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NOMECILATURE

the time-dependent part of the i'th term in the
expansion of P (k%)

same as above in the expansion of e X (r,t)
same as above in the expansion of ST (r,¢)
index
index
index

the (infinite) multiplication factor of the
reactor

the mean neutron lifetime in an infinite medium
index

index

the resonance escape probability

the slowiﬁg down kernel

space variable

time variable

the average speed of thermal neutrons

space variable

the absorption rate of neutrons by xenon-135
the material buckling of the reactor

the criticality factor of the reactor

the criticality factor of the n'th mode of the
neutron flux distribution in the reactor

the effect of the xenon-135 poison an the
criticality factor of the n'th mode

the excess criticality factor of the n'th mode
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D the thermal diffusion constant

F(r ¢ the fission rate ;
Flw) the Fourier transform of é- (r)
F the modal coupling coefficient associated with

&) ;
the steady state neutron flux distribution

H the thickness of the slab reactor
ICre) the concentration of iodine-135

I,(r) end T(p) the steady state lodine-135 distribution

I, (%) the reduced amplitude of the n'th mode in the
expansion of $1CH,¢)

$I(r,¢) the deviation of the iodine-135 distribution from
the steady state

L the thermsl diffusion length

M the migration length

N, (2) the reduced amplitude of the n'th mode in the
expansion of $P (¢, ¢)

Pd,j the modal coupling coefficlent associated with the
steady state xenon-135 distribution

Q () the fast leakage escape probablility of the n'th
mode

R = |r-1

Sn the reduced subcriticality of the n*th mode of
the neutron flux distribution

7 the dimensionless time variable

XCr,4) the concentration of xenon-135

Xo(p) and X(r) the steady state xenon-135 distribution

Xn (£) the reduced amplitude of the n'th mode in the
expansion of $X (4, %)
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SUXYfo) the deviation of the xenon-135 distribution from
the steady state

Sx the fission yield of xenon-135

it the fission yleld of iodine-135

J = Yy + XI

€ the fast fission factor

TF X

6 ="y

Ax the decay constant of xenon-135

AI the decay constant of iodine-135

)\ E/\x')t'/\r

M the i'th characteristic value of the characteristic
value problem underlying equation (22)

v the average number of neutrons produced upon
fission

Ox the microscopic thermal neutron absorption cross

section of xenon-135
T the neutron generation time in an infinite medium

Th the effective neutron generation time of the n'th
mode of the neutron flux distribution

qé(kﬂf) the thermal neutron flux density

4% (f) and qb(b)the steady state thermal neutron distribution

5’q§(!p.£) the deviation of the thermal neutron flux
/ distribution from the steady state
¢¢ (r) the n'th characteristic function of the wave
equation
w the variable of the Fourier transform
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INTRODUCTION

‘Ever since the advent of nuclear reactors, the problem of
reactor stability has been an important one. Although a great deal of
time and effort has been expended on the study of nuclear reactor ki-
netics and stability, the knowledge of the subject is still far from
satisfactory. The great majority of the published literature on the
subject deals with the so-called space independent reactor kinetics.
in which it is assumed that the spatial and time variations of the
neutron flux or of the reactor specific power can be treated separately.
In the last few years, however, coinciding with the coming of age of
large power reactors, there has been an increasing interest in space
dependent nuclear reactor kinetics.

One can, perhaps somewhat arbitrarily, classify types of
reactor kinetic behavior according to the magnitudes of the time con-
stants which dominate the behavior. According to such a classifica-
tion one might speak about:

1. BShort-term kinetics with time constants of the

order of less than a few minutes such as be-
havior due to temperature effects,

2. Intermediate term kinetics with time constants

of the order of hours such as the effects of
' the buildup and depletion of xenon-135 and
samarium-149,

3. Long-term kinetics dealing with problems such

as fuel burnup and reactor lifetime with time
constants greater than several days.

-1-
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One might also classify reactor kinetic behavior in a different
menner, and speak about behavior induced by internal and external processes.
The former refers to behavior induced by processes occurring within the core
of the reactor such as poisoning and temperature effects, and the latter
takes into account the effects of equipment associated with the reactor
core such as the control and heat removal systems. At this point ore
must hasten to add that the types of behavior enumerated above are not
distinct, but are interdependent to a certain degree. For this reason,
the above classification of reactor kinetic behaviors may not be complete-
ly meaningful, but is certainly convenient.

This thesis deals with the intermediate term, internal, space-
and time-ﬁdependent reactor stability problem of neutron flux shape
variations due to the effect of xenon-135. The treatment is that of an
intermediate-term reactor kinetic problem in that it is implicity assumed
that the short-term behavior of the reactor is stable. The problem
studied is internal in the sense that the study investigates the in-
herent stability of the spatial distribution of the neutron flux in a
reactor, that is, it attempts to answer the question, "is the shape of
the neutron flux distribution self-correcting for = perturbations from
a steady state without interference from a control system?"

Various treatments of the above mentioned problem have appear-
ed in the literature (see references five through nine). The purpose of
this thesis is to extend the treatment of the subject. In the light of
the amount of knowledge still necessary before satisfactory understanding

of the problem 1s achieved, the forward step taken by this work is a



small one. The treatment 1s restricted to bare, homogeneous, solid
fueled, thermal reactors; the word "homogeneous” here refers to the cold
clean reactor. The Justification for restricting the treatment to solid
fueled, thermal reactors is that they are the ones expected to suffer
most from xenon troubles. The rest of the above mentioned restrictions
are Jjustified by the fact that the asymptotic theory of homogeneous
reactors is basic to all of reactor theory. There is one more maJjor
restriction placed on the problem.treated. It 1s assumed that the
variation in the xenon-135 density is the only feedback (the word “feed-
back"” here refers to any process by which a change in the neutron flux
affects the properties of the medium).effect influencing variations in
the shape of the neutron flux distribution, the effects of other feed-
back processes, such as those of reactor temperature, are disregarded.
The problem is treated using the method of harmonics, the
spatial distribution of the neutron flux is expanded into an infinite
set of orthogonal functions: the harmonics or modes of the distribu-
tion. By this expansion, the finite set of nonlinear partial differ-
entlal equations describing the problem are replaced by an infinite
set of ordinary nonlinear diffemential equations. These equations are
interdependent, so that the time behavior of each mode is affected by
the time behaviors of all the other modes. In the treatments wkich
have appeared in the literature, the criterion for the stability of the
shape of the neutron fliux distribution i1s derived after making two

major assumptions. These assumptions are:



1. That the interaction among the modes of the flux
distribution is negligible, and therefore one can
examine the stability of each mode by itself, and
2. That the stability criterion can be derived
neglecting the nonlinearities.
The latter assumption requires some comments. In the case of a nonlinear
system, one can, in addition to absolute (or nonlinear) stability, speak
about linear stability, provided that the system has a linear approximation
in a nonzero region about the steady state. Linear stability in this case
means that the system is self-correcting to small disturbances about the
steady state. For a linear system, of course, linear stability is synony-
mous with absolute stability. If stability means that disturbances die out,
then in the case of a nonlinear system linear instability implies absolute
instability, and absolute stability implies linear stability, but not con-
versely. In other words, linear stability is a necessary condition for absolute
stability. Whether it is also a sufficient condition depends on the nature
of the nonlinearities. It is quite possible that the nonlinearities make
a positive contribution to stabllity, so that linear stability is a
sufficient condition. Nonlinearities can, however, also detract from
stability and make the system unstable in spite of its linear stability.
It must also be pointed out that an inherently stable system can be made
unstabie by tieing it to an improperly designed controller, Jjust as an inherently
unstable one can be stabilized by a suitable control system.
The purpose of this thesis can now be restated in more specific

terms. The purpose is:



1. To rederive the stability criterion when the effects
of the nonlinearities and those of modal interaction
are disregarded, from a formulation of the problem
which includes the slowing down kernel and the neu-
tron generation time, and to cast this criterion into
a convenient dimensionless form; and

2. To investigate the effects of the nonlinearities and
those of modal interaction on the stability.

It is very important that the reactor designer have reliable
information of the stability of the shape of the neutron flux distribution
in the reactor; because if this is inherently unstable, he will be called
upon to design a suitable instrumentafion and cbhfrol system to eliminate
the instability. Therefore one must have some knowledge of the effects of
the approximations involved in the analysis on the final predictions of
stability. The original contribution of this thesis to the field of
reactor kinetics is the investigation of the effects of the nonlinearities
and those of modal interaction on the stability of the shape of the neutron

flux distribution.



CHAPTER I

PRELIMINARY INVESTIGATION OF AN ELEMENTARY REACTOR MODEL

Before embarking upon the formulation and treatment of the problem
of xenon induced, space- and time-dependent neutron flux variations, it is
instructive to examine an elementary nuclear reactor model which, in spite
of its simplicity, gives a hint at the possibility of spatial instabilitiesg
in the neutron flux. A hypothetical reactor will be examined in which the

neutron flux can be represented by the one energy group edquation

(—f—_ —a% gﬁ(r,-é) = DVggb(r}f) + (Vch —Za) ?5(_/?/29) (1)

with the boundary condition that qﬁ vanish on the extrapolated boundary of
the reactor. In this equation
U~ 1s some neutron speed,
Y is the average number of neutrons produced upon fission,
D is the diffusion coefficient, and
§£¥and zixare the macroscopic fission and absorption cross secticon
respectively.

qb can be expanded as follows:

o>

drt) =2, o) ), @)

3
t

where nf; is a solution of the characteristic value problem

V2 () + Hidi(r) =0 (3)

with the same boundary condition as the one that applies to equation (1).

-6-



Furthermore, the 's form a complete, orthonormal set so that

Lindion

FACTOR Va¢own?

One can now expand equation (1) into a set of ordinary differential equations
by multiplying it by (/, and integrating over the volume of the reactor. The

resulting equations are:

4 0‘ 2 —_— 4
_U':Z'gan =——Da'€nan +(VZ_F-Za) QAn fl:i,é’}v"voo. K‘)*

S

Defining the following quantities:

e D 2 VZp—Za _ 1 Ny
IW:ZQ') BW»: D J 'Z"U_Za) IQE—-Z——i)

the set of equations can be written as

K
/"""an (1+M2d-€f) 14+M2E L2 - 1 2y (5)
or as
Zﬁ_a (B )Q,L) n=12,2, - oo, (6)

These equations describe the time behavior of all the modes, or harmonics, of
the neutron flux distribution in the hypothetical reactor. Npw if one numbers
the characteristic values such that

Hy L Hy L s Lo
then the familiar results are apparent: the condition to be satisfied if

steady state is to be reached is

2 k _
Bm = %18 ) er 1+ Mac/‘gf - 1/




and in the steady state a_ «~ O for n % 1.

n

One may now ask: under what condition will a higher mode, say the
second harmonic, not go to zero? The answer is immediately clear from the

above equations; the condition is:

K
HKBY o gy 7L

The answer makes the question academic because under this condition the
fundamental mode is violently divergent, and the system will be destroyed.
One can ask a different question, however, which is not academic, namely:
what will happen if the reactor is poisoned in some manner, its size is in-
creased in order to keep the fundamental mode Jjust critical, and if in this
process the condition

J{E? éé f?;? J
where B% refers to the clean reactor, becomes established? An answer to this
guestion can be given by examining the criticality factor¥* of the second
harmonic after the addition of the poison. In the subsequent equations ¢, (c)
and J(n(b)'will refer to the eigenvalues of the clean and poisoned reactors

respectively. For the clean, critical reactor one has

4 - & _ k
1+ M2E() 1+ mMepR2 "~ 1 end 1+ MEHE(C) <1

* In this thesis the terminology and notation of Weinberg and Wigner {see
Reference 1) are adopted. The term "criticality factor” and the symbol
C are used in place of the more usual term "effective multiplication
factor" and the symbol keff. ’
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Now if the effect of the poison on the n'th mode is denoted by —ACL

such that for the poisoned, critical reactor one has

< A
2 2 - C, =1
1+ M=2HE (P )
then the criticality factor C2 of the second harmonic in the

poisoned reactor is

_ k AN
Co= 1007 1225 Ace.

As long as

M) > B2

&
1+M2REP) < 7,

and Co is less than unity, that is, the second harmonic is sub-

critical, irrespective of 43<:é . If, however,

HiP) £ BE = o),

the subecriticality of the second harmonic is dependent on Zﬁ<:é P
and variations in this quantity may cause divergent oscillations
in the second harmonic. Similar arguments can be advanced for the
higher modes.

It is apparent from the fcoregoing analysis that in order
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to satisfy the last inequality mentioned above, the compensation
for the addition of the poison must involve a relatively large

change in reactor size. It is also apparent that the larger the
clean, critical size of the reactor is in terms of its migration
length M, the larger the change in its size will have to be to

compensate for the poison. Therefore one would expect those re-
actors to be prone to spatial instabilities which are large with

respect to their migration lengths.



CHAPTER IT

THE FORMULATION OF THE PROBLEM

Having pointed out the possibility of spatial instabilities, the
problem will now be formulated in terms of the equations of motion of the
poison and of the neutron flux. The radicactive decay chain involving the
production and decay of xenon-135 in a nuclear reactor core is shown by the

diagram below. 438
FISSION FISSION Xe (13m)

. ~ N

Tems('z.s-m) —]  (6.74)

138
Cs (2.6;(106 yrs.)

135
Xe " (a.24)

The numbers within the parentheses are the half lives of the nuclides. The
following table summarizes the thermal fission ylelds of tellurium-135 and

xenon-135.

Fissioning nuclide U-233 U~235 Pu-239
Yield of Te-135 0,051 0.061 0.055
Yield of Xe-135 - 0.003 -

All the above mentioned data were taken from Reference 3. It is apparent
from the diagram that the production and depletion of xenon-135 in the

decay chain are dominated by time constants of several hours. For this
reason, the equations governing the behavior of the poison concentration
can be written as if iodine-135 were produced directly from fission. Also;
the branching that occurrs in the decay of iodine may be neglected since the
xenon isomer decays to the ground state relatively fast. In addition to the

radioactive decay, I-135 and Xe-135 are depleted - 'burned out” - by neutron

_ll_
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absorption. The neutron absorption cross section of I-135 is quite smaldi,
however, so that its burnout rate is small compared to its radiocactive de-
cay rate, and therefore the former will be neglected. The equations govern-
ing the poison concentration can now be written subject to the above men-

tloned approximations. They are:

) .
ST X =0 T (0] + 6 F(e,8)- M X (2,4) = Ale,2) (7)
a %
3 I(e,8)= N F(r,¢) - N\ I(e,¢), (8)

where

X and T are the concentrations,

AXaI@.AIthe radioactive decay constants,

J}and Xithe fission yields of Xe-135 and I-135 respectively;

F is the fission rate, and

A is the absorption rate of neutrons by Xe-135.
The last two quantities,; of course, depend upon the neutron flux.

Now the formulation of the equation describing the rate of change

of the neutron flux remains. Desregarding delayed neutrons and feedbacks
(temperature, poisop) for the time being, the thermal neutron flux in a

bare homogeneous nuclear reactor can be described by the equation

—~0 el

—i:-;ag4’(r,£)=DVa<i>(r,f)-Zad’(r,é)wépzcj )ty e (9)

with the boundary conditicn that the neutron flux vanish at the extrapo-
lated boundary (see References 1 and 2). The assumptions involved in this

model are:
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1. That Fick's rule provides an adequate representation of
the neutron current,
2. That the extrapolated boundary has the same position
for neutrons of all energy, and
3. That the 33/5fzterm of the rigorous time-dependent
diffusion equation may be neglected.
In equation (9)
v is the average speed of thermal neutrons,
D is the diffusion constant
:E;and ZiF are the thermal abserption and fission cross section
respectively,
V 1s the average number of neutrons produced upon fission,
€ 1s the fast fission factor,
p 1s the resonance escape probability, and
g (lp-r'it-¢') 1is the slowing down kernel, that is, the probability per unit
volume and time that a neutron produced at a point r' and time t' will become
thermalized at r and t in the absence of fast fission and resonance capture.
The slowing down kernel used here 1s normalized to unity, that is, its infe-
gral over all space and time in'an infinite medium is unity. In order to
take into account the feedback effect of Xe-135, an additional term is now
added to the above equation. This term involves the space- and time-dependent
poison concentration X(E,t) and the thermal neutron absorption cross section
of the poison o3 . In adding this term, the approximations are used that
Xe-135 absorbs only thermal neutrons and therefore does not alter p, and

also that v, D;9, and € are not influenced by the poison. SubJject to these
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approximations, equation (9) now becomes

L 32 F )= DV(r,t) = SaPlet) — o X(r,4) perd)

(10)

+ VepZ;f fqé(rjy) g (1e-£',¢-t') olr'dt’

wherezzgis, as in equation (9), the thermal absorption cross section of the
clean core. Now if the changes in ¢>are slow with respect to the slowing

down time of the neutrons, this equation can be written as follows:

L b, )=DV e, t) - 3 b (k8] = o X (b, 4) blr,e) +
(11)

=
+vep2}j br',¢) gic-r) Ly

One should at this point observe that the time constants governing the
variations in Xe-135 and I-135 densities are very large compared to the
mean neutron life time*, and even compared to the longest delay time of
the delayed neutrons. This means that the response of the neutron flux
distribution to variations in the poison distribution will be very fast
compared to the speed of the variations in the poison distribution, and
if the short-term behavior of the neutron flux distribution 1s stable,
the flux distribution will at all times be very nearly in equilibrium

with the poison distribution. Therefore, the flux distribution can

¥ In this thesis the term "mean neutron life time" refers to the average
time elapsed between the appearance and disappearance (by means of
absorption or leakage) of the neutrons, and the term "mean generation
time™" will refer to the average time elapsed between the occurrance of
a fission and the disappearance of the neutrons (promt and delayed)
produced by that fission.
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adequately be described by the following equation.

O=3>.7T a_if P(rt)= DV'g(re)- =, blr,2)—

(12)

~ e X (0,¢) blr¢)+ VEPZ, q5(r’/f)q/('r-r’/)ol3r’,

where T is a time constant of the order of the mean generation time of
the neutrons, about 0.1 second. In order to demonstrate in what manner
the short-term kinetics enters the problem, the %/af term of equation
(12) will be carried along up to a certain point in the development.

To summarize: subject to the enumerated approximations, the
following equatlons describe the interaction of the neutron flux and

Xenon poison distributions in the absence of other feedbacks.

Py
!_.l

(WS

S

0% 2.7 le,2) = DV*G(ere) - 5. plr,2) -

—ax X(t,¢) %@,é} + Vépz{fqé(df)ef (1p-17)2lp

SE X, d) = WIS dltd) - NeX (b6 0 X t60) ple,d) ()

"}?Z t)= YeZ, P(r, i)~ N 104 (15)



CHAPTER IIT

THE STEADY STATE

The model described by the final edquations of motion of the previous
Chapter will now be examined in the steady state. This examination is not
only instructive, but is also a necessary forerunner of the dynamic analysis.

In the steady state the final equations of the previous section become

DV (r) -, b(r) -0 Xle) dlr) +VEPS\ Y) g (ir-r1) dE =0,  (16)
/\II(.L")-I—Z(XEZ_F Cﬁ(f)—/\XX(K)_g;X(K)qé/k) =0, (17)
GeZ e - )T (k) =o. (18)

From these equations the expressions for the steady state distributions of
iodine-135 and xenon-135 can be derived quite simply as functions of the

neutron flux distribution. They are:

_ hEZe (19)
I(r) e br),

_ Ye2¢ (
X (p) S B Pr), (20)

where XE XI + Xx . It is apparent from these equations that the iodine
concentration is everywhere proportional to the neutron flux. The xenon
concentration is approximately proportional to the flux if /\x>> a;‘(qé (k).

For MK T qé(f) the xenon concentration saturates and becomes

- 16-
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practically independent of flux level. The assumption of the former condition
is called the low flux approximation, while that of the latter is the high

flux approximation. The break point between these two approximations occurs

1 ana a = 3xlO’l8 o

the flux level at the break point is about 7x1012 neutrons per cm2 per sec.

at A, =0x qg(_r_) For the values A, = 2.1x10"° sec”

It is interesting to note that thermal power reactors usually operate with an
average thermal flux of about this order of magnitude, so that neither the
high nor the low flux approximation is valid for an appreciable portion of
their cores. One must realize that even if the high flux approximation is
valid near the center of the reactor, it will not be valid near the boundar-
ies where the neutron flux goes to zero.

Substituting expression (20) into equation (16), one obtains the
equation for the neutron flux distribution in the steady state poisoned

reactor. The equation 1is:

DPib(r) - 5. dir) - ELEZe P 4y

/\X+a—)-(qé(}:) (Bl\

+VEPZ, (cb(r’) g (lk-ph) oy =o.

The effect of the poison on the criticality factors of the different modes
of flux distribution, and also 1ts effect on the steady state flux dis-
tribution will now be calculated by comparing equation (21) with the
corresponding equation of an imaginary critical reactor which is iden-
tical in size and composition except that it contains no polson and that

o b3 3 /
the V of its fuel has a different value: V . The equation of the
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imaginary resctor is:

szﬁ(r) - 2195 (r) + Vep Z;J@(r‘)a(/z—r’/)d?,;o (22)

with the same boundary conditions as those of equation (9).

Tt is one of the fundamental theorems of resctor theory (see
Reference 1) that in a reactor model described by equation (22) the
spatial distribution of the steady state neutron flux is the fundamental

-

solution of the wave equation:

Vidte) + # (r)= O,

with boundary conditions the same as above, so that %(L") = /40 %(k)}
where Ay is an arbitrary constant. It is also a fundamental theorem that

if cﬁ@) satlsfles the wave equation

Vi r) v AP r)=0,

then f %(K")O/ (1e-p1)de' = Q (#,) d(r), (23)

where O(¥,}is the Fourier transform of g, (lr-¢'t) :

)
Ql#,) = f ) 4rf -StrHil (24)
L I g, (R) 47 2, d

The praof of these theorems is shown in the appendix.
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Using the results of these theorems, equation (22) can be written

as follows:

D7'$ () =ZadirisVepZ, Q4 $u) =0, (25)

or

[-D%f“zo."’V/éPZ.p Q(%i)] %(z): o,

so that the familiar criticality condition is apparent:

C:/-== k' Q (in) =1

1+ L2 4P
where ! , and D
k'= ’ =£ LaE —_
vier = =

Since éﬁ is everywhere proportional to 901 , the latter functlion also

satisfies equation (22), and in general one can write

DVLCPL (_K.) - Zo_%(}:) + V'épsz%/z/)g/(m_hi})d?/=/4L‘ %(I‘) (26)

_‘D J—QZCK(K‘)—Z&%(Z)+Q/'éPZ;C?(JCL)‘k(',‘):/«/,L//L(K)
since \72“& (r) = —‘oL((,Z(-;D{_ (r) (27)
and ‘(‘f’z(f")%(‘t-r")dsf’= GIKX) Y. (r), (28)

where the/M's are constants,’/wd being zero. One can now write down the
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relationship between./ﬁz and.Jéi . The relationship is:

Mi= =D =S, +V'ep Ze QLK) (29)
or /M5 k/ C?(e¥z) __.1

2—&(4+L20L€;‘) = 14’[2%,}

]
where k'Q (Jgé)
L+ LM
is the criticality factor C:E of the i'th mode qg(r)of the neutron flux

distribution in the hypothetical reactor.

The effect of the poison on the criticality factor of the i'th
mode can now be derived by determining the change in V necessary to
compensate for the addition of the poison. This change can be deter-
mined by comparing the equation of the i'th mode in the poisoned reactor

with that in the hypothetical reactor. The equations are:

DV (k) - Z, ty(p) — —BEEZe PN
M+ aepir) (30)

+VEP Zcf Yo (£) g (1e-2') A = M ()

and

07 H (L) = Zut (k) +V'ep Z#f% (t)g lie-pn) d'=pepete). BV

Making use of relationships (27) and (28), multiplying the equations oy qbg .
and integrating them over the volume of the reactor, and then subtracting

one from the other, one obtains

(v-V'peSs Qi) 1 ox Ve, dir) 5
= 14 : \’2
Za (1+07H:7) 2. (1+17H7) v Nx+ <7}¢(r) L//“[r) £ )



-21-

The left side of this equation is clearly the change in the criticality

[ _
factor that had to be introduced by raising V to V in order to counter-
act the effect of the polson. Therefore the effect of the poison on the

criticality factor is:

- xyeZ ébff) 2 3 |
act=- ) - ~ (33)
C Z. (4+1"7) Dt 5 B (t) Yite) dr

f ®

A

Now if in the first approximation

Pr)=$r)= A, 4, (p),

then

AC: Ta (1412407 j LY, oz,

and in the first approximation the change in the criticality factor of the

reactor is

- Vi'éghﬁi//\ )
AC=AC,~— 4825 5 )
ACs 2. (1+0%0Y) | 1 & ﬂ‘xé’/r/\ WJ ’
v

One must be very careful to distinguish between the criticality factor of

the reactor and that of the fundamental mode (%z.of the wave equation

Vi K

In the case of the hypothetical reactor, where

P(r)= A4, (),

these two quantities are of course the same. In the case of the poisoned

reactor, however, the former term refers to the criticality factor of the



- P20~

flux distribution 96 ; that 1s, to that of the persisting flux distribution,
and the two quantities mentioned will be equal only in the first approxima-
tion.

The accuracy of the above mentioned approximations can be in-
vestigated by computing the approximate difference between the flux dis-
tributions qb(g) and é@(z)a The computation of this difference is based

on equations (21) and (22). Introducing the expansion

ﬁﬁ(f): Z A, ﬁpn (r)
n=1

into equation (21), making use of the realtionships (27) and (28),
multiplying the equations by gb;, integrating them over the volume of the

reactor, and then subtracting one from the other, one obtains

Zf oy eZe P ﬁn ‘#WOZ}

/\x+d'x¢

= i+ (V=V)PEZ [ R(4:) (36)

According to equation (32)

G-vlpeZ Qu) - | LeZerd yrps
, A+
and therefore equation (36) may be written in the following form:

Xé:?# UQVC# 9b ¢u
w L

/\x+ 0“;_(45

0(3_,: = ;. (31

Vz#c
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Now if in the first approximation

P=A

then the series in equation (37) will be dominated by the n=4 term, and

therefore in the first approximation

A Ye = == 75 3

¢~ £ Ax

A om 4 o Ltide,
V A

and since in the steady state the flux and poison distributions are even

functions about the center of the reactor, A =0 for i even¥*. According to
i

equation (29)

DM: + 5
Q (4,)

V'PGE_F =

because My =0, and therefore

. tesiwl  aesta ] Ny
M= Zla(”’&)[ Q) a(#:) / 2

so that finally

A ¥eSe fi*‘ = ¢ Sb%d

Ay - 2.(1+/%4]) Q("M [14'1&0‘54 YA ]
L+L2HE | Qld) Q)

(40)

¥ TIn this thesis the fundamental mode of the wave equation is called the
first harmonic, so that the even numbered harmonics are odd functions
about the center of the reactor.
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One should note that according to equation (33) the quantity

JE2«
2—0.. \/4 '#LQOL@:)

is thé maximum effect that the poison can have on the criticality factor
of the i'th mode. It should also be noted that this analysis leaves Al
undefined.. One must at this point remind himself that the results
calculated on the basis of the approximations used can be trusted with-
out further analysis only if the predicted changes in the criticality
factors and the neutron flux distribution are relatively small.

A simplification is possible if the above results are applied
to large reactors. From equation (24) it is apparent that G)(%&) can

be written as the following infinite series:

. (i}n OMM QZ"- 1 2 =% 1 —

- : = -4 42 P 4
rT/“ (2n+1)] 1 -3 +* o HiRk -
=0

oo
— o an . ne 2n
where R = |y -i'l, and  f2 =j477/2 g (RIR "I R,
PR, o
so that leais the mean square distance traveled by a neutron during

moderation. Now if H: is small, 6?(J{;) can be adequately express-

ed by the first two terms of the series:

1
i_/_/l,go[_&u

Qi) = 1 - N°p0° =

(31)

(42)
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2 -2 . oy
where JKL:=-§L/22 . Using this approximation, the criticality condition

and the expression for the perturbed neutron flux distribution become

C=1= k. YeZs p % 42 ol (43)
14M8%f Z;(ﬁ*[zol{f) 44_7:%55 1 LA
%
2¢

where /< = leé—f ) Ma:____, Laq‘_A‘a ;

and

o2
¢ ’ yese aemiul [ F P ;
— 2 -+ A : y ’g{ , (L
Al z % % 2o (1+L°HE] MR- 41 152 d AL TECY

From the last equation it is apparent that the magnitude of
the distortion in the shape of the neutron flux distribution caused
by the poison is governed by the maximum effect of the poison of the
criticality factors, the size of the reactor, and the values of the

integrals

= ¢ b Ay
, 1 +,:§§ : 174 -

The values of these intergrals will be examined in detail in a sub-
sequent Chapter. At this point it is sufficient to note that the
value of

Tx

= ¢

1+ Z=

N x
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and therefore the values of the integrals, will be small when a;(f//)x &1

and that when @ %//)x >1
T
Dx ~
= {Z)

4 + Ox
NAx

and therefore the values of the integrals will again be small since

f‘"/l ¢fl d{f‘ = 0 for (#£41.
4

The absolute values of the integrals reach maxims for %‘(maximum) of

3

the order of lOl neutrons per cm2 per sec.
A measure of the distortion in the neutron flux distribution
can now be obtained by computing A3/Alﬂ For a slab reactor with bound-
. _ _ _ . _1nal3 2
aries at x=o and x=H, k/p=1.2, %(maxnnum)—lo neutrons per cm” per sec.

the maximum effect of the poison on the criticality factor of any mode

may not exceed

Ye2e _ K L ,3
. v T

furthermore
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and the calculations yield the results exhibited in Table 1.

TABIE 1.
N : 100
T 25 50 5
Az, .016 .059 .13 .23
A

Maximum steady state flux flattening produced by xenon-135
as a function of reactor size.

From this it is apparent that the reactor has to be very large compared to
its migration length in order that the flux shape distortion caused by
Xe-135 be more than a few percent. Since A3 is positive, the flux dis-
tortion is such that gb(_r_) is a flatter distribution than %(3), and the
ratio of the maximum to average flux in the poisoned reactor is less than

that in the clean reactor.



CHAPTER IV

THE EXPANSION OF THE EQUATIONS OF MOTION

In order to investigate the response of the flux shape describ-
ed by the equations of motion (13), (14), and (15) to disturbances about
the steady state, the quantities;:;by X, and I will each be separated into
two components: one standing for the steady state value, and another

denoting the deviation from the steady state. Accordingly:

qe(f/f)"""ﬁéo(k')"' S?S(Z’/f)/
X (p,¢) =X, )+ $X(pt),
I(r,¢)= T, (p)+ SI(e,2).

Substituting these into the equations of motion and subtracting the steady

state equations from the resulting ones, one obtains the following set:

P

] 2 > '
0= Ty S LV Sh—Sh- —Z—i—[xos¢+<;5,,5)(+sxs4>]+/zf§<ﬁczzd”f’) ¥)

2 - |
32 SX= N p ST+ % €T §h =N SX - [ XoStrdsxrsxsd]  (46)

3 : = ,
2 $I= ¥ €5, 5p- ST, (v7)
One now has a set of nonlinear, partial differential equations describ-

ing the motion of the deviations from the steady state. In order to

reduce these to ordinary nonlinear differential equations, the

_28_,
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deviations will be expanded in the following manner:

SH(r,2) = a(wm, SX(r,¢)= ZM&)W}

oo

&I (v, z")—— Z C}(‘é)%(%
C o=
where, as in the previous sections,

Vi + Hi =0

jy t: ¢, Ap = 8:j.

Substituting these into the equations, making use of relationships (27)

g

and

and (28), multiplying the resulting equations by "PW’ and integrating them

over the volume of the reactor, one obtains the following result.

Q

R

L{
&19\
~iQ

= kQU) am—(1+04 )a ———Esz)( tﬁ, r o+ d quu# i + a. M}f‘_/:dfrj (48)

- %Z[azf% ‘/’cdfmdgmj:%%% e +a; JZK;JLJ/; i %0[3/; +Q Z‘M %:0[}_}_/‘]

jf = Cm"'zva{ ALy — / d_,( [_QM'(X (%’MOZ +jm£¢o‘k:' 5_’: -/—am/mfyh}’:oﬁrj <)"9)

7 L,é,,,,[ Jrbhte e d[ S bt caS b s and [ 4L

d e,

;Z_{“"-—: Xléz{am-/'chvp 3 V}4=4/3)"" o (50)
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One now has,; in place of the three nonlinear, partial differential
equations, an infinite set of ordinary nonlinear differential equations.
There is a set of ‘three equations for each mode of the flux distribu-
tion, but the sets are .interdependent so that the time behavior of

each mode is influenced by the behaviors of all the other modes.

The influence of the i'th mode on the m'th one is represented by the
expression within the second pair of brackets in equation (48). The
same expression appears in equation (49)° The integrals these ex-
pressions act as coupling coefficients. Since thes¢”5 are orthonormal
functions, one can expect that the absolute values of the integrals
within the second pair of brackets are less than those of the corres-
ponding ones within the first pair of brackets in equation (h8)°
Furthermore, one can expect that the greater the difference between

i and m, the smaller the absolute values of the integrals become,

Now then if the deviation of the neutron flux distribution from the
steady state flux shape is dominated by one harmonic, say the n'th, so
that the total effect of the other harmonics on it is negligible, then
the time behavior of this mode can be described adequately by the follow-

ing set of three equations.

(51)

ﬁlan : ' ) Tx t T 2 ox(
0= T—T = [k&[%,,)—,(m%) Z"fy A gl?ﬂJw\ _[Zﬁw”diﬂ]/éw{ijv‘ﬁd}‘rja"é"

EY A PR 1A PR W P PR P PO S T R

aéc” [5’15 Zc ‘[/)f]CM (53)
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The validity of these equations depends on the degree of the modal
interaction, that is, on the size of the modal coupling coefficients:
and on the degree of predominance of the n'th mode.

The last terms of equations (51) and (52) are nonlinear.
If the deviations from the steady state are small, these terms are
negligible with respect to the other terms, and the system behaves
approximately as a linear one. It must be pointed out that not all
the nonlinearities involved in this problem are represented by the
last terms of equations (51) and (52). The requirement thatc#(k,{)y
X (r,¢) , and I(f,{) be non-negative, places a limit on the
amplitudes of the higher harmonics. The derived equations of motion
of the system will therefore hold only if the a's, b's, and c's are

within certain limits.



CHAPTER V

THE DIMENSIONLESS FORM OF THE EQUATIONS OF MOTION

Before beginning the examination of the equations of motion,
it is convenient to cast them into a dimensionless form. From the
definitions of &, by, and cp, the amplitudes of the m'th modes of the

deviations of the neutron flux, xenon,and iodine distributions from the

steady state are

a'm(k (max), £, % (max), and cw%(max)
respectively, where L}M (max) is the meximum value, that is, the amp-
litude of (k" (p). Since ¢(k/{)))([['l{)) and ] (¥,4)mst be non-negative,

/am/%“ (max) £ C}éo (mex)
W G (max) & X, (mon) = — VEZe 5 ¢ (max)

/\x + o}cgﬁo(wmx

}Cm/ k#w('max><l—0 (wuxx): Xféz{ qéo (i oox)

/\I

if the deviations from the steady state are purely in the m'th mode.

If one now defines

Noft)m —lood o )

X. (4)= M B (max) /
) Y& Z-F qb, (mox) /g‘”’ \{) )

/\I % /W’ ax)
3}-6’2:% ¢é(ﬁvﬂ2x)

L. (¢)

]

Con (¢)

-30-
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then under the same condition

IN.| <1, |T.]< 1,

X., :

) / é 4 = %¢O/M0LX) J

_/'::{4éoﬂtm><)/>(m/<' %qgof"’”“k) Z 1
) T L ufwar) '

It should be noted that the newly defined variables /\//1.‘)/ X(#¢), and

I[{) are dimensionless and could be called reduced amplitudes. In terms

of the new variables, the equations of motion can now be written in the

following form.

o T dNe | Lo I 2
7 B [4 - Z;mze%f) LXQL/{" Ar —2[Nem (50

L+L24." ol (\xt) 11202

__¥ez2e | ox 2 3 T (max) 3z
Zo (14 22H4..7) [mﬁéﬁo% e Xt 5 wm/»fmx)£4lm AL P X | =

€Z+
2 (:zfzw,,) 7 [a'

V3 )b (]

\/\/4——/'_ qﬁ(#%md} ><+

> N Vol o Futrse) s
OZXM & B
did) ¢ L. +[ v 5‘-‘74 f Xoth! di}l/ Now = (55)
(10 B i) x. - 5 el [ Yy x

o 5624{ o dE MﬂL#,HHp%‘dj Xe
PZ GG [l Wi o S kAL ]

/ww)()

oM /)y
- 20

ol (Net) m=d,2, .- 2. (56)
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The terms of these equations are dimensionless. The coefficient of /\ﬁm
in equation (54) should be recognized as 8C}4=’C:n,—'1 , Tthe
excess criticality factor of the m'th mode, and the expression
multiplying the rest of the terms on the right hand side of the same
equation should be recognized as the maximum effect of the poison on
the criticality factor of the m'th mode. In order to reduce the
equations of motion to a tractable form, a number of new quantities

will now be defined.

NS

the effective generation time of the m'th mode,

7—_5-: /\)(ZL

the dimensionless time variable,

[" — V€ 2. ¢
m T s 2
S 1+ 1% K4.%)
the maximum effect of the poison on the criticality factor of the

m*th mode,

= j - CM
S =

the reduced subcriticalifty of the m'th mode,

() = —5%5 ﬁﬁb (w1 o0 x)
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the reduced maximum steady state flux;

=% | bt

_
SE;M= T fy% b dy

and

Riz 52— [ Xt d's,

so that fl ELM is the effect of the poison on the criticality factor

of the m*th mode.

In terms of the newly defined quantities, the equations of

motion can be written in the following form.

O'*[’J’w/jilw ——/:[Sm/\/m""ﬁmxm+%mmm/\/mxm]- (57)
_rz[pm»/mx + 29 NX+ T, M

Ty = glm R W.J/\/ e I X =l Mo K= Y

Z[ NitF X*Z% /\/ch"'ch«/\/th‘]/

S Em

AT p
ol T =/\,f[/\/w—f,ﬂ]) m=d,2, - - . oo, (59)



CHAPTER VI

THE MODAL COUPLING COEFFICIENTS

The behavior of the modal coupline coefficients Fij’ s, and

{h

Pij will now be examined. According to the definitions in the preceed-

ing Chapter, these symbols stand for the following expressions.

Fi= L f qﬁc,///rm.x) Yy (60)

ﬁpzjh-‘-‘“'@:—(VL/”/%dP e

gt

— Q(MOL ) 3

’%‘“fy 44+ _o_xqba %%dﬁ- (62)
¢¢[M&X>

The examination of these expressions leads to the following observations.
1. Fij andgijh are linear functions of the reduced

maximom flux {L.

2. Pm 3 is a nonlinear function of the same quantity.
3. For qéo/ o (max), = g@/ (A_ (max), that is 450=%,
- %113“

b, As 0 -0 /'?J-—)/:;J
5. As L w0, Ry - dforl=y,and B0for [£],

since (A and % are orthonormal functions.

- 36-
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6. As #% approaches a flat distribution

/E"J Z fic’j )

/L—L'j — () {or (=], /:L-_J-——»O for (#])

/D"J _’:H—_O_ {orazJ} 'Dﬁj—”O for (#].

that is, the flattening of the steady state flux distribution tends to
decrease the interaction among the modes.

In order to illustrate the behavior of the modal coupling
coefficients and to provide data for subsequent numerical calculations;
the values of some of the coefficients were calculated for a slab re-
actor with boundaries at x=0 and x=H, using the approximation
é,{ [’) /Cﬁo (max) == 9& (r ) / % (max), and the requirement that no varia-
tions be allowed in the y and z directions in any of the variables, As
it was shown in the Chapter on stead state, 4&)is a flatter function than

¢& , and therefore the calculation based on the above mentioned approxi-

mation will yield the maximum modal interaction. For this reactor
!/a T
y = == SN ——
‘71,4. H H

that
so tha (‘k (max) = V-—gj/

and §£0

—_— e SL.IQ 'lt >< .
cﬂ(mo\x) H

Introducing the following change in variables

_ 7
9:‘7/‘)(/
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the expressions for the modal coupling coefficients become
/sl
_ 2 , o s G
/—".J. = (L 5| stné sin (ie) sin (j8) A8, (63)
o

-
Lh = -—(L;%:f scn ((e) sin(j6) sin(he)d e, (64)

P 77, ' ’ (r$) ’ [rej (6 )
= 2 541419 scnle sen () & 5
‘) JL”L 1+ ) sine ole.

Since, about the center of the reactor, Qg'is an even function for i

odd, and an odd function for i even,

£

3]

Il

R, =0 if (4]  is odd,

and ho= o if ﬁ+j¥»b is even.

Therefore, in the linear range of oscillations, where the nonlinear
terms are negligible, there is no interaction between an even and an
odd harmonic. Also, if modal interaction is neglected, the equations
of motion of an even numbered harmonic contain no nonlinear terms,
since SEMWWK = for m even, and therefore the only nonlinearities
influencing the behavior of such a mode will be the limits placed on
the magriitudes of N, Xm, and I, It should also be noted that the

following relationships hold.

FEJ‘ :/;;M - F:Hm
and /Dﬁj :an "Pmm

where n=§1‘(¢'+J)j M:%(f-i) for (>],and m:%-(j—i) for [y
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Since gpijk is directly proportional to (L ?ﬁgﬁA/é!Z.is

a costant. The general expression for this quantity is shown below.

i __ 8 (jh .
at S T LA O )L B o

4]+ h not even.

Some of the values of this expression are shown in Tgbles 2, 3, and k4.
As it was pointed out previously, f?j = 3?;ZJ , and therefore the
tabulation of the latter function includes the values of the former.

The behavior of /%J s a nonlinear function of (), is shown in

Figure 1.
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Figure 1. Behavior of the Modal Coupling Coefficients
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CHAPTER VII
THE DERIVATION OF THE STABILITY CRITERION WHEN THE
EFFECTS OF THE NONLINEARITIES AND THOSE OF MODAL
INTERACTION ARE NEGLECTED
The investigation of the stability of the system described by
the equations of motion (57), (58), and (59), will now be begun. As it
has been pointed out in Chapter IV, if the effects of modal interaction
and of the nonlinearities are disregarded, the behavior of each mode
can be described by a set of three linear differential equations. In
this section the stability criterion for such a simple system will be
derived. The effects of modal interaction and those of the nonlinear-
ities will be investigated in the subsequent Chapters.
The system of equations describing the behavior of the n'th
modes of the deviations of the neutron flux, xenon, and iodine dis~
tributions from their steady state values, in the absence of modal

interaction and nonlinear effects, are shown below,.

-43-
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Eliminating X and I, one obtains the following third order differen-

tial equation,

LT”/\X 3:7% i [[:5“*(7\%+5“)31/)XJ3£2—M +

G R RS RE, (E-R )+ 4 (4 F) 0] 22+

Nx

* /\I[(“Em)ll’&4—/25”(4-/’“”)]/\4=O (7o)

Nx

where A = AI"+'AK‘

An examination of the coefficients of this equation reveals that all
of them, except that of the first derivative term, are at all times
positive for f;k ;? O . The coefficient of the first derivative
term, under the same condition, is also positive if Jk/% ;> /3ﬂ ;
Furthermore, all of the coefficients, except that of the third de-
rivative term, involve f; 5& , the subcriticality of the n'th mode.
The order of magnitude of the coefficient of the third derivative
term is 1070, For n=4: LS, =0, but for >4 it will be of
the order of 10'2, unless the reactor is of extremely great size.
this will be shown later in the chapter. Therefére, as expected, for
the higher modes the coefficient of the third derivative term is very
much smaller than those of the others. Since this thesis deals with
the stability of the shape of the flux distribution, the interest is
focused on the higher modes. The assumption that the short-term be-

havior of the reactor is stable implies that the fundamental mode is
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stabilized by some process which has negligible effect on the higher
modes .

The stability of this system, for # >4 , will now be examined
by the application of the Hurwitz-Routh stability criterion. According

to this criterion, the differential equation

Adx dx o X
STt CGgr t Cigz

represents a stable system if and only if

-+ eoX =0

e, >0, E,r0, €,720, E,70,
and
ég-é?i - f?B é% 7 O,

To satisfy the last condition, one must have

(RS, +(4+F, e JL(A + R )RS+ TF (-5,
(-ﬁ- (i-* m)(’J’h/L)a——

/).r -
. [oFon (4-R0) Ta Dk > O (71)

If one now disregards the last two terms of this inequality, which

involve ?;A“.y this eondition becomes

Ax

[(/\ +F,,)5H +FW,(—%—/%,,)] > 0, (72)
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which is precisely the condition for the stability of the equation

AN, / . o Va
[S”];TF‘? +[(-/T;+F;V’)5n'/’ﬁ;n (‘g"—/‘%n) —0_[? *

)I ez
+—/f:£(j+/-’w)§n+,fm (j—/:’w)]/\/nzgl (73)

which in turn results from equation (70) when the terms Involving

kakx are neglected. It should be observed that, unless an is
very large, the presence of the short-time constant 7Th detracts
from stability. The physical reason for this 1s that taking into
account the fact that a change in the neutron flux level does not
instantaneously follow a change in xenon concentration introduces
additional time delay into the problem. This means that there is an
increase in the time required for a decrease in xenon concentration
to produce an increase in flux level and in turn an increase in
iodine concentration and in xenon production rate, which will re-
verse the original decrease in xenon concentration.

The approximate stabllity criterion for the n'th mode

can now be cast in the following form.

2
Frn (//a“ —~'§r)
Sp > ’ {74)
};,'# /;n
The behavior of the right hand side of this iInequality is shown in

Figure 2. BSince S, >0, this criterion is always satisfied when

Fon <L Xf/% . The physical meaning of this becomes clear
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if one recalls that /2M ig associated with the burnout rate, and
xX/g with the direct production rate of the poison by the n'th
mode of the flux distribution. If /2”<f x?%, then an increase in
the n'th mode of the neutron flux distribution will result in a
prompt net increase in the production rate of the poison, which
in turn will tend to reverse the increase in the flux. If, how-
ever, /2”:> Xﬁ/k , then an increase in the flux will result in a
prompt decrease in the production rate of the poison, which in
turn will tend to increase the flux level further, and possibly
result in instability. The steady state neutron flux level
above which the burnout rate of xenon exceeds its direct produc-

011 neutrons per cm® per sec.

tion rate is about 3x1
The right hand side of inequality (74) is an increasing
function of (- , and approaches JI/A' as (L —>o0 . Therefore,

according to the approximate stability criterion, if

Sa > Jz/gzi,

that is, if the suberiticality of the n'th mode [ S, is greater
than the maximum effect of the indirectly produced poison KI[;//X
on the criticality factor of the same mode, then the n'th mode is
stable. Or, in other words, if thé n'th mode is subcritical

irrespective of the effect of the pqison, then it is stable. One
should now recall the very similar result reached in the prelimin-

ary investigation of an elementary reactor model in Chapter I.

N

75)
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The stability criterion is often exhibited in a form involving

the difference between the squares of the characteristic values Jén and
in instead of S,. This form will now be derived in order to show the
approximations involved in it. Recalling that, if the reactor is large

with respect to its migration length, and if n is not very large, then

~ 7 _ K (76
/-:1'5;7“"1 1+Meo£€: '/’/—;/C/D*)n} )

and that for a large critical reactor

k
4 +/§%2de B /;?/%d = :Z

from which /(2(4+M2M18)(1+/2/%ﬁ))

then /:Snx(ﬂ‘/a”_[;a4)+(j+/1/pﬁﬂ)/%2(%5_‘/{12)) (77)

and 1f one now lgnores the first term on the right hand side,

“~

. 14+[1h, 2 2 2 ,
55” -~ —_“—tr—“——“/»7 (,J{n —'Jgg ) . ( 8)
/'
One can now perform some rough calculations and get the approximate
reactor size at which flux shape instabilities become a possibllity.

For a slab reactor with

[h=lh, =~.03,

= o tosm® [(M)°, .
no= 7)) (nf-1). (79)
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For the first few higher harmonics, Table 5 gives the values of H/M for

which S, == 7.

TABLE 5

ns 2 3 L 5 6

H/M: | 32 52 71 90 | 109
Values of H/M for which S, 2.

According to Table 5, in a reactor whose dimensions are larger than

32 migration lengths, unstable second mode oscillations will result

if the steady state flux level is higher than some critical value.

It is also interesting to calculate the values of Sn for a reactor
with dimensions as large as 100 migration lengths. Table 6 summarizes

the results of such calculations based on equation (79).

TABLE 6. .

n: 2 3 L 5 6

S, .10 27 .51 ¢ .81 | 1.2
Values of Sﬁ for H/M = 100. §

Now since fl 1s of the order of percents, the subcriticality of
the second mode even in this large reactor isg greater than 10“3,
and therefore one 1s justified in neglecting the terms involving

the generation time if H/M < 100.



Recalling the def inition of [L

M= Y€ Z¢
" Za(a4L2K7)

one should note that using a one energy group analysis, this quantity

will be underestimated by writing it as

/-7 = — YeZ¢ )
" 2L (4+MPHE)

Consequently, Sp and the stability of the reactor will be overestimated
by one energy group approach.

| The calculations in tﬁis Chapter show that when modal inter-
action and the terms involving the neutron generation time are neglec-
ed, the time behavior of each mode can be described by a second order
differential equation. The examination of this equation in the linear
range yields a stability criterion which states that in order that the
n'th mode be stable, its subcriticality must be larger than an increas-
ing function of the maximum neutron flux level. Since the value of this
function is always less than the maximum effect of the indirectly pro-
duced xenon-135 on the criticality factor of the n'th mode, 1if the
subcriticality factor of the n'th mode exceeds this value, the n'‘th
mode will be stable irrespective of the neutron flux level in the re-
actor. It was shown that the subcriticality of the higher modes de-
creases as the reactor size increases, and therefore as the reactor is

made bigger and bigger, first the second harmonic becomes unstable, then
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the third, anéd so on. It is of course still possible to have a reactor
in which the second harmonic is stable due to the action of a suitable
control system, and the third harmonic is unstable. It was shown that
the terms involving the neutron generation time can be neglected when
the reactor size is not extremely large; their effect, however, de-
tracts from stability and will become important for extremely large
reactors. It was also pointed out that a one energy group analysis
will overestimate the stability of the shape of the neutron flux

distribution.



CHAPIER VIII.

THE EFFECT OF THE NCNLINEARITIES

In the previous Chapter the stability of the n'th mode was
studied with the assumptions that the oscillations are small about the
point where N, = Xn‘z I, = O, and therefore the effect of the non-
linearities can be neglected, and that the oscillations are predominatly
in the n'th mode, and therefore modal interaction is negligible. 1In this
section the effect of the nonlinearities will be studied while retaining
the second assumption mentioned above. The terms involving the relatively
small time constant 7, will hereafter be neglected. The system of

equations to be examined, therefore, is
SHA/H"LF;#XM—’L}ﬂnMN”/\/”/ (80)

Ao BT+ [§ R Me-[14 £ 1 X G0N, 0D
s
SN -1 (@)

with appropriate 1limits placed on the variables.

The method of analysis will be a topological one, based on
the study of the solution paths of the system in the phase plane,
mapped by point singularities and singular lines, or limit cycles,
dividing the phase plane into topological domains in which the be-
havior of the solution paths of the system can be investigated by
relatively simple methods. As a general reference on this subject,

see Reference L.

_53..



—5&-

A few definitions will now be made before beginning the analysis.

The phase plane will be def'ined by axes Nn and In’ so that the solution
paths, or phase trajectories, will consist of plots of N, against In as
time progresses. A limit cycle 1s a closed solution path corresponding
to periodic motion. Point singularities correspont to points of equilib~
rium of the gystem. On the basis of topological considerations one camn
state that any solution pathin the phase plane approaches either a sing-
ularity or infinity for both € —» + o=@ and % —»—oe. A stable
singular point is one that is not approached by solution paths as

z?-—a-—mus; all other singular points will be called unstable. A
stable limit cycle is one which is approached by solution paths from
both sides as f=4»+°0; for an unstable limit cycle the same holds
true as ¢ —= —oo, A half-stable limit cycle is one which is approach-
ed by solution paths from one side as f-—»+c¢g and from the other side
as fi—a--ooo

The phase plane will now be explored for the presence of

singular points. This will be followed by the search for the location
and stability of limit cycles. Since singular points correspond to
points of equilibrium of the system, their locaﬁions will be given by
the solutions of equations (80), (81), and (82) when the derivatives
are set equal to zero, if for the time being the limits placed on the
variables are ignored. One should note that at any singular point

N, = In' If n is even, the nonlinear terms vanish, and the only

n

solution is at
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The stability of precisely this singular point was studied in the previous
Chapter. Since, if modal interaction is negligible, the equations of motion
afé iinear for n even, linear stability is a necessary and sufficient
condition for stability for the even numbered modes. The effect of the
limits placed on the variables produces a limit cycle about the singular
point at the origin of the phase plane so that if the system is unstable;
the solution paths approach the 1limit cycle, that is, the oscillations
build up to some periodic motion. This is illustrated in Figures 3 and L.
Using the particular values of the coupling coefficients at L =2
calculated previously, the equations of motion, together with the limiting
conditions, were solved with an analog computer. Marginal stability
occurs for Sp = .186. Firgure 3 shows the solution paths of the system
for S5 = ,190 (stable), and Figure L for S, = .180 (unstable). The
former shows that the oscillations damp out, and the latter that the
paths approach a limit cycle from both sides, resulting in periodic
motion. Figure 5 shows the time behavior of the variables for this
periodic motion. In this case the size of the oscillations is deter-
mined by the limits placed on Np, the other variables do not reach
their limits. Limits of ¥ .70 were used for No in this case. As So
is decreased, that is, as the system is made more and more unstable;
the limit cycle moves ocutward until the limiting on the other variables
comes iwnbo play.

For n odd the nonlinear terms do not vanish. It is interest-

ing to compare:the magnitunde: of the nonlinear term with that of the
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linear term preceeding it. The ratio of the two terms is

SZ;ﬂn /VQ/X37 — 92;””
Fan X Fran &

Using the particular expression computed in the section on the modal

coupling coefficlents,

5%”” (4y7 for n odd.
Fun 3t

For n>1 ﬂ”“//:;n ~ %n}

and iénn//— —0 as n —» oo,
nn

Furthermore,‘Nn<( 1, and therefore the effect of the nonlinear term
is not expected to be very large even for n = 3, and will be negligible
For n odd, the equations of motion predict, in addition to the

singular point at the origin, a singular point at

o r
X}QZXVL = - L(j+ n+6n (j'Pnn)J {83)

nmz

No= N = e = | 2 ;
Sntd- qun %nk(sn"‘j_lonn) ?nnh : (8&-)

One should observe that both of the terms within the last pair of
brackets are positive, and therefore, since /i; ° 7 .

nun J n
But, because of the limits placed on the variables, N, must remain less

than unity at all times, so that the system can never reach this point of
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equilibrium predicted by the equations of motion. One should also note
that at this point all the variahles are negative. In the case of
small oscillations about the singular point at the origin; Nn and X,
are of opposite sign, as one can see from equation (80) when it is

solved for Nn:

My =— sff;)( X, . (85)
n n

In order to reach the new point of equilibrium, N, would have to pass
the discontinuity at S, = - J;n“ Xn

It has been pointed out previously that nonlinear terms may
contribute to or detract from the stability of a system. The effect
of the nonlinear terms in this problem is demonstrated in Figure 6.
This figure shows the limit cycles reached by the unstable third harmonic
with and without the nonlinear terms. Here again the values of the
coupling coefficients at =2 were used; the limits placed on N3 were
+1 and -.5. The inner limit cycle was reached when the nonlinear terms
were left out, that i1s when %QLB was taken to be 0. When the non-
linear terms were included, the solution paths converged to the outer
limit cycle, as 1s shown in Figure 7, indicating that the nonlinear
terms promote instability. On the basis of this fact one must conclude
that if linear analysis predicts marginal stability, for n odd, the
system is actually unstable. If S, is slightly larger than the critical
value predicted by the approximate stability criterion, then. there must
be a region about the stable singular point at the origin of the phase

plane in which the solution paths approach the singular point, If however,
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the system is displaced sufficiently so that its solution path leaves
this region, then the nonlinear terms will be sufficlently great to
meke the system unstable and the solution paths will approach the
stable limit cycle established by the limits placed on the variables.
One therefore has in this case a stable singular point surrounded by
an unstable limit cycle which in turn is surrounded by a stable limit
cycle. One can expect that as S, increases, the region of stability
about the origin becomes larger, that is, the unstable limit cycle
moves outward, and that if Sn is sufficiently large, the unstable
limit cycle reaches the stable one, and the system becomes absolutely
stable.

The above described expectations were verified by observing
the behavior of the solution paths of the third harmonic for a number
of values of (L and S3. The results at L =2, which are representa-
tive, are shown in Figures 7, 8, 9, 10 and 11. The critical value of
83 predicted by the approximate stablility criterion is .175. The
stable 1limit cycle reached for S3 = ,170, and the time behavior of the
variables corresponding to the periodic motion on this limit cycle are
shown in Figures 7 and 8 respectively. One should note that in this
case N3 is the only variable that reaches its limits. Figures 9 and
10 show the locations of the stable and unstable limit cycles for
83 = 1760 and .1765 respectively. It can be seen that as S3 in-
creases the unstable limit cycle moves outward and the stable one in-
ward. Figure 11 shows the solution paths of the system for S3 = ,1770.

Here the two 1limit cycles are superimposed, resulting in an inwardly
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unstable half-stable limit cyecle. The solution path approaches a
periodic motion, and then spirals away from it toward the stable
singular point at the origin. For S3j>,l770 the system is stable.
One should note that only a small change in 83, from .175 to .177,
is necessary to change linear stability to absolute stability.

The calculations in this Chapter show that if modal
interaction is neglected, linear stability 1s a necessary and
sufficient condition for the stability of the even numbered modes,
but is only a necessary condition for that of the odd numbered modes.
This means that if the approximate stability criterion derived in
the previous Chapter predicts that an odd numbered mode is marginally
stable, it is in fact unstable. Th¢ numerical calcuiations show
that only a small increase in the subcriticality of a particular mode

is required in order to go from linear stabllity to absolute stability.



CHAPTER IX

THE EFFECT OF MODAL INTERACTION

The approximate stability criterion derived in a previous
Chapter predicts the stability of each mode by itself, that is, for
the case when oscillations occur in one mode only. The effect of the
interaction among the modes on stability will now be investigated.

It is reasonable to expect that if there are several modes
which are predicted to be unstable by the approximate stability
criterion, then the system consisting of these modes coupled together
will also be unstable. This will be shown in the course of the
analysis. The basic question to be answered, therefore, is as
follows: 1if there is one mode, the n'th, Whici is predicted to be
marginally stable when modal interaction is disregarded, and all
other modes are predicted to be stable under the same condition,
then, if modal interaction is taken into account, will the system
be stable or unstable? When the n'th mode begins to oscillate, it
forces all the other modes to oscillate. The effect of the n'th
mode on the m'th decreases as 'n—ml increases since the magnitudes
of the coupling coefficients fall off rather rapidly. Now then, if
the infinite series in equation (57), which takes into account modal
interaction, converges, then one can estimate the total effect of
modal interaction on the n'th mode by investigating the effect of
the adjacent modes on it. This infinite series resulted from the

expansion of a finite term, and therefore it must be convergent.

~-66-
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Since 1t was found in the previous section that the effect of the nonlinear
terms is small, modal interaction will be studied in the linear range only.
The general equation describing the behavior of two coupled
modes, the n'th and the m'th, was derived by combining the equations of
motion of the two modes with the assumption that Fij = Pij = 0 except
when i =nor i =mand j=mnor J=m This equation is shown on the
following page. If the n'th mode is predicted to be marginally stable
by the approximate stability criterion, the underlined terms in equation
(86) vanish. The subsequent analysis will be carried out under this
condition.
The stability of the system represented by equation (86) can
now be studied by applying the Hurwitz-Routh stability criterion.

According to this criterion, the differential equation

o Ay

X ol x
A2 T S gl dire gt c e x=o

* € uE T Gyl

&

represents a stable system if and only if

e4>0) 63 >O/ ea >O/ €1>O/ eo 70/
A= 638, — €461 >0,
and ZX?ZE €4 Aa — & 638 > o,

The examination of the stability of the individual modes yilelded a very

simple stability criterion for (L. large, namely S, > %5/5. The stability
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caquarion  (86)
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of equation (86) will now be examined for () large.
As (L. — o2 an — 1,
H%m—_—bij
P e — 0,
F;zn (1"&?1)""‘ 4/

Fonm ({l'PMW')_"'j;

and if 5, = i that is, the n'th mode is predicted to be marginal-
n ¥

ly stable by the approximate stability criterion, equation (86) reduces to

the following form.

4 3
(5.5 S + [ o Sa (50— %)] ZL0 + (o7

A AN
-+ ~
[ (F_;l/’i + MM) 5% 5m QZTa +

AT , AN
* - [_ ('nif/;%k%'m/e;:;) S;M.(<E;n1 - 4%73’);] AT

+</3x> [(’C;n Pmm'ﬁmf) S, §M_7 No = O,

A;: —/J{(FMW F:"/"”)SnSpw(Sm Z(I/(y))

and.

=
Az= % (/inme '5;)555‘55” (Sm}_x%) -

3
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Recalling that fﬁn/>f,€;”,} and /E;m/>’/ﬁ—m}} the condition for the
stability of this equation is :in;>K?%, which is precisely the
criterion for the stability of the m'th mode by itself. Therefore,
for XL large, if the m'th mode is by itself stable it contributes
to, and if it is by itself unstable it detracts from the stability
of the combined system of the n'th and m'th modes.
It should be observed that as Sm becomes large so that
5%-‘%@::5;, it can be factored out of equation (87). This means
that as §,,+><2, the effect of the m'th mode on the stability
approaches a nonzero limit. An examination of the coefficients of
equation (86) reveals that this is true not only for L. large, but
for the whole range of (L. . The implication of this fact is very
significant. It states that even 1f S is very large, that is, even
if no variations are allowed in the m'th mode of the neutron flux
distribution, there will be some interaction between the n'th and
the m'th modes. The reason for this is that the large Sm does not
keep the n'th mode from inducing oscillations in the m'th modes of
the xenon and lodine distributions. Therefore, even 1f the magni-
tude of, say, the fundamental mode of the fluk distribution is held
constant by a suitable control system, in examining the stability
of'y say, the third mode, interaction between it and the fundamental
must be taken into account.
The effect of modal interaction for the whole range of L

is not as simple as that for (L large. A rather tedious examination
of the coefficients of equation (86) in the light of the Hurwitz-

Routh stability criterion reveals that if S, < f;nlﬁinq/cq;n4 )



interaction with the m'th mode always detracts from the stability of the
n'th mode. For QSQ >’f;n6%ﬂ/4€;ﬂ the interaction promotes stability if
the m'th mode is stable by itself. Since an increase in Sm'promotes
stability, 1t can be expected that E,=02 will give the least effect
if modal interaction detracts from stability, and that it will result
in the largest possible effect if the interaction promotes stability.
The critical values of Sy, as predicted by the approximate stabllity
criterion, together with the function f;”/%nf,/%iﬂ% are shown in
Figure 12 as functions of (2.

In order to obtain an indication of the magnitude of the
effect of modal interacfion, and in order to extend the anélysis to
the interaction among three modes, the equations of motion of the
second, fourth, and sixth modes were solved simultaneously with an an-
alog computer using the partiicular values of the modal coupling co-
efficients calculated in a previous section. Solutions were obtained
for a number of values of —$J-, S), and Sg; and A S, , the difference
between the actual critical value of S, and the ona predicted by the
approximate stability criterion was noted in each case. The results are
sumrarized in Figure 13. Curve 2 on Figure 13 shows the effect of the
fourth mode only. The difference between curves 1 and 2, therefore,
shows the effect of the sixth mode when the subcriticalities of all
the three modes were taken to be equal. For 55 }ﬁ s the effect of
the sixth mode is so small that it 1s unobservable even on the scale
used in Figure 13. It should be noted that for f%;>j, the effect of

the fourth mode 1s also quite small. According to Tgble 5, the dimensions
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of the reactor have to exceed about 71 migration lengths in order that
S), become less than unity. In order that Sg become less than unity, the
reactor dimensions have to exceed about 109 migration lengths. There-
fore, unless the size of the reactor is extremely large, modal interaction
has only a small effect on stability.

Figures 14 and 15 show the relative magnitudes of NQ, Nhy and Né
when the system consisting of the three coupled modes i1s marginally stable.

The calculations in this Chapter show that 1f the effects of the
nonlinearities and the terms involving the neutron generation time are
neglected, for E;z<f/;nf%74é”,interaction with the m*th mode detracts from
the stability of the n'th mode irrespective of the gtability of the m'th.
For fS” >>/;”/3n?4%”,interaction with the m'th mode contributes to the
stability of the n'th provided that the m'th mode is predicted to be stable
by the approximate stabllity criterion. For wvery high values of the maxi-
mum neutron flux the effect of modal interaction can be described by the
gimple statement: Interaction with the m'th mode contributes to the
stabllity of the n'th 1 the m'th mode is by itself stable, otherwise it
detracts from it. The numerical calculations show that unless the reactor
size 1is extremely large, the effect of modal ilnteraction on the stability

of a mode is small.
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CONCLUSION

The calculations in the last two chapfers show that the
effects of the nonlinearities and those of modal Interaction on stability
are small, unless the reactor size is in excess of about 100 migration
lengths. Since the dimensions of present day reactors do not exceed
even 50 times thelr migration lengths, the approximate stability
criterion derived in Chapter VII can be expected to give good predic-
tions of their stability. This means that 1f the approximate stability
criterion predicts that periodic oscillations will occur following a
disturbance in the shape of the neutron flux distribution, then immedi-
ately following the disturbance the oscillations will in fact be nearly
periodic, and will converge or diverge only slightly.

The fact that the effects of the nonlinearities and those of
modal interaction are smell permits one to assess the effects of the
former in the absence of the latter, and vice versa., To summarize the
results: linear stability 1s a sufficlent condition for the stability
of the even numbered modes, but is only a necessary condition for that
of the odd numbered ones. If the subcriticality of a mode is less than
a certain value, modal interaction detracts from its stability. If
its subcriticality is greater than this wvalue, modal interaction will
promote its stability provided that the other modes are stable. An
increase in the reactor size decreases the subcriticality of the high-
er modes and thereby results in a decrease in the stability of the

shape of the neutron fliux distribution.
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Although the calculations performed 1n this thesis indicate
that the approximate stability criterion can be expected to give good
predictions of stablility, the reactor designer must bear in mind that
the effects of the terms involving the neutron generation time, the
effects of the nonlinearities, and those of modal interaction may
all detract from the stabliity of the shape of the neutron flux dis-
tribution. Reactor stabllity studies, therefore, should include an
assessment of the total effect of these factors on the stability of

the reactor.



APPENDIX
THE PROCF OF THE FUNDAMENTAL THEOREMS OF REACTOR
THEORY USED IN CHAPTER III

Taking the Fourier transform of equation (22) one obtains

[—D S VepZS, Q (wz)j Flw)=0

where  and F are the Fourier transforms of < and % respectively, «wi
being the variable of the transform. For nonzero % , and there-
fore for nonzero /C—,

—DLE-S +Viep =, () =0,
or

VepS, Qrwr) = D+ Z..
By the physical nature of the problem Q(wz) must be associated with
the probability that a neutron will not leak out of the reactor during
slowing down, and therefore it must be a decreasing function of w2
The right hand side of the last equation is an increasing function of
: Wa, and therefore the equation has a solution for only one real

value of Wa which will be called Jff’ From this it follows that

in the steady state %m) is the solution of the wave equation

2 %2
Vibw)+ i (r)=o,
because by taking the Fourier transform of this equation one obtains

(/mwa-#—%f_)/:-/_l/y) = 0,

. Tt s 2
which has a solution for nonzero /C_preclsely when w®= J{i . Now

=79~
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2
then if bu2=,)ﬁ » & constant, then the Fourier transform of

fc[: ') g (le-1"1) olr'
which is

Q (w*) F(w)
equals

QM) F (w),

which in turn is the Fourier transform of

Q(45) ¢ (r)

and therefore

jigff’) g (e-r1)dr’ = Q(a,) g cr).
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