written in a
form usable for a user's guide for this system. The system is intended
to be used in the instruction of students in the area of logical de-

DD 5V..1473

UNCLASSIFIED

Security Classification

]

g_ocur,ity Classification ‘ 17
14, '
LINK A LINK B . LiN
KEY WORDS ROLE]| WT | ROLE | WwT | Rot WY

logical design

simulation

macro facility

interactive design

Unclassified
Security Classification

