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ABSTRACT
NONLINEAR DECOUPLING THEORY WITH APPLICATIONS TO ROBOTICS
by
in Joong Ha
Chairman : Elmer G. Gilbert

Some theoretical results on nonlinear decoupling theory are
presented and their applications to robotic manipulator control are
discussed.

First, refinements and extensions of some known results on
feedback decoupling of nonlinear systems are given. Precise
definitions of decoupling and decomposition are stated. Some
conditions under which the two definitions are equivalent for
nonlinear systems are found. A previously known condition is
shown to be necessary as well as sufficient for a system to be
decouplable or locally decomposable.

Second, we obtain new results which characterize the whole
class of nonlinear feedback control laws which decouple or
decompose. These results are important from both mathematical
and engineering viewpoints.  For instance, there exist systems
where our results allow the stable decoupling of -a decouplable
system, while former results do not. The class of decoupling
control laws is characterized by solutions of certain first order
partial differential equations. The class of decomposing control
laws is characterized by simple feedback laws applied to a

standard decomposed system (SDS). The SDS is similar to the



decomposed system of Isidori, Krener, Gori - Giorgi, and Monaco but
has finer structure. These new results are provided by a
generalization of ideas used by Gilbert for linear systems.

Third, we discuss a form of approximate decoupling. We
neglect fast dynamics of a system to obtain a computationally
simple control law. It is shown that when the neglected dynamics
are sufficiently fast, the simplified law decouples the actual
system “approximately™ in a certain sense.

Finally, these results are applied to decoupled control of
robotic manipulators. Two cases are considered. In the first
case, actuator dynamics are completely neglected. In the second
case, the dynamics of a significant class of actuators are taken
into account. Our formulas for the complete class of decoupling
control laws unify and generalize previous results on the decoupled
control of robotic manipulators. For example, it is possible to

achieve decoupled control of the end - effector.
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CHAPTER |

INTRODUCTION

In this dissertation, we present some theoretical results on
nonlinear decoupling theory and discuss their applications to robotics.
Let us begin the introduction with a simple discussion of the main
ideas.

Suppose we have a nonlinear system :
(1.1) x(t) = f(x(t), u(t)), y(t) = Nx(t)),

where x(t) eR", u(t) eR™, y(t)eR™ A new, closed - loop, system
K(x, u) :

is obtained by using a nonlinear feedback control law u
(1.2) (1) = fOd(t), Kix(t), WL, y(t) = hix(t)),

where K : R" x R™ - R™, {(t) € R™ This system, with input U,
has different dynamics and input-output characteristics than (1.1).
Roughly speaking, the system, (1.1) is decoupled if for i =1,
..., m, the ith component U, of u effects only the ith component
y; of y. If the system (1.2) is decoupled by a control law K, we
say (1.1) is decouplable. In particular, if the input - output map

of the system is described by y; = §.(u,, . . ., up), i =1,...,m,



decoupling requires ’1( Up - -, Up) = W), i =1,...,m. The
control law K which decouples (1.1) is called a decoupling control
law. The concept of decoupling can be easily generalized for the
case y(t) ¢ RY, where 8 > m and y is partitioned into m
subvectors. But, in this dissertation, we consider only the most
common case, § = m.

Some applications of decoupling theory are found in robotics
([Fre.2, Fre.3, Nij.5, Sind, Tar.1, Yua.1]). A simple illustrative
example is as follows. The rigid body equations of motion for a

mechanical manipulator with D.C. motor drives can be described by
(1.3) Ma)q + F(3,Q=u, y=q,

where g, u € R™ and M(q) is an (m x m) nonsingular matrix and we

have simplified the notation by not showing the explicit dependence
on t. Then, applying the nonlinear feedback control law u = M(g) U
+ F(q, q) leads to a simple decoupled linear system :

(1.4) g=0 vy=a

The system, (1.4) may be decoupled in a stable way by a linear

control law U = Y, @+ Y,q + v, U, where UWt) e R™ is the new

3

closed - loop input and Y, Y,, Y, are appropriate (m x m) diagonal

constant matrices. If there are additional dynamics representing
actuators or structural flexibility, a solution of the decoupling

problem may not be so straightforward. This motivates a more



general and deeper investigation into nonlinear decoupling theory.

With respect to (1.2), there are four guestions of obvious
importance

(a) Under what condition, is decoupling possible ?

(b) What i's the class of control laws which decouple ?

(c) what is the class of decoupled closed - loop systems ?

(d) What is the correspondence between elements of the

classes mentioned in (b) and (c) ?
If a given system can be decoupled but the decoupled system is
not internally stable, decoupling does not make sense.
Furthermore, the decoupled system may need to have desirable
input - output characteristics. These problems can be fully
investigated only by characterizing the whole class of decoupling
control laws. Thus, question (b) is important in decoupling theory.
The questions (c), (d) are related to the structural aspects of
decoupled systems.

Decoupling theory was first developed for linear systems of
the form :

(1.5) f(x,u) = Ax + Bu, h(x) = Cx
(1.6) K(x,u) = Fx + Gu,

where A, B, C, F, and G are constant matrices with appropriate
dimensions. For question (a), Morgan [Mor.1] first presented a
concrete definition of decoupling with a sufficient condition for
decoupling. Then, a complete answer to question (a) was
established by Falb and Wolovich ([Fab.1]).  The remaining questions
(b), (c), and (d) were answered first by Gilbert ([Gil.1, Gil.2]).



wonham & Morse considered the general case, = m, using a novel

geometric approach ( [Mos.1, Mos.2, Won.1, Won.2]).
The literature on nonlinear decoupling is more recent. The
case which has been considered extensively is :

(1.7 fx,u) = 1,00 + 200U,

(1.8) Kix, 0) & a(x) + B(X),

wherefi:R"#R",1-0,...,m,¢:R"-)R“,andB:R“-)R""“".

For this nonlinear system, the theory is still incomplete compared
with linear decoupling theory. All of our following discussion

applies to systems and feedback control laws of the forms (1.7),
(1.8). Clearly, the system (1.3) can be written in the form (1.7)

if Mq) is nonsingular, ¢ ¢ R™

For question (a), the earliest works are [Naz.1, Maj.1, Por.1,
Sin.1] with [Cla.l, Fre.1, Sih.1] appearing later. These papers
present nonlinear versions of Falb and Wolovich's necessary and
sufficient condition for linear decoupling, where the definition of
decouping 1s based on the input - output behaviour of systems.
Later, authors consider decomposition of the above class of
nonlinear systems ([Isi.1, Nij.2, Res.1}). Decomposition concerns
dynamic structure of the systems in state space. The system,
(1.1) is decomposed if in an appropriate system of coordinates,
(1.1) appearé as a system having m independent subsystems such
that for the fth subsystem, the input and the output are the ith
components of u and y, respectively. In other words, the system



(1.1) is decomposed if there exists a mapping T : R - R" such
that through the state transformation X = T(x), (1.1) is expressed as

(19) %) = TERMW), yO=KE), 1 =1, ..., m,
X (D) = T (KCE), W(L)),

where X = (X, ..., %, X, ). If the system (1.2) is

decomposed by a control law K, we say (1.1) is decomposable.

The control law K is called a decomposing control law. In [Isi.1],
decomposition is called noninteracting control Decomposition is a
strong definition for nonlinear decoupling. It is clear that
conditions for decomposition are also sufficient conditions for
nonlinear decoupling. In most of the papers on decomposition, the
philosophic approach is to generalize to nonlinear systems the line
of attack introduced by Wonham and Morse.

For question (b), some partial results are found in [Clat,
Fre.l, Maj.1, Sin.1, Sin2, SinJ, Sih.1]. The class of decoupling
control laws in these papers is given by linear or nonlinear
functions of outputs and their time derivatives. As will be
shown later, this is not the most general form of decoupling
control law. For question (c), (d), no results have been presented.

In this dissertation, we give precise definitions of decoupling
and decomposition. Then, we present various detailed results
concerning questions (a), (b), (c), and (d). This is our main
contribution. Next, we consider "approximate 'decoupling“ for
systems with “fast” dynamics. Finally, we apply these results to

decoupled control of robotic manipulators.



Now, we describe in greater detail the major contributions
and organization of the dissertation. Chapter 2 contains the
general mathematical background on which the development in later
cHapters is based. In particular, some elements of differential
geometry are reviewed. For example, Lie aigebraic tools are
introduced because they play the same role in the treatment of
nonlinear systems that linear algebra plays in the treatment of
linear systems.

Chapter 3 is the main part of this dissertation. We begin
by defining decoupling ( Definition 3. 1.3 ) and decomposition
(Definition3.1.5).  Our definition of decoupling is based on the
concept of input-output map. It is an extension of Hirshorn's
definition of disturbance decoupling ( [Hir.2]). An earlier origin
may be found in the work of Silverman and Payne ( [Sil.1]).

We give algebraic conditions for decoupling ( Theorem 3.2. 1)
and decomposition ( Theorem 3.2.2). Theorem 3.2. 1 is a minor
extension of the results on disturbance decoupling in [Hir.2, Isi.l1]
But, we believe our proof is clearer and simpler. With additional
steps, Theorem 3. 2. 2 is implied by arguments contained in [Isi.1].
The conditions for decomposition are more compiex than those for
decoupling. But, in Thorem 3. 2. 3, we present some conditions
under which two concepts are equivalent.

For question (a), we prove rigorously that a nonlinear version
of Falb & Wolovich's condition is both necessary and sufficient for
a system to be decouplable ( Theorem 3.4.1). This has been
considered in [Maj.1, Sin.1] but with unclear proofs. The nonlinear

version of Falb & Wolovich’s condition is also a necessary and



sufficient condition for a system to be “locally decomposable”
(Theorem 3.4.2). The proof is a refinement of an argument
contained in [isi.1l An important implication of Theorem 3. 3. |
and Theorem 3. 3. 2 is that decouplability and decomposability are,
under the hypotheses which they share, equivalent.

For question (b), we characterize the whole class of
decoupling control laws ( Theorem 3. 4.1 ) and decomposing control
laws ( Theorem 3.4.2). In the case of linear systems, (1.5), (1.6),
the characterizations reduce to a single result contained in [Gil.1]
Through an example ( Example 3.5. 1 ), we illustrate that while
previous work on the class of decoupling control laws may not
allow a system to be decoupled in a stable way, our characterization
of the whole class of decoupling control laws may. We show
that the class found by pf‘evious authors can be the whole class
of decoupling control laws only under very restrictive assumptions
(Remark 3.4.7).

For questions (c), (d), first, we introduce a standard form of
decoupled systems ( Definition 3.3.1). It is a nonlinear version of
the form proposed by Gilbert ( [Gil.1]) in the case of linear
systems. Then, we show that a class of decoupled systems has
the standard form in an appropriate state representation ( Theorem
3.3.3 and Theorem 3. 3.4). For this class of systems, we obtain
answers to questions, (c), (d) ( Theorem 3.4.5).  The underlying
idea is to characterize the whole class of the control laws which
decouple or decompose the standard form.

Chapter 4 concerns approximate decoupling. We neglect fast

dynamics of a system to obtain computationally simple control laws.



They decouple the simplified model but do not decouple the actual
system. It is shown that when the neglected dynamics are
sufficiently fast, the simplified law decouples the actual system
“approximately” in a certain sense ( Theorem 4. 2. 1).

In Chapter S5, the results of earlier chapters are applied to
decoupled control of robotic manipulators. Two cases are
considered. In Section 5. 1, actuator dynamics are completely
neglected.  In Section 5.2, the dynamics of a significant class of
actuators are taken into account. Our general formulas give a
unified and generalized framework for previous results on the
decoupled control of robotic manipulators.

Finally, Chapter 6 contains a brief summary of the resuits
presented in the previous chapters and discuss some of their
possible extensions.



CHAPTER 2

MATHEMATICAL BACKGROUND

In this chapter, we present the general mathematical
background on which our development in later chapters is based.
In Section 2.1, general notation and definitions of differential
calculus are introduced. In Section 2.2, some basic concepts of
differential geometry are introduced. Section 2. 3 contains some
theorems from differential geometry. Readers who are familiar
with differential geometry can use this chapter as a reference
for notation and proceed directly to the following chapters. For

full details, see [Boo.1, Die.l, Mun.1, Wag.1, War.1]

2. 1. General Notation and Definitions

Let N£(0,1,2,--"). Letp, qeN. Then M, . denotes
the set [j eN:p<j<ql Forice M, .. M, denotes the set
(j:jeM, but j#i) The real line, its upper haif line [0, =)
are denoted by R, R", respectively.  The (p x p) identity matrix
is denoted by In.  The transpose of a (pxq) matrix Q is Q.

In this paragraph, %, 9., ¥ are topological spaces. Let F

be a mapping from % into ® (if % £ R F is a function) The
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image of a subset U of % by F, denoted by F(U), is defined by
21.1)  FW 4 (XeX:%=Fx, xeU)

The inverse image of a subset V of % by F, denoted by F '(V),
is defined by

212) F' M & (xeX:X=Fx, eVl

Let H be a mapping from Q into %  The composition of H and

F, denoted by HoF, is defined by HoF(x) = H(F(X)), X € % A
mapping F : % = ‘9. is invertible if there exists a mapping G : )’2
= %K such that FoG and GoF are the identity mappings on the

sets X, %, respectively. Since G 1s unique, it is called the
inverse mapping of F and denoted by F'. Let U be an open
subset of %X If for each open subset V of %, the intersection
UNF V) is open in U, F is continuous on U. If F is continuous
on % and has a continuous inverse mapping FFI Fis a
homeomorphism on %

A topological space % is Hausdorff if for each pair x, z of
distinct points of %, there exist open neighborhoods U, V of x,
z, respectively, that are disjoint. A topological space % is
connected if the only subsets of % that are open and closed in
%X are the empty set and % itself.

The vector space of n- tuples of real numbers with
componentwise addition and multiplication is denoted by R". The
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element x & R" iIs written as a column vector. The transpose of

X, denoted by X!, stands for its expression as a row vector. Note
that R" with a norm || Is a Banach space.

Finally, we iIntroduce some basic definitions of differential
calculus on Banach spaces, which are found in [Die.1, Wag.1l From
now on until the end of this section, %, % are Banach spaces.
The set of all continuous linear mappings from % into % is
denoted by B (% ; K). Then, It can be shown that B(%X ; X)

with its induced norm, IE Il = sup (I1&x1 ; IxI< 1) is a Banach

space. For simplity, in the rest of this section, the norms of
Banach spaces are identically denoted by |-|. Let F be a

continuous mapping from an apen subset S of % Into 5\( Let Xo

e SEX. If there exists a v 8 8 (X ; 5\0 such that

213)  1im IFO0 - Fx) - vx=x)1/1x=x| =0,
X=X,

xeS-(x)
then, F is differentiable at x .  The mapping v is usually denoted
by DF(x,)) and is called the first derivative of F at x  since It Is
actually unique. When % £ R® and % £ RY, DF(x)) is a (gxn)
matrix and is called the Jacobian matrix of F at x,. Then, the
rank of F at x & % is the rank of its Jacobian matrix at x,. If

F is differentiable at each x e S, F is differentiable on S.

Then, DF 1s a mapping from S into B (% ; K). 1T 1t 1s
continuous on S, F is continuously differentiable oa S.
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Suppose that F is continuously differentiable on S and DF
is differentiable at x. Then, F 1S twice differentiable at X

The derivative of DF at x, is called the second derivative of f
at x, and denoted by DZF(xo). If F is twice differentiable at
each X, 8 S, it is twice differentiable on S. Then, D% is a

mapping from S into n(x;n(x;a’i)). If it is a continuous

mapping from S into n(x;n(x;‘i)), F is twice continuously
differentiable on S.  Inductively, we can define higher order
derivatives. The detalls are omitted. If F is p times

continuously differentiable on S, we write F& C? on S.
Particularly, when F is continuous (infinitely continuously

differentiable or smooth ), we write F ¢ C°(C™)on S. |If F e

C™ on S and at each X, € S, there exists a neighborhood U of X,

such that U is open in S and F can be expanded on U as an

infinite Taylor series, F is real analytic (C¥) on S.

Now, suppose that % is the product space of two Banach
spaces %,, %, ; X ¢ %, x %, For each x, £ (a,, a,) € X,
we can consider the partial mappings x, |- F(x,,a,) and X, | =
F(a,,x2) of open subsets of X, and %, respectively, into X.If
the partial mapping x, I = F(x,,a,) ( X, 1= F(a,, x,)) is
differentiable at a, (a,), F is differentiable with respect to the

first ( second ) argument at x. The derivative of that mapping,

which is an element of B(X, ; %) (n(x.z,-'fc)) is called the
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first partial derivative of F at x with respect to the first( second)
argument and written as D,F(a,, a,) or (oF/dx,)y=y, ( DF(a,,a,) or
(OF/9%,)y=y, )  Inductively, we can define the second and higher
order partial derivatives. Details are omitted.  Note that
DD;F(x, x;) e n()g;n(xj;a’i)), i,je?,,. Note that any bilinear
mapping in B(X ; n(xj;‘i)) can be identified with a bilinear
mapping in n()!ﬁx‘xj ; )/E), i, j e ?My,. Therefore, DiDjF(x,,xz) is
written (v, w) |2 D,DjF(xl, X5) [vliw]. In particular when n, n, €

N, %, ¢ R, %X, £RM2, and X ¢ R, we have for I, | € M, ,,
(2.1.4)  DDF(x,, %)) [VI[w] = wT D(DF(x,, x, )",

where D(D/F(x,, XN is an (n; x ;) matrix.
Now, let [0,L) be an interval of the real line R. Suppose

that there is a partition of [0,L) such that 0 =t <t < " < t,

= L. Let F be a mapping from [O,L) into . Let i e M.

The mapping F has an extension (F, U ) on the Interval [t, ,, t;)
if there exists a mapping F, from an open interval U, into %X such
that [t;,),t) €U, and F(t) = F(t), t € [tiy) b))  The mapping
F is piecewise C° on [O,L) if on each interval [ti ) t) 0 € g S

it has an extension (F,, U ) such that F. is bounded and C° on U. .

More generally, when on each interval [t. .., t.), i e M F has
9 (i-1) 5

1.9°
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an extension (F,, U ) such that F, is bounded and CP(C™)[C¥]
instead of C° on U, F is piecewise CP(C™ )[C®] on [0,L).  Note

that piecewise C* and C¥ mappings can actually be discontinuous

at the points ti. Thus, derivatives of F in usual sense are not
defined at the points t. " However, we will find it convenient to

define the kth derivative of F, DF in the following way : for t €
[ teq) b)), DFF(E) = DF(D).

2. 2. Basic Concepts of Differential Geometry

A manifold % of dimension n, or n - dimensional manifold is
a topological space with the following properties:

(1) % is Hausdorff,
(2) At each p € %, there is a pair (U, §) such that U is

an open neighborhood of p and @ is a homeomorphism from

U onto an open subset of R",

(3) % has a countable basis of open sets.

The pair (U, §) is called a coordinate neighborhood or chart. Charts
(U, §), (V,¥) are C™- compatible if UNV nonempty implies that
composite functions §o¥', Yo § - are C* - diffeomorphisms of the

open subsets $(UN V) and UNV) of R". A smooth structure or C=-

atlas on a manifold %K is a family A = {Uq, ¢«] of charts such that

(1) The U, cover %,
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(2) For any «, B, the charts (U, §¢) and (Vp, ¥;) are
C*°- compatible,
(3 The collection A is maximal : any chart (V,¥) C* -
compatible with every (U, §) e A is itself in A

A smooth manifold is a manifold with a C™- atlas.

If in the previous paragraph we replace "C™ and smooth™ by
C¥ and real analytic”, we obtain the definitions of C -
compatibility, C¥- atlas, and real analytic manifold instead of C*
- compatibility, C*- atlas, and smooth manifold. Clearly, any
open subset of R" is a real analytic manifold.

Let %, % be smooth manifolds of dimension n, m,
respectively. A mapping T from % into :Q is C if for each p

e %, there exist charts (U, ) of p and (V,¥) of T(p) with
T(U) € V such that the mapping T WoTo@" from @(U) into
YV) is C*= in the sense defined in Section 2. 1. The rank of T
at p is the rank of T at ¢(p) (see Section 2.1).  Note that
the rank is independent of the choice of charts. ifT7:%=- Q
. A\

is a homeomorphism and T°':% - % is C™, it is a C™-

N\
diffeomorphism on %  Suppose that n<m. If T : %X = % has a
rank n at all points of %, it is an immersion of % in ‘)/Z if T
% - 7/?. is an immersion and one - to - one on %, it iS an one -

to - one immersion.
Let 8 be a set. An n-ary operation on 8 is a mapping

from 8" into 8 A system consisting of a set and one or more
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n-ary operations on the set is an algebraic system or simply

algebra.  An algebraic system Is usually denoted by <8,f,, - -, 1>

where 8 is a nonempty set and f,, T, fk are operations on 8.

Given any point p € %, we define < €%(p), +, - > as the

algebra of C*- functions whose domain of definition includes
some open neighborhood of p. Here, the binary operations +, -
are the usual addition, multiplication of two functions,
respectively. Any two functions are considered equal if they

agree on any open neighborhood of p.

We define the tangent space TP(X) to % at p e % to be
the set of all mappings szc‘”(p) - R satisfying, for any ¢, ¥
C=(p), the following three conditions :

M Y, (¢+¥) =Y ¢+ YV,

(i) Y, $=0 if ¢ is a constant mapping,

DY, (%) = (v $) Wp) + (¥, ¥ §(p),

with the vector space operations in 'Ip('x.) over R defined

by (Y, + 20 2 Y $ + 2.6 (a¥ ) £a(y ¢)fory,

Z, € 'rp(‘x.) and for a € R
A tangent vector to % at p e % is any Y, € T(X).

A cotangent space 'J’p*(X) to % at p € % is the dual space

to T,(X) at p € X, defined by the set of all linear mappings crp

from 'rp(x) into R with the vector space operations in 'rp*(x>
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such that for Yp e 'l‘p(‘)t), aeR and dp, Qp e 'rp*(x),
(i) (o’p + QD)YD = o’pr + QDYD,
(ii)'(adp)Yp = 3 q’pr.

A cotangent vector to % at p ¢ % is any o’p e 'rp*(x).

A vector field Y on % is a mapping assigning to each point

p € % a tangent vector Yp e 'rp(x). A covector field or one
form o on % is a function assigning to each point p € % a
cotangent vector @ € T HX).

Any function ¢ from % into R defines a covector field,

denoted by d, on % by the formula :
(221) oY, = Y, 6, D € X for any vector field Y on X

This covector field df is called the differential of ¢ and df , its
value at p, the differential of ¢ at p. We may often write as
Y(p) (g(p) ) the tangent vector Y, ( the cotangent vector dp)
assigned to a point p € % by a vector field Y (a covector field
¢). Similarly, we often write d(p), Y§(p), oY(p) instead of
d¢, Y9, 0, .

The vector fields Y, i e #,;, on % are linearly

independent on an open subset W of % if at each p € W, the
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tangent vectors (Y,),, e, are linearly independent. The covector
fields di: i e M,, on % are linearly independent on an open
subset W of % if at each p € W, the cotangent vectors (di)p, ie
ﬂ, y .are linearly independent. Note that if the vector fieids are
not linearly independent at a point p € %, they are not linearly
independent on any open neighborhood of p.  Let 4),, i em,, be
C'-functions from % into R Let $4( ¢, -, )  The functions
Qi, ieM,, are functionally independent ( [Gou.1, Hil.1]) on an open
set W of % if there does not exist any C'- function ¥ : §(W) = R
such that Yo $(x)=0, x € W but ¥ is not identically zero on $(W).
It is easy to show that if d¢i, ieM,, are linearly independent

on W, then, ¢i, 1 e M,, are functionally independent on W. But,

the converse statement is not necessarily true. A simple example to

show this is §,(x,.x,) = X, sinx,, (X, %) =X, COS Xy, (X, Xp) eR2
Let T be a C™- mapping from an n - dimensional smooth

manifold % into an m - dimensional smooth manifold 5\( For each

p e%, it induces a linear mapping T*p:Tp(x) - TT(D)(Q), defined by
/N N N 00
(222) Ty (V)¢ = Y (§oT) for ¢ € L¥(T(P), Y, & T(X)

The mapping T*p is often called the differential of T at p and

denoted by dT o
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The dimensions of the tangent space T,(X) and the
cotangent space T(X) to % at p e X are the same as that of
%  Therefore, at each p e %, there is a set of n linearly
independent tangent vectors which span ‘l'p(‘x). It is called a
basis of T(X). Since THX) is the dual space to T,(X), the
basis of ‘I‘;:(‘)c) is uniquely determined by a basis» of T,(X).  So,

it is called the dual basis of ‘l;‘(x). Suppose that %% is an

open subset of R".  Let (x,,---,x ) be the coordinate vector.
Then, the n vector fields a/dx, 1 e #,  are linearly independent
on % and at each point p € %, [(a/axi)p, ie ﬂ.m] is a basis of
T,(X).  We call this basis a canonical basis. The canonical

dual basis {dx;, i e M, ] is determined by

A A
(2.2.3) (dxi)p (a/axj)p = (axi/axj)p = GiJ’ peX ijeM

* . i om i g .
where d‘u Vifi=], ai_j 0, otherwise.
Now, consider an n - dimensional manifold % which is not
necessarily an open subset of R". Let (§,U) be a chart at p €

% Then, by the definition of smooth manifold and the

observations in the previous paragraph, it follows that there

exist vector fields E, i € ﬂ.“1 on U such that

(@ E, 1 e M, are linearly independent on U,
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(b) At each g e U, [(E), 1 e M, ] Is a basis of T ().

One possible choice is

qe U

224 €), ¢ §uyy @/00)gp), 1 €M,

Correspondingly, there exist n covector fields mi, ie nm,on‘ U

such that

@) (W), (), = 8

g GEU e

(b) At each q e U, [(mi)q, i€ u,n) is a basis of TX(X).

Using the above notations, any vector field Y and covector

field o on % can be locally represented, respectively, by

[

(225 Y, ¢ 3 a@(E), qeU,

n>

(2.2.6) 1§
q

3
i=l
S b ), e,
i=t

where a, bi are functions from U into R. when % is an open
subset of R", any vector field Y and covector field ¢ on % are

globally identified by (225) and (2.2.6) with E; = o/0x, w = dx,

1

ieM, . When the a, b are C* on U, Y and @ are,
respectively, a C™- vector field on U and a C*- covector field on
U If at each p € %, there exists a chart (U, $) such that Y,
o are C™ on U, they are respectively a C™- vector field on %

and a C™- covector field on %

If in the previous paragraph, C* is replaced by C¥ and %
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1s a real analytic manifold, then Y, ¢ are a C¥ - vector field, a
C¥ - covector field, respectively.
A Lie algebra is a vector space L over R which, in addition

to its vector space structure, possesses a product [ , ] satisfying

the following properties :

(1) L is closed under the product : [Y,Z]l e L if Y,Z € L,
(2) The product is bilinear overR : fora, b € R and for X, Y,

Zel,

(227) [ax+ by, Z]=alXx,Z]+blV,1Z],
(228) [X,aY+bZ]=alX Y]+ Db[X1Z],

(3) The product s skew commutative :
(229) [Z,Y]=-[Y,Z]) for Y,Z & L,

(4) The product satisfies the Jacobi identity :
(22100 (X, [y, zll « [Y,[Z, XD+ [Z[X, Y]l = 0.

Let €2°(%) (E¥(%)) be the set of all C* (C¥)- functions
from % into R Let V(%) ( V(%)) be the set of all C*(C¥)

- vector fields on %  Then, V(%) is a vector space over R
and a module over C®(%). We define a product [Y,Z] of Y, Z €

V=(X) by

(2211 [V, 2L ¢ =Y @$) - ,(4), $ ec=(m), pex
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The product defined by (2.2.11) is called the Lie bracket of Y, Z
Clearly, it satisfies the properties (1) - (4) in the previous
paragraph and so V™(%) with the Lie bracket is a Lie algebra.
Let (U,¢) be a chart at p € %  Then, for Y £ Z a(VE, 7%

mn
b(-)E, [Y,Z] can be expressed locally on U as

-—
-

-

n

(2212) [Y,2], -ZIEa(q)(E) b, -Zb(q)(E) a ) (E)

,qe U
llJ—'J J,] 'q

Of course, when % is an open subset of R", this expression

holds globally on % with E = o/0x, i e "’m

If 2 subset E of V() is closed under the Lie bracket, it
is involutive. A subalgebra of V(%) is an involutive linear

subspace of V™(X) over R. A distribution A on % is a mapping
which assigns to each p € %, a subspace a, of ‘Ip(‘x.). If Y is a
vector field such that Yp €A, P E X, wewriteYeaAaonX A
distribution A on % is involutive if for all vector fields Y, Z
such that Y, Z € A on %, [Y, Z] € A on %  If dimension of A,
iIsk, p e ® A has a dimension k on % A distribution A on
% is C7(C®) if at each p e, there exist an open neighborhood

U and k(p) linearly independent C™ (CY) - vector fields Y, 1 €
f,, on U such that at each point q € U, ((Y), i e M,, ] spans

A,  Note that a subspace of VZ(X) (e asubalgebra of V(X))

generates a C™ - distribution on %. Thus, the subspace may
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have a dimension on %  Note this dimension is a pointwise

concept, not a function space concept. Note that in general, the

dimension of a C*™- distribution A may not be defined on %( the

number of basis vectors for A may depend on q).  Let V(%)

be the set of all C*™- covector fields on %  The C*-

codistribution A"of a C=- distribution A on % is defined by
1 A . =
(22.13) & = {u’p € 1;*(:%) : o’pr 0, Yp €4 , peX

Let Z be a vector field on % A distribution A on ¥ is

Z - invariant if [Z,Y] € A whenever Y € A.  The codistribution
& of a distribution A on % is Z - invariant if for any § e
E=(X), dp e A always implies that dZ$ e &~  Simple

calculations show that a distribution A on % is Z - invariant if
and only if the codistribution A of A is Z - invariant.
Let T be a C™-mapping from an n - dimensional smooth

manifold % into an m - dimensional smooth manifold %. A

vector field ¥ & Ve(K) is T - related on % to a vector field Y e

VR(X) if

2214 Yrp8 = v @oT), § s =TGN, p X

N
A function ¢ e (%) is T -related on % to a function ¢ e

e™(X) if

A\
(2215) () = $oT(P), p e X
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Other definitions such as integral curve and Lie derivative

will be introduced in the next section.

2. 3. Some Fundamental Results

We state some well - known results without proofs. As
in Section 2. 2, %, ‘A\ are smooth manifolds of dimensions n, m,
respectively.  Using the definitions in Section 2. 2, the following

facts may be easily verified.

Fact 2.3.1([Boo.1],p. 155). For $, ¥ e (%) and Y, Z ¢

V®(X), the following equality holds for all p € %X

(230 (V. Y21 =¢@WpI[Y,Z1 + §(p) (V. 1) Z,-¥o)(Z$) Y, O

Fact 2.3.2 ([Boo.1], p. 154). If ¥.7 € V°(R) are T -

A A
related on % to Y, Z e V(X), respectively, then [Y,Z] is T -

related on ® to [VY,Z]. O

A o N A JURSEQN
Fact2.3.3. If § e (%), Y € V™(X) are T - related on
A
X to § € L¥(X), Y e V*(X), respectively, then Y¢ is T - related

on % to Y. O

Let X € V¥(X). If a C*-mapping F from an open
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interval J of R into % satisfies

the mapping F is an integral curve of X.  Customarily, we write

F(t) instead of Fx,((2/27),).  The following theorem is concerned

about the existence of integral curves for a given vector field X
It is essentially a restatement of the existence theorem for

ordinary differential equations.

Theorem 2.3.1(([Boo.1],p. 132). Let X € V(). Then, for
each p € %, there exist an open neighborhood U of p, a real number

§(p) > 0, and a C™-mapping 8° : (-6, 8) x U = % satisfying

(233  #Xt,q) = Xg%.q)- 8%0,q) = q g e U 0

when we emphasize that Bx(t, q) is a function of q for a

fixed time t e R, we may write 8(q).

Theorem 2.3.2([Boo.1], p. 133). Let X € V(X).  Then,

for each p € %, there is a maximal open interval Ip € {a(py<t«<

bip) ]} containing t = 0, on which the integral curve 8% . p) of X
passing through p at t = O is defined. Moreover, the integral

curve 8°(-,p) of X passing through p at t = 0 is unique on I O
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By Theorem 2.3.2, for each t & R, we can define a subset D

of %K by

(234) Dff(pex:tel])

A vector field X on % is complete if D)t( =% for all t € R

Theorem 2. 3.3 ([war.1], p.37). Let X € V(X). Then, the
following properties hold.

(i) DXis open for each t € R,
() U D, = %,
t>0

(iii) For each t € R, B:( is a C™- diffeomorphism from D{(

onto Df(t with inverse Bi(t,

(iv) On the domain of 6;(0 Bif

(2.35) efo ef = gXx 0

t+s’

Vector fields can be differentiated with respect to a vector

field.  The vector field L,Z, called the Lie derivative of Z with

respect to Y at p € ® is defined by

(236) (L), = lim ((8DxgYy(Zgle) - Z,)/ L

t=>0 P

The following result connects the Lie bracket with the Lie
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derivative we defined just above.
Theorem 2. 3.4 ([B00.1],p. 153). Let Y,Z € V*(X). Then,

(237 WD, =1Y,2], pe% O

By Theorem 2.3.4, we shall confuse L,Z with [Y,Z] and

define the successive Lie brackets of Y,Z € V™(%) by

K

(238) Lz 2 [Y,L%Vz), kem, .,
where
(239 L[Z*1Z

Y

Next, consider

Theorem 2. 3. 5 ( Cambell - Baker - Hausdorff Formula). Let Vv,

Z be C¥-vector fields on % Then, at each p € X, there exists a

real number §> O such that

(]

(2310)  (8DxZ, = I (-t} k1) Dy, t € (-6, 8) ul

k=0

Although this results appears in many places, it is remarkable that
no proof is given in the standard references. The proof follows

from Theorem 2. 3. 4 and, while not exactly obvious, is not too
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difficult. Note that if Y, Z are C*, this formula does not
necessarily hold. Most of all the results which we derive in
future, where real analyticity is required, come from Theorem
2.3.5.

Now, we state two Inverse Function Theorems, the Constant

Mapping Theorem, and the Frobenius Theorem.

Theorem 2. 3. 6 ( Local Inverse Function Theorem, [War.1],
p.30). Let T be C™(C®)-mapping from % into % Suppose

that at a point p e %, Ty, is an isomorphism from 'Ip(Q) onto
Trp)(®).  Then, there is an open neighborhood U of p suchthat T is a

C™ (C%) - diffeomorphism from U onto the open subset T(U) of % O

Theorem 2. 3.7 ([Gui.1], p. 18). Let T be a C*(C¥)-

mapping from an open subset W © % into X Then, T is a C*™
(C¥) - diffeomorphism from W onto T(W)c Q if and only if
(1) At each point p e W, T*p is an isomorphism from 'rp(x)

N\
onto 'rm,)(x),

(2) T is one-to-one on W. a

Theorem 2. 3. 8 ( The Constant Mapping Theorem, [War.1], p.18).
Let T be a C*- mapping from % into Q Suppose that % is

connected and T,,p =0, p e X Then, there exists a constant c ¢
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R such that

(23.11) TX) =c, x € %. O

Before we state the Frobenius Theorem, we define an
(immersed ) submanifold and integral manifold. Let W be a
subset of ® W is an (immersed ) submanifold of % if there
exist an r - dimensional smooth manifold N and an one - to - one
immersion T: N => %X such that r < nand W = TIN). An
integral manifold of a C*- distribution A is a connected
submanifold £ of % with the property that 8, = TD(E), peE
For a more general definition of integral manifold, see [Boo.1]
A C*- distribution A on % of dimension k is completely

integrable on % if each point p € % has a chart (U, ¢) such
that the k vector fields E; # d™'(a/0x), i € M,, are a local
basis on U for A, where Xy, ", X are the local coordinates.

In this case, an integral manifoid £ of A through q € U is

=a ),

n n

(2312) £ 4 ¢ x e §WU) - x,, =23, .x

where (a, *,a ) ¢ ¢(q).

Theorem 2. 3.9 ( Local Frobenius Theorem, {Boo.1], p. 159 ). Let
A be a C™- distribution on % with dimension k. Then, A is

involutive on % if and only if it is completely integrable on %. O



CHAPTER 3

NONLINEAR DECOUPLING THEORY

This chapter contains results on decoupling and decomposition.
In Section 3.1, further notation and definitions on systems are introduced
on the basis of the general notation and definitions in Chapter 2.
In particular, the precise definitions of decoupling (Definition 3. 1. 3)
and decomposition (Definition 3. 1.5) are proposed. In Section 3.2, we
present the results on decoupling ( Theorem 3.2. 1 ) and decomposition
( Theorem 3.2.2 and Theorem 3.2.3). In Section 3. 3, the results on
decomposability ( Theorem 3. 3. 1 ), decouplability ( Theorem 3. 3. 2 ), and
the standard decomposed system ( Theorem 3. 3. 3 and Theorem 3. 3. 4 )
are presented. In Section 3. 4, we characterize the whole class of
control 1aws which decouple or decompose nonlinear systems ( Theorem
3.4.1-Theorem 3.4.4).  Then, for aclass of nonlinear systems,
we discuss the class of closed - loop decoupled systems generated
by the whole class of decoupling control laws ( Theorem 3.4.5),
In Section 3.5, three examples are considered which illustrate the
significance of the results developed in the previous sections.

Section 3. 6 makes comments on the results discussed in this chapter.
3. 1. Definitions

Recall the system (1.1), (1.7) of Chapter 1.  We now give

30
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it an alternative abstract formulation. For each | e "'o.m' we

may view f. as the coordinate representation of a vector field X

on R" in the canonical basis [b/bxj, j e My, ] such that

n
(311 % = 21,0 o/,
J=l !

where f, g is the jth component of f.. je M, A Then, we can
write (1.1), (1.7) as the vector field representation :

(3120 K= F(xu) X0 + 3 XU, y = HX

i<l

Here, x(t) € R", k is interpreted as x(t) = xx{2/27)), u(t) € R is
the ith component of u, and H = h.  Conversely, suppose that in

(3.12), X, i € M, are vector fields defined, more generally, on
an n - dimensional manifold % Then, at each p e %, there exists

a chart (U, $) such that in the coordinates $, the system (3.1.2) has
the form of (1.1), (1.7). We shall denote by {F,H, %) the system

(3.1.2) defined on an n-dimensional manifold % Its local representation
(1.1) defined on U is denoted by (f,h,U]). Note that if % is an
open subset of R", then h=H and U = & Through the vector
field representation, we can tackle abstract systems defined on
manifolds which are not necessarily an open subsets of R".  Moreover,
as will be seen later, the vector field representation of the system
gives anefficient notation for handling the complex differentiations

involved in our developments. Also, it is easier to compare our
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results with results in the prior literature. wWe denote by Y hi’ Hi

the ith scalar components of y. h, H, respectively.
Let U™ be the set of all piecewise C* - mappings from R’

into R™. We say the system (F,H,%) is smooth if

(1) X e ViX), ien

(i) u e U™,

(iii)H : % = R™ is C*,

(iv) % is a n - dimensional smooth manifold.
To simplify our definitions, all systems considered in this section
are assumed to be smooth. At the end of the section, we will
indicate the appropriate extensions to real analytic systems.

Consider the local representation (1.1), (1.7) of (3.1.2). For
ueW™ and t eR*, f(-, u(t)) is C*. On the other hand, for x € %,

f(x, u(')) is piecewise C*. These observations with well known

results ([Hal.1, war.1, Var.1]) on the existence of solutions of

differential equations imply the following. For each x(O)éxo €
® and each u e U™, there exists a maximal interval [0,L) ¢ R,

L =L(x°, u), such that (3.1.2) has a unique solution x : [O,L) > %

which is continuous but piecewise C™. Both x, y are not
differentiable in the usual sense but they are differentiable in the
peculiar sense discussed in Section2 1. As will be seen later,
some proofs of our results utilize piecewise constant inputs.

This is the main reason for the introduction of piecewise
differentiability in Section2 1 and the set U™ in this section.

Define the set Y™ by
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(313 Y% ((y,L:L>0andy:[0,L) 2 R is continuous
and piecewise C™ ).

Then, we can view the input - output behavior of smooth system
(F,H,%) as a mapping ® from W™ x % into Y.  Similar
concepts are found in [Gil3, Sus.2].  Explicitly, we write (y, L)
=(®(y,x)), L(y,x)) for an input u and an initial state x(0) < X, -

Let x, & % and T, U 6 U™ Then, since L(x,T), L(x,U) are

not necessarily equal, the comparisons of the outputs ¥ =&, X, ),

land

y =®(T, x ) are restricted to their common interval [0, L), where
L = min (L(x, D, L(x,, W ).  For instance, we write (T, x,) =

®(T, x ) if they are equal on [O,L). Similarly, we write G = U

if they are same on [0, L).
The following definition concerns state transformations

between systems.

Definition 3. 1. 1. Suppose for two systems (F, H, %},
(F.H,%), there exists a C*- diffeomorphism T:% - % such that

- A - .
(1) X, is T -related on % to X, i € M,
(ii)H, is T-related on % to H, i e M,

Then, [?,ﬁ,fc] is T-related on % to (F,H, %} a

The intuitive idea of this definition is that we obtain

Fix, u), H(x) from F(X.0), AR) by the “substitution™ of variables X
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= T(x), G =u See Fig. 3. 1. 1 for a schematic representation.

The definition yields the following obvious conclusion.  if

(F,A,R) is T-related on % to (F,H,%}, then for any fnput u €

U™ and any initial state x(0) £ x, e %,

(3.1.4)  ®(u,x) = By, T(x)).

A definition similar to Definition 3. 1.1 is found in [Sus.2].
Next, we introduce a general relation between systems, which

takes into account both state and input - feedback transformations.

Let T, «, B be mappings from % into &, R™ and RM*M
respectively, such that B(x) is nonsingular, x & % Define a

mapping J : %X X R™ = & x R™ by

(3.15)  Jx,u) £ [T o (x,u) e % x R™

- [BOOT 'a(x) + (BT My

A

Figure 3. 1. 1. {IC', ﬁ %] is T -related on % to (F, H, %)
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We often write J = (a, B, 7). We denote by (F,H %)% the
feedback system of (F,H, %) corresponding to a control law u=
a(X)+ BXx)U In other words, {F,H, %) stands for the system

x =F(x, ) ¢ Flx, alx)+ B W), y = HOX) @ Hx).  Or, (F,H, %)<
= [?, ﬂ,x]. A control law u= a(x)+B(x)U is smooth if o : X =

R™ and B : % = R™™ are C™.  All control laws considered in

this section are assumed to be smooth.

Definition 3.1.2. Suppose there exists a C*-diffeomorphism

J:% x R"% x R™ defined by (3.1.5) suchthat (F,A,%) 1s T-
N A A

related on % to the system (F,H, %)% Then, (F,H,%) is J-

feedback related on % to { F,H,%X]. O

The intuitive idea of this definition is that we obtain
F(x, w), H(x) from FCX, ), AR) by the “substitution” of variables X

= T(x), U = [BOOI(u-alx)). See Fig. 3.1.2 for a schematic

representation. The definition is a nonlinear version of the
Control law equivalence used for linear systems in [Gil.1].
Similar definitions are found in [Bro.1, Hun.1, Hun.2, Hun.3, Isi.2,
Mey.1, Jak.1, Sur.1], where the systems do not have outputs, i.e,
they are a pair (F,%).

The J - feedback relation is actually an equivalence relation

on the set of all smooth systems defined on n - dimensional
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smooth manifolds.  Consider three systems (F,H,%), (F, A %],
(F,A, %) Suppose (F,H %) is J- feedback related on % to
(F,H, %X} and (F,H %)} is J- feedback related on %X to (F, A % .
Then, it is easy to see that [?, H,% ) is J- feedback related on
% to (F,H,%)}, where J2JoJ.  Thus, the J - feedback relation is
transitive. It is obvious that the J - feedback relation is
symmetric and reflexive. Two systems belonging to the same
equivalence class are the same with respect to what can be
accomplished by feedback. This fact motivates much of our
later work.

In order to make precise definitions of decoupling and

decomposition, the following technical details are needed. Let

X, € KX and i € ﬂ, m Let Oi be the ith component of &.

X = T(x)
E : e essEssss- |
N : | |
: U X ] Q : X :

A | . | | -1 ' a)
u—1B X =F(x, u) AT — T Hir—Yy
v L |

| ! i A A

: _q_ : : /)\’-'-H(X) E

! : e e 4

: A [

: R =F& 0 ! J={T,a B)
Figure 3.1.2. (F, A, %1 is J - feedback related on % to (F,H, %]
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Suppose 8(T,x,) = 8(U x,) for all inputs U, U e U™ such that
G = U. Then, y, is decoupled at x . If y, is decoupled at

every x, € %, y, is decoupled on X. A similar definition for
disturbance decoupling is found in [Hir.2l. The intuitive idea of

decoupling for y, is that y, is not "connected” to u;, j e R, If

y; is decoupled for i e M the system is decoupled. The

im?

following definition makes this notion precise.

Definition 3. 1. 3.
(1) (F,H,%] is decoupled at x e if y, is decoupled at x , i €

M

im M (F,H,%] is decoupled at each x, € %, [F,H,%X] is

decoupled on K
(2) {F,H,%) is decouplable at X, € ® if there exists a controil
law u = a(x)+ B(x) U such that (F,H,% )% is decoupled at x_ .

{(F,H, %) is decouplable on % if there exists a control law u =

a(x) + B(x)U such that (F,H,%1*® is decoupled on % a

For some applications, we may need a stronger definition

of decoupling. Let i e M, andx €% Let &(Ux )=

Qi(ff, X,) for all inputs U, U ¢ W" such that T, = U but g = G’J j

€ M. Then, y, is connected at x, to u.
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Definition 3. 1. 4.
(1) If {F,H, %) is decoupled at X, € % and y; Is connected at x,

tou,ieM (F,H,%} is input - output decoupled at X, |If

1m?
(F,H, %} is input - output decoupled at each x, € %, it is input -
output decoupled on %

(2) (F,H,%] is input - output decouplable at x, e % if there
exists a control law u = «fx)+ B(x){i such that (F, H,%)“B is
input - output decoupled at x . {F,H, %) is input - output
decouplable on % if there exists a control law u = a(x) + B(x) {

such that {F,H, %)% is input - output decoupled on % 0

These definitions of decoupling and decouplability are based
entirely on the input - output maps for the systems. There is a
different concept of decoupling, which is based on the structural
forms of state equations. For this idea of decoupling, we use

the term decomposition

Definition 3. 1. 5.

(1) {F,H,%] is decomposed at x e % if there exist : (a) an
open neighborhood £ of x_ ; (b) an open subset % of R" ; (c) a

C™- diffeomorphism T : £ = X% ; (d) integers s 21, 1 eM,

T+t - -
ands_,, » O satisfyingn = 2 s ; and (e) a system (F,H, %)

1=l

,m
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which is T -related on £ to (F,H,E) such that its coordinate
representation (T, R, %) has the form :

(316) % =T®) + {ETG ¥, = (&), 1en,
® + £ M,

J=

x'

Xt = L
where X(t) e R%, i e M, .\, and X 2 (X, ", X %X, ) IfE
= % in the above statement, (F,H, %} is decomposed on %

(2) (F,H,%)} is decomposable at x, € % if there exists a control

law u = a(x) + B(x) U such that (F,H,%)“® is decomposed at X, -

(F,H, %]} is decomposable on % if there exists a control law
U = alx) + B(x)U such that (F,H, %)% is decomposed on . O

Note from these definitions that if (F,H,%} is decomposed
at x, € %, then there exists an open neighborhood £ of x, such

that (F,H,E} is decoupled on £ The converse statement is not
necessarily true. It is obvious from [Gil.1] that a linear
system is decoupled on R" if and only if it is decomposed on R".

In Section 3.2, we show that if (F,H,%) is real analytic

and is decomposed at each X, € %, it is decoupled on %

Unfortunately, it is not clear that the same result holds for
smooth systems.

Definitions similar to Definition 3. 1.5 are found in many
papers including [Isi.1, Nij.2, Res.1]. Some of these papers use

the terminology noninteracting control for decomposed control.
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Thus, papers which concern noninteracting control apply to
decomposition (not to decoupling ).
Next, we define some distributions based on the smooth

system (F,H,%). Let L% (F,H,%})#(L}X, kem,

e, ],

where LyX, & X . Define L((F,H,%)) as the smallest subalgebra

which contains L( {F,H,%]}). We say {F, H, %] satisfies the
controilability rank condition if

(3.1.7)  dimension of Lp((F, H%))=n pe%

ForeachieM™ let

im?

(3.1.8) AC(FH,%)) & (Lyly "Ly X : 1. 8 [o1],
(I 3 L3

rem,, kem _,and | e ),

1x?

where Lyly "Ly X; ® X, if k=0. Define A({F,H %)) as the

W e e

smallest subalgebra containing A( (F, H,%}).

Some insight about these definitions may be gained by
considering the linear system (f,h,R"} in (1.5). Let [a/3x, -

o/dx ] be the n-row vector of the vector fields a/dx, | ¢ M, o
: n

Recall that for w € R", W= [a/dx, -~ a/ax lw = Zw, a/2x, Is a

vector field in V=(R"), where w, is the ith component of w.

Let B, be the ith column of B. Then, the distributions L, A,

take on familiar forms :
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(3.1.9)  L((F,H,%]}) = span([a/2x, " - a/2x ] A*B,,

fem,, . ket ),

1m?

(3.1.10)  A((F,H,%)) = span ([o/2x, - /2x ) A'B,,

jeM, kem )

We conclude this section with definitions of invertibility,

reachability, and the precise concept of real analytic systems.

Let x,e% (F,H,%] is invertible at x if & T, x ) = & T x )
for all distinct inputs U, U e W™. If (F,H, %] is invertible at
each x, € %, it is invertible on % Similar definitions appear

in the literature on invertibility of systems (see for instance,
[Sil.1, Hir.1]).

We say ([Her.1, Sus.1]) that x, € %X is reachable from x €
% at time t, >0 if there exists u € W™ such that the solution
of (3.1.2), x(t) € %, t € [0,t,], x(0) # x, satisfies x(t,) £ x,.
We denote by R(x_,t,) the set of all points in % which are

reachable from X, € Hatt= t,.

If C* in the definitions of the sets W™, y™ is replaced by

CY we obtain the definitions for the sets U, y®.  Similarly,
if V=(X), U*, C*, “smooth manifold” in the definitions of smooth
system and smooth control law are replaced, respectively, by
V%), WY, CY -real analytic manifold", we obtain the definitions

of real analytic system and real analytic control law.
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3. 2. Decoupling and Decomposition

By the definitions of decoupling and decomposition, it is
clear that a decomposed system is always decoupled. In this
section, we show that the conditions for decomposition are more
complex than those for decoupling. But, we present some conditions
under which the two concepts are at least locally equivalent.

To state our results a variety of assumptions are needed.
To simplify the presentation we list them together here.

(A. 1) The system (F,H, %) is smooth,
(A. 1) The system {F,H, %) is real analytic,
(A. 2) For each constant input u(t) e R™, the vector field F(°, u)

is complete,
(A 3) The system {F, H, %] satisfies the controllability

rank condition on %,

(A. 4) The codistribution K“( (F, H,"x)) has constant

dimension p, 2 1 on %, i € ﬂ.m,

We begin by giving a necessary and sufficient condition for

decoupling.

Theorem 3.2. 1. Suppose that (A1), (A2) are satisfied.
Then, (F,H,%} is decoupled on % if and only if

(321)  dH e AUIF H, X)) on %, i €M, . O
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Theorem 3. 2. 1 is important because it gives an algebraic
condition for nonlinear decoupling.  Before presenting its proof,

some discussion of the Theorem may be useful. The condition in
(3.2.1) simply requires that YH =0 on % for all Y e A((F, H, %))
As will be seen in the examples of Section 3.5, the distribution

A; is, in most cases, spanned by a finite number of vector fields.
Thus, (3.2.1) does not necessarily require an infinite number of
calculations. Suppose that (F,H, %} is a linear system, (1.5)
such that % = R".  Then, by (3.1.10), the condition in (3.2.1)
becomes

(322) CA*B;=0, keM,., I,JeM

j o

e 10121,

where C. is the ith row of C. It is not difficult to show, by

using the well - known expansion for (sI - A)™' ([Gan.1]), that

(3.22) is a necessary and sufficient condition for the Laplace -
transform transfer function matrix of the linear system to be
diagonal. This is the definition of linear decoupling given in
[Gil.1] and it is equivalent to saying that the (linear) input -
output map is diagonal . For other, essentially equivalent,
definitions of linear decoupling, see [Fal.l, Sil.1, Won.2].

We begin our proof of Theorem 3.2.1 with the following

two lemmas. The first lemma is a well known result on the

reachable set, R(x, t).
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Lemma 3. 2. 1. (Theorem 4.5 in [Sus.1])  Suppose that (A.1),
(A2) are satisfied. Let x €% and t>0. Let ICL((F,H,%]), x,)

be the largest integral manifold of L((F,H,*)) passing through a
point x, € R(x,t). Then, R(x,t) € I(LL(F,H%X]),x,).

Moreover, the interior of R(x,t) relative to I(L((F,H,%X]}),x,)

is dense in R(x,t) and not empty. O

To state the second lemma, we need the following notation.

Let i e M, m Define a muitiindex I, by any finite sequence of
integers taken from #M m Such that at least one of its elements
must belong to the set ﬁ.l For such a multiindex I, 2 (i), 1,

1,0 ), let Xq, be defined by

(323) Xy # X% XX

LFY '3

Then, for each 1 ¢ M define

1.m’

(324 D =(2Z . a, € R and % is any finite collection
' TsiaYXY % Y

of muitiindices I, )

Using these notation, we can state the following result.

Lemma 3. 2. 2.
(i) Let ¢ & E=(X). Then,
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(325) df e AC(F,H,%X]) on %
if and only if

(326) o =0on% o €D((FHX))

(ii)A‘i( (F,H,%}) is X -invariant and X, - invariant on %

Proof. Consider (i). It is clear that (3.2.6) implies (3.2.5).
We prove (3.2.5) implies (3.2.6) by induction. By (3.2.5), we have

(327) X = XX = XXi§=0on% if jeH
Suppose that for k = 0, 1, - 4

(328)  XXiXi-- X9 =0on%, e, i eloil

Then, by (3.25) and (3.2.8),

= (-1Y+! =
(329 XXX XX ¢ COMULy Ly LX) é - 0,

if J €M and i e (o, 1)

Thus, we have for any k € M.

(32.10) XpXiXj,~"Xi$ =0 1 j e M and i e (o, 1}

From this, (3.2.6) follows immediately. Part (ii) is an easy
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consequence of (i). a

Note that A = Di because n, 1s not a set of vector fields.

Now, using these Lemmas, we prove Theorem 3.2 1.

Proof of Theorem 3.2.1. First, assume (3.2.1) holds. Fix i

e M, m Define a multiindex J, by any finite sequence of integers

taken from (o, 1). Forsuch a multiindex J, 2 (i,, 1, -, i}, define

"

(3212) yj = XyHjx),

where y; = Hi(x) if J; = 8.  Let Y, be the set of all y,
defined by (3.2.12).  Differentiating y ;(t) with respect to t in

the sense described at the end of Section 2. 1, we obtain, by
(3.2.1) and Lemma 3. 2. 2,

(3213)  y,(t) = X Hi(x(t)),

Vit = X, X HiOd) + Zut) X, X g Hylx(t))

YO = XX Hi(x(1) + uj(t) X; X, X Hy(x(t) +
U Xy X HiOE)) + U)X X X X, Hy(x(t)) +

(U (D)2 X5 X, X Hi(x (1)),
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Note that

(3.2.14) yi';;(t) is a finite linear combination of some y, € Y,

such that each coefficient is | or some monomial in u,

and the time derivatives of Uy at t.

Let T, U be any two inputs belonging to U such that

(3.2.15) G = G .

Let x(0) & x, € %. We shall denote by X, X, the solutions of
(F,H, %) corresponding to T, U, respectively.  Similarly, y in
(3.2.12) corresponding to X, X are denoted by y Ui y Ji» respectively.
Let L4min(L(x,T), L(x,W). Since T, T are piecewise real
analytic, there exists a partition of [0,L) such that 0 = ty <t

¢t ¢...<t =L andon each interval [t, ti,,) j € My,

both U and U are real analytic. Then, by (A1),

(3.216) ¥y, vy J; are continuous and piecewise C¥ on [0, L) such

that on each interval [t;, t,,), j €M), they are cw.

Now, using the above facts, we prove by induction on the

intervals [0, t;), ] & M, that

(3217) Y0 =¥, t e [0,L) for all y, € Y,
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This with J, =g in (3.2.12) implies

(32.18) ®(T,x,) = 8(Ux ) on [0,L),

which is what we need to complete the first part of our proof.

First, consider the time interval [0,t,). By (3.2.14) and
(3.2.15),

(3219) y;8(0) = ¥, ®%0), kem .
Thus, by (3.2.16) and analytic continuation [Die.1], we obtain
(3220) yu(t) =y, telot,)

Next, suppose that for 1< j<r,

(3221) Y4 =y, t e [0,t))

Then, by (3.2.16), (3.2.21) holds on [0, t; 1 By (3.214) and
(3.2.15), this implies

— k = ~
(3222) y,bt) = y,®a), ke, .
Then, by (3.2.16) and analytic continuation, we obtain

(3223) ¥y = Y0, t e lt,t,,)
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(3224) yy(t) = §ut), t e [0, t,,).

Thus, we have shown (3.2.17).
Now, assume that {F, H,%} is decoupled on % We denote

by x(t,u,x ) the state response of (F,H, %)} to an input u and

an initial state x(0) = x. By (A2), given xe%, q € M. GE

"
R, keM, g We can choose real numbers T, > 0, ket _ and x; €

% such that x(t,u*,x) € % for all t e, tq] and x(tq, u*, x) = X,

4 r
where t_ = 2

=1

T, reM, ., uX 40, je®M,, and u* is given by

1.9’

(3225) uXt)tc, t_ <tet,r=1,",q

r-1

Let (F,H, %] be the system obtained from {F,H, %]} by
letting u, = 0. Clearly, for any given x € %, there exist t >0,
X, € %, U € U® with u® = 0 such that x, = x(t, . X ). Then,
by Lemma3.2. 1, R, t) € I(LIF,H %)), x ). Let R&,t,) be
the interior of R(X,t) relative to I(L((F, H,%}), x)). Then, there
are two cases : (i) x_ € i.(ﬁo, t,) and (ii) x e R.(’io, to)-i(io, t, ).

First, we consider the case (i). Since (i) holds and X; €

LO(F,H,%X]), j e, we can choose Y>0 such that

Xj 2 A
(3.2.26) BS‘(xo) e R(X,t), §¢€(-7,7)
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Then, for any § € (-v,Y) and j e M, there exists an input u°

with us = O such that
(3227) x(t, %) = 88ix)

Now, construct two piecewise real analytic inputs T, U as follows:

(3228)  G(t) = (b é? 0, 0¢ tgt,
UKE-t),  t Ct b et
(3229) T(t) £ 1 uArt, 0 <t <t jeft
0, Octet +t,
(32300 Ut) £ ( ust), 0 <t jem
0, b St Ct, + b
Let X £ X, + ¢ X, k €M, Consider the response of the

original system (F,H,%}). By the above construction of U, X =

x( t°+ tq, u, ’)Zo ). Since (F,H,% 1} is decoupled on %, we have

(3231)  HE) = Hix(t+t, X))

= XQ X s —X- ‘)zq—
H,( B,Tao...oﬂéioﬁgx]og,nlo.“oB_,E(X)).

Note that (3.2.31) holds for all § e (-v,v). Therefore,

differentiating (3.2.31) with respect to § and letting § =0 yields

(3232) 0 - aH,(i)(e@*...(ai‘ln* X810 o 80
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Applying the Cambell - Baker - Hausdorff formula ( Theorem 2.3.5)
to (3.2.32) successively q times leads to the following fact :

there exists i > 0 such that

(3233) 0=3-3 (“'1’ 1 g s )|Xq B x>
A=0 Y4=0 21 N

for allm, <m, k e M.

Note that m depends only on X, X;, and X e M, Thus, when

we construct u* in (3.2.29), T, K € M,, can be assumed to be

chosen smaller than w. Small variations of T k € ﬂ,'q in

(3.2.33) yields

(3.234) dHi(R)lg LXX @ =01 eMm _, ke, jeM,

0,0’

]

Now, we go back to the case (ii). ~ Note that (ii) does
not necessarily imply (3.2.26). To show (3.2.34) is still true
for the case (ii), we need a slight modification of the above

arguments. By Theorem 2. 3. 3, there exist open neighborhoods
U, V of x, X, respectively such that x(t,u*,*) is a c*™ -
diffeomorphism from U onto V. Let U be the intersection of U

and R( Qo, t, ). Then, since X, 15 in the closure of U, there

exists a sequence (X (p)} converging to x  such that

(3235 xm el © KR, L), peM, .
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Let X(0) £ x(t, u*, x (D), p & M. Fixpe M,.. By
(3.2.35), all arguments and equations following (3.2.26) do not
change if x, X are replaced by x,(p), x(p), respectively. In

particular, we have

Lo
(3.2.36)  dH;(x(p)) Lliq- LX) =0, for allf eM _ and jeM.

[ - -
But since dH;, lff(q"-L)—'('xj are continuous on %X and X(p) - X as p

- oo, (3.2.36) implies (3.2.34).  Thus, we have shown that
(3.2.34) holds for both of the cases (i), (ii). Finally, since gq, x,

and ¢, k e M, , are chosen arbitrarily, (3.2.34) implies

(3237) dH =0on%, o e D((FHX)).

Then, Lemma 3.2 2 completes the proof. a

Remark 3.2.1.  Theorem 3.2. 1 is a minor generalization of
results for disturbance decoupling of real analytic nonlinear
Systems, which are stated in [HIr.2, Isi.1].  The first (sufficiency)
part of our proof is entirely different from those in [Hir.2, Isi.1].
Our second ( necessity ) part adopts its main idea from [Hir.2].

We Teel that some of the arguments in the proofs by these
authors are incomplete.  For instance, the details for the case
when input is piecewise real analytic are not given ( [Hir.2, Isi.1])

anc the fact that countably infinite intersections of open sets
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are not necessarily open is not taken into account ( [Hir.2]). Wwe
believe our proof is simpler and clearer. Finally, it is
interesting to note that while in [Hir.2], % is required to be

connected, it need not to be connected in [Isi.1] and here. O

Theorem 3. 2. 1 concerns decoupling but not input - output
decoupling. We can easily show under the hypotheses of Theorem
3.2 1 that {F,H,%] is input - output decoupled on % if and only
if (3.2.1) and the following condition are satisfied :

(C) For eachi e M the single input - single output system

i,m’

(F,H, %], obtained from the original system (F,H, %]} by

‘ b

setting y; = 0, J e M, Is invertible on X

Algebraic conditions which are either necessary or sufficient for
(C) have been obtained. But, those which are both necessary
and sufficient have not yet been presented in the literature. A
special case of invertibility of nonlinear systems is considered in
[Hir 1, Nij.1].

Some results for input-output decoupling of smooth nonlinear
systems are stated without proof in [Nij.3, Nij4l  Their
validity is in doubt for the following reasons.  The first of
two necessary and sufficient conditions for input - output
decoupling is similar to (3.2.1), although the assumption made is
(A1) But recall that (A1) is crucial in tnez derivation of
(3.21)  The second condition is for (C). Bu:, it is not clear

it is both necessary and sufficient for (C).
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Another condition corresponding to (3.2.1) appears in [Tar.1]
and is used there as a definition of decoupling for smooth systems
( assumption (A.1) ). The connection between it and our definition
of decoupling would require (A1) instead of (A.1).

Note that (A.2) is used only in the necessity part of the
proof, where it is required to apply Lemma3.2. 1. But, (A2) can
be greatly relaxed. For instance, in LemmaJ3. 2. I and, hence

Theorem 3. 2. 1, (A2) can be replaced by

(A2) There exists a locally path - connected subset O of R™ such
that for each constant input u(t) € Q, the vector field

F(-,u) is complete ( [Sus.1]).

Next, we consider necessary and sufficient conditions for

local decomposition.

Theorem 3.2.2. Suppose that (A1) is satisfied. Then,

(F,H, %] is decomposed at x € % if and only if there exist an
open neighborhood £ of x and m involutive distributions A¥* on £

which have dimension r, < n such that on E,

(3238) () oH e A® € &, ieM,
(i1) (Ai*)"'is X, X - invariant, i e M, ,

(1) (%), 1 €M, are mutually disjoint at each x €€ D

Note that although Theorem 3. 2.2 requires only the assumption
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of smoothness, the conditions for decomposition are more complex

than those for decoupling. In Section 3.1, we pointed out that if

a system (F,H,%]) is decomposed at x, then there exits an open

neighborhood £ of x_ such that (F,H E]} is decoupled on £ A
comparison of the conditions in Theorem 3.2. 1 and Theorem
3.2 2 suggests that the converse is not necessarily true.

Theorem 3. 2.2 is implied by TheoremS. 1 in [Isi.1], where
conditions similar to those in(3.2.38) are stated as being necessary
and sufficient for (F, H,%} to be decomposable on %  However,
the conditions in [Isi.1] do not necessarily imply the existence of T
which is a C™- diffeomorphism on %  Thus, they are necessary

and sufficient conditions for {F, H, %} to be decomposable at each

x, € % rather than on %% . In this sense, Theorem 3. 2. 2 may be

viewed as a corrected version of the result in [lsi.l].
we omit the proof of Theorem 3.2 2 since it can be obtained
from [Isi.1] and utilizes some ideas contained in the proof of Theorem

3.2.3.  Note that it is not easy to check for the existence of
A, 1 e M, satisfying conditions specified in Theorem 3. 2.2

This is incontrast with the ease of applying the decoupling conditions

in (3.2.1). In this respect, the following Corollary is valuable.

Corollary 3.2. 1. If (F,H, %) satisfies (A1) and is

decomposed at each X, € %, it is decoupled on %K

Proof. The given hypotheses imply (3.2.38) - (i) and thus
(3.2.1) holds. Since the sufficiency part of the proof for
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Theorem 3. 2. | does not require (A.2), (A1) and (3.2.1) imply that
(F,H,%X} is decoupled on % ]

It is uncertain that this Corollary is true for smooth

systems. This motivates the following Theorem.

Theorem 3.2.3. Suppose that (A1), (A3), (A4) are
satisfied. Then, {F, H,% ] is decomposed at each x, € %X if and

only if (3.2.1) holds. O

Apart from giving an easily verified condition for
decomposition, this result has other important implications. it
shows that under assumptions (A.1), (A3), (A.4), the condition for
decomposition of smooth systems is reduced to that of decoupling
of real analytic systems. Consequently, we see from Theorem
3.2. 1 and Theorem 3. 2. 3 that under assumptions (A1), (A2), (A3),
(A.4), the concepts of decomposition and decoupling are equivalent.

There are several circumstances where the assumptions of
Theorem 3. 2. 3. hold. The most obvious is the case of controliable
linear systems. For real analytic systems that satisfy (A3),
Theorem 3. 2. 3 holds on a submanifold. In particular, when % is

connected, we can show by analytic continuation that there exists

a submanifold xo of % such that 'xo is open and dense in % and

the assumption (A4) is satisfied on %

We believe Theorem 3. 2.3 and the equivalence of decoupling

and decomposition is new. The only similar result we know of
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is in [Nij.4], where the structure of a decoupled system with m =
2 was investigated. Although assumptions similar to ours were
made, the structure in (3.1.4) was not obtained.

In order to prove Theorem 3.2. 3, we need the following three

Lemmas. Particularly, Lemma3.2. 5 is the key to Theorem 3.2 3.

Lemma 3.2.3. Let A be an involutive C™- distribution on %

with dimension r < n. Then, at each point p €%, there exist an
open neighborhood U of p and (n-r) C™- functions Bj, j e M, s

are linearly independent

from U into R such that dej, j € ﬂl.(n_,),

. . . 1
on U and at each q ¢ U, {dBj(q), j e ﬂl_(n_r)} is a basis for .

Proof. Since A is involutive and has dimension r on %,

Theorem 2. 3. 9 ( Frobenius Theorem ) épph‘es and at each p € U,

there exists a chart (U,@) such that if X Xy denote the

. A -1 . :
local coordinates, then ((E) = ¢.¢(q)((a/axi)«q)), ieM Jisa

local basis of A, G € U. Let 8 = ¢ . J €™My, wnere §

is the kth component of @ Then, since

= 6. - -
(3239 E8 = ¢ @rax) ., = /ax) (G, 047D

1

= ax(w.)/axi = Q, onU, 1 ¢ ﬂ.u, j e ﬂun_r),

the cesired result foilows immediately. g



58

Lemma 3.2. 4. Let A be an involutive C® - distribution on %

with dimension r < n. Let Bj, jeM be any C™- functions

1.(n-r)
from an open subset U of % into R such that {dej(q), jeMyn )
is a basis of A‘: q € U These functions exist by Lemma 3. 2. 3.

Then, for any C*- function i from U into R satisfying

(3240) dq € A on U,

there exist an open subset £ of U and a C™- function g, defined

on an open connected subset of R™™ such that
(3241 m) =g(8,0), .8 X)), xeE

Conversely, if (3.2.41) holds on U, then (3.2.40) holds.

Proof. Fix p € U Since {dﬂj(q), jeﬂ.l'(n_r)) is a basis
of A, q € U we can choose r C™-functions 8 .. : U=3R, j e
q nr+j

M. so that

1r

(3.2.42) rank of T 2 (8, ,8)atp=n.

1

By Theorem 2. 3.6, there exist an open neighborhood 0 cuof P

such that

(3.243) T i= a C%- diffeomorphism on U
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Choose an open neighborhood £ € U of p so that
(3.2.44) T(E) is open and connected.

Define g : T(E) = R by
(3245) g = noT

Then, m = goT. Since [dsj(q), jeM, ) 1s abasis of A, q

e U, it follows that
(3.2.46) ng( e,(q),---,en(q)) =0, qeE if j>n-r.

By Theorem 2.3.8 and (3.2.44), this implies g(y,, .. Yy) =
cyy, - cs Ypep ) ON T(E) and (3.2.41) follows. Next, suppose that
(3.2.41) holds onU. Then, dn(x) is a linear combination of dﬂj(x), j

€ nh(n_r) at each point x € U Thus, (3.2.40) holds. O

Lemma3.2.5. Suppose that (A.1), (A3), (A4) are satisfied.

m
Then, at each point x & %, there exist (_Z. p,) C™- functions E, i
'= »
jery pi’ ieM,, from anopen neighborhood V of x_ into R such that

(1) dk, ., JEMp 1€, are linearly independent on V,

i’
(D d, e AR HXI) on W, J &My 1My
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Proof. Fix x, € % By Lemma3.2.3, (A1) and (A4) imply

that for each i e M there exists an open neighborhood E' of X,

1m’

and C™-functions E, , J €M, from E iInto R such that

i.J

(3.247) dk, + ] &My are linearly independent on E,

(3248) ;e A((F,HX])on g, jeMy,

Let ¥ 2 EN -~ N g Then, (3.248) implies (ii).  Now, we
show that (A.3) implies (i). Suppose that at a point ’io eV,
there exist constants g, (X)), § € My, 1 € M, such that

m F
(3249) I 2 q (X)) =0

i=l3=l

n B
s o : a
Let q = E‘ JE‘ o (X)L on v FixgeM, . Let 7, =
fo
2 “x.j(ﬁo)tu on V. Define a multiindex L by any finite sequence
4=\

of integers taken M, = such that at least one of its elements is
. For such a multiindex I, # (i, -, 1), define a vector field

Yl ® L, Ly X, Let & be the set of all such vector fields

I

YIL' Then, from (3.2.49), (ii), and Lemma 3. 2. 2, it follows that

(3.2.50) YIR’T‘(QO) = YI,Q,T‘,L()?°) = 0, YI,L € Z,L'

On the other hand, by (ii) and the definition of T,
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(3251) ImQ) =0 Z e A((F,HX]}).

By the definition of L%((F,H,%)), (3.250) and (3.251) imply

(3252) Yn,(X) =0, Y e L((FHX])

By the definition of L({F,H,%}), (3.252) holds for all Y €

L({F,H%])) By (A3), this implies

B
(3253) 0 = (k) =5§. a (R dg, (K),
and from (3.2.47),

(3254) @ ;&) =0, Jen,

Since L was chosen arbitrarily, we conclude that

(3255) « (X)=0, jeMm, , ieM |,
ij o 1.p; 1.m

and our proof of (i) is complete. O

It is interesting to note that although the distributions Ay,

1 € ﬂ'1m do not satisfy the conditions of Respondek, Tarn and

others ( [Res.1, Tar.1]), this lemma shows that these distributions
are still simultaneously integrable in their terminology. Now,

we present the proof of Theorem 3. 2. 3.
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Proof of Theorem 3.2.3. Assume {F, H,%) is decomposed
at each x e%. Fix x, € %X. Then, by Definition 3. 1.5, there

exist : (a) an open neighborhood £ of X ; (b)an open subset %X of

R" ; (c) a C* - diffeomorphism T : £ = % ; (d) integers s, 2 1,

m+i

ieM,  ands,, 20 satisfying n = Zl s, : and (e) a system
t=

m+1
(F,H,%) which is T -related on € to {F,H,£) such that its

coordinate representation (f,h, %) has the form (3.16). Let T

& (T, T T

'm’  m+l

4 ‘
) -and Ti = (TL]’ ’TLSi ), 1 € ﬂ'l.mﬂ'
Let X;, i & M be the vector fields corresponding to (F,H %)

Fix i e, . Let ¢, be any C™- function of x; only.  Then,

by the special structure of {f,h, %), (3.1.1), and Definition 3. 1. 1,
we obtain
(3.256) (lg ...lg Xj)9; =0 on TE),

ipe(0,i), jeM, keM

0=’

Since X; is T-related on £ to X;, i e M, Fact2 3.2 and

(3.2.56) imply

(3257 (L .. Ly X)) @§oT) =0 on €

ifigel(0,i), jeM, keM

0,02,

On the other hand,
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(3.258) Hi(x) = Hi(T;(x), xeE ieM, .

By the definition of A{((F,H,%]), (3.257) and (3.258) imply

(3259) YH; =0 on€, Yea((FHX]),iem, .

Since x can be arbitrarily chosen, (3.2.59) implies (3.2.1).

Now assume (3.2.1) holds. By (A1), (A3), (A4), Lemma

3.2.5 may be applied. Fix x, € %. We use the same notation
in Lemma 3.2.5 except that E; j is denoted by T, i’ j ey D
. a . A
ie ﬂ.m. Let T, = (Ti,l'----Ti,pi)' ie ﬂ.m' Let Pm+t =

m
n - .2 Pj- If pm+e1>0, it is possible to choose other c™-

={

functions T .., j & #y ., from ¥ into RP™1 g0 that T =

(T), T

o Ty Tmeq ) N@s rank n at x where T, =(T

m+|,l’“"

Tm,m,,, ). Then, by Theorem 2. 3.6, there exists an open

neighborhood W & ¥ of x such that T is a c® - diffeomorphilsm

from W into R". It then follows that there exist C™- functions

fmu, bid., ie n,m, je ﬂ]'pm” such that

(3.260) X T, 00 = F o, (T00), X T, ) = b, (Tx)), x e W.

On the other hand, for each i € M, m Lemma 3. 2. 4 holds

with r£ n-p. and ej%Ti_j, jeM, . Thus, by (3.2.1) and Lemma
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3. 2. 4, there exist an open neighborhood U € W of X, and C*-

functions h,, defined on an appropriate subset of R® such that

(3.261)  Hix) = hy(Tyx)), x e U, ieMm,,.

Next, by Lemma 3.2.2 - (ii) and Lemma 3. 2.5 - (ii),

(3262) XT;; T € S(FHXD on U, jer ,, fem, .

Consequently, applying Lemma 3. 2. 4, it follows that there exist
an open neighborhood £ © U of x  and C*- functions r gIJ je

M. |EM, . such that

P’

(3263) X, T,;00 = f,,(T00), X T,00 = G (T), x e £

Let X £ T(E). Let X & (X, ", %X ,%  )&(T,(x),

ml

TWI(X))' Let fié(fi,l""'fi,pi ), §ig(§i,l"”'§i,pi ), i € ﬂl.m

ne

Let H# h =(h, -, R )  Define vector fields X, i €M, by

m

m P| Pﬂwg
(3264) X0 £ 3 2 T 0 @/ex; ) + me, SR Q7% 0,
P} Pun—l
(3.265) X(x) ¢ ng %) (2/2%; ) +5§‘bu(>’<) (/9% ,y ;) 1 €My

Note from (3.2.60), (3.2.62), (3.263), that X, i eM ., and H, i€

ﬂm are T -related on £ to X, 1 en and H, i e M

O.ml l'm)
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respectively. Let (F,H,%) be the system constructed as above.
Then, it is an easy consequence that the above £, (F,H, %) with §

: P, 1 & M, ey Meet the requirements of Definition3.1.5. O

In this section, we have elaborated on the difference
between decoupling and decomposition and have presented algebraic
conditions related to them. Examples of systems which are
decoupled and decomposed are easy to construct. See for example,
the standard decomposed system of Definition3.1.5. It is not
easy to give an example of a system which is decoupled but not
decomposed. The varfous results are connected to one another in
the way described in the Figure 3.2 1.
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(F,H, %} is decoupled on %

Th. 3.2.ll(A 1y, (A2)
(A1)

(A2) GH, & A((F,H %)) Cor. 3. 2.1 QM (A1)
(A3)

(A.4)
Th 3230 A1), (A3, (A9

(F,H,%} is decomposed at each x €%

Th. 3.2.2'(A 1

3 m involutive distributions A* satisfying

(i) dimension A* =r, <n on %X,

(i) dH, € (Ai*)'LC & on %,

(iii)(t\.i*FL is X -invariant and X - invariant on %, |
(iv) (Ai*F,L ieM, —are mutually disjoint at each x e%.

Figure 3. 2. 1. Summary of main results in Section 3. 2 showing

assumptions required for each implication.
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Section 3. 3. Decouplability and Decomposability

we now turn to the question of when a system is decouplabie

by a control law. Results concerning local decomposability ( when
asystem is decomposable at apoint x € %) are found in [Isi.1,

Nij.2], ‘where Wonham and Morse's geometric approach ( [Mos.1, Mos.2,
won.1, Won.2] ) is generalized to nonlinear systems. They are
sufficient conditions for local decouplability since a locally
decomposable system is always locally decouplable. Little has been
done on the question of global decomposability ( when a system is
decomposable on % ). Results concerning global decouplability ( the
system is decouplable;on %) are found in [Cla.l, Fre.l, Maj.1,
Por.1, Sin.1, Sih.1]  These results extend Falb and Wolovich's
result on linear decoupling to nonlinear systems. The earliest of
all the above papers is by Singh and Rugh ( [Sin.1]). Subsequent
papers add relatively little to their results.

In this section, we discuss global decouplablity based on our
precise definition of decoupling ( Definition 3. 1.3) and investigate
the connections between decouplability and decomposability. We

add the following assumptions to the list we made in Section 3. 2.

(A.5) The control law u=a(x)+ B(x) 0 is smooth,
(A.5) The control Taw u=q(x)+ B(x)U is real analytic,
(A.6) B(x) is nonsingular on %,

(A.7) There exist di EN, i € H’i,m such that the following m -

row vector conditions are satisfied :
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(33]) [X,Xo“ Hi(X) e meo" Hi(X) ] = 0, X € x, kK € "’o.(di-l)‘

(332)  DXx) & [XX4GH() X X4H(x)] =0, x e %

We begin this section by giving a necessary and sufficient
condition for global decouplability. When (A7) is satisfied, let
D*(x) and A*(x) denote, respectively the (mxm) and (mx I)

matrices of functions defined by

(333) Dxx) 4 [DXx)] , AX(x) & [ X @1*DH (x)
DX(x) X Gm*VH_(x)

Theorem 3.3.1. Suppose {F, H, %]} satisfies (A1), (A7)
and the class of control laws satisfies (A5), (A6). Then,

(F,H, %) is decouplable on % if and only if

(3.3.4)  D*(x) is nonsingular at each x € %

Furthermore, u = [D*(x)I"'( 4 - A*¥(x) ) decouples {F,H,%]) on %X
That is, for a(x) £ - [D*()I"TA%(x) and B(x) & [D*(x)I", the system

{F,H %)%B is decoupled on % 0

This is actually a nonlinear version of the well known result
by Falb and Wolovich on linear decoupling ([Fal.1]). The sufficiency
part of Theorem 3. 3. 1 is proved in [Cla.1, Fre.1, Maj.t, Por.1, Sin.1,
Sin.1]1.  Its necessity part is stated in [Maj.1, Sin.1], but the
arguments are not entirely clear. We shall prove the necessity

part rigorously, based on our precise definition of decoupling.
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we need the following lemma for the proof of Theorem 3. 3. 1.

Lemma 3. 3. 1. Suppose that [wF, H,% ]} satisfies (A.1) and
(A7). Consider control laws u = a(x)+ B(x) U which satisfy (AS5)
and (A6). Let {/l-:, /l-\i,fc] be J - feedback related on % to (F,H %)
by J = {T,«,B]). Then:

(i) (A7) is satisfied on T(%) with d, = d;, i e M, _,

(i1) DXT(x)) = D*(x) B(x), A%(T(x)) = A%(x) + D*(x) a(x), x €& X,

G RKATO) = XKHK), x 6%, k 6 M ;.

Proof. Let I be the identity mapping from % onto %X
We show that for two special cases, J={(1,a, B} and J=(T,0,
1), () and (i1) hold.  Then, by the transitivity of J - feedback
relations, (i) and (ii) hold for the general case, J=(T,a, B

First, we consider the case of J = (I,a,B).  Then,
(F,AR) = (F %) with & = %. Let X, i ¢ M__ be the

vector fields corresponding to {F,H,%]. Then, for all x ¢ %,

(335) X =

X,
(336) X =3ZB (X, R=H,jeM

=) b i’ i j? m.,

where q 1S the ith component of «, Bij is the (i, j) th component

of B. From this and the definition of {d,6 ieM, ] 12 follows
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that for all 1 € #,  and X € %,

(337) X*H = XkH, kem
(338) X XEH = R XEH =0, jeM, . keM ..

A A A m
XiKhH = 2 B CIXXEH, e M

By (3.3.8),
(3.3.9) lﬁ,ﬁodi ﬂi(x) ?m’f(o“i ﬁi(x)] = D*(x)B(x) on X.

By (A6) and (3.3.2), this implies

(3.3.10) [9,3\(0"1 ﬁi(x) /)Em')\(odiﬁi(x)] =0, x€%.
The definition of (d, i e M, 1 for (F,H,%), (33.7), (33.8), and
(3.3.10) imply (i), (ii), and (iii).

Next, we consider the case of J={T,0,1_] Then, [?, ﬁ,‘;:.} is

T -related on % to (F,H,%]).  Therefore, by Definition3. 1.1 and

Fact 2. 3. 3, we have

(3311 XKATOO) = XkH(), xeX, keM _, ieM

{.m?
ALA

o ..
(3.3.12) XJ. XOk H(T(x)) = Xj Xok Hi(xl), xeX, keM _, i, jeM .
This implies (i), (ii), and (iii). a

Lemma 3. 3. 1 is a nonlinear version of the invariant property
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of the integers, d‘, 1 € ﬂ'm on linear systems, which is shown In

[6il.1].  The case of J & (1,q,B) and % £ R" 1s proved in [Por.1]

Now, we prove Theorem 3. 3. 1.

Proof of Theorem 3.3.1 First, assume (3.3.4) hoids.; Let
(F, R, %)% (F H %)™ with a(x) - [D*x)]'A%(x) and B(x) [D*(x)I™" .
Then, {F, H,% ) is J- feedback related on % to [/l-:, ﬁ,x] by J =
(1, A%,D*]). The vector fields associated with {?, H,%) are given

by (3.3.5) and (3.3.6). By these observations and Lemma 3. 3. 1,

direct computation shows that

(33.13) KkAOO = XKHOO, Kk eM 4,

(33.14) XXk, 00 =1 I if j=1andk = d,
0 otherwise.

A

Let §; be the ithoutput of (F,H,%). Then, by (3.3.13) and (3.3.19),

differentiating ’9,. (d;+1) times with respect to t leads to

(33.15)  §(0 = Ay,

g = KAXW) + 2 GO XAXD)
=t 1
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(33.16)  §4+tt) = Q)
where initial conditions are given by
(3317 §%(0) = REHXO), Kk &,

By Definition 3. 1.3, this impiies (F,H,%) is decoupled on %
Next, assume that there exists a control law u=q(x)+B(x)G
A A
such that (F,H, %)% is decoupled on % Let (F,H, %) =
(F,H %) Let <A\i, i eM,  Dbe the vector fields corresponding

A A A A A
to (F,H,%X]. Lety; be the ith output of (F,H,%). Since

N A
(F,H,%] is J- feedback relatedon % to {(F,H,%) by J =

(1, « B), we have by Lemma3. 3.1,

(33.18)  §®0) =RkAxW), k €My,

+ _ T m A 8340
Yt () = X @ DH(x(L) + jg( G, X X G Hxw) .

But, by Definition 3. 1. 3, it follows that for any initial state

X(0)%% € % and for any two Inputs U, U e U™ with G, = U

i)

(33.19) 4§, 4 (UQ) 8(U,%) =0

O

This implies

(3320) ay®(0) =0, k e M



73
Then, by this and (3.3.18), we must have
i j 7o 0

(3321) A0 = E‘{Gj(m - §OIX KEAR) = o
J:—

Since we can choose T,(0), 'L\J'J(O), j e M, and X arbitrarily,

(3.3.21) implies
(3322) X%4H = 0on % r
3. X iH =0onXx, jeM,

By Lemma3.3.1-(1), and the definition of (d;, | e M, 1},

(3.3.22) implies

(3323) AW 2XR4H0 =0, xex, iem |

On the other hand, by Lemma 3. 3. 1 - (ii), (3.3.22), and (3.3.23),
(3.3.24) D*(x)B(x) = diag Alx), x e X.

Then, (3.3.4) is a direct consequence of (A.6), (3.3.23), and (3.3.24).
O

Because of its importance in our subsequent developments,

we henceforth reserve the notation {F*, HX %] for the system

(F, H, % )%B, where a(x)% - [D*0O]TA*(x), B(x)& [D*(x)]™.

Remark 3.3.1: The input - output map for {F* H* %] is
determined by equations of the form (3.3.16). By Definition 3. 1. 4,
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this implies that { F*, H* %] is also input-output decoupled on .
Thus, under the assumptions (A.1), (AS5), (A6), and (A7), (3.3.4) is
a necessary and sufficient condition for both decouplablity and
input - output decouplability. Our result on input - output
decouplability of smooth systems is stronger than the one which
appears in [Nij.3, Nij.4l. The result there is local.  Moreover, it
is derived on the basis of algebraic conditions for decoupling

whose validity is not clear, as was discussed in Section 3. 2. O
Next, we consider decomposability.

Theorem 3. 3.2. Suppose that the hypotheses in Theorem

3.3.1 are satisfied. Then, {F, H, %) is decomposable at each X,

€ X if and only if (3.3.4) holds. o

Theorem 3. 3. 1 and Theorem 3. 3. 2 have the important
implication that under the assumptions (A.1), (AS), (A6), and (A7),
decouplability and decomposability are equivalent. In [Isi.1], the

sufficiency of Theorem 3. 3.2 follows under additional assumptions,

which are basically equivalent to assuming that dxo" H(x), k €

M, g’ ieM, m are linearly independent on % But, as will be

shown in Lemma 3. 3. 3, this is automatically implied by (A7) and
(3.3.4).  We believe that the necessity of Theorem 3.3.2 is new.

The following Lemmas are needed for the proof of Theorem 3. 3. 2.
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Lemma3.3.2. Let te N, ¢ e E™(X). LetY, Z e V=(X). If
(3325 dzv'g =0 on X k em,,
then,

(3326) (WDYUD$ = (-1¥ZVidon %, jet o, i et

Proof. From [Var.1], we have
(3.327) LyzZ = (-1 ﬁo(-t)“{i!/(ks (S I ZY, jen .
K= : '

Postmultiplying Yi)$ on the both sides of (3.3.27) and using (3.3.25)
yield (3.3.26). 0

Lemma 3.3.3. Suppose that a system (F, H, %} satisfies
(A7) and (3.3.4). Then, dX*H, k e M _, i€ M, are linearly

o.di’

independent on %

Proof. Let (F,B, %} % (F* H* %). Then, (3.3.14) holds.
By Lemma 3. 3. 2, this implies

(3328) (g K)KrA ={ -1k if j = Lk=gorreM

0 otherwise.
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By using (3.3.28), we now show that dXx*H(x), k e M ,, | e ™M,

are linearly independent at each point x € %
Suppose that at a point x € %, there exist constants Yu(xo), j

€ ﬂo'di, i€ ﬂ, m such that

m di

(3329 Z 2, 1% X iA(x ) =

i=lj=o0

Define a C™- function y from % into R by

(3330 wt3 3 LERPELY

||JO

Then, by (3.3.29),

jenm,

0,0 *

(3331 (3R)n(x) =0, ke
Applying (3.3.28) to (3.3.31) and choosing k, j appropriately lead to

(3.3.32) Yi.j(xo) =0, jeMm, ieM, .

This with (3.3.13) completes the proof. O

Before presenting the proof of Theorem 3. 3. 1, we give some

comments on Lemma 3. 3. 3.‘ in [Sin.1, Fre.1}), it is shown that under

the same assumptions, X¥H, k € M

0.di” i€ n,m are functionally

independent on % But as mentioned in Section 2. 2, this does not

necessarily imply that dx¥H, k e M

0.di’ i€ ﬂ.m are linearly
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independent on % The converse is, however, always true. In

[Isi.1], linear independence of dxak Hi, keM™

odic | € My 18 assumed

in addition to (A7) and (3.3.4). Now, we prove Theorem 3. 3. 2.

Proof of Theorem 3.3.2 Suppose there exists «, B such that
(F, H,%)%® is decomposed at each x, €% Let {/l-}, ﬁ,x.] £

(F,H,%)“®_ Then, by Theorem 3.2 2,

P

(3333 df e A((FAX)) on%, i€y .

By Lemma 3. 3. 1 - (i), ai = d. This with (3.3.33) and Lemma 3.2 2

shows that (3.3.22) holds for each i € M, .  The remaining

arguments are exactly the same as those following (3.3.22).

Next, assume (33.4). Let (F, A %) & (F* H* %) Then,

>

(33.13) and (33.14) hold. Let T, 2 RUDH, je My, ieM,

Then, by (3.3.13) and (3.3.14), the following equations hold on % :

(3334 XT, =1 Tgony K EMyg i M

0, k=d+1,i€e M,
(3335) XT,, =I 1, jeik=d+1, ieM,

0, JeM, keM Gy 1ML
(3336) H =T, ieM, .

On the other hand, by Lemma3.3.3 and (3.3.13), d?o"ﬁi, k €
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M,y | €M, are linearly independent on X Let T, # (T ,, """,

o,
m
. A s .
T » 1 €My Let p-iZ=| (d+1) and p_,, € n-p. Fix x €%
Because dXkA, k € M, 1 € M, are linearly independent on %, it
is possible to choose a C*-mapping T_,, : % = RP™! such that T ¢

(T,, ., T.,T.,) has rank n at x, Then, by Theorem 2. 3. 6, there

1 ' m
exists an open neighborhood £ of x such that TisaC®-
diffeomorphism from € into R".  Consequently, there exist C*-

functions f b.., ie M, m je ﬂ'l,pmu defined on appropriate

m+1,j° "i,j’

subsets of R" such that

(3.3.37) XT (x) =

o m+l,j

(T(x)), XT (x) = b (T(x)) x € E

m+11 i m+l,j

Now, Let X & (X, -, % X .. ) & (T,(x), , T (0, T, ,(x)).

? "m? "m+1 m+1

Let % & T(E). Define vector fields Yi, i e M and functions Hi, i

€ ﬂm by
— . _ Pme
(33.38) X (X) = IElJ}:‘x‘ AL +5§' Fer 0 Q7K 0),
(3.339) X £ 3/3% 401y 1 € My
(3.3.40) H( =%, 1€ M,

where, X, is the jth component of X.  Let (F,H %] be the system

constructed as above. Then, the above €, %, and (F, R %] with S,

2d+1, 1eM, . S, £p_,, meet the requirement of Definition3. 1.5
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In particular, its coordinate representation (f,h,%) has the form

(3.1.6) such that for.each i e M, ,

(3341) T(XIEAX, §(x)¢B, hE) 2CX,

where A ¢ o'Idi], Eié[o}, Cello-ol
o o

Since [F*, H* %} is decomposed at each x e %, [F,H,%} is

decomposable at each x e % by the control law u = [D*(x)]"(u-

AX(xX) ). " O

Remark 3.3.2. We applied Theorem 3. 2. 2 to prove the
necessity part of Theorem 3.3.2.  Theorem 3. 2. 2 also yields an
alternative proof of the sufficiency part, which is basically the one
given in [Isi.1l. The argument goes as follows. Under the

hypotheses of Theorem 3.2 2, it is not difficult to find the

distributions A%, i € H., m required in Theorem 3.2.2. For

(F*, H% %], choose A%, €M, by

(3.342) AX 2 (Y eV : dX*HY =0on%, keM Il

Then, by (3.3.13), (3.3.14), and Lemma 3.3.3, A has a constant
dimension (n—di—l).on % and (Ai"*),L i €M, ~are mutually

disjoint at each x € % Moreover, A* is involutive on % By
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(3.3.13), (3.3.14), and Lemma 3. 2.2, (3.2.1) holds for [F* H* %]
Thus, (3.2.38) - (1) is implied. Since by (3.3.13) and (3.3.14), A* Is

5(\0- invariant and f(\i - invariant on %, it automaticaily follows that
(Ai*)'LiS 3(\0- invariant and ?i- invariant on % Thus, the distributions
A, 1 e M, m meet all requirements for Theorem 3.2. 2 to hold.

Consequently, [F* H* %]} is decomposed at each x, € % 0

By adding further assumptions to those in Theorem 3.3.2, we
can obtain a more detailed structure for {f,h,%) than the one in

(3.1.6) and (3.3.41). First, we define a standard decomposed system.

Definition 3. 3. 1. Let % be an open connected subset of R".
A system (F,H %) is a standard decomposed system if its
coordinate representation {f,h, %) has the following properties

(1) There exist nonegative integers d, i€, and D, i€

m+|

M, m Satisfying n = 25 and B 2 G+ 1, 1 e M, S0 that

(f,h,%) has a form :

(3343) % =T& WE(AX1+[ B 10 ¥ =Rh&) =CX, ieM

i (D L (I i i’ it i 1,m’
B.(X) Y.(X.)
[ 11
(3340 Xy =Tpa®) + E‘bi(i)ﬁi,
v i - vy < .2 R T
where:X (1) € RP, 1 e M, . X=(X, . .. X J)eR A B G

are respectively (ai+l)x5i, (5i+1)x I, 1 xp, matrices such that



g1
R*[o 1, : ],Eiﬁ[o], C¢l1o 0],

(2) Let X = (X : X & (X,,...,X,,) € ). Each subsystem

(f,h, %), ien

vme 10 (3.3.43) satisfies the controllability

rank condition on ‘Z

(3) dim. AT (F,H, %)) =P, on R, ieM

Remark 3.3.3. The standard decomposed system in Definition
3.3.1 is a nonlinear version of the system obtained by Gilbert ( [Gil.1]).
It is worth noting that properties (2), (3) together imply the standard
decomposed system (F,H, %) satisfies (A3). When (F,H,%X] is a
linear system, it can be shown that property (3) is equivalent to
condition (iv) in Definition 6 of [Gil.1]. 0

Now, we are ready to state the following result.

Theorem 3.3.3. Suppose that the hypotheses in Theorem 3. 3. 1,
(3.3.4), and (A.3) are satisfied. Further, assume that { F*, H¥, %]

satisfies (A4). Then, at each x e %, there exist : (a) an open
neighborhood £ of x ; (b) an open connected subset ® of R"; (c) a
C* - diffeomorphism T : £ - % ; and (d) the system (F, H, X}, which
is T-related on £ to (F* H* £}, is a standard decomposed system

4

with d, = d, p, = p, 1 e ™, , and ., = P., n-% p., where the

p, and d, appear in (A4) and (A7). a
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See Figure 3. 3.1 for a schematic description of the result of
Theorem 3.3.3. Since (F,H,£) and (F,H, T(E)) are J - feedback
related, they are equivalent with respect to what can be accomplished
by feedback ( recall Section3.1). Thus, the value of Theorem 3.3.3
lies in that the class of decoupling control laws can be characterized
by looking at the standard decomposed system instead of the general
system. This motivates some results in Section 3.4 For the proof

of Theorem 3. 3.3, we need the following Lemma.

Lemma 3.3.4. Suppose that {F, H, %) satisfies (A1) and
(F,A,%) is J - feedback related on % to (F,H,%) by J = (T,a, B},

where J satisfies (AS) and (A6). Then, if {F, H,% ] satisfies (A.3)
on %, | ?, ﬁ,ﬁ] satisfies (A.3) on T(%).

Proof. First, we consider the case of J={ I, «, B} Then, we

have

J= (T, - (0*)'A%, (D% ) _
(F,HE) > (F,H, T(E))
standard decomposed system

g2 (1, - (0 TAx, (%)) Je(r,0,1,)

(F*, H*, £)

Figure 3.3. 1. A standard decomposed system {F,H, T(E))is J-
feedback related on € to the system {F, H, E].
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3345 X, =&+ 2a()%,

(33.46) X, = ?E‘Bi.j")iv jeM,,,

where a. is the ith component of « and Bij is the (i,j)th component

of B. Then, by Fact 2. 3. 1, these imply

A

(3347) L((F,H%]) € Lp({F,ﬁ,Q}), A

By (A3), this implies that dim. Lp({F, H,%})=n peX%

Next, we consider the case of J = {T,0,1 1}  Then, by
Definition3. 1.1, & 1s T-related on % to X, | € M . By Fact
2. 3.2, each vector field ¥ € I {/F\, ﬁ,fc}) is T -related on % to
a vector field YeL({ (F,H,%}). Since T is a C™- diffeomorphism
on %, this implies that at each p € %, Lr(p)( [?, ﬁ,‘g\(]) is
isomorphic to Lp([F, H,% ). Thus, dim.L( [l?, H%))=n qe

T(%). Our assertion follows easily from the two cases of J and

the transitivity of J- feedback relations. O

Now, we prove Theorem 3. 3. 3.

Proof of Theorem 3.3.3. Let (F,
given hypotheses and Lemma 3. 3. 4, (F,

> >

%) = [F* HX %] By
%] satisfies (A3). Fix

X, e % Then, by Lemma 3. 2 5, there exist an open neighborhood
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m
v of x, and (;§| p,) C™- functions @i‘j VR jeM,, ie

M such that on v,

1.m

(3.3.48) dtj)”., j &M, ., i e, arelinearly independent,

1.pi’

(3349 d, & &C(FAXD), jem ieM

As was shown in the proof of Theorem 3. 3.2, {’F’, ﬁ,'x} is

decomposed at Xy Therefore ( see the proof of Theorem 3.2.3

and (3.259)), there exists an open neighborhood v cwof Xy

such that
(3350 A e AC(F,AX)) on D, ieM .
This and Lemma 3. 2. 2 - (ii) implies

(3.351) d</(\0“|'~\ii € A*i({?,’}-\l,'x}) on 6, keM i eM

0.di’ 1.m’

This, (3.3.12), and Lemma 3. 3. 3 shows

(3.3.52) p2d +1, 1e M

f,m’

Next, we show that there exists an open neighborhood W &
A AN ) ) A A
Y of x, and a basis of A((F,H %)) on W which contains dx KH,
k e M 4 By (3.3.48), (3.3.49), (3.351), and Lemma 3. 2 4, for

each i € M, . there exist an open neighborhood V, & D of X,
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and C*- functions IPiJ from an appropriate subset of RP into R, j

eM such that

1.(di+1)

(3353 T ) = XUDHK) = ¥, (4,00, §,_(x)),

x eV, JeM

Then by Lemma3.3.3, (3.3.12), and (3.3.48), DY, (§, ,(x), ",
tﬁ‘ m(x )), jeM, (@ivn) A€ linearly independent (1 xp,) row vectors.

Now, for each i ¢ M let r e pi-di-l and choose T, (1 xpi)

1.m?’
row vectors LY such that

(3354 Q¢ otp,,(Q CRRIE WA TR

!

D‘P‘ (d|+1)( ¢I l(x ) <p| pl(x ))
T,

T ri J

N\

is a nonsingular (p. x p.) matrix. Let
(3355) T2C4 ) Ty S0 T JeMy,, ieM

Then, by the construction of T‘J, jeM eM

1,pi? 1,m?

(3.3.56) dT,-,j(Xo)» JeM, ;1 e M, are linearly independent,

1,pi
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(3357) T e sU(FAX]) onv, Jem, 1en

1.pi’ I.m

Let VEV.A---NV andp,, =n- ;Ea p. Ifp.,, 21, choose

a C®-mapping T_., from V into RP™! such that T has rank n at

m+)

X, where

(3358) T2 (T, .ToTun) T, 8 (T, " Ty)

i.pi

Then, by Theorem 2. 3. 6, there exists an open neighborhood W €

V of X, such that

(3.359) T is a C*™- diffeomorphism on W,

(3.3.60) {dTi‘j(p), jeM, .} is a basis of (Aﬁ)p( (F,A,%)), pew.

1.pi

Now, using (3.3.59) and (3.3.60), we show property (1) of
Definition 3. 3. 1. By Lemma 3. 2. 2 - (ii), (3.3.60) implies

N

(3361) T, R, e &FAX)) on W, jem, , ieM

1.pi’ .m

Then, by (3.3.60), (3.3.61), and Lemma 3. 2. 4, there exist an open

neighborhood £ © W of X and C™ - functions 'B'ij, 'Y’ij from

appropriate open connected subsets of R? into R, j ¢ M €

1,pi?

M

1.m

such that

(33620 X, T, grepy 00 =B (TOO), X T, )00 =¥, (T00), xeE
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On the other hand, by (3.3.59), there exist C* - functions T

m+1,j°

b, 1 €M, ., ] €M, defined on appropriate subsets of R"
such that
(3363) K Tpuy 00 = Touy TOO), KT, (0 = B,(TX), xe £

Let X £ T(E). Let X £ (%,,~~-,%X %X, )2(T,(x), (x) ).

" T
- .= _ ' -

Let Bi-( BU, Y ), 1€ M, Letf .,

A L T (b;,,,"',Bi_p,M ), i eM . Define

vector fields X, i e M, . by

(3364) X (%) % :l i" R oy /0%, +J‘%+l PRGN A0
:g T RV O/R
(3365 XX £ 3/ %, (4is1) +J—%,+J Gdi %) 9/3% ) #
R”2' b ;(R)/A% . T €M,
(3366) H() = %X, ieM, .

where, X, . is the jth component of X Let (F,H, %) be the

system constructed as above. Then, the coordinate representation

(f,h, X} of (F,H %) has the form indicated in (1), where d =

d, i e n,‘m and Bi =p, 1€ "’l,mﬂ‘

Let Y, be a C*™-vector field in ACTF, H X)) Then, using

™m+| P_,

(3.3.64) and (3.3.65), we can show that if Y =2 2 Y e a/b?j.k

i=| k=l
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is a local representation of Y, on %,

(3.367) ?u(i) =0, XeX, keM p

By Lemma3.3.4, (F, H,X) must satisfy (A3). Thus, (3.3.67) implies
property (2) of Definition3.3.1.  Property (3) follows from the

fact that by (3359), (a)((F,A,£1) and (4, (F,A, X)) are

isomorphic at each p € E. a

Remark 3.3.4. The system (F,H,%] is locally J - feedback
related to a standard decomposed system, where J ¢ J! =
(T', A*oT!, D*oT'). As is shown in the proof of Theorem
3. 3.3, the choice of T is not unique. Thus, there are infinitely
many standard decoupled systems which can be J - feedback related.
to (F,H, %] O

Finally, we state a converse result of Theorem 3. 3. 3.

Theorem 3.3.4. Suppose that (F, H,% ) satisfies (A1) and

the class of control laws satisfies (AS), (A6). Suppose further

that at each x, € %, there exist : (a)an open neighborhood € of X s
(b) an open connected subset % of R"; (c)mappings T : € 2 %, «a :
E->R™ B:E->R™ ; and (d)the system (F,H, %), which is J-

feedback related on £ to (F,H,E) by J2(T,q, B), is a standard

decomposed system. Then, the following properties hold :



89

(1) (F,H,%] satisfies (3.3.4), (A3), and (A7) with ¢, =d, | e M, ,

(11) (F* H* %) satisfies (A4) with p, =D, 1 € " .

(111) a(x) = = [D*(x)I"'A%(x) and B(x) = [D*(x)]™".

Proof. By Remark 3.3.3, (F,H, %) satisfies (A3). By
Lemma 3. 3. 4, this implies that (F, H, %) satisfies (A3). Direct
computation shows that (F,H, %) satisfies (A7) with D*(X) = I_
and A%(x) = 0. By this, Lemma3.3.1, and (AS5), we see that
(F,H,%) satisfies (3.3.4), (A7) with d = d, i e M, m and,
furthermore (iii). Since (F,H, %) is J - feedback related on £ to
(F,H,€) by J & (T, B), (iii) implies that (F,H, %) is T - related
on £ to (F* H* %} Consequently, (Ai)q( {F%* H* %)) and

(A1) (F,H,%)) are isomorphic ateachqe€f This implies (ii). O

In this section, we have shown that (3.3.4) is a necessary and
sufficient condition for both decouplability and decomposability.
We have also specified a class of nonlinear systems which are
J - feedback related to standard decomposed systems. See Figure
3.3.1 for a schematic description of the results obtained in this

section.

Finally, we remark that (A7) can be weakened by

(A7) There exist d, ¢ N, 1 e M,  satisfying (33.1) and

(3.3.2) There is at least a point X, € % such that
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[XXHH(X) X X4H(x)] = 0.

If (F,H,%] is smooth, (A7) implies that there exists an open
neighborhood %' €% of x  such that (A7) is satisfied on %' instead

of % Thus, when (A7) is replaced by (A7), all results in this
section hold with % =%'  In other words, they are locally valid.

(F,H, %) is decouplable on%| |(F, H, %} is decomposable at each X, € %

Th.3.3.1 (A1), (AD), (A6), (A7) Th.3.3.2

D*(x) is nonsingular at each X, € %

Th.3.3. 3 (A1), (A3), (A,
(AS), (A6), (A7)

At each x, & %, 3 an open neighborhood € of x and a C™-

diffeomorphism T on € such that (F,H, T(E)}, which is J-
feedback related onE to {F, H,E) by J2( T, - (D%)'Ax, (D®)! },
is a standard decomposed system.

Figure 3. 3. 2. Summary of main results in Section 3.3 showing

assumptions required for each implication.
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Section 3. 4. The Whole Class of Decoupling and
Decomposing Control Laws

In this section, we consider the class of control laws which
decouple or decompose a nonlinear system and thus obtain some
answers to questions (b), (c), (d) in Chapter I. We believe our
resuits are new and are important contributions. We begin by
discussing at some length the significance of characterizing the
whole class of decoupling control laws.

Let (F,H,%} be a system which satisfies the hypotheses in
Theorem 3.3. 1 and (3.3.4). Let (F,H,%) 2 (F* H%, %) Then,
the input - output map for [?, ﬁ,x} is determined by (3.3.16) and
(3.3.17).  Now, suppose we choose the following control law for
{?, H %

s+l

O

A

(k-1) Iy
Fix Vi MRS T

341 1

K
d

+

= 3 k-1) T
2 Fi.k X, Hi(x) v U, ie ”nm’

where the Fik are constants, the ¢, are nonzero constants, and the

last equality comes from (3.3.13) and (3.3.18). Note that this

procedure corresponds to choosing for the original system

(F,H,%X) a control law of the form u = «(x)+ B(x) T where

di+
[D*(x)]™! { Z‘F,k X EUH, () ] - A%(x) ],
K= '
o
-1
2 P X EH )

(e

(342)  alx)

(3.43)  B(x) & [D*(x)] ' diag ¢, .
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By (3.3.16) and (3.4.1), the input - output map for (F,H, X )= is
given by (3.3.17) and

di+l
(3.44)  §U*D) - Z Fiy YED e U, e, .

Therefore, {F,H, %)% is decoupled on % and the control law
(3.4.2), (3.43) is a decoupling control law for [F,H, % ).

Moreover, appropriate selection of the constants F,, and c; gives

good input - output dynamic characteristics. The class of
decoupling control laws (3.4.2), (3.43) was considered in [Fre.l,
Sin.1, Sih.1 ]

A nonlinear control law more general than the one in
(3.4.1) is :

341y 0 = ¢ (&, 9 (), .9 T,

ll

where ¢i, ¥. are arbitrary C™ - functions of their arguments.

The corresponding control law u=a(x) + B(x)T for (F,H, %} is

(3.45) b0 = D*6AI" [ 7,00 ] - A%(x) ],

n,,(x)

(3.46)  B(x) = [D*(x)] ' diag A(x),

where
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(347) 00 2 $CHM0, XH 00, ..., XGH)),

(3.48) AL 2 POHOO, XH (), .., X GHX)).

Now, by (3.3.16) and (3.4.1), the input - output map for (F,H, %)%
is given by (3.3.17) and

(342 W) = (9@, )T, H) T, TeM

i’ i.m-

We see that the new feedback system (F, H,x}“"3 is still
decoupled on %. Thus, the control law (3.45)-(3.48) is a
decoupling control law and is more general than the control law
(3.42), (3.43). The class of decoupling control laws (3.45) -
(3.48) was suggested in some examples which appear in [Cla1,
Sin.2].

Can we find a still more general class of decoupling control
laws 7. Knowledge of a more general class of decoupling control
laws allows more flexibility in choosing a decoupling control law.
For an instance, as will be shown later by an example ( Example
3.5.1 in Section 3.5), a decoupling control law (3.4.2), (3.4.3)
may not decouple a system in a “stable” way but it may be
possible by finding a more general decoupling control law.  Thus,
characterizing the whole class of decoupling control laws is a
significant question both from engineering and mathematical
viewpoints. For future purposes, we define several classes of

control laws.
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Definition 3.4.1. 8T((F,H,%))(83((F,H,%X]})) Is the class
of control laws u = a(x) + B(x) U satisfying (AS) ((AS) ), (A6), and
(3.45) - (3.48). (]

Definition 3.4.2. 8“((F,H,%X})(SX[F,H,%X})) is the class
of control laws u = a(x) + B(x) U satisfying (AS) ((AS) ), (A6),
(3.43), (3.46), and

(349)  dn, A\ & A({F%H,R]) on %X. u!

Remark 3.4.1. By (3.3.13) and (3.3.51), the smooth functions
n, A in (3.47), (3.48) satisfy (3.49). Thus,

1

(3410) 87 c 8 and 8¢ c 8°

In general, 8 (8%) is a very limited subset of 8~ (8“). When n
m
= Z (d;+1), It is usually true that =((F,H, %)) = 87([F, H, %)),

But, as will be seen in Example 3.5.2 of Section 3.5, this is not

always so. Further discusssion will be given in Remark 3.4.7. O

The following theorem shows that 8 is actually the whole

class of real analytic decoupling control laws for a real analytic

nonlinear system.

Theorem 3. 4. 1. Suppose that [F,H, %) satisfies (A1), (A7)
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Suppose that class of control laws satisfies the following
assumptions : (AS), (A6), and for u = a(x) + B(x)u In the class,
(F,H,% )« satisfies (A2). Then, the control law u = a(x) + B(X)U

decouples {F,H,%) on % if andonly if it belongs to 8 (F,H,%]})
and (3.3.4) holds. a

Remark 3.4.2. The condition (3.49) is equivalent to
(3411) Yn =YX =0 on X for all Y e A(F* H* X).

Thus, Theorem 3. 4. 1 reduces the problem of characterizing the
whole class of decoupling control laws to that of finding all
solutions of the set of the first order linear partial differential
equations specified by (3.4.11). When (F,H,%] is a linear system
and the class of control laws is restricted to be linear (e. g, (1.5)
and (1.6)), (3.411) is reduced to a set of linear algebraic
equations. Moreover, Theorem 3. 4.1 is reduced to a result

contained in [Gil.1]. a

we need the following Lemma for the proof of Theorem 3.4 1.

Lemma3.4.1.  Let &, ¥, ¢iJ’ jeM, , ieM beany

C*- functions from % into R such that

(3412) dt, o¥, df.. e A((F,HX])on%X, ieM

1m -



%
Define C™- vector fields X, 1€ M, by

(3.413) X 2Xx + ;I POX,

(3414 Xt 24, ()X, iem

1 °
J* m

Let i e M, . Let k be any finite nonnegative integer.  Then,

if ij e (0,i), j ¢ M

(3415) &“%‘2’%“ ;‘ € AJ;( [F, H,X}) on %.

Proof. By Lemma 3. 2. 2 - (ii),

(3.416) dXt, dXk € AC{F,H %)) on %

Recall that X, € &, j € M, if j=i  This with (3.412) -(3.416)

implies
(3.417) oXp, Kb € &((F,H%X)) on %.
Successive application of this result yields (3.4.15), immediately. O

Now, we prove Theorem 3.4 1.

Proof of Theorem 3.4.1. Let u = q(x)+ B(x)Uu be a contro]

law which satisfies (345), (3.46), (349), and (3410). Let X, i

!
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& M, be vector flelds corresponding to (F,H,% ). Let X. ¢

ﬂo m be vector fields corresponding to {F, H* % ). Then, we

have

- A pul
(3418) X, =% + Zn()R,
(3.419) X =A(K. jem

Let i e M, m- Let k be any finite nonnegative integer. Then, by
(3.3.33), (3.49), (3.418), (3.419), and Lemma 3. 4. 1, we see that if

ipelo il aem,,,
(3.420) dXj, Xjp* " Xj Hi € & ([F*% H*%}) on %.

But note that 5(\j € A C[F* H X)) on %, j eM,. Hence, (3419

and (3.420) imply that if i e(o,1), g e M, and j € M,

(3.421) X Xj, Xjp***Xj Hi =0 on %

J

This with Lemma 3.2 2 - (i) and Theorem 3.2. 1 implies that
(F,H, %)% is decoupled on %

Next, suppose that u = «(x) + B(x) U decouples {F,H, %} on %
Let (F,H,%} 2 (F,H,%)“® LetX, ieM  be vector fields

corresponding to (F,H,%). Then, by Theorem 3.2. 1 and Lemma
3.2.2-(),
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(3.422) -)Ej iil 5(-12 e .iik Hi =0 on X,

iqe[o,i],qenu,keﬂ jeM, ieM

ol-.

On the other hand, by Theorem 3.3.1, (3.3.4) holds. Let 5(\,-, i€
M, be vector fields corresponding to [F*, H* % }.  Define C™-

mappings n : % = R™, T : % > R™™ by
(3.423) m(x) = D¥Mx)a(x) + A¥(x), T(x) ¢ D¥x) B(x).

Then, we see from Fig3.4. 1 that

(424 X =&+ 2 n()%,
J:

0

(3425 X = Z ()% jen

im?

where I‘ij is the (i, j)th component of T.  On the other hand, by

Lemma 3. 3. 1 - (i), direct computation with (3.424) shows that

(F* H* %)

Fig 3. 4. 1. Relationships between (F, H, %}, (F, H, %], and (F*, H* %]
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Tk - /\k/\
(3.426) RXA = K, kem,, tem,

This with (3.3.13), (3.3.14), (3.424), and (3.425) yields

(3.427) X 9VH = m, XX4H =T, onx iem .

This with (3.422) and Lemma 3. 2.2 - (i) shows that

(3.428) dn, dr; e A(IFAX))on% iem, .

Note that by (3.3.23), (3.3.24), and (3.4.23), we must have

(3429) T,(0 =0, xeX, i=],

(3.4.30) A (x) E x)=0 xeX ieM

im-

Consequently, we can write (3.424), (3.425) as

(343D X =%, - 2 (q() /X)X,
J=

(3432) X = (1/ACDK, jen,

Since dA e &([F,H %)) implies o) € &1 (F,A,%]), these

equations with (3.4.22), (3.428), and Lemma 3.4 1 lead to -

A

(3.433) o, Xi, .. X, m. &K

Xid € AUIF,H,%)) on %,

>x<X>

i iz -

iqe{o,i}, q e n]'k, keﬂo,m‘ jeM, 18”1,m~

Recall that X; e A((F,H, X)) on %X. ] e M Therefore, (3.432)
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and (3.4.33) imply

N

(3.434) XK\ Xip . Ry = XKy Ky Kydy =0 on %,

i€loil,geM, keM  jeM, ien .

This and Lemma 3. 2. 2 - (i) complete the proof. O

Remark 3.4.3. A result on the characterization of

decoupling control laws is found in [Sin.1], where it is shown that
if a smooth control law u = a(x) + B(x) U decouples [F,H,%] on

%, then

(3.435) X X*H=0on%, keM  if i=]

where Yj. j €M, are vector fields corresponding to (F,H, %)
and H,#H, i e M, = A more complete result is that under

hypotheses of Theorem 3.2. 1, a control law u = afx) + B(x) U

decouples [F,H,%} on % if and only if (3.422) holds. But,
(3.422) is an implicit and complex condition for u=alx)+B(x)T to

be a decoupling control law. It results in high order partial
differential equations. On the other hand, the condition given by
Theorem 3. 4. 1 is explicit and involves only the first order partial
differential equations. Thus, (3.435) is not so useful for
characterizing the class of decoupling control laws as our

condition. 0
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Unfortunately, we are not able to prove that Theorem 3. 4. 1
is valid for smooth syétems and smooth control laws. But, we
can show that 8=((F,H,%}) is the whole class of smooth

decomposing control laws for a special class of smooth systems.

Theorem 3.4.2. Suppose the hypotheses for Theorem 3. 3.3

are satisfied. Then, a control law u=qa(x) + B(x) U decomposes

(F,H,% ) at each x €% if and only if it belongs to 8~ ({F,H,%})
and (3.3.4) hoids.

Proof. Suppose a control law u=a(x)+ B(x)U decomposes
(F,H, %] at each x e%. Let (F,H,%)%(F H X LetX, ie
M, . be vector fields corresponding to (F,H,%). Then, by (3.2.38)

- (1) and Lemma 3.2 2 - (i), (3.422) holds. Then, the remaining
arguments are exactly the same as those following (3.4.22) except
that (3.3.4) holds by Theorem 3.2 2 instead of Theorem 3.3. 1.

Next, suppose that a control law u=a(x)+ B(x)U belongs to
$°({F,H, %)) Fix x, € % Then, by Theorem 3.3.3, there exist

an open neighborhood E of X, and a mapping T: £ = R" such that

(F,H,%) which is J - feedback related on € to (F,H,E) by J &
(T,-(D*)'A%, (D%)! ) is a standard decomposed system with % =

T(E), d, = d, |e¢ M, adD =p, 1 eM The mapping T

1+l
constructed by (3.3.53), (3.3.55), and (3.3.58) satisfies (3.3.59) and

(3.3.60) on £ Then, by (3.49) and Lemma 3. 2. 4, there exist an
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open neighborhood € € £ of x, and C™-functions W, i| defined on

appropriate subsets of R"‘, ie ﬂ., m such that
(3.436) MO0 = RTH), A00 = AT D), x e K.

Let § 2 (W,,...,M )and T % diag A. Let J (7,01 ) and
Jy2 (1, m, diagA ). Then, as can be seen from Figure 3. 4.2,
(F,H, %)% is J; - feedback related to (F,H,T#)) on T(H) by
Js=J,0J,7).  Direct computation shows that JyeJ,™" = (T, %, T ).
The form of the standard decomposed system, the form of W, T,

and Definition 3. 1.5 imply {F, H, % }%# is decomposed at X, ()

(F,HH)
1 J 2 (1, - %A%, (D%)')

(F* H* 4}

J,={T,0,1) J, = (1, m, diagX ]

(F,H T(H)) > (F, H, 8§ )P
Jy=dyodt = (T7,5,T)

Fig. 3. 4. 2. Relationships between (F,H,#H), (F* H* 8}, (F,H, 8 %8,
and (F,H T()).
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This result has other implications. Recall that if (F, H, %]
is decomposed at X, 8 %, then, there exists an open neighborhood
E of x, such that (F,H,E} is decoupled on £ Therefore, Theorem

3.4 2 shows that under its hypotheses, 8 ((F, H,%} is a class of

smooth control laws which decouple [F,H,% ] at least locally

around each point X, € *®%

If (F,H %) is a standard decomposed system, we might

expect intuitively from its special structure that its decoupling
control laws are of the form G, = %(X) + A(X)y, i e, . In

the next Theorem , we show that this is really the case. Before

doing so, we formalize the class of control laws.

Definition 3. 4.3. Let (F,H %X} be a standard decomposed
system. $=((F,H %)})(8Y(F,H%))) is the class of control

laws U=g(X) + B(X) U satisfying (AS)((A5) ), (A6), and
(3.437) @@ = [H,(x,)] PR = diag A(X),
ﬁm(im)
where T, , X' are functions from fg into R, 1 eM, . 0
Theorem 3. 4. 3. Let (F,H,% ) be the standard decomposed

system in Definition3.3. 1. Suppose that (F, H, %) satisfies (A1)

Suppose that class of control laws satisfies the following
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assumptions : (A5), (A6), and for u=a(X)+B(X)U in the class,
(F,H, % %P satisfies (A2). Then, the control law T = &(X) + B(X) ¥

decouples (F,H,%) on® if and only if it belongs to 8 (F,H,%)).

Proof. Suppose that a control law U =g(X) + B(X) U belongs
to 8% (F,H,X)). Then, since (F, H,% %P is decomposed on X, it
is decoupled on %

Next, suppose U = &(X) + B(X)U decouples (F,H, %) on %.

Direct computation shows

(3.438) D*(X) = A¥X) = 0 on %

ml

By Theorem 3.4. 1, this implies that @, B must have the

following properties :

(3439) a® = (§,(x)], B® = diag A(%), on ¥,

(3.441) X(®) =0, X, e %, ieM

Direct computation using the property (1) of (F,H, X} in Definition

met F

3.3.1 shows that if Y. ¢ 2 ) v, (") /3%, belongs to

J=1 k=i

A((F,H,X1), (3367) must hold. This and the property (3) of

"YVH-( r‘

(F,H, %) imply that if a covector field g £ 2 2 6 (1) &

i=l k=|

ik
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belongs to A¢ (F,H %)) on X,
(3.442) §,(x) =0, XxeX keMp if j=i

Since % is connected, this and Theorem 2. 3.8 imply that any C¥-

function ¥ from % into R satisfying (3.4.40) must be the function

of X, only. O

Note that the property (3) of the standard decomposed
system is essential in obtaining Theorem 3.4.2.  Just as with
Theorem 3. 4. 1, we are not able to prove that Theorem 3.4 3
extends to smooth systems and smooth control laws. But, we can
show that 8°( (F,H, %)) is the whole class of decomposing

control laws for the smooth standard decomposed system (F, ﬁ,i’.}.

Theorem 3.4.4. Let (F,H,%] be a standard decomposed
system in Definition 3.4. 1. Suppose that (F, H, %} satisfies (A1)

and class of control laws satisfies (AS) and (A6).  Then, the
control law U = &(X) + B(X)U decomposes (F,H,%) on ¥ if and

only if it belongs to 8=( (F,H, %))

Proof. Let T = @(X) +PB(X)T be a smooth control law in

$=((F.H %)) Obviously, (F,H %] is decomposed on %

Next, suppose that a control law U = @(X) + B(X) U decomposes
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(F.A. %) on . This implies that (F,H, %)% is decomposed at
h

each X, 6%. Let (F,HX)&(F,HX™  LetX, iemM  be

vector fields corresponding to (?, H,%). Then, by Theorem 3. 2.2
and Lemma 3.2 2 - (1),

(3.4.43) XJ X“ X12 T X‘k H1 =0 on %,

ipeloil,aer, ke, jeM,|

Using this and (3.438), we can show that (3.4.39) - (3.441) hold.
The arguments are very similar to those following (3.4.22) except
for minor differences in notation. Once (3.4.39) - (3.441) hold, the
remaining arguments are exactly the same as those following
(3.441). O

The control laws in the sets 8*( (F,H,%X}), 8°((F,H %X])
are closely related to those in the sets SY(F, H, %)), 3 ({F, H, X )).

We show that for a class of nonlinear systems, there is a one - to

- one correspondence between them.

Theorem 3.4.5. Suppose that the hypotheses of Theorem
3.3.3 are satisfied. Let x, € %. Let £ T, (F,H %) be the

open neighborhood of X, the mapping, and standard decomposed

system given by Theorem 3.3.3. Then, there exist an open

neighborhood £ © £ of x  such that

(i) For every u=qa(x)+B(Xx)U in 8 ((F,H,H)), there exists
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a unique control law T=a(X)+B(X)U in 8 ((F,H T ))
such that {F,H, T#6) )% is T -related on % to (F,H, 86 )%E
Conversely, for every G=a&(x)+B(X)U in 8 ({F,H T )),
there exists a unique control law u = q(x)+ B(x)U in

8= ((F,H,8))such that (F,H,#)*® is T -related on T(8)
to (F, H, T(s) JF,

(i1) Let u=alx)+B(X) U, U=a(X) + B(X) U be control laws in

8“((F,H,K)), 8°((F,H T8))), respectively. Suppose they
are in the one - to - one correspondence described in (1).
Then,

(3.444)  a(x) = DX (&(T(X)) - A¥X)), BX) = DX BT(X).

(iii) In particular, when T is a C* - diffeomorphism on %
and % 1s connected, the above (i), (i1) hold with £ = %

Proof. First consider (i). Suppose u =a(x) + B(x)U belongs

to 8°((F,H,#)) Then, following the second part of the proof

for Theorem 3.4. 3 leads to the fact that there exist an open

neighborhood # © £ of x  and C™ - functions M. Xl defined on

appropriate subsets of RP i g M, m such that (3.4.36) holds.

"

Note that given T and H, the 'T]‘ and 5‘1 are unique. Define &

(7M,,...,m_ ) and B2diag A. Then, T=a(X)+B(X)U belongs to
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$=((F.H T4L))). Furthermore, (F,H, T(#) j# 1s T-related on %
to (F,H,8)%®  Next, consider the converse statement. Suppose
U=q(X) + B(X) U belongs to 8=( (F,H,T(H))).  Define a, B by
(3.444). Then, by (3.3.60), it follows that u =a(x) + B(x) U belongs
to 8"({F,H, TM)}). Clearly, {F,H H)%F is T!'-related on #
to (F, A, T(s) &8,

Part (ii) has been shown implicitly above. Part (iii) follows
from that given hypotheses imply that (3.3.59), (3.3.60) hold on %X

and T(%) is connected. By the arguments similar to those
following (3.2.44), (3.4.36) holds giobally on %. 0

Remark 3.4.4. See Figure 3.4.3 for a schematic description
of Theorem 3.4.5. Systems {F,H, T(#) B described in (i) of

Theorem 3. 4 5 have the forms :

(3.445) K =TX We(AK+7&[ B |+ A& | B )¢

(3446) Ky =T 00+ TBOORK) + EXEIBEG,.

Thus, part (i) characterizes the class of closed-loop locally decomposed
or decoupled systems. Part (ii) shows connection between a given

closed - loop system and a feedback control law. a
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Remark 3.4.5. Since (F,H, T4 )% is T-related on # to
{F, H )%, the solutions of the differential equations for the two
syatems are related by T (i.e, X(t)=T(x(t))). Also the two
systems have the same input - output maps. When $ = %, these

results are valid globally on % O

Remark 3.4.6. For a standard decomposed system (F,H, %]
in Definition 3. 3. 1, let

(3.447) %* 2 { (X ,,.... %z, ) €R¥':

X2 (X,..., %, %X ,,)eX]ieM

m’ Xm+1

>

t.m

Define $=({F,H,%)) (8% (F,H %)) by aset of all control laws

jéllo,q,B]

(F. H8H) (F,H, 8 )P
JE(T, - (0%7'A%, (0% Je(1,0,1)

2 J:{Io’q’B} NY )

(F.H T4 > (F, H, T(H) @B

standard decomposed system

Fig. 3. 4. 3. A schematic description of Theorem 3.4.5, where u=
a(x) + Bx) U, T=gq(X) + B(X)T are control laws in

8°((F,H #H)) 8 ((F, H T(H))), respectively.
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U=a(X) + B(X) U satistying (AS) ((AS)), (A6), and

n -— -—
R T )

(3.449) B(0 = diag A(X 1, ) X gy )

where "F(‘ ’i‘ are arbitrary functions from ‘)—g* into R.  Clearly,

2((F,H %)) is asubset of °({F,H %)). Let{F, H %) beasystem
which satisfies the hypotheses of Theorem 3.4.5. All statements
in Theorem 3.4.5 still hold with 8~({F,H,8}), 37((F,H TaH })
replaced by 8T( (F,H, ¥ 1)), E((F,H, TW }), respectively. 0

Remark 3.4.7. Suppose the hypotheses of Theorem 3. 3.1,

"

(3.3.4), and n = Z(d+1) are satisfied.  Then, the hypotheses of
=l

Theorem 3. 4.5 are satisfied trivially. In particular, p,=d + |, i€

M, _and T is given by T % (T,,..., T ), where T, € (T, ...,

1.m

4 ‘-l .o
Tigier » and T, 2 XU H..  Then, (ii) of Theorem 3.4.5 shows

that at least locally, 8°([F,H,%}) = 85((F,H,%}). When T is
a C=- diffeomorphism on % and % is connected, (iii) confirms that
$°((F, H %)) =28"((F, H %)) Note that for this case, we do
not need to solve the partial differential equations (3.4.11) to
characterize 8°( {F,H,%)).  But,if T isnot a C™-diffeomorphism,
8°((F,H %)) =8 ((F H %)) is not necessarily true. This will
be shown through Example 3.5.2 in Section 3. 5. (]
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In this section, we have presented results concerning questions
(b), (c), (d) in Chapter 1. They are described in Figure3.4.4 in a
schematic way. The simpliéity of the results for standard
decomposed systems, together with Remark 3.4.4 and 3. 4.5,
suggests that in system design it may be easier to deal with the
standard decomposed system than with the original system.  But,
it should be noted that in order to transform the original system
into the standard decomposed system, we have to compute a
mapping T ( see Theorem 3.3.3). Computing the mapping T is
usually a difficult job since it is basically equivalent to solving a

set of the first order linear partial qifferential equations.

J. 5. Examples

In this section, we present three examples which illustrate
the significance of the results developed in the previous sections.

Example 3.5. 1 is a real analytic system (F,H,R%) which is
decouplable and decomposable onR®.  For this example, 89( (F,H, %))
is a proper subset of 8Y( {F,H,%)).  While there is no control
law in 8¥( (F, H,R3)) which decouples (F,H, R%} onR® with Bounded
Input - Bounded State ( BIBS ) stability, there are many control laws in
8¥( (F,H, R3)) which decouples (F,H,R>} onR> with BIBS stability.

m
Example 3. 5. 2 shows that n = Z ( d.+1) does not necessarily imply

i=l

8Y(F, H,%X))=8Y(F H %)) Forthisexample, T defined in Remark
3.47 is a C¥-diffeomorphism locally at each point of R but not globally



u=a(x)+ B(x)U decouples
(F,H,%] on %X

3.4 f
(A6)(A7)

(A.1),(A2),(AS),
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u=q(x) + B(x) U decomposes
(F,H,%] at each x eX

Th.3. 4 N (A1).(A3)(A4),

(A.5),(A.6),(A.7)

a(x) = [D*0)]™! q(x) - A%(x)],
B(x) = [D*¥(x)] ~! diag A(x),
where dn, d\ e &((F*, H*, % ]).

u=e(x)+B(x)0
belongs to
3Y or 8~

-

‘

Th.3.4.5"

one-to-one correspondence
between «, B and &, B

(A1), (A3),(A4),
(A5),(A.6),(A.7)

¥

&%) = (§,(%,), ..
B(X) = diag A(X).

LA R,

U=a® + B o
belongs to 8% or 8

™m3a3 Bl (A1)(A2)

(AS),(A6)

Th. 3. 4

U=a(X) + B(X) U decouples
a standard decoupled system
(F,H, X} on X .

(A1),(AD),
(A6),

U=a(X) + B(X) U decomposes
a

(X) +
standard decoupled system |
F,H %) on % |

——

Figure 3. 4. 4. Summary of main results in Section 3. 4 showing

assumptions required for each implication.
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on RS, Thus, this example shows that if T is not a C¥ - diffeomorphism,
S (F,H,R?)) = SX (F,H,R%)) 1s not necessarily true.

Example 3. 5. 3 was considered in [Sin.1] We show that for
this example, T defined in Remark 3.4.7 is a C™ - diffeomorphism
on R® and hence 8%({F,H,R3)) =8%(F, H,R3)). In [Sin.1], a necessary
condition for a control law to decouple (F, H R] is given ina form
of partial differential equations and a class of decoupling control laws

is specified. We give a more complete solution for this example.

Example 3.5.1. Let us consider a real analytic system
{(F,H,R®] with m = 2 and

n

(35.1) X (x) & (x;+ X, %) 9/0x, ,

(352)  X,(x) 2 /%, + (1 +X,~ X3) 3/3x,, - /%5,

>

(3.5.3) Xo(x) = 9/9%, + (1 - %) 3/9x,,

np-

(35.4)  H(x) 2 x;, Hy(x) & x,+ x;.

Direct computation shows that all hypotheses in Theorem
3.3.1 and (3.3.4) are satisfied with

(355) d,=4d,=0, D*(x)=[1 1], AX(x) = 0.
0 I

Thus, by Theorem 3.3.1 and Theorem 3.3.2, (F,H,R®] is
decouplable on R® and decomposable at each x, € R>.

To characterize the whole class of real analytic decoupling
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control laws, we have to compute A((F* H*,R®)), 1 em,,

Let ?i' ie ﬂo.2 be the vector fields corresponding to the

decoupled system {F* H* R>).  Then, by (3.55), we have

(3.5.6) X\o(x) (X + X, %3) /X,

(357)  £,(0

9/9x, + (1 + X1= X3) 9/ 9%y - 3/ Iy,

(3.5.8) S(\z(x) = X, 3/9x, + 3/ % .

From these, we can compute

(359) &M = Lg% 00 = 19K, =0, 314X, = O,

(35100 Lg&() = - aroxy, ({00 = o/,

From these, it is easy to see that on R°,

(35.11) A (F* H% R3)) = span (K, ),

A

(35.12) A ([F%, H* R3)) = span (R, Lg%, )

These with (3.5.5) determine 8% (F,H, R3] ).
Note (3.5.7) - (3.5.10) imply (A3). On the other hand, by
(35.11), (35.12),

(35.13)  dim. & (F* H%,R3}) = 2, dim &5 (F*, H*, R3}) = 1.

Thus, (A.4) is satisfied by p, = 2, p, = 1. Consequently, all

hypotheses of Theorem 3. 4 5 are satisfied  Define C¥- functions
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Ty leM,, 1et,by

i

(35.14) T, ,00 2 Hx), T ,00 & % ¢ %%, T,,() 2 Hy(x).

Let T & (T,,,T,, T, ) Then, we can easily show that T is a

CY - diffeomorphism from R® onto R® and (dT, (@), j e, ;) isa

1.pi

basis of (A';)q((F*,H*,R"’]),qeRl’, ieM, Let (FHR)

be a standard decoupled system whose coordinate representation is

(35.15) |X,,|= [0 ]+ ‘u,[ x ] Y= X,
2

Then, we can check that the above T and {F,H,R°) with € = RS

are those described in Theorem 3. 3.3 and Theorem 3. 4. 5.

By (3.444) and (355), 8% (F,H,R3)) is given by
(35.16)  alx) = [ ,(x,, %, + X, X5) = §,(x, + x5) ],
¢2("1 * X3)
(35.17)  Blx) = [ P,(x;, %, + X; %3) Pt %) ],

0 P (%, + %3)

where @i, ‘Pi, ieﬂ,,2 are arbitrary C¥-functions of their arguments

such that ¥,(z,,2))=0, (z,,2,) e R? and ¥(2;)=0, zz R On the
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other hand, by Definition 3.4 1 and (3.5.5), 82((F,H,R%)) s

given by

(1§06, - §,0x,+ %) |,

i 4i2(xI + X5)

(35.18) a(x)

(3519 B = [Px) - Rxrxg ],
| 0 l.Ilz(x,+x3)

o

where ¢i, IP, ieM o are arbitrary C¥- functions of their

arguments such that ‘i‘i(z)=0, zeR,ieM,. From (3.5.16)
- (35.19), we see that 8% (F,H,R3}) = 8% (F,H,R)) but
8 (F,H,R3)) © 8¥((F,H,R>)).

By Theorem 3.4.3, 8%((F,H,R®]) is given by

(35167 & = [ §,%, ,.%,,)
$,(%,)
(3517 B® = (¥, .%, 0 ],

0 &

—

where @i,wi, ieﬂ,u are arbitrary C¥-functions of their arguments

such that iP,(z,, X,) =0, (X, x,)€ R? and ‘_}’2(?3) =0, X; €R.  Note

that as is indicated by Theorem 3. 4. 5, there is one - to - one
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correspondence between the control laws of 8% [F,H,R%})) in
(35.16), (3.5.17) and those of 8% (F,H,R*]) in (3.5.16), (35.17).

Using the standard decomposed system, it is easy to see how
to choose control laws which decouple {F,H, R3] in a stable way.
Suppose we want to decouple {F, H,R°) on RS with BIBS stability.
First, consider U=a(X)+ B(X) U where &, B satisfy (3.5.16), (3.5.17).
Let (T B, R3] be the coordinate representation of (F,H,R3)%8.
Then, (T, h, R®) is described by

(35.20) [%,,]=($,%, . %) » B, %00, ¥, =%,

X12 Y1.2“4’1("1.1»"1.2) ¥, (X 4. X 5)

;)1'2 &2(”\(2) * "I_'z(')‘('z)uz, Yo = %

Note from property (2) of Definition3.3.1 and (3.1.9) that

~

(7,0, R?), {T,, A, R) in (35.15) are controllable linear systems.

1

Therefore, there are many choice of 6', 62 so that {F,H, R3 )% s
decoupfed on RS with BIBS stability. For such a control law U =
a(X) + B(X) T, choose a control laws u = a(x)+ B(x)U by (3.4.43).
Then, (F,H, RS 1% is T -related on R® to (F,H,RP]%  Recall
that T is a CY- diffeomorphism on R°. Furthermore, by a special

form of T in (3.5.14), it follows that for any constant b,
{x € R3:|T(x) < b} is bounded. These observations imply that
(F,H,R°)%® is decoupled on R® with BIBS stability. Thus, we

have shown that there are many control law u=q(x)+ B(x)U in
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8°( (F,H, %)) which decouple {F,H,R3) on R® in a stable way.
Next, consider U=a(X)+BX) T in 8% (F,H,R%)). Then, &, P

have the forms :

(3521) ¥®=| §,& ) Bw=[¥&, o]
$,(%,) I Xe

° °

where @i, 1T'i, i e M,, are arbitrary C¥- functions of their
arguments such that "E(z)-o, zeR,ieM,. Now, let u=alx)

+§(x)ﬁ be a control law in 8% (F,H,R°)). By Theorem 3.4 5 and

Remark 3. 4. 1, we know that for each u = &(x) + B(x)U in

-]

8Y((F,H,R3)), there is a unique control law T=&X) +BX U in
8Y((F,H R3)) such that (F,H,R3 ]:"'é is T-related on R to
(F,H,R3)%8  Let (7.1 R®) be the coordinate representation of
(F,F, RO Tnen, (F,F, R®) is described by

(35207 [%;,] = [8,&, ) P&, = R

X122 X12° ¢1(x1,1) ¥, )

~J ~

X, = 6%+ L&), ¥, = %

-4

From (3.5.20), we see that there is no ¢1 and Wl such that for

every bounded U,, X,, is bounded. By the special structure of T

in (35.14), this implies that there is no u = &(x)+é(x)'a in
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$Y((F,H,R®)) which decouples (F,H,R®) on R® In a stable way.O

Example 3.5.2. Let us consider a real analytic system
(F,H,R®) with m = 2 and

[[I3

(3522) X0 * d/ax,,

n

(3.5.23) x,(x) COS X, 9/9x, *+ sin X, a/axz, X2(x) = /03X,

"

(35.24) H,(x) = e™1sin Xy Hy(x) = x5 .

Direct computation shows that all hypotheses of Theorem 3. 3.1 and
(3.3.4) -are satisfied and

(3525) d,=1,dy=0, DXx)=[e™1 0 } AX(x) = [ e™1 sinx, ]
0 |

0

Let ?i, i€ M,02 be the vector fields corresponding to the

decoupled system {F* H* R®). Then, by (3.5.25), we have

(3526) X, (x) = (-5 8in 2x,) 3/3x, + (cOS X2 3/2x,,

L]

(3.5.27) ?,(x) (%1 cos X,) /9%, + (€1 8in X,) 9/2X,

(35.28)  Xy(x) = 3/dxy

Note that since 3=§‘di +1, (A4) is satisfied by Py =2, py=1.

Define functions Ti.j R R, je NHGM), 1€ "’1.2 by
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(3529) T,,00 %, T),00%x, T, % x

We can check easily that at each q € R°, {dTi'j(q), j € ﬂ'l,pi] is a
‘basis of (Ai)q([F*, H*,R)), i eM,and T (Ty 1Ty Ty is @
C¥- diffeomorphism from R® onto R®.  Thus, for each i e M, ,,

Lemma 3. 2. 4 holds with r = n-p, & = 4, Bj = Ti'j, X=U=¢€-=

R  From these observations, Definition 3. 4.2, and (3.5.25),

8% {F,H,R3)) is given by

(35300  alx)=[e*im,(x,.x;) - sinx, |, B(x)= 1A (X %) 0

n,(X3) 0 A, (%)

where 7. A, 1eM,, are arbitrary C®-functions of their arguments

such that A (x,, %) = 0, (X;. %)) € RZ and A(x9 = 0, X3 € R.

But, (3.5.30) can be more simply described by

(35.31)  ax) = [ §,(x. %) ], BOO = [ W, (x). %)) o |,

$,(x3) 0 ¥, (xg)

where ¢.. ¥, i € M,, are arbitrary C¥- functions of their
arguments such that ‘P,(xi,x2) = 0, (X;, X)) € R? and ‘Pz(xs) = 0, X,

e R, But, by Definition 3.4 1 and (35.25), 8% (F,H,R®]) Is

given by
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(3532) &b =[e1f(e™isinx, e™ cosx,)-sinx),

n,(Xy)
(3533)  B(x)=[e* i,( e 1 sinx, e™1cosx,) o |,

0 ii(x3)

where .. J‘l', ieM,, are arbitrary CY-functions of their arguments

such that i‘(x,.xz) =0, (x.x) € R? and 5\2(X3) =0, x; € R.
But, (3.5.32), (3.5.33) can be more simply described by

(35.34) alx)

’ :ﬁ,( er1sinx, e™icosx,) |,

| ¢z(x3)

f‘i’l(e"‘tsinxz,' e*1CosX,) 0 ,

(3535 B(x)

0 : ‘i’z(x3)

° °

where ¢i. ‘l’i, i€ uu are arbitrary C¥ - functions of their
arguments such that i.I’,(x,.x.‘,) =0, (x,.x) € RZ and ‘i‘,‘,(xz') = 0, X
e R.  Note that F(x,,x,) 2 (e™1sinx, e™icosx,) is a C¥-

diffeomorphism locally at each point (x,,x,) € R? but not a C¥-
diffeomorphism globally on RZ  Therefore, there does not exist a
C¥- function ¢, such that b, (e™1sinx, e™ COSXy) = X;, X, €

R Thus, although the class of control laws given by (3.5.31) is
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locally equivalent to the one given by (3.5.34), (3.5.35), they are
not globally equivalent. Thus, we ohave shown that although

g (d+1) = 3, 8% (F,H,R%}) is only a proper subset of
S (F,H,R)).

Example 3.5.3. Consider a real analytic system (F,H, %)
withm = 2, % & (x%(x,, %, ;) ¢ R : x>0}, and

(3536) X(x) = x,x, 3/xy,
(3537 X, (x) & /3%, Xfx) £ 3/ax,,

(3538) H,(x) & x), Hyx) & x;.
Then, we have
(3539) d,=0,d, =1, D)= 0O 1], AX¥x)=0.
2 X
Note that % is connected and gl (d+1) =3
Define functions T,; : R° > R, j & M, 4,y. i & M, by

(3540) T, 00 % x, T, 00 % %, T,00 & x,%,.

=XUVH, jem ,iem,. Clearly, TEH(T,,

Note that T 10’

iJ
To1 Tpp) is @ C¥-diffeomorphism from % onto X £ (X € R® :
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X,>0). By Remark 3.4.7 and (35.39), 8% (F,H,X}) =
82 (F,H,%X}) and is given by

(35.41)  ax) = [ (M0%,%, %5) - X, n,(x,)]/xz].
. (%)
(35.42) B0 = [ - x, A 00 /%  Ax%, x,)/x,].
A, (%) 0

where W, A, i e M, , are arbitrary C¥- functions of their

arguments such that A,(x,)= 0, x,6R? and A,(%,. X9 = 0, (X, Xy) €R.

To compare our solution with the one given by Singh and
Rugh ([Sin.1]), we consider the partial differential equations given
by (3.435). It should be noted that as is pointed out in Remark
3.4.3, (3.435) is not a suffitient but a necessary condition for a
control law to decouple a system. Through some calculation, we

can obtain that «, B solve (3.435) if and only if they satisfy
(3.5.41), (AS), and

(35.43) Bx) ={ - x,')\'l( Xgs Xo, Xz ) /% 3;2( Xy, %o, X3 ) /%,

A,( X5 Xo, ":5) 0

where i; 1 € M,, are arbitrary C® - functions of their arguments

such that X(x,,xz, X512 0, (X, %,Xs) € R%. A control law u=
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al(x) + BO)U satisfying (3.5.41), (3.5.43) s not necessarily a

decoupling control law. This can be verified by comparing (3.4.42)
and (3.443). In [Sin.1], the following class of control laws is
proposed as a class of decoupling control laws :

(35.41) alx) = [ (Mlx,%) - x, 7, (%)) 7%, ],

7, (%)
(3542 B(x) = [- X% 1% J
! 0

where ¥. 1 & #,, are arbitrary C“- functions of their arguments.

Clearly, this class of decoupling control laws is a proper subset
of 8% (F,H,%)) in (3541), (35.42). This example shows that

the condition on ¢ which (3.4.35) yields is the same as Theorem
3.4.1 does. But, this may not be generally true. (]

J. 6 Conclusion

In this chapter, we have presented various results on
decoupling and decomposition of nonlinear systems. Some of them
are refinements or elaborations of previously known results. They
are : (a) the definitions of decoupling ( Definition 3. 1.3 ) and
decomposition ( Definition 3. 1.5) ; (b) a necessary and sufficient

condition for decoupling( Theorem 3.2.1) ; (c)a necessary and
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sufficient condition for decomposition ( Theorem 3. 2. 2, Theorem
3.2.3) ; (d) a necessary and sufficient condition for decouplability (
Theorem 3.3.1) ; and (e) a necessary and sufficient condition for
decomposability ( Theorem 3.3.2). We have clarified and / or
simplified these known resuits. This includes the elimination of
redundant conditions and proofs for the necessity parts of some of
the theorems.

Completely new results are : (1) the characterization of a
class of nonlinear systems which are J - related to the standard
decomposed systems ( Theorem 3. 3.3 and Theorem 3.3.4) ; (2) the
characterization of the whole class of decoupling control laws
( Theorem 3. 4. 1 ) and decomposing control laws ( Theorem 3.4.2) ;
(3) the characterization of the class of decoupled closed - loop
systems ( Theorem 3.4.3-3.45). We have distinguished them in
the summary Figures 3.2. 1, 3.3.2, and 3. 4.4 with an asterisk.

The new results contribute to the questions (b), (c), (d) in Chapter |.
They provide a deeper and clearer understanding of nonlinear
decoupling theory. They provide information about the flexibility
we car; have in the design of decoupled control systems.

A difficulty exists. In most of these results, it is generally
required to solve a set of the first order linear partial differential
equations. It is not always possible to find the closed forms of
solutions of these partial differential equations. This difficulty is
shared with ail other literature on the differential geometric
approaches.

Finally, we would like to emphasize again the practical
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importance of a standard decomposed system. Suppose we have a
system and there exists a control law such that through an
appropriate input and state transformation(a J - feedback relation,
Definition 3. 1.2 ), the system with the control law can be described
as a standard decomposed system. In this case, the design of
decoupled control systems becomes much easier since we can deal
with the standard decomposed system instead of the original system.
This advantage comes from the simplicity of the results for
standard decomposed systems, as is pointed out in the last
paragraph of Section 3.4  Specifically, the class of decoupling
control laws for the standard decomposed system is given by
(3.437) ( see Theorem 3.4.3) and for each decoupling control law in
this class the decoupling control law for the original system can be
obtained through the J - feedback relation ( see Theorem 3.4.5).

In general, the J - feedback relation which transforms the original
system into the standard decomposed system requires the solutions
of a set of first order partial differential equations. However, in
some applications the J - feedback relation may be found by
inspection or rather simple manipulation of the dynamic equations
for the original system. This is the case for the robotic
manipulators in Chapter S.



CHAPTER 4

APPROXIMATE DECOUPLING

In practice, some degree of modelling error is unavoidable.
Therefore, it may be impossible to achieve “exact™ decoupling in
the sense of Section 3.1. Even when the exact model is
available and decouplable, it may require decoupling control laws
which are computationally complex. Thus, it may be more
practical to have control laws which require less computation but
decouple the system “approximately” in some sense. In this
chapter, we neglect fast dynamics of a system to obtain simpler
decoupling control laws and investigate the effect of the neglected
fast dynamics on the decoupling of the actual system. Section
4 1 contains notation and assumptions, under which we state a

result on approximate decoupling in Section 4. 2.

4. 1. Notation and Assumptions

In the previous chapters, we have considered systems defined
on manifolds, which are not necessarily open subsets of R". To
simplify developments in this chapter, we consider only the class

of nonlinear systems defined on open subsets of R". Consider the

following system, denoted by Z, :

127
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(@11 X =b00 + I go0z ¢ 2 blOu, y = hx)
J=| J=|
m
2

(412) Az = ANZ+ B + 2 BHAY,

where : % is an open subset of R" containing the origin ; A is a
positive constant scalar and )\ e [0, A); g: %= R, jeM

b; % 2R, jeM B, %X x[0,A]=2R, jeM A

O.I'n ’ o'm )

[0,A°] > R™ : h:% =2 R™ We assume:
(B.1) A(0) is a stable matrix.

The degenerate system of Z, , denoted by Z,lIs

413 % = bx) * 2 g7 ¢ qﬁ‘ bO0U, ¥ = hO),
J=

(414 0= ADZ+ Bx 0 + £ Bx 0y
J=

By (B.1), A(0) is nonsingular. Consequently, Z can be written as

m

(415 x =1+ Z )y, y = hx),
3= 4 )

where

(416) 0 2 0 - [g0) - g IAON'BIX0), i €M

om’

Note that even when I, is not decouplable on % x R", X, may be

decouplable on %  Suppose that the degenerate system Z of 2,
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is decouplable on % Let u=a(x)*+ B(x)U be a control law which

decouples Z on X  Let Z‘f be the feedback system of 2,

corresponding to the control law u = a(x) + B(x)TU.  Then, we can

describe Z3F by

m

@1D % = 40 - J%(@j(x) 2+ 2 1008, § = oo,

J

(418) Az = AAZ + BxA) + ﬁ(x,}\

»\Mi-’l

where

4

(41.9) g0 = b(x) + [b(x) - b (x)]alx),

(4.1.10) ’f(x) [b,00 -~ b O ]Bx), &M

1.m’

14

(@1.11) B,(x, A) & B (x,A) + [B,(x,A) -~ B_(x,A) Ja(x),

(1] 4

(4112) B, A 1B, - B NIB), e

1.m’

(41.13) hoO 2 b, Gotg, jem

and ﬁj is the jth column of B. Clearly, the degenerate system

of T%P, denoted by %P, is decoupled on % but IMF may not be

decoupled on ® xR". Let L be a positive constant. Let F € R™.

Define norms ||, ||, Il Il by

(@119 1xO1EE KO, Ixl Emax (X012 t e 0,L]),
=

NFIl 2 max (IFzl : z e R", lzZl=1).
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Let x* : [0,L]2% be a nominal solution of 2“# for a nominal
initial state x*(0) = x* e % and a nominal input u* e W~. For

positive real numbers Ao and zi, ie nM, define sets W ,, Rx:,

R,, and R, by

(41.15) W, ¢ (ue U™ :lu-uel <3, lul <&
(41.16) R, £ (x & %:Ix-x¢l < &J,
(41.17) R, 2 (ze R :1z153,), Ry, * (AeR:0<A<A)

We further assume :

(B.2) There exists §5> 0 such that for all x(0) e R": and u e R,
3% has asolution x : [0, L] - % satisfying x| < &
(B3) (1)bl, B, j & M, are C°,

(2)gj, jeM, are C7,
(3)A, h are C*.

Note from [Gil.3] that (B.3) implies that (B.2) is true for sufficiently
small 2, & We denote by &(0, x,z,,A) the ith output, 9(t) of
2;" for an input G e U, initial conditions x(0) = x, e R.,, z(0)
£z, eR,, and A 6 R, Now, we are ready to state a result

for approximate decoupling.
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4. 2. Result for Approximate Decoupling

Theorem 4. 2. 1. Suppose that (B.1), (B.2), and (B.3) are

satisfied. Suppose that a control law u = a(x) + B(x) @ satisfies

(AS) and decouples Z. Then, there exist positive real numbers Y,

A, such that for every A € Ry, , every input u e W., and any

ciae chs a ry

initial conditions x(0) = x € RX: , 200) =2 e Ry,
s nas the following properties :

(i) 2 has a solution (x,2z) : [0,L] & % x R,

(ii) For each i e M, m and for any two inputs U, Ue u. such

that U‘ = Gl’

(421)  18(T, %, 2, A) - §(U x, 2, A) <AY. o

3 ol o) o) ol

This Theorem shows that if X is sufficiently small, the

control law which decouples the degenerate system still decouples
the original system in an approximate way described in (ii). Now,

we give the proof of Theorem 4 2. 1.

Proof of Theorem 4.2.1. Let X, Z be the solutions of the
degenerate system 3% in (4.1.7), (4.1.8) for x(0) £ x, € R,, and

ﬁ=ueuu,:

a3

(422) %= §® + ZGEZ + 2TMu, WO =x,
= =|
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(423) 7 = - [AON(BX 0) + 3‘61.&‘, 0)y, )
J=

Here, and often in the future, the explicit dependence on t is not
shown. From (4.2.3),

(424)  AZ=ANZ+B % A+ :'2", BL(X, Ay, + AK(X(H), ult), i), N,
Jg

where
(425) KD, ut), &8, N4 - [AOT' (D8R0 + 20,BX0 Y, )
J=t
X ) 3.5 T8 _q“ 1= u. +
(gm+ £ 3007+ £ 1061 - £ KOrER 0%
AT A - A Z + XT(B® 0 - BN ¢

AT (BX 0 - BE NI,
J5

For simplicity of notation, we henceforth write Ko(t, A) instead of

K, X(1), u(t), 4(t), A).  This kind of notational abuse will often

appear in what follows.

Let n be the solution of the following differential equation :

(426) 7 = A'AO)N, n0) % 20) - Z(0).
The solution is

(427)  q) = LOVX(20)-7(0) )

But by (B.1), there exist @, 3 >0 such that
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(428) [|eMOVA Y o ALY

14

Let x, z be the solutions of Z‘;f in (41.7), (41.8) for x(0)
s ~ o &4, _T 4, _3F_

X, 200) = z,andU=u LletV=x-X5%2-72-7. It

should be clear that the variables V, S are the functions of time t

depending implicitly on A, x, z,, and u. From (42.4), (427),

(4.2.8), we obtain the following differential equations. :

(429) V=Wt V,5A) + K(t,A), V(0)=0,

(42.10) 5=2TA0)S + AT WL, V,5,4) + KL, X), S(0)=0,
where

r

(42.11) WL, V,52)2(&+W)-§,®) +_Zl{§j(Y+V)-§j(¥)}'
J=

2 f&ew-T@ly,

Lo A po
(Z;+m) +5§' G(x+V)S;+ J

J=1
(4212) K(tA)ES §@
=i ] )
(42.13)  Wylt,V, 5,02 (AQ) - A0)) S+ (B, +V,2)-B(% A)) +
m A A
2 (B®+Vv, 0 -B& NI,
j=t i j j

(42.14) Kt A) = X7 (AQ) - A0) I m - K(t,A)
Choose 27 >0 so that

(42.15) X+ V() e %, t e [0, L] if IV] <3 and IX| < &
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Define the sets R,, Rg by

(4216) R, 2 (b e R : 1kl ¢g), Rgt (b e R Ikl ¢y)

we show that the solutions V, S of (4.2.9), (4.2.10) can be kept

within R,, Rg, respectively. Then, as long as the trajectories of
V, S stay in the regions R, Rg, respectively, by (B.2), (B.3),
(42.3), (42.7), (429), (42.11), and (42.12), there exists 3. > 0

uniformly with respect to R.,. R, , W, R,, and Rg such that

(42.17) VI < 2.

Define V, S by

I

(42.18)  V(t,x) & [} K,(1, Q) o7,

(113

(42.19) 5(t,A) ¢ [t A WD (7, dr.

Then, by (B.2), (B.3), (425), (427), (42.8), (42.12), and (42.14),

there exist 2 > 0 uniformly with respect to RX., R.ZO, uu.,

9’ ?10

R.h, R.v, and R.s such that

(4220) IVl €A%, ISI <A,
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On the other hand, by (B.2), (B.3), (42.11), (42.13), there exist

2“, 2'2 > 0 uniformly with respect to R*:, R.ZO, u., Ry, R,

and R.S such that

(4221) W, (L V, S, 01 € 2, (VL] + 1S,

(4222) 1Wy(t,V,5, 01 ¢ 3, IVt ] + AlS(L A1)

Finally, we will need some constants related to those we

have introduced so far. Take Js such that
(4223) 0 < A.z < min. [Ao, o’/Z’l2 ).

Define o, 1 € M, by

112

(4224) o, 20 - A0, 0,25, (1+X2 F/dd)),

>

(4225) o, 2 A 18,22/ 00, + L3, (2,%/ 0%+ 2,),

(4226) o %3, 0, L+3, O

4 oL
- o’4e2,

a 2
(42.27) ds = lezwl “5/‘”1 + 63.
Then, choose Al so that

(4228) 0 < &, < min. [5, %,/ 0, 2,/ O ].

First, consider part (i). We show that the following
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statement is true :

(S) If A & R,,. for any input u & W, and any initial states x(0)

: X, 8 R,., 2(0) £ z, e R,, the solutions V, S of (429),

(42.10) exist on [0, L] and stay in R, Ry, respectively.

Then, this will imply part (i). We prove (S) by contradiction.
Suppose the contrary of (S) :
(S) There exist A & Ry, uel,, X, e R., 2, eR,, and t e

(0,L) such that both V,S stay in R,, R, respectively, only

during the time interval [0, t ).

By (S), (429), (42.10), (42.18), and (4.2.19), the following

Volterra Integrals must hold for all t ¢ [0,t) :

(4229)  V(t,A)=[* W, (T, V(T, 2), S(T, A), A) dr + V(t, A),
(4230)  S(t,A) = [} XTAO -T2y (x vir, &), S(r,A), A ) dr + 5(t, A).

Then, by (42.8) and (42.20) - (42.22), the following inequalities
hold for all t e [0, t) :

(4231) IV, N1 ¢ &, fEIver Mldr+ g, [IStr, Al dr + Ag.
(4232) IS(t, A ¢ 3, [t e @2 Is(r, )l ¢r +

2, P eI yir Al dr + Al
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By (42.17), (42.32) implies

(4233) IS, N1 ¢ g, [Le V2 Is(r, A dr +

(3,,/ )V NI + A3, 8/0%+ 3,), telo, t).

Multiplying both sides of (4.2.33) by e%'/*, applying Gronwall's

Lemma ( [Die.1]1) and then dividing the result by e’t/*,

(4234) IS, A < 2, [Le @2t -WA ((3 /@) VT, A +

A(3,% /0% + 3 )1 dr, telo, t).
By (42.17), (42.23), and (42.28), (4234) implies
(4235) 1S(t, A1 < A (12 2/ dd )1V, N1 + Ady, telo, t).

Substituting (4.2.35) into (42.31) and applying Gronwall's Lemma

leads to

(42.36) IV(t, A < Ad,(1+0,[ ef2t-Tar) '.<. Ad, telo, t).
By (4227) and (42.36), (42.335) implies

(4237) IS, N1 < Ad, telo, t).

Thus, (4.2.28), (4.2.36), and (42.37) show that

(4238) IV, 00 IS, < 3, telo t).
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This with (4.25), (42.7), (42.10), (42.13), and (42.14) shows that
there exists 213&) > 0 such that

(4239) I5(t,A)1¢ 3 telot).

13’

This and (4.2.17) imply that the sequences (S(t,A)], {V(t, )]
are convergent sequences in R", R", respectively, if Him ¢, = t, and
0O<t <t, rem, . Let S(t_,A) =1lim 5(t, A) and V(t_, Q) =

Pr->eoo

lim V(t_,A).  Then by (4.2.38),

rae

(4240) IVt N, ISt NI < .

A/

This implies that the solutions V, S will continue beyond to.
This violates the assumption (S). Thus, we have shown that A ¢ }\1

guarantees the existence of solutions V:[0,L] = R,, S:[0,L] = R
Next, we prove part (ii). Note that (42.36), (42.37) hold on

[0, L] uniformly with respect to R,‘:, R, U, R,, This fact

with (B.3) - (3) shows that there exists 3, > 0 such that
(42.41) 1K) - RO < 2,2

holds uniformly with respect to % R, Ru., and “}u-

Let 3:('0, x,) denote the ith output of 5% for an input U € W, and
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an initial state x(0) # x, e R,, . Let T, U e W, be two distinct

inputs with U, = U. Then, since Z% is a decoupled system on X,

by (42.41), the following inequality holds:

gy A A _ Ae o,
(42.42) | ®(U %, 2, A) - x,, Z, A) | < 12U x)-SM x)| +

] oJ ol L] °J ol

19T, x;, 2, ) - (T, x) |+ 18T, x)) - Qi('ﬁ'x 2, M),

? ol o) 2 o) ol

$ 22,2,

for all x e R.,, Z, € R,, and AER,, 0

Remark 4. 2. 1. The proof is a straighforward extension of
well - known singular perturbation techniques for systems without
inputs and outputs ( [Hop.1, Hop.2, Kok.1, Lev.l, Sab.1, Tih.1, Vas.1]).
Our proof follows closely the one given in [Lev.1]l But in [Lev.1],
part (i) of Theorem 4.2. | was implicitly assumed rather than

proven. O

Remark 4. 2. 2. A concept similar to our approximate
decoupling appears in [Wil.1, You.l], where asymptotic ( which
corresponds to " approximate ", here ) disturbance decoupling of

linear systems was considered. O



CHAPTER 5

APPLICATIONS TO ROBOTICS

In this chapter, the results developed in the previous
chapters are applied to decoupled control of robotic manipulators.
In Section S. 1, actuator dynamics are completely neglected but in
Section S. 2, the significant part of actuator dynamics are taken

into account.

S. 1. Decoupled Control of Robotic Manipulators
Consider the following system :
(5.1.1)  M@d + Ng, @ = LG qu, y = Cla),

where : g € R™, E is an open connected subset of R®™ ; Q ¢
(geR": (3,9 eEE) ; M:Q 2R™ - N:ESR":C:Q=
R?", L:E->R™  The rigid body dynamics of a robotic

manipulator can be described by the above second order differential
equation when actuator dynamics are neglected.

We assume

(C1)M, N, L, C are C*,

(C.2) M(q), DC(q) are nonsingular, q € Q,

140
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(C.3) L(Q, @) is nonsingular, (4,q) € E

We may need the following stronger assumptions :

(C1YM, N, L, C are CY,

(C.4) C is one-to-one on Q.

Let x,% @, x,% q, and x ® (x,,x,). By (C2), we can write the

system (5.1.1) into the following form :
. m
(512)  x =1f(x) +.2‘ f(x)y, y = h(x),
=

where
?

(5.1.3) - f(x) ¢ -[M(xz)I"N(x,,x.‘,)], hix) 2 Clx,),
X

1

(5.1.4) 1.0 2 [ MOTLLx,, %) } ieM,
0

Here, L, is the ith column of L. We denote the system (5.1.2) by

{f, h,B}o. In the following theorem, we consider the decoupling

of [f,hE]

Theorem 5.1.1.  Suppose that for each of the following

parts, (C.1) - (C.3) are satisfied. (i) The system (f,h,E] is

decomposable at each x € E and decouplable on £ with d. =1, i€
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M Moreover, the control law u = «(d, @) + B(4, @)U decouples

m

(f,h,E]) on £ iIf «, B have the following forms on € :

(5.15)  aff, @) =L@, ) (M@IDC(@TI(TKG, @) - Q,(§, 9§ ) + N(G,9) ),

(5.1.6)  PB(d, q) = [L(q, Q)" "M(q) [DC(Q)T (4, ),

where

(5.1.7) G, @ =[¢,(Cy(a),DC@a) ), Q.G a)*({a'DOC, @' ],

$_(C(a),DC (@) a'D(C,_ (o)

(5.1.8)  T(g q) # diag ¥(Cta), DC(@) ),

and @i, Y. are arbitrary C™- functions of their arguments such that

g, q) is nonsingular, (4,q) ¢ £
(ii) Suppose that (C.4) is satisfied and the class of control laws

satisfies (A.5) and (A6) of Section3.3. Then, (f,h E} is

decomposable on €. The class given by (5.1.5) - (5.1.8) is the
whole class of smooth decomposing control laws.
(ii1) Suppose that (C.1) is satisfied. Suppose that class of control

laws is real analytic and for every control law in the class,
(f,h, £)%F satisfies (A2) of Section3.2. Then, the class given
by (5.1.5)-(5.1.8) is the whole class of real analytic decoupling

control laws.

Proof. First consider part (i). Let X, i eM be the

t.m
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vector fields corresponding to (f,h,E} . Fix 1 ¢ M, .

Straightforward computation shows that

(5.1.9) X H() = DC(x,) x, ,
(5.1.10)  X.2ZH(x) = x] DIDC(x,N)T X, = DC(x)M(x )T 'N(x,, X,) ,

(S.1.11) X HX =0, jeM,,,

for all x ¢ £ On the other hand, by (C.2) and (C.3),

(5.1.12) XX, H(X) = DCi(%y) MO)I'L (x,, %) = 0,

forall xeEandi,jeM,, . Ths d-=1 ie M, and

(5.1.13)  D*(x) = DCOx) M) L(x,, %),
(5.1.14)  AX(x) = Q(X,, X)) = DC(x,) M) 'L(x,, X,)

By (C.2),(C.3),(5.1.12), Theorem 3.3. 1, and Theorem 3. 3.2, (f,h, E)

0

Is decouplable on £ and decomposable at each x, € E
8=({f,h £, is given by (5.1.5) and (5.1.6).
m
Now, consider part (ii). Note that 2m =.§‘(di +1). Define a

C*-mapping T from £ into R2™ by

(5115 T & (T Todh T 30T, T, T, & Cixy),

PP 'm i i,12 'i2 "

A .
Ti_2 = DCi(xz)x,, ieM

f.m -
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By (C.2), DT(x) is nonsingular, x € £ By Theorem 2. 3. 7, this

with (C.4) implies that T is a C*- diffeomorphism on £ From
this, Theorem 3. 4. 4, and Remark 3. 4. 7, part (ii) follows easily.
Part (iii) follows from Theorem 3.4 1, Remark 3. 4. 7, and the fact

that that T is a C¥- diffeomorphism on £ ]

Before making remarks on Theorem S. 1. 1, we consider the

following system, denoted by Z, :

(5.1.16) MQ)q + F(g,q) =1, y = Cla),

G117 AV=AQV+B (G, a0+ ZB(4, 9y, T=6{ v,
1=

where : q, M, £ Q are defined as in (5.1.1) ; F: £ R™ ; Ao is a
positive constant scalar and A e [0, AO] ; Ao, Ao] >R -G:E

S R™ ;B :ExI[O,A] >R, jetM = The dynamics of a

robotic manipulator with D.C. drives ( [Asa.1, Erl.1, Daz.1]) or
electro - hydraulic actuators ( [Mcc.1, Mer.1]) can be described by
the above equations. Then, (5.1.16) represents the dynamics of a
robotic manipulator, where q is the vector of generalized joint
coordinates ; M is a generalized inertia matrix; F is the vector
equivalent forces due to Coriolis and centrifugal effects, friction
forces, and gravitation; and y is the output to be controlled(e. g,
the position and orientation of the end - effector ). The system

(5.1.17) represents additional actuator dynamics, where u is the

electrical control input to actuators and T is the output torque ( or
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force ) generated by the actuators.

In the modelling process, when A is very small ( which means

that the additional actuator dynamics (5.1.17) are very fast,
relatively to the mechanical dynamics (5.1.16) ), the additional

actuator dynamics are usually neglected. In other words, for

simplicity it is assumed that A = 0. We denote this system by

Z,. If (B.1) in Section 4.1 is assumed, we can write the

degenerate system I of Z, as (5.1.1), where

n»>

(5.1.18) N(q,q £ F(G, @ + 6(a ) [A0)'B (4, q,0),

[

(5.1.19) L4, @) 2 -6(q, ) [AO)'[B,(d, q,0)-- B (4,q,0].

Thus, we have shown that when actuator dynamics are neglected,

the dynamics of a robotic manipulator can be described by (5.1.1).

Remark 5.1.1. Theorem 5. 1. 1 - (i) includes previous results
([Bej.1, Fre.2, Fre.3, Hew.l, Mar.1, Pau.l, Rai.l, Sind, Tar.1]) as

special cases. For instance, in [Bej.1, Mar.1, Pau.1, Rai.l],
(51200 m26, C@®*%aq, LGOI, £=R™
In [Fre.2, Fre.3],

(5.121) mt3, L(é,q)ég, C(q)é(q,cosqz, q,sin g, , a3), £

RPxQ, Q2((q,,q, a5) €R*:0¢q, ¢, 0¢q, <2M, gy €R ).
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It can be shown that these problems satisfy the assumptions
required for TheoremS. 1. 1. The case of (5.1.20) is called joint
coordinate control. The case of (5.1.21) is called hand coordinate
control. The hand coordinate system is the Cartesian coordinate
system fixed on the gripper or the end - effector. A more

general form of the hand coordinate control can be described by

(5122) m26 Cq ¢[p],
$(a)
8(q)

| ¥a) |

where p(q) e R® is the position of the origin of the hand coordinate

system from the inertial reference coordinate system ; §, 8, ¥ are
Euler angles of of the hand coordinate system with respect to the
inertial reference coordinate system.  For the case of (5.1.22), the

hypotheses of Theorem 5. 1.1 hold with € = R x Q, where Q is an

open subset of RS The details are omitted. a

Remark 5.1.2. We believe that TheoremS. 1. 1 - (ii), (iii)
are new. The class of decoupling control laws the above authors
consider is, in (5.1.7), (5.1.8),

(5.1.23)  §.(Cla),DC(M §) = ¥, , Ca) + v, DCLA) g,

(5.1.24)  ¥(C(a),0C@ §) = &, Cla) + &, DCla)q,

where Yo Yo ﬁi iy 6i2 are real constants. It is obvious that
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ours is a2 more general class of control laws which decouple. It

is not so obvious that the class is the most general class. O

Remark 5.1.3. In the conventional approaches to control of
robotic manipulators ( [Luh.2, Luh.3, Mar.1, Pau.2]), the case of
(5.1.20) is extensively studied and the design is based on single -
input, single - output models for each joint coordinate, treating
coupling effects between joint coordinates as disturbance inputs.
Though corrections for varying inertias and gravitational loads are
sometimes introduced in these approaches, precise and high speed
control is difficult to achieve. In the decoupled control
investigated in [Fre.2, Fre.3, Hew.1, Rei.l, Pau.l] and here, it is
possible. The disadvantage of decoupled control is that it
requires a_large amount of computation. But methods for reducing
the computational complexity and the use of special processors
have been investigated by some authors ( [Hol.1, Luh.1, wal.l, Tur.1]).
Although these computational methods are proposed originally for
the case of (5.1.20), they are also applicable for the general

problem considered here. O

Remark 5. 1. 4. An alternative and perhaps more straightforward
derivation of Theorem 5. 1.1 - (i) is as follows. Differentiating y
in (5.1.1) twice with respect to t and, in the resulting equation,

replacing q by the expression obtained from (5.1.1), we can obtain

(51.25) 'y = C@M@I'{L(G, @) u- NG, a))+Q, 4 a)q
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By (5.1.25), the control law u=al(d, @) + B(q, @) U satisfying (5.15) -

(5.1.8) with TI=0 and I =1 leads to
(5126) y =10

Thus, (f, h,E}o is decouplable on £ This alternative approach is

implied in [Gil.4]. It does not require knowledge of vector fields and is
based on the special structure of (5.1.1). The characterization of the
entire class of decoupling control laws follows from Remark 3. 4. 4

or Remark 3. 4. 7 ( see also the last paragraphs of Section 3.4, 3.5). O

Next, let us consider the effect of the neglected fast

dynamics (5.1.17) on decoupling of the original system Z,. Let u

= (@, @)+ B(q, @)U be a control law satisfying (5.1.5) - (5.1.8).

We denote by 2‘;-5, Z‘Qﬁ, respectively, the feedback systems of I,

Z, corresponding to the control law u = a(q, @)+ pB@ qC For

the following result, we need

(C5) F, A, G and Bj, jeM, . are c™.

Theorem 5. 1.2. Suppose that (C.1)-(C.3) and (C.S5) are
satisfied. Suppose that 2‘:'3 satisfies (B.1) and (B.2) of Section 4. 1.

Then, I%P has the properties (i), (ii) in Theorem 4 2. 1 with®X =€ O

The theorem shows that although a control law which
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decouples 20 on £ may not decouples Zx on £xR, it does

approximately. Theorem 5. 1.2 1s a direct consequence of Theorem
42 1 and TheoremS. 1. 1.

5. 2. Decoupled Control of Robotic Manipulators with

Significant Actuator Dynamics

Consider the following system :

(521)  ™Ma)d + NG @ =g(v,aq) y=C),

m
(522) vV =aylv, aq + 2 alv,4,4q)u,
j:( ] ]

where : % is an open connected subset of R°™ ; q, v, e R™ ; £
((3,9): (v,g, 9 e™®): Q=({q:(3,9€E) ;M:Q>R™ ;. N
ESR",; C:Q->R"; g :%->R",; ai:X+Rm,ieﬂom.
The dynamics of a robotic manipulator can be described as above
when significant actuator dynamics are taken into account. Except
for the increased complexity, development in this section is quite

similar to that in SectionS.1. In addition to (C.1)-(C.3) and

(C.4), we assume

O.1)M N, C g,2a i eM are C

i)

(D.2) Q,(v, & @ 2 D,g (v, a @ la,v,q0 - a,(v,q 0] is

nonsingular, (v,q, Q@ € %
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Let ¥ £ (v eR™:(v,4,0 € %) We may need the following

stronger assumptions :

D1y M, N, C, g, 2, ie M, are cY,

(D.3) g,(*a,q) is one-to-one on ¥ for each (4,q) ¢ £

Let x, = v, X, 20, % £q and x 2 (x, x, Xy ). By (C2),

we can write the system (5.2.1), (5.2.2) as

(523) K =1()+32 fx)u, y = h),

i=l

where

TN

(524) 1 (x¢ a,(X,, Xy, %)

MOxT ' g, (X, X, Xg) = NOXy, X))

L X
A ,
(525) fx)= f 3(X,, %5, %) ], 1 € Mo
0
0

Let (f,h, % ]o denote the system (5.2.3). Under the above assumptions,

we consider decoupling of { f,h,%] . Weuse the following notation

( see Section 2. 1 for the definition of the third order derivative) :
(526) Q8,9 & [M(@a), Q4 a # [ & DOC,(q)),

T o 1T .
[DM_(9) q] q" D(DC_(a)T
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(5.2.7) (G, Q 2 DC(Q) M@ N@, @) - Q,,(q, Q) 4,
Qg 1

(528) Q44,9 * DC(Q) M(@T™' DM@, @) - 2Qy,(4, ),

{1 g

(529) 04,9 2 (Q,(4 ) - DC(@) M@ Q,o(d, @) } M(@)]™

"

(5.2.10)  Qy(a, @) 2 DC(q) M(Q)I™ D,N(G, @) 3 + Q,(4, a) N(4, @) -
D3C(a) (a1 [4] (4],

M@ (g (v, @, @) - NG a)),

e

(5211)  Qglv,q, Q)
(5.2.12)  Quv, 0,9 = D,g,v,q,qalv,4q,a),
(52.13)  Q4(v, 8, @) 2 Q v, 4,0 + D,yg,(v, 3, @) Q5v, G, q) +
Dy g,(v, §, @) 4,
(52.14)  Q,(v,4,@ % 0,4 ) 0g(v, 3, Q) + Q@ a) -
Q,(v, 4, 9) g,(v, 4, @),
(52.15) Q,(v,q, @ & 30,3, @ Qlv, 4 @ + D3C(e) (a1 (dl (d],
(52.16) Q)(v,q,@ £ DN@, @ a - v, 8,0 - Dygy(v, 4, @G +
(D,N(G, @ + Q{0 @) - Dyg,(v, 4, @] Q5(v, 4, a),

(5217)  V(v,q,@) % DC(a)Qglv, q, @) + @ DIDC('G, i €M, ,

where MiT(q) is the transpose of the ith row of M(q) and C, is

the ith component of C. Note that

(5.2.18)  Qq(q, @) = D,Qq(4,q), Qgla, @) = DQy(q, @) a.

Theorem 5.2. 1. Suppose that for each of the following
parts, {f,h, %] satisfies (C.2),(D.1),and (D.2). (1) Then, (f,h,%],
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is decomposable at each x, € %X and decouplable on % with d = 2,
{ €M, . Moreover, a control law u = a(v, &, @)+ B(v, 3, QU

decouples (f, h,‘)(.]o on ¥ if a, B have the forms on % :

(5219 alv,q, @ £ [Q,v, d QT (Qyv, &, @) +
M(Q) DC(@T (v, &, @) - (v, 4, @) ),

(5220) B(v, 4, 2 [Q,v, g @)l"™M() [DC(Q)I™ v, §, @),

where

(5221) (v, q )= ($,(Cy(a),DC @4, V,v,a. ) ],

$_(C.(@),DC (@) q, Vv, 8 a))

(5222) T(v,q @2 diag $(Cla), DG q, Vv, 4, @),

and éi, ’«Pi are arbitrary C™- functions of their arguments such that

v, @, q) is nonsingular, (v,q,q) € %

(ii) Suppose that (C.4), (D.3) are satisfied and the class of control
laws satisfies (AS), (A6) of Section3.3. Then, (f,h, %] is
decomposable on %  The class given by (5.2.19) - (5.2.22) is the
whole class of smooth decomposing control laws.

(iii) Suppose that (D.1) is satisfied.  Suppose that class of control
laws is real analytic and for every control law in the class, { f, h, % Juk

satisfies (A.2) of Section3.2.  Then, the class given by (52.19) -

(5.2.22) is the whole class of real analytic decoupling control laws. O
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Proof. First consider part (i). Let

(5223)  Wxy) & DC(x) Mx)T', 1 €My,

Then, we can derive

(5.224)  [DIW,(x D%, 1T = (Q,)1(x,, %5), 1 €M

t.m:

where (Q,); is the ith component of Q, Let X, j e M, . be the

vector fields corresponding to (f, h,xlo. Straightforward

computation with (5.2.23) and (5.2.24) shows that

(5.225) X H(x)=DClx5) x,,
(52.26) X ZH(x) = Vi(x,, X5 , X5) = Wi(X3) §,(X,, Xy , Xg) = (Qg)y(%,, X5),

(5227) X 3H(x) = W(X3) Q (X, Xy, X35) + [ WilX3) Dy g (X,, Xy, X3) =

D,(Qg)(xy, X3) } QlX,, Xy , X5) = Dy(Qg)(Xy, X5) Xy +
(Q,)(%5, %5) G (X, X5, X5) + WilXs) Dy 9,(X;5 Xo, Xz) X,

where (Qg), is the ith component of Q; Note that
(5.2.28) XjH,(x) = Xj X H(x) =0, xeX i]e .
But (D.2) implies

(5.229) ° DX(x) = Wix) Q (X, X, , %) = 0, x €%, 1eM

1.m’

Thus d; = 2, i e M, . By (C.2), (D.2), Theorem 3. 3. 1, and
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Theorem 3.3.2, (f,h,% ], Is decouplable on % and decomposable at

each x, € % 8"((f,h,X) ) is given by B(v,d, ) in (52.20) and

(5230)  alv,a,@ = [Q,(v,a.aI"(M@) [DCQI'(Qyv,a.0) *

Tv,3,0)) - Q5(v,3,0}
But, since

(52.31) M@ [DC@I'Q,(v, @, @) = M(a) [DC()I'( Qgld, @) Qglv, G, @) -
0,(4, ) M(@) Oglv, 4, @) - D5C(@ @} + DN, @) §
= - M@ [DC@I'G,(v, q, @ + D,N@G, @) Qglv, 4, @) +

DM@, @) + Q,0(a, @) Qglv, 4, ),

(5.2.30) can be reduced to (5.2.19).
m
Consider part (i). Note that 3m=2 (d,+1). Define 2

mapping T from % into R°™ by

(5232) T2(T,...,T) T,2(T, . T Tig) Tiy(xp Xy, %g) # Cilxg),

T, oKy Xp %) £ DCXIN,, T, 50Xy XpX3) = VilKy Xo,X5), T € My o

By (C.2) and (D.2), DT(x) is nonsingular, x €% . By Theorem 2 3.7,

this with (C.4), (D.3) implies that T is a C™ - diffeomorphism on %
From this, Theorem 3. 4. 4, and Remark 3. 4. 7, part (ii) follows easily.

Part (iii) follows from Theorem 3.4. 1, Remark 3. 4.7, and the

fact that T is a C¥ - diffeomorphism on % O



155

Remark 5.2.1. Using the special structure of (f,h, %]}, there
is an alternative and perhaps more straightforward way to show

that {f, h,)c]u is decouplable on % and that the control law u=
alv, 4, q) + B(v, §, @)U satisfying (5.2.19), (5.2.20) decouples

(f,h,%) on X Differentiate both sides of the first equation of

(5.2.1) withrespect tot.  Then, in the resulting equation, replace g, v
by expressions obtained from (5.2.1), (5.22). Then, we can obtain

(5233) M@ = Q,v,q, @ u - Qv, g

On the other hand, differentiating the second equation of (5.2.1)

three times with respect to t leads to
(5234 y=0,v,qa + DXQT"
From (5.2.33) and (5.2.34),

(5.235) 'y = DC(@ M@I (Q,(v, 8, P u - By, 4, 91+ Q,(v, 4, @

From (5.2.35), it is clear that the control law u = (v, q, Q)+

B(v, a, @)U satisfying (5.2.19), (5.2.20) with T=0 and ['=1_ gives

(5236) y =u

Thus, (f,h, %} is decouplable. The characterization of the entire
class of decoupling control laws follows from Remark 3. 4.4 or

Remark 3. 4. 7 ( see also the last paragraphs of Sections 3.4,3.5). DO
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Remark 5.2.2. Nijmeijer ([Nij.4] ) considered decoupling of
the system in (5.2.1), (5.22) with m=2, g(v,q,q) = v, and C(q) =

Q. In [Yua.l], the dynamics of a robotic manipulator with D.C.
drives were linearly perturbed around an equilibrium point. Then,
the decoupled control of the linearly perturbed system was considered.

Thus, the noniinearity of the system was not fully taken into account. O

Consider the following system, denoted by 2, :

(5237 M@q+ Ng,a =1 y=C0,

[,

r
(5238) Vv =b(v,qQ *+ Z g(v.0.0)z; + 2 b(v. 4,0y,
=1

J j=| J

T =g(v,40),

.
(5239) Az =AQZ+ B(v,q0X0 + 2B(v.40Ny
R

where : %, € Q, q,v, M, N are defined as in (5.2.1), (5.2.2) ; g;:

x-eR'“,jeﬂ.w;bj:‘)(aR"‘, j €M, , A, is a positive

constant scalar and A ¢ [0, AD] Ao, AOJ - R BJ. A

[0,A1-> R, J eM . As in Section5S. 1, the system (5.237)

represents the dynamics of a robotic manipulator. Here, the
additional actuator dynamics are grouped into two subsystems
(5.2.38),(5239). The system (5.2.38) ((5.2.39) ) represents the

slow ( fast ) part of the additional actuator dynamics. Suppose

that we neglect the fast dynamics by letting A = O. Then, the

resulting system is the degenerate system Z of 2, and consists
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of the systems (5.2.37), (5.2.38), and

m
(52.40) 0 = A0)z + B(v,q,q,0) + 2 B(v,q,q,0) u;

J=t

If we assume (B.1), 2, can be written as (5.2.1), (5.2.2) with

(52.41) a(v,q,Q) £ b(v, 4,9 -

[9,(v, 8, @) -~ g.(v, & DIAON" B(V,4,0,0), iem

om’

Thus, we have shown that the dynamics of a robotic manipulator
with the actuator dynamics can be described as (5.2.1), (5.2.2)
when the slow part of the actuator dynamics are taken into account.

Finally, we consider the effect of neglected fast part of

the actuator dynamics on decoupling of the original system 2

Let u = (v, q,q)+B(v,q,q) T be a control law satisfying (5.2.19)

-(5.222). We denote by I%, %P respectively, the systems 3,

Z, with the control law u = «(v,§, @) +B(v,4, QU  To apply

the theory of Chapter 4 we need :

(D.4) A, B, b, g, i€ M, are c™.

Theorem 5. 2. 2. Suppose that (C.2), (D.1), (D.2), and (D.4)
are satisfied. Suppose that IUP satisfies (B.1) and (B.2). Then,
properties (i), (ii) in Theorem 4. 2. 1 hold. g



CHAPTER 6

CONCLUSION

in the previous chapters, we have addressed various
theoretical issues of decoupling and decomposition and their
applications to robotics.

In Chapter 3, the major portion of well known results on
linear decoupling have been extended to nonlinear systems. Since
in Section 3.6, our main contributions have been summarized and
some concluding remarks on them have been given, we shall not
repeat the same discussion here. Those results contribute to a
deeper and clearer understanding of nonlinear decoupling theory .
They supply full information about the flexibilities we can have
in the design of decoupled systems.

In Chapter 4, a trade - off between the exact decoupling of
systems and the computational complexity of decoupling control
laws has been considered. We have shown that neglecting the
fast dynamics of the systems leads to control laws which require
less computation but decouple the systems in an approximate way.

In Chapter S, these results have been applied to the
decoupled control of robotic manipulators. Two cases have been
considered. In the first case, actuator dynamics are compietely

neglected. In the second case, the dynamics of a significant

158
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class of actuators are taken into account. We have shown that
our formulas for the complete class of decoupling control laws
unify and generalize previous results on the decoupled control of
robotic manipulators ( see comments in Remark 5. 1.1, 5. 1.2, and
S5.2.2). For example, it is possible to achieve decoupled control
of the end - effector.

Some of our results may be extended with increased
complexity to the general case where the numbers of inputs and
outputs are not necessarily equal or the systems do not have the
form in (1.7). Al our results can be easily extended to time

varying nonlinear systems since they can be changed into time
invariant nonlinear systems by assigning a new state x ,, to the

time variable t.
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