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NOMENCLATURE

the time-dependent part of the i1'th term in the expansion of
80 (r,t)

same as above in the expansion of &X(r,t)

same as above in the expansion of &I(r,t)

the resonance escape probability

the slowing down kernel

space varilable

time variable

space variable

the criticality factor of the n'th mode of the neutron flux
distribution in the reactor

the thermal diffusion constant

the modal ccupling coefficient assoclated with the steady
state neutron flux distribution

the thickness of the slab reactor

the concentration of iodine=-155

the steady state iodine-135 distribution

the reduced amplitude of the n'th mode in the expansion of

8I(r,t)

the deviation of the iodine=-135 distribution from the steady
state

the thermal diffusion length

the migration length

the reduced amplitude of the n*th mode in the expansion of

5¢(5_r_)t)
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X(E)t)
Xo(r)

Xn(t)

8X(r,t)

the modal coupling coefficient assoclated with the steady
state poison distribution

the fast leakage escape probability associated with the n'th
mode

the reduced subcriticality of the n'th mode of the neutron
flux distribution

the dimensionless time variable

the concentration of xenon-135

the steady state xenon-135 distribution

the reduced amplitude of the n'th mode in the expansion of
8X(r,t)

the deviation of the xenon-135 distribution from the steady
state

the fission yield of xenon=-135

the fission yield of iodine-135

Tx T 71

Kronecker's delta

the fast fission factor

the decay constant of xenon=-135

the decay constant of iodine-135

Ax + AT

the average number of neutrons produced upon fission

the microscopic thermal neutron absorption cross section of
xenon=-135

the neutron generation time in an infinite medium
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INTRODUCTION

In the treatment of the space and time dependent reactor sta-
bility problem of neutron flux shape variations due to xenon-135, the
method of harmonics 1s often used. Through this method, the finite set
of partial differential equations describing the problem are replaced
by an infinite set of ordinary differential equations which describe the
time behavior of the various modes or harmonics of distribution. There
is a finite subset of equations associated with each mode. It was pointed
out by Kaplan (i) that particular sets of harmonics can be found such
that each subset of these equations is independent of the other subsets,
that is, such that the time behavior of each mode of distribution can be
described independently of the behavior of the other modes. Often, how-
ever, it is desirable to choose a set of harmonics, such as the character-
istic functions of the wave equation, which are simple, well known, and
not dependent on the reactor power level. The use of such a set of har-
monics will in general result in an interdependence of the subsets of
ordinary differential equations mentioned above, such that the time be-
havior of each mode is influenced by the behavior of the other modes. It
i1s convenient to attempt to predict the stability of the shape of the neu-
tron flux distribution by examining the stability of each mode by itself,
that 1s, when modal interaction is neglected. The results of such an
attempt may not be very meaningful however, 1f it is possible that an un-
stable system is produced when several modes, each of which is by itself
stable, interact. This work deals with the effect of modal interaction
on stability. The characteristic functions of the wave equation are used
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in the modal expansion. The reactor model used is described in a sub-
sequent section. |

In this work, some of the terminology and notations of Weinberg
and Wigner (2) are used. The term "criticality factor" and the symbol C
are used in place of the more usual term "effective multiplication factor"

and the symbol kgrp. In the modal expansion the first term will be

called the first harmonic or fundamental mode, this in general should be

distinguished from the steady state neutron flux distribution.



THE REACTOR MODEL

The reactor model used in this work is a bare, thermal reactor
with stationary fuel, it is homogeneous except for the xenon poison. It
is assumed that variation in the xenon-135 density is the only process
through which a change in neutron flux level affects the properties of
the core medium, that is, xenon poisoning is the only feedback effect.
It is assumed that the xenon affects only the thermal absorption cross
section. Linear theory is used: the treatment is restricted to small
deviations from the steady state.

The attention is focused on the stablility of the shape of the
neutron flux distribution, and therefore it is assumed that the funda-
mental mode of the flux distribution is held constant by a suitable con-
trol system which has negligible effect on the higher modes.

A1l numerical computations and results are given for a slab
reactor with effective boundaries at x = o and x = H, and in which
no variations are allowed in the y and 2z directions in any of the
variables.,

Subject to the enumerated assumptions, the reactor system can

be described to a good approximation by the following equations:
~ 5 ~ 2
0% Lot <= B(z,t) FDVH(z,t) - Tf(x,t)

- oy X(r,t)B(x,t) + veple [ P(zr',t)a(|r-r'|)ar’
all space

e
(Rl
d_
~—
i

= }\II(E)JC) + 7X€Zf¢<:_f'_:t> - KXX<£)JC‘) - GXX(EJt)¢(E)t)
I(r,t) = ypeleB(r,t) - apI(r,t)

=3 -

(1)

(2)

(3)



with the boundary conditions that the variables are zero at the effective
boundaries.

The approximation that (1) is zero is reasonable for the higher
modes of distribution, provided that the reactor dimensions are not more

than a few hundred times the migration length.



THE MODAL EXPANSION

It is convenient to separate the variables into steady state

and time dependent parts:

¢<£}t) = ¢o(£) + 5¢<E)t) (L)
X(r,t) = Xo(r) + 8%(r,t) (5)
I(E)t) = IO(Z) + 5I(£Jt) (6)

Substituting these into the equations of motion, subtracting the steady
state equations from the resulting ones, and then neglecting the terms

involving the product 5¢6X, one obtains a set of equations describing
the behavior of small deviatiodns from the steady state. The time varia-

bles are now expanded in the following manner:

B(r,0) = T e(ovlo) (7)
sK(z,t) = T by(t)vs(x) (8)
i=1l
8I(r,t) = iz'l c; (t)v4(r) (9)
where
Vi (r) + Koy () =0 (10)
[ vi(x)vs(r)adr = o1 (11)

reactor volume

and the V's satisfy the same boundary conditions as the variables.
Multiplying the resulting equations by V¥, and integrating them over

the reactor volume, one obtains the desired infinite set of ordinary
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differential equations. These equations are cast into a convenient

dimensionless form by defining the following quantities,

() = Yale) o ey

Bo () (12)
Ka(t)= Abnmex) oy (13)
7elef o (max)
L(t)= Amlmex) oy, (14)

71elefo (max)
the reduced amplitudes of the n'th modes of the neutron flux, xenon, and
iodine concentration deviations from steady state;

0= % Bo(max) , (15)

the reduced maximum steady state flux,

Fig=2 | So(oiln)vy(@es , (16)

X  reactor volume

Ox

iy 7€Zf

9
[

[ %o ()i (r)vy(r)a’r , (17)

reactor volume

the modal coupling coefficients associated with the steady state flux
and poison distribution respectively;

7€l
2y ( 1417 Ki )

I, = (18)
the maximum effect of the steady state poison on the criticality factor

of the n'th mode (so that I P,, is the actual effect on it);

veplrQ(Kn)

- P R
" 5, (L4IPR) ot (9)



the criticality factor of the n'th mode;

1=Cn (20)

SnE b
I'n

the reduced subcriticality of the n'th mode, and finally

T= Mt (21)

the dimensionless time variable.
In terms of the newly defined quantities, the equations of

motion can be written in the following form.

0 = SN, + FppXy + i’fgn[PinNi + FipXil, (22)
dx 7T V4
EEQ = ;‘ Iy + (;K - Pap)Np - (14Fpn)Xy

- L [Py + FypXsl, (23)

i#n

dIn >\.I
= o AL (N,-T n=1,2,3, ...y ©. 2k
dT }\X ( n n); ) ’ ? ( )

The influence of the i'th mode on the n'th one is represented by the

expression within the brackets in Equations (22) and (23).



THE MODAL COUPLING COEFFICIENTS

The values of the modal coupling coefficients Fij and Pij s
as indicated in (16) and (17), are influenced by the shapes of the steady
state flux and poison distributions, the latter distribution being
uniquely determined by the former. The shape of the flux distribution
depends on the maximum flux level as well as on the reactor size. In
the poisoned reactor the flux distribution is flatter than the funda-
mental mode of the expansion used here, but for the combinations of re-
actor sizes and flux levels considered in this work, it is not much
flatter. For numerical computation of the coupling coefficients, there-
fore, the shape of the steady state flux distribution is approximated
by the fundamental mode V7. A flattening in ¢O, and therefore also in
Xo, increases the values of Fij and Pij for i=j (which might be
called the self-coupling coefficients), and decreases the values of the
coefficients for i#j, because the V{'s are orthogonal functions. The
approximation mentioned above, therefore, results in a slight apparent
strengthening of modal interaction. The values of some of the coupling
coefficients are shown in Figure 1 as functions of the flux level. When
the nonlinearities are neglected, as is done here, there is no inter=-
action between an even and an odd harmonic. The absolute magnitudes of
the coefficients fall off quite rapidly as }i—j] increases, and there-
fore one may expect the strongest interaction to appear between the i'th

and j'th modes when J=it2.
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ANALYTICAL INVESTIGATION

An approximate stability criterion can be derived for the higher
modes when modal interaction is neglected. Under this condition, the sys-
tem represented by Equations (22), (23) and (24) is stable if

5,> TP = 7/7) o5, L (25)
M2x + Fon

This criterion predicts marginal stability for the n'th mode when S
equals the right hand side of (25); this value will be referred to as the
critical value of S, as predicted by the approximate stability criterion.
This critical value is shown as a function of flux level in Figure 2.

It is desirable to have a rough indication of what this crite-
rion means in terms of reactor size rather than in terms of subcriticality.
For nﬁl, but not very large, and for the range of reactor sizes of in-
terest here, one may write (é) as a rough approximation

s, (- 1) . (26)

I'n
For a slab reactor with T, = .03:
S, & T_ (n2-1)(M)° . (27)
.03 H
Table I shows this approximate correspondence between reactor size and

IS It should be noted here that the exact relationship between Sn and

ne
reactor size involves terms which are dependent on the power level,
The analytical investigation carried out was directed at answer-

ing the following question. If the n'th mode is predicted to be margi-

nally stable by the approximate stability criterion given above, then will

-10-
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TABLE T

APPROXIMATE CORRESPONDENCE BETWEEN H/M AND Sy

H/M: 31 35 L1 50 70 99 140
Sp: 1 .8 .6 b .2 1 .05
8),: 5 N 3 2 1 .5 .25
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the combined system of the n'th and m'th modes be stable or unstable?

In order to attempt to answer this question, the equations of motion
(22), (23) and (24) of the n'th and m'th modes were combined under the
assumption that Fjj = Pij =0 except when i=n or i=m and j=n or
J=m. The resulting fourth order differential equation, which is too

long to exhibit here, was subjected to a rather tedious examination in
the light of the Hurwitz-Routh stability criterion (E) under the condi-
tion that the n'th mode is predicted to be marginally stable by the
approximate criterion (25). For the reactor model used here, this exami-
nation yielded the following results. For S, anan/an the combined
system is unstable, irrespectively of the stability of the m'th mode.

The behavior of the right hand side of this inequality as a function of
flux level is shown in Figure 2. For Sn:> anan/an the combined sys-
tem is stable if the m'th mode is by itself sufficiently stable, other-
wise it is unstable. Except for a very small region where %325Pthnm/an’
in order that the m'th mode be by itself "sufficiently stable'" in this
sense, the requirement

Fﬁm(Pmm - 7x/7)
S > M2Ax + Fun (8)

is necessary, but not sufficient. In other words, the value of §; must
be larger by some amount than that necessary for marginal stability as
predicted by the approximate criterion (28). A necessary and sufficient
condition simple enough to be useful was not found for this "sufficient
stability” of the m'th mode. The numerical computations discussed in the
next section, however, indicate that the value of & does not have to

be significantly greater than that required by condition (28).
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For very large values of Sy, the equation of motion of the
combined system becomes independent of S, and the effect of modal
interaction approaches a nonzero limit. This fact is quite significant.
According to Equation (22), an infinitely large Sy means that Ny,
the m'th mode of the flux distribution is not allowed to vary. Neverthe-
less, it was found that interaction with the m'th mode has a nonzero
effect on the stability of the n'th mode. The reason for this is that
although the m'th mode of the flux distribution is not allowed to vary,
the m'th mode of the xenon distribution will be forced into oscillation
by variations in the n'th mode of the flux distribution. In other words,
even if the oscillations in the flux distribution are purely in a single
mode, the oscillations in the xenon distribution will involve all the
other modes. This result agrees with those reported by Pearce (2)0
This means that even if the magnitude of the fundamental mode of the
flux distribution is held constant by some control system, in examining
the stability of the third mode, interaction between it and the funda-

mental must be taken into account.



NUMERICAL RESULTS

Since the least stable higher mode is the second harmonic,
the numerical calculations were centered on it. An exploration, by
means of analog computer simulation, of the behavior of the system con-
sisting of the second, fourth, and sixth harmonics coupled together
indicated that the effect of the sixth harmonic on the second is negli-~
gible unless the reactor size is in excess of a few hundred migration
lengths. Such large reactor sizes are not considered here because they
are beyond the range of validity of the approximations used. Therefore,
in further numerical computations, which were done on a digital computer,

the system consisting of only the second and fourth modes was considered.
Table II shows the values of the constants which were used in the calcu-
lations.

For a given reactor composition the power level and the reactor
size uniquely determine the values of 82 and S), or alternately, the
reactor power level and the value of 5o determine the value of 8.

In the computations, however, the value of 8) was varied in the full

range S, S;Eh+é;:m (effectively). Although this led to some computa-

tions which may not be physically realizable, the results are quite in~
terésting and do contribute to the understanding of the problem.

In the previous section, it was stated that in the region where
Sg‘>>F2)2 Pg)u/Fg,u, interaction with the fourth mode will enhance sta-
bility provided the value of §) 1is sufficiently large. Figure 3 shows
the results of the search for values of S; 1in this region such that

the critical value of Sp as predicted by the approximate stability

-15-
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TABLE II

THE VALUES OF THE CONSTANTS USED
IN THE NUMERICAL CALCULATIONS

3 x 10'18 cm?

Q
>
]

=2.1 x 10=2 sec~1

P
|

kI =2.9 x 1072 sec-i
7y = -003

71 = 0061
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criterion (25) is also the critical value for the combined system of the
second and fourth modes. The plot shows AS): the difference between
the values of §S) found by this search and the critical values of S|

as predicted by the approximate stability criterion. This difference

is relatively small everywhere in this region. Table I shows that in
this region the value of §S) 1s considerably larger than the critical
values found by the search described above. Therefore, in this region,
if the second mode is predicted to be marginally stable by the approxi-
mate stability criterion, the combined system of the two modes considered
here will be stable.

The remainder of the numerical calculations consisted of the
search for values of Sy for which the combined system is marginally
stable. The flux level and the value of &) were varied over wide ranges.
Figure U4 shows the computed values of ASo:  the difference between the
values of Sy found by this search and the critical values of So as
predicted by the approximate stability criterion.

The results indicate that if the reactor dimensions are not
very large, less than about 60 times the migration length for the numeri-
cal values used here, second mode instability will set in at a high flux
level: above 1012 neutrons/cmg/sec° Interaction of the second mode
with the fourth in this case enhances stability. The actual critical
value of So 1s percentagewise only slightly different from the criti-
cal value obtained when modal interaction is neglected.

If the reactor dimensions are large, 70 times the migration
length or more, second mode instability sets in at flux levels below

1013 neutrons/cmg/sec. Interaction with the fourth mode in this region
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detracts from stability. As the reactor dimensions are made larger, the

difference between the actual critical value of S, and that predicted

when modal interaction is neglected becomes percentagewise quite large.
Thus the stability of a large reactor is seriously overestimated

if modal interaction is neglected.
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