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ABSTRACT

A Definitional Technique for Specification
and Implementation of Data Types

by'
Khosrow Hadavi

Chairman: Keki B. Irani

A model is proposed for specification and
implementation of data types. This model is based on a
novel multi-level graph structure, viz. the I-structures. A
universal set of data structure operators are defined to
characterize the data types. Construcﬁive definitions of
these operators are presented to the extent that the task of
defining them is reduced to specification of only three
first order predicate expressions. Using these predicates,
the important issue of error is easily and automatically
taken care of. This 1is achieved through the use of
functions whose domains are defined by the above predicates
in such a way that every constructor operation results in a

"non-error" configuration.

The type manipulation operations (TMO) are introduced
in order from define data types of a different behaviour to
those of the existing ones. An example of a TMO 1is the
"embed" operation. It enables one to combine two data types
so that the resulting data type exhibits a behaviour which

can be automatically derived from the operand data types.
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This facility may also be used to parameterize data types.
Another TMO is the enrichment operation. Two types of
enrichment are introduced. These are enrichment for
"convenience", and enrichment for "change of behaviour.”
Sufficient conditions are developed in order to distinguish

one from the other.

It is demonstrated that the proposed model is highly
"extensible;" For example, with a very minor alteration, a
stack specification may be changed to that of a queue and
vice versa. Also demonstrated 1is the ability of the
specification to define parallelism of the operations. To
tﬁis end, without any extra burden on the wuser, highly
parallel operations may be defined for ‘updating and/or

accessing data.

It is shown that our specification technique offers an
invaluable tool to ensure the "security" of a data base, or
an operating system. It is also demonstrated that different
views of the same set of data may be held by different users

concurrently by assigning different predicates to each user.
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CHAPTER 1

DATA STRUCTURE ABSTRACTION-PROBLEMS AND MOTIVATIONS

Three phases may be identified with almost every
formal approach to realization of data types. These are the
concept, the specification, and finally the implementation.
Assuming the concept or the desired object to be specified
is already known to.us, our task is to identify the two
remaining areas, i.e. the specification and representation.
More specifically, these two concepts parallel the
"pbehaviour", and the "storage representation" [AFS 80] of
data structures. Behaviour of data structures deals with
its properties, i.e. the features which are unique to that
particular data structure. Storage representation is a real
world objecf, i.e. physically £angible, that meets all the
requirements of an abstract specification. Consider a stack
data structure, its behaviour is characterized by a last-in-
first-out discipline. The representation of stack, -on the
other hand, may be a linear list or a linked list or any
other sforage representation which exhibits a LIFO

characteristic.

Problems regarding the storage representation of data

structures, concerning efficiency and optimality, were a



popular research topic, particularly, when the non-numeric
computing became widespread and the volume of data started
to expand very rapidly because of the industry-wide usage of
computers. The large volume of data, either in database
environments or in numerical problems triggered a number of
studies concerning storage of aaté, some of these are fDIM

69, HAN 69, PAT 69, RAN 72, ROS 71, WON 75, KAR 75, ROS 78].

Behavioral study of data structures has been the main
theme of research for the past decade or so. The main
thrust has been towards developing a formal technique to
specify the behaviour of data structures. This led to the
concept of abstract data types. An abstract data type
defines a class of abstract objects which 1is completely
characterized by the operations available on those objects

[LIs 74].

In general there are two main categories in which the
specification of abstract data types may fall: operational
and definiﬁional[GUT 771. In the operational approach,
instead of describing the expected properties, one provides
a methodology by which a desired type may be built. The
definitional approach, on the other hand, provides a set of

axioms , under which the properties are upheld.

The definitional techniques are more formally oriented;
their most valuable merit is claimed to be the ability to
describe data structures without giving any bias as to how

it should be implemented. This lack of implementation bias,



however, may sometimes prove td be not so desirable when an
implementation is sought. Two of the definitional
technigues which have won a good deal of support are the
axiomatic and the algebraic technigues. Both of these
techniéues describe the behaviour of data structures by a
set of axioms which are defined on the operations of data
structures. As a consequence of the abstract descriptions,
such techniques are normally difficult to construct,
comprehend and verify. The algebraic method [GUT 75, ZIL
74, GOG 75] has shown the most potential for automatic
implementation and automatic correctness proofs. This is
accomplished through the use of equational theory which is
of central importance in this scheme. However some crucial
issues such as identification and detection of errors are
difficult to handle and implement in the theory. A more in-
depth, though still incomplete attempt in this area is due
to Goguen et. al. [GOG 78]. Their proposed technique
requires additional axioms to be added to handle error
instances. The so called error equations’make ﬁhé task of
specification, in their own words, "..unbelievably
complicated” [GOG 78]. Yet one of the principal reasons to
have a formal approach 1is the ability to express errors.
Specification of concurrency and other performance related

topics are also issues to be considered and solved.

In general, there are a number of factors to be
considered and satisfied in a specification technique. These

are briefly described below.



-Constructability and Comprehensibility

In general we are interested in constructing a
specification with a reasonable degree of confidence which
is comprehensible to humans as well as machine. Some
authors maintain the view that comprehensibility is not an
important iséue, since a formal specification is ‘always
comprehensible to a machine. We believe that it is just as
important for the human user to comprehend the underlying
specification since: a) a comprehensible scheme is of value
in construction phase of specification; it enhances the
degree of confidence, and b) users may exchange their ideas
without any ambiguity and the tedium of 1line by line

description of the conventional programs.

-Minimality

Every specification should be free from any extraneous
information. For any specification, we are concerned very
little about how it should be done; we are only interested
in what function(s) should be performed. In addition,
minimizing the specification reduces the number of

properties to be verified in correctness proofs.

-Applicability

It is obvious that for any specification technique, a
wide range of applicability is desired. In other words, how
universal or how limited is the power of a specification
technique is in order to describe data structures in

general.



-Extensibility

It is desirable that a small extension of a concept
results in a similar small modification in its
specification. For exampie, in changing a specification of
a set to a bag, if is undesirable to undertake major changes

in the original specification of the set.

The techniques which have been developed so far are rich
in some aspects and deficient in some others. Graphical
techniques have the potential of enhancing certain
attributes of a specification, for example constructability
and comprehensibility. However one problem remains, and
that is the minimality issue. Due to the presence of the
extra graph structures, the specification 1is no longer
minimal. The algebraic approach, on the other hand, treats
operations as letters of alphabet,-T. T*, the free monoid
generated by T, is provided with a finite set of equations
between certain elements of T. Every instance of the data

type is then given by a word W in .

The specification technique which we have proposed is a
synthesis of operational and definitional techniques,
combining the ease of use and constructability of the
operational methods, and the advantages of formality and
applicability exhibited by the axiomatic and algebraic
methods. Built into our model are concepts such as ease of
construction, parallelism of operations, easy extension and

the ability to handle "error." Many of these concepts have



been either left out or lightly considered by the existing

methods.

In the proposed model the behaviour of data types is
specified by the operations defined on their graph
structures. This approach is substantiated by the fact that
behaviour and structure are intimately related [BRO 80].
Furthermore, the use of pointers, directed graphs or any
other unnecessary implementation directed information has
been avoided. Despite the many claims that are made
regarding the lack of implementation bias in the algebraic
approach, there are numerous common examples where without
the use of "hidden functions," the technique‘would not yield
favourable results [MOI 80, MAJ 77A]. As a result
extraneous information, 1i.e. implementation bias, is
introduced not only to make the technigue convenient, but
also feasible. 1In spite of all this, there are still some
simple and commonly used data types, for which it is not
easy to employ algebraic technique [GOG 78]. We argue that
in order to ease the task of specifications we have to make

some trade-offs.

Following the tradition of the recent past we alsé have
adopted the principle that data types are algebras.
However graph structures are also introduced to gain in the
areas where the implicit methods have demonstrated
weaknesses. A number of these areas are: constructability,

error treatment, comprehensibility, extensibility, and



performance constraints. Guidelines to build complex
structures as well as provision of direction for the
implementor are among other problems associated with the
implicit methods. We have employed graph structures as an
aid to describe "relations" between déta items; but unlike
" Earley's approach we do not adopt different types ofAnodeS.
It is also unnecessary, as cited in Shneiderman [SHN 74] and
Majester [MAJ 77B], to use directed graphs to impose
implementation bias. Among the prgvious studies employing
graphs, only the approach of Majester offers any adeqguate
formalism, the rest are either incomplete or insufficient
theories. . In Majester's work: only the relation between
abstract entities and the operations characterizing the data
structures are considered. The important notion of error
and other crucial conéepts such as parameterized types have

not been considered adequately.

In our approach we have developed a mechanism by means
of which one can build complex'structures in‘ terms of the
more primitive ones. The appealing feature of this process
is that the resulting complex structure retains all the
properties of the constituent structures. Consider, for
example, the list-of-trees (lot) data type. Once we have
defined a 1list and a tree, by either the user or the host
language, a lot data type, as will be shown later, 1is no
more than (say) an infix expression with list and tree as
operands:

lot = list x tree
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As pointed out earlier lot, like any other data type,
requires a set of operations to characterize its behaviour.
Our intention has been to define the "embed operation" (x)
so that the T"characteristic set" of operations for lot is
formed automatically out of the characteristic operation set

of the constituent list and tree data types.

Having defined lot as above, one can extend the data-
type lot to contain parameter types, e.g. list-of-tree-of-
strings (lots) is formed as follows:

lots = lot x string

A very important criterion, rarely considered is the
question of performance. The method which we have adopted,
enables the user to specify his intended data type as well
"as to emphasize, if so desired, some performance criteria
concerning both the specification and implementation.
Specification of parallel operations, for instance, is an
important criteria. None of the previous methods have
presented the ability to specify concurrency of operations
such as parallel insertion and/or parallel deletion.
Performance issues may also be specified at the
implementation level. As an example of an implementation
related performance, consider a two-dimensional array
specified as the "embed" of two arrays:

matrix=array x array



With an appropriate terminology, one can also specify the
layout, of the data items, either in a row-major order or in

a column-major order.

Use of the directed edges,to serve as the access path,
may also prove to be another tool to specify performance
criteria. The reader should be reminded that although
having the ability to specify some performance measures
would introduce information extraneous to a minimal
specification, we are merely offering the choice. In our
approach the edge between two nodes (say) does not
necessarily imply an access path (link, pointer etc.) in its

corresponding memory representation.

One of the major problems of the algebraic approach is
to define a set of operations on the desired data structures
in a way that would "completely" characterize its behaviour.
In addition, it is also necessary to define the operations
so that "error" or illegal results (configuration or
instances) are avoided, or at least identified. The error
treatment of data types, treated lightly in the 1literature,
is an important and difficult problem as exemplified by
Goguen et al [GOG 78]. We believe that the recognition of
error instances of data structures using a graphical
approach is a much easier task than when aﬁ axiomatic
technique 1is employed. For example consider a stack data
type. The error instances of "empty-stack" and "full-stack"

are immediately obvious when a graph structure is
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visualized. This same information is not quite as obvious
when an algebraic approach is employed, unless some

"constructive" description of it is visualized [MAJ 77a].

Using our approach of combining simple data types to
get more complex ones, the complex data types' error
conditions are easily and automatically met by those of the
constituent types put together. This facility 1is made
possible by the nature of the type manipulation operations,

which preserve the properties of the constituent data types.

The next chapter will introduce the basic components
of the model. It will be followed by chapter 3 where we
introduce the data structure operations and formally define
the characteristic set of operations. The type manipulation
operations are examined in chapter 4. The concept‘of
equivalence is discussed in chapter 5 where we also discuss
the notion of error and enrichment. Finally chapter 6
contains the conclusions of this study as well as

suggestions for further work.



CHAPTER 11

A NEW MODEL

2.1- Description of the Model

Graph structures have proved to be useful visual aids
in many areas of science. Their presence is of value to
human brain and our better comprehension of the underlying
system. To a formal computing system, however, graph
structures are no more than sets and relations. Although
their presence may or may not be exploited for any "biasing”
purposes such as implementation guidelines, we have opted to
leave the potentials open-ended. However, there are many
instances fof which the use of the graph structures imposes
some unnecessary and  extraneous information on the
uhderlying specification. We are willing to accept this in
order to gain in other aspects of a specification scheme

discussed in the previous chapter.

The concept of multi-level graph structures is
introduced to ‘depict relationships between data objects or
any other type of elements in general. Following the

minimal description techniques of the algebraic advocates,

11
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the operations defined on these graph structures will
determine the characteristic and the behavioural aspect of
the structures. It will be seen that certain predicates are
necessary to define the correct relationship between data
elements. Such predicates are particularly useful since they
ensure 'cérrectness of operations carried out on data
structures. These predicates will be referred to as p-
expressions. the p-expressions merely represent structure
of data and not the béhaviour of it. For instance a list
structure may have the same structure as that of a stack,
but their behaviours are completely different. The
combination of both structure and behaviour is referred to

as a "data type."

In the remainder of this chapter some basic components
of the model are introduced in order to lay the groundwork

for what follows.

2.2- Components of the Model

Definition 2.2 below introduces the concept of
structures contained within other structures. Hence the
notion of multi-level structures is evolved. We have termed
them as I-structures due to their close resemblance to‘many-
sorted I-algebras. Each 1level of the structure may be
employed to represent one or more "sorts." The distinction
is not significant, since two sorts or more may be merged
into, and considered as, one sort. ‘In addition the

relation between the elements of the algebra 1is emphasized
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by means of the "u-relations."” Emphasis on both structure
and behaviour has many advantages as we shall see, and also

noted by[BRO 80].

The following definitions and concepts are designed to

serve as a formal framework for the proposed model.

Definition 2.1

A graph is a pair g=(N,E), where N is a set of nodes,

and E is a set of unordered pairs in N, called edges.

Following the BNF notation, in the definition given below,
a vertical bar(|) indicates "or," and the symbol "g€"
denotes "contains." In this definition, the concept of
nodes "containing" other nodes, i.e. identifying different
"levels" of nodes is introduced. A collection of elements
<x1,x2,...,xn> where multiple occurrences of the same
element is allowed is referred to as a "bag." Finally (x,y)
indicates an ordered pair whereas (x;y) denotes an unordered
pair. The functién MAX, below, acts on a set(of 1integers),
S, suéh that if MAX(S)=s then seS and for every reS, s2r;

also MAX({})=g.
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Definition 2.2

An L-level i-structure ZL, is defined as follows:
g, = (Spqe upy)
Sy ={Sqy3: 18 oF =8, Iy, Iy +1,.00,I)  q=1 AND

I,,=MAX({j: Sqi,.2€ S, })+1
1k 3 Sy é{k 191 }

1=1,2,...,L & k21

Syki € (Sy-q,ir Y1-q,3) 1>1 & iz#ff

Uy € <(x,9)" : %,y ¢ Sk & neN' >
S

€ I for all i21| i¢=(sgi,ugi) for all i2t.

1ki
zundefined is an undefined X-structure.

undefined

S¢k=sﬂki for some igN & k=1,2,...

u¢k=< >

Sﬂki is a primitive node.

Syy; is a Structure Support Node (SSN) for 1l,k,i 2 1.
Slkﬂ is the ehpty structure (node) for 1,k2f.

N’ is the set of non-negative integers.

A I-structure is said to terminate with primitive
nodes, if it possesses 1level zero nodes. Similarly a I-
structure is said to terminate with SSN, if all of its

lowest level SSN's support X Henceforth, unless

undefined’
otherwise specified, all structures terminate with SSN.

The following observations are of interest:

- The primitive nodes do not contribute to the number of

levels of the I-structure.
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« The indices 1, k, and i assign a numbering of the
nodes as follows:
1- level indicator, sometimes referred to as the first
index.
k- index of the node of the most recent structure
within which the current structure is being defined.
This may also be referred to as the second index.
i- index number of the current-level nodes, referred to
as the third index.
Hence each node is distinctly indexed.
. Nodes  Siy; with i=g are referred to as empty

structures. Thps if a node Sl+1,k contains Sljﬂ' then the

']
latter implies that there exists a defined 1lth level
structure , though no "insertion" has yet been made at this
level. In effect Sljﬁ acts as a "place-holder." Henceforth
the existence of these place-holders, where applicable, will
be implicit in our notation. Furthermore, an empty node
Slkﬂ implies the existence of other emty nodes at levels
1-1, 1-2, ... , 1V (or @ if the structure terminatés with
primitive ' nodes) containéd in slkﬂ' Thus Slkﬂ contains
Sl-1,ﬂ,¢' and the latter contains 51—2,¢,g and so on. Note
that there may be more than one Sl,ﬂ,ﬂ at a level 1. We
shall see that this ambiguity will not cause any problems

since no "activity" may be associated with the content of an

empty node.

In contrast to the empty structure, there may also

exist the undefined structure. An undefined structure would
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only occur at £he lowest level, such that 1if 1level 1
contains the undefined structure then no structure may, or
can, be present at any of the 1level 1 nodes. The
distinction between the undefined and empty structures may
be shown by the following analogous situation in a high
level laﬁguage. When an array_of_integers is declared, we
have a structure which is defined but empty until it is
initialized. However, when an array structure is defined
without any parameters, the structure which may be contained
in each node of the array is undefined.

« If the structure terminates with primitive nodes, a
level 1 node, indexed k, may contain any integer, i, labeled
<@g,k,i>.

« A u-relation is defined as a bag of unordered pairs of

nodes. Thus each Uk is a u-relation.

We shall employ the notation "i<+>j" to designate (i,j) is
an element of a u-relation. That means: i is u-related to j
and j s u-related to i. .Since it is understood that both
(i,j) and (j,i) are 1in a wu-relation, we only need to
consider the bag of pairs where only one of the two pairs is
present. To be consistent in our approach we only consider
the subset, u, of every u-relation such that if (i,jleu,
then j2i. Furthermore, for our immediate goals we shall
treat the u-relations as sets rather than bags since the bag
concept is not of much importance in specifying the

"behaviour” of data types. However for "implementation”
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purposes, namely the actual memory representation of data

types, the bag may prove to be a valuable tool.

Example
A 3-level JX-structure. The desired structure is
depicted below in a graphical manner. The nodes are labeled

(1ki) to denote S1ki®

Figure 2.1
A 3-level I-structure, 23.
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Let us now derive the description for the above
structure using the definition of ZI-structures given

earlier. Note that Slkm denotes a_node Sl,k,m'

level 3

level 2
S3118({S51118512:5513}r Upy)

Uy 1=<(8541s8912) 1 (85121551301 (85114859301 (554445543)>
S3128({S5541550515926}1<(S554/5525)>)

level 1
S5118(1S141:S142}r uyy) uy=<(8,141:59¢2)>
S5126(18 53}, uqy) Ugp=< >

S5248(1S144+5145:S126} Uyg)

U14=<(S144:5145)(S144:S146)>

S725€({S157}s uy5) ujg=< >

‘ 5226€(§S16ﬂ1' u16) o , Uye=< >

Finally each S1ki' for all k and i, contains zundefined'
hence the structure terminates with SSN.

Let u; denote the union of Uik and S, be the union of
Slk over all values of k. For notational convenience we may
denote ZL by a pair (S,u) where S is the set of all nodes in

ZL and u is the union of Uy for all levels 1.
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Definition 2.3

The content of a node Slkj' C(slkj)' is defined to be

the 1-1 level I-structure contained in Slkj‘

As we shall see shortly, in general we are interested
in dealing with a set, not necessarily finite, of Z-
structures collectively. Such a set would contain elements
of the form 3X=(S,u). In order to be able to describe the
desired set of I-structures we need to impose a number of
restrictions. In the presence of these restrictions we can
employ certain‘ predicate expreséions, known as "p-

expressions”, to describe the desired set of I-structures.

Example

In this example we present the basic idea of how we may
use a predicate, such as <+> which means "is u-related to",
in order to describe 1list-like structures. Later on we
shall show that a p-expression would perform the same task
but for a whole cléss of structures. Let i denote
Slki' Also let us assume that the domain of valués of i is:
{1,2,3,...,I1-2}. Then,

a) The predicate expression to describe a list

structure, I,, of length (1+1) is: (Vi) (i<e>(i+1)).
This is illustrated in figure 2.2(a).

b) A list where each node is linked to the two nodes

immediately following it may be represented by:

(Vi) ((i<e>(i+1))(i<e>(i+2))
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Cite figure 2.2(b).

O-®-OO— -0

Figure 2.2
Structures described by a predicate.

Notation:
té- A traversal function (to be defined later) for level

1 indexed by q.

ZE- A variable symbol to denote a L-level X-structure in
S1G, .

Si- A variable symbol to denote a set of all nodes at
level 1 of ZE.

Sik- A variable symbol to denote a set of nodes at level

1l of EE, contained in the kth

sf- L{ s

node of level 1+1.
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ui- A variable symbol to denote a u-relation at level 1
r
of Ip-

r r
u- |Ju
1 1

- A node Sl,k,m may be abbreviated to <l,k,m>; or if 1
and k are clear from the context the index m may be
used to represent Sl,k,m' ‘

- The symbols i,j,1ki,lkj (and a few others which would
be clear from the context if used) will be employed as
variable symbols to denote elements of Sik.

- Note that symbols with a superscript r denote variable
symbols of the corresponding set. That is ZE denotes

any element of the set SIG. Thus instead of using the

phrase "for all ZE" we may use "for all r."

Consider now a set of I-structures:

sig={z* : zF=(s%,u") 1,
we may write u={uf : 3TeSIG }; i.e. u is the set of u-
relations each of which is associated with an element of
S1G. Our’ intention is to associate a family of p-
expressions: Pq,e..,Pp with a set of L-level I-structures
S1G such that ui, the u-relation at level 1 of ZE, may be
described by p;, 0slsL, for all elements of SIG. Before any
further elaboration on fhe nature of the p-expressions let

us state our first restriction on the set of I-structures,

SIG.
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i) Every element ZEsSIG has the same number of levels
L and all 2£ terminate with the same level, either
SSN or primitive nodes.

Thus we may refer to a set of L-level I-structures as SIGL.

Definition 2.4

A partial computable function, t : slk*slk' such that
whenever t(sl,k,i)=sl,k,j then j2i 1is referred to as a

traversal function.

1
g

in;o itself, then for all the elements of the domain and

Since a traversal function t_ maps the set of nodes Sik
range the 1indices 1 and k are the same. Therefore each
r o . . N
element sl,k,meslk may be uniquely identified by m.
Henceforth, for the sake of notational convenience, we may
1 1 .
use tq(m) to denote tq(sl,k,m) whenever there 1is no

ambiguity.

As a second restriction on the set of I-structures SIGL
we state the following:

ii) For every 1level 1<L of ZEeSIGL there exists a set

1

q defined for that level 1

of traversal functions t

for all values of r.

We are now in a position to describe p-expressions and
their satisfaction. An atomic p-expression is an expression
of the form: (i<>j) where i and j are variable symbols. 1Its

satisfaction requires the presence of a "structure"; we
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shall deal with this shortly after we fully define p-

expressions.

Definition 2.5

The well formed formulas of p-expressions (pwff) are
defined as follows. Let wff denote the well formed formulas
of first order predicate calculus[MAN 74] then a pwff is
obtained by using the following rules.

1) An atomic p-expression is a pwff.

2) I1f A is a quantifier-free pwff, then ~(A) is a
pwif.

3) If A is a pwff, then ((A)A(B)) and ((A),(B))
are pwff's where B is eitﬂer a pwff or a
universal wff such that one of the following
cases 1is satisfied. Case a) If A has two free
variables, then the only free variables in B,
if any, are those occurring in A. Case b)If
there exists only one free variable, i, in A,
then B méy only have either two free variables
one of which must be i, or one free variable,
or none. Case c) If A has no free variables,
then B may have at most two free variables.

4) If A is a pwff then VI(A)’is a pwff where 121,

5) Only those formulas obtained by a finite number

of applications of (1) to (4), are pwffs.'

' Note that p-expressions are universal formulas.
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Since we will be concerned with only pwff's,
henceforth the term "p-expression” implies a pwif. We shall

also omit the parentheses where there is no ambiguity.

In general, in order to determine the satisfaction of a
first order predicate expression we - need to . define a
"structure"[END 72].‘( A structure V 1is a function whose
domain is the set of parameters:

- ¥, ¥, V3,....one for each positive integer.

2- Predicate symbols: =, 5, 2, <, >, <>,

3- Constant symbols: Slkﬁ' Slk1"°°'slkm' Slkn’ -

4- Function symbols: +, -, x, /, tq, £, g, h. The arity
of. these functions is generally either 1 or 2 unless

otherwise specified.

such that:

1) V assigns to each quantifier symbol V1 a non-empty set
|v1|g|V|; where |V| is called the universe of V.

2) V assigns to each n-place predicate symbol P an n-ary
relation Pvglvln.

3) V assigns to each constant symbol ¢ a member cV of the
universe |V|.

4) V assigns to each n-place function symbol f an n-ary

operation £V Iv|"s|V].

2 Some authors refer to this as an "interpretation.”
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Furthermore we need to define a function s: Vars|V|
from the set Var of all variables into the universe |V| of
V. The extension of s denoted s is defined as follows:

1) For each variable i, s(i)=s(i).

2) For each constant symbol c, s(c)=c".

3) If t1;...,tn afe terms and f is an n-place function
symbol, then

B(Ety,.nu,ty)=f (B(E) 00, BlE))

The above definition of s maps all the variables into
the whole universe |V|. This definition may be extended to
those cases where there are different sets of variable
symbols Var1, Var2,.‘..,VarN such that each set of variables

VAR may be mapped into some |VK|Q|V| by s.

Let us now present the definition of satisfaction of a
wif, p, for the above structure where s maps different set
of variables Var1 to different subsets of the universe
|V1|Q|V|. We say that V satisfies p with s, denoted by
| =yP [s], as follows:

Let ¢ and B denote a wff
1) For an n-place predicate parameter p
= : s p \/
l"v pt1‘oo-tn lff <S(t1),..o.,5(tn)>€p

where t1,...,tn are terms.

2) |=y ~als] iff |#yals]
3) |=y aAB[S] itf |=y als] and |= Bls]
4) |=y oyBls] iff |=y als] or |=, Bls] or both
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5) |=y V. ials] iff for every de|v.| |=y als(i]d)] Here
s(i|d) is the function which is exactly like s except
for one thing. At the variable i it assumes the value

d.

To define satisfaction of a p-expression p,, we need to
define the type of structures that we shall be dealing with.
Let S be the set of all possible nodes Sykm’ where 1, k and
m are non-negative integers. Let SleS, denote the set of
nodes, Siki’ having the same values of 1 and k. Thus
Slk={slki: ieN"}, where N' is the set of non-negative
integers. It is obvious that the set S;, is isomorphic to
N, Because of this, in céses where the values of 1 and k
are known, we may refer to the nodes as simply: 0, 1, 2,...,
m, n,..., where we really mean Slkﬂ' Slk1' slkZ”"' slkm'
Siknreccc- A structure Oik is defined for each ZEsSIG for
each level 1 and for each k. The universe (domain) of each
structure Gik is Slk' In every structure, there exists a
distinguished family of traversal functions té, 1sq<m;, such
thaf each té maps S;,+S;;. Such a structure may contain
other functions and relations depending on the nature of the
p-expression employed. In general any computable function
and decidable relation may be defined in a structure oik.
It should be noted that for every structure Oik' the set Sik
is a subset of its universe Slk representing the set of

nodes "present" in the structure. All the variable symbols

i,j, 1lki, 1lkj,....that are used in a pwff or any other wff
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may only map into the set Sik Qslk by the appropriate

assignment function s.

Let us call the structure described above Oik' From now
on, unless otherwise stated, oik assigns to V1 the set Sik

which is a subset of the universe |o§k|=51k.

In the following definition of satisfaction, we have
only defined the satisfaction for the cases where the only
quantifier allowed is ¥, (abbreviated as V). Henceforth we
éhall restrict the pwff's to those quantifiers whose domains

are finite.

Let p; be a pwiff then °§k satisfies p, with s, denoted
by |= r pl[s], as follows.
91k c 1
1) |=r (i<>j)[s] iff s(i), s(j)eS;, and s(j)=t_(s(i))
01k g
for some 1<gs<m, where s(i) and s(j)#Slkﬁ.’
Let o and B denote either a wff or a pwff
2) For an n-place predicate parameter p
=4t
%1k
where tyre..,t, are terms.
3) [=,r ~als] iff |# r als]
1k
4) |=r

pty....t, iff <§(t1),.;..,§(tn)>epv

n

a,Bls] iff |= r «als] and |= r Bgls]
A %1k %1k
5) |=r a.8[s] iff |=r als] or |= r Bgls]l or both
U 91k . Ok
6) |=_r Vials] iff for every meS;,, |=o§' als(i|m)] Here
k

s(i|m) 1is the function which is exactly like s except

3 Note that t1 denotes the function tv, where t 1 a
traversal functionqsymbol and V, in here, is of course Opke
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for one thing. At the variable i it assumes the value

m.

Example

Consider a structure oy, with traversal functions
t,(i)=2xi and t,(i)=2xi+1.* . Assume a p-expression: i<>j.
Let s(i)=<1,1,2> and s(j)=<1,1,5> then since 5=2x2+1, the
nodes indexed <1,1,2> and <1,1,5> are adjacent (or u-
related) because the above p-expression is satisfied with s.
However if s(i)=<1,1,2> and s(j)=<1,1,9> then the p-
expression is not satisfied with s and therefore the nodes
indexed <1,1,2> and <1,1,9> are not u-related (or not

adjacent).

Let us now look at a slightly more complicated example
of a p-expression which may be formed using the above

definition of pwff:

Example ’
Let 8} ={<1,1,1>,<1,1,2>,<1,1,3>,<1,1,4>,<1,1,5>} and

1 . . . s . .
tq(slki)=slki+1' Let p(l,j)=(1<>J)A(1S10); and s(i)=<1,1,3>

and s(j)=<1,1,4>. The relation < is defined as follows:
r
Sl,k,msd"slku' if m is less than or equal to u. With s as

defined above we have:

* In here we have extended the usual definitions of «x
and + such that kx<l,k,i>=<1l,k,kxi> and k+<1l,k,i>=<1l,k,i+k>
" where k is an integer. As we mentioned before since 1l and k
are fixed here, we are only concerned with the node index 1i.
Hence every node may be treated just like an integer.
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(<1,1,3> <> <1,1,4>)A(<1,{,3> < <1,1,10>)
The expression (<1,1,3> < <1,1,10>) is obviously true. To
know if <1,1,3><><1,1,4> expression 1is satisfied for the
given s we refer to the definition of satisfaction of an
atpmic p-expression giveh earlier (i.e. if s(i),s(j)ssik and
s(j)=fé(s(i)) then it is saéisfied else not satisfied);
Substitute <1,1,3> for i and <1,1,4> for 3j; thus we have
té(<1,1,3>)=<1,1,3+1>=<1,1,4> which is equal to
s(j)=<1,1,4>, As a result the p-expression p(i,j) |is
satisfied with the above s. Clearly there are other values
of i and j that would satisfy p(i,j), whereas some pairs
“such as <1,1,2> and <1,1,5> would result in the p-expression
not satisfied since 5#2+1. Hence the satisfaction depends

on what the values of s(i) and s(j) are.

~ Let us take one step further and deal  with a whole
class of I-structures, SIG, such that the same family of p-
expressions may be used to describe u-relations, at

different levels, for every element of SIG.

Definition 2.6

Let b be a family of p-expressions p=<pqs...,P>. Let
SIG, be a set of I-structures such that it obeys the

restrictions (i) and (ii) with a finite number, my, of

1
q

structure as defined before equipped with the traversal

traversal functions t_, at every level 1. Let oik be a

functions té and any other computable functions or decidable
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relations. Then SIG. is implementable with p 1f for every r
and every level 1 and every k, and any assignment function
s, the following is true.
1) If =(i,j) 1is the p-expression at level 1 such that i
and j are both free variables, then
|£°§k 7(i,3) [sy] {f£* (sy(i),s](3))eul,.
2) a- If Vvin(i,j) is the p-expression at level 1 and j is
the only free variable in 7, then
for every desik, |=°ik n(i,j) [sy(i]dl] iff
for every desik, (d,sl(j))euik
2) b- 1f vjn(i,j) is the p-expression at level 1 and i is
the only free variable in 7, then
for every deSy,, '=°§k n(i,3) [sy(j|a)] iff
for every desik, (sl(i),d)eu§k
3) If vivjn(i,j) is the p-expression at level 1, then
for every d,, dzesik, |=0§k m(i,3) [sy(ild)(i]a,)]
iff for every d1, dzssik’ (d1,d2)eu§k
p, is referred to as the p-expression associated with level

1 of SIGL

Let SIGL be implementable and Z£=(Sr,ur)eSIGL: let tl,

a
15q5ml, be a traversal function for level 1 of every ZE,
Then ZE may be described by (S',p) where p=<pq,...,p;> since

from the above definition, for every 121, u§ may be defined

$ s, is the assignment function at level 1l; such that s
may be c%nsidered to be a family of Sy for every level 1,
1<1<L.
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by the associated p-expression. Therefore it would suffice

to have just the pair (S',p) to describe (st,ub).

Definition 2.7

Let ST be the set of nodes in a I-structure Z£=(Sr,ur),
A node slkjtsr is a successor of a node Slkiesr denoted
j=suc(i).
1) if (i,j)eui and j2i, or

2) if j'=suc(i) and (j,j')eui and j2j’'.

We also say that i is a predecessor of j, i=pred(j), if
j=suc(i). The suc(f)=pred(@)=@g. Finally, Jj=1_suc(i) if

. o r
(1,j)eu1.

Definition 2.8

A successor set of a node slkies is:

sucset(i)={ j : j=suc(i) }.

Definition 2.9

Two I-structures I=(S,u) and $'=(S',u') are isomorphic,
denoted I=%', if there exists a bijection n: S3S' such that

(i,3)eu iff (n(i),n(j))eu’.

For a family of ZI-structures SIGL, it is imperative
that it can be decided whether an arbitrary I-structure is

an element of SIG,. One way to decide such a membership is
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to show that the problem of satisfaction of p-expressions is

decidable. This is demonstrated below.

Lemma 2.1
Let I=(S,u) be a I-structure; let S,,CS and 01k be a
structure as defined earlier; let p be a pwff such that the
only variables in p are those denoting the elements of Sik-
Then it is decidable whether |=olkp[s], for any given s, or

not.

Proof

Assume p is written in prenex normal form(pnf), such
that it may be represented in the form of i<w>j#= with or
without quantifiers in front of it, where 1i<s>j denotes
either i<>j or ~i<>j and # is either an AND or an OR
function. Note that this is possible since .pwff's are
special cases of first order wff's. And since every wff may
be written in pnf, therefore every pwff may be written in
pnf. Recall that the "formula-building operators" of pwif's
are the same as those of wff's(see definition 2.5(2)-(3) ).
Also = denotes a wff such that the p-expression is in fact a
pwff. Consider the following cases (a)-(d) where E is
assumed to be a wff. We shall show the satisfaction by
induction on the number of prime formulas. Cases(a)-(4d)
show the basis of this induction. The extension to the case
of n prime formulas is trivial as described in each case

that follows.
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a) p is either 1i<>j or ~i<>j. Since the number of
traversal functions 1is finite, therefore |=°lkp[S] or
its negation may be decided in a finite number of
steps.

b) p is p,#E, where p1=i<w>j. Z is a quantifier-free wif,
Hence it may be written in the pnf as follows:

Py #1 Py #yeeee oy Py
where each pq, 1<qsn, is a predicate with either zero or one
or two free variables. Furthermore each pq is quantifier-

free and assigned, by the structure oik, to some decidable

relation. There are three cases to consider:

1- Pq ' (no free varibales occur in pq)
2- pq(i) (one free variable)
3- pq(i,j) (two free variables)

case (1) is trivially either true or false. Cases (2)
and (3): pq(i) and pq(i,j) are assigned to some unary and
binary relations respectively by the structure at hand. 1In
- both case, since the relations are decidable,® one can
immediately find if i or (i,j) is an element of the
corresponding relation or not. This is of course possible
using the characteristic function of the relation. Hence
for each pq, 1<qsn, we can decide if it is satisfied or not.

c) p is of the form Vi(i<w>j)#viE. That is either 1 |is
free and j 1is quantified over Slk' or vice versa.

Since S, is finite then Vi(i<w>j) is indeed decidable.

¢ A relation is (primitive) recursive if it is equipped

with a (primitive) recursive characteristic function.
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To decide the satisfaction of ViZ, we need to consider,

for every deS,,, the satisfaction of = s[i|dl].
‘ 1k

o
This reduces the problem to that of (b) abovi% Clearly
the case when i is free and j is bound is similar.

finally,

d) Both i and j are bound, i.e. p is of the form
Vivi(i<w>j) #Vivis
Once again the problem reduces to that of: for every

d Vi

(84

1881k |=olk slj|d,]. Thus the problem is the same as
that of part (c) above.
e) All the other cases may be reduced to one or more of
the above. This is shown below.

i) Consider the case of a pwff written in the form of
p=i<sr>j#= where p is gquantifier-free and £ is itself also a
pwif. Then p may be written in the form of:

p=i<vr>j # i<}>j # g
where E=i<}>j #q 31, and & is a quantifier-free pwff.
Continuing with the above procedure, p may be decomposed as
follows:

p=i<sr>j # i<}>j FEEETRY S i<P>4 #n =h

where =" is either a wff or simply i<§>je Now 1if the

satisfaction of pn_1=i<}>j #iooeoo#_q i<D>] is decidable,

n-1
then obviously the satisfaction of pn_.]#nEn is also

decidable by part (a) or (b) or both described above.

ii) Consider the case (i) above, but the occurrence of
the quntifiers is also permitted. Using the definition

2.5(3)-(4), restricting ourselves to ¥V only, we can write a
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general p-expression of the form shown below where the only
free variables are i and j.

=1 . -2 . ~n
Vk1Vk2(k1<>k2#1: )#11Vk3((k3<w>3)#2: )#22....((1<¢>#n: )
Let us only consider the case of Vk1Vk2(k1<J~>k2 # 51).

This would show the basis of the induction. First we assume.

that 51 is a quantifier-free pwff. WE may write the above

expression in the form of Vk1Vk2(k1<w>k2) # 4 Vk1Vk2£1. But

the satisfaction of Vk1Vk2(k1<m>k2) is decidable by the case

(d) above. Therefore we are only interested to know if

Vk1Vk2F_1 is satisfied with some s, or not. This problem

reduces to that of deciding the satisfaction of

z! s[k1|d1][k2|d2] for every d,, d,eS,,. But this is also

decidable from (i) above since =! is quantifier-free.

1

Finally consider the case where Z', in the above expression

1

14

is not quantifier-free. 1If k1 and k2 do not occur in &
then the problem would become a special case of what
follows. 1If one or both occur free in 51, then the problem
. . . s r ~1 .
is to decide: if for all d1, dzes1k , = s[k1|d1][k2|d2] is

satisfied or not.

If there are more occurrences of the V¥ quantifier in
51, viz. th’ we proceed in the same way as above until all
the V quantifiers are removed. The latter form would then

lend itself to that of case (i) above.
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Lemma 2.2

Let SIG, be implementable wrt b=<p,,...,pP; >, then SIGL

L
is recursive.

Proof

First we consider the case for L=1 and p=<p,>,  where
p1=n(i,j) and i and j are free in ﬁ. Let SIG be the set of
1-level f-structures I=(S,u). For SIG to be recursive we
need to have a recursive characteristic function ¢ such that

$(£)=1 if ZeSIG, and =0 otherwise.

Since u 1is finite we can examine each pair (y,v)eu to
see if w(u,v) is satisfied and vice versa, where u, veS and
S is finite. But by lemma 2.1 the problem of deciding if =
is satisfied, or not, is computable in a finite number of

steps. Therefore ¢ can be realized as follows:

é(g)=1 if for u, veS, (u,v)eu iff =w(u,v) is satisfied’

$(z)=g otherwise.

For L>1 we can have a finite number of characteristic
functions ¢,, one for each level 1. Clearly the above
argument holds for every S;;, where for each ¢1, if
¢1 ({5 rug ) evaluates to 1 for all S;,, then ¢(2)=1,1_and
=0 otherwise. Note that at every level the set S, is the

union of a finite number of finite sets Slk‘

 This may readily be extended to the cases where the
p-expression has only one or no free variables.
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A &data structure", as will be seen later, is an
implementable set of I-structures. As an example consider a
list structure, I, where the p-expression associated with it
is 1i<>j, where the traversal function is t(i)=i+1. Let
z=({1,2,3}, <(1,2),(2,3)>). Using the above definition of
the characteristic function we can see that ¢(z)=1. Hénce z

is an element of the set of all list structures.

Corollary 2.1

Let SIG[ be implementable with p. SIG, is recursively

enumerable(r.e.).

Definition 2.10

The Jargest set of I-structures, SIG implementable

LI
wrt p, and satisfying the following conditions is called an
L-level data structure i. For every 2£=(Sr,ur)ezL, and
every level 1 and for every k, if i, jes§k¢{slkg}, then®

(i> MIN(S] )»(33(3<i, (3,1 eup;))). .. (a)

Condition (a), in the above definition, ensures that no
node, except the smallest node Slki(i.e. having the smallest
"i-index"), is present without the presence of at least one

of its 1-predecessors.

* Note that i and j in the above equation denote <1lki>
and <lkj> respectively. MIN(X) returns the element in X
with the 1lowest 1index value other than slkﬂ‘ Also
Sy k.1>51 k.= is true iff i>j.
r 14 ’ 'J



38

A "data structure configuration" is defined next.

Definition 2.11

For a given data structure Z;, an element zelp is a

data structure configuration.

In every L-level data structure, the configuration
({SL1g},p) is referred to as the empty or the starting
configuration, denoted by ¢. The eﬁpty configuration
implies that although a data structure is already defined

but no nodes have been "inserted" into the structure.

Lemma 2.3

Let 2 be a data structure, then ¢=({SL1¢}’p)€zL‘

_ Proof
By the definition of data structures, Z; is the largest
set of I-structures which is implementable wrt p. Therefore

¢eZ; otherwise Z; {¢} is the largest set.

Lemma 2.4

Let zL be a data structure. ZL is r.e.

Proof

The proof is essentially the same as that of lemma 2.2
and corollary 2.1 except that the condition (a) of
definition 2.10 is also imposed on equation (1) of the

proof. That is for ¢(IZ)=1, we must have the condition: for



39

every jesik, except if j is the smallest one, there exists
an iesik and (i'j)euik iff n(i,j) is satisfied. Note that

the condition (a) is decidable since Sik is finite.

Example

Consider a two level data structure , namely tree-of-
lists. Structures (a), (b), and (c) depicted in figure 2.3
are valid configurations, whereas (d) is not, since a lower
level structure cannot exist without its immediate higher
level (supporting) structure. This of course follows from
the definition of I-structure.

The family of p—exbressions p is <Py Py>y where
by (1<>2i) j (i<>2i+1) |

Pyt i<>i+1

Our notion of data structures" do not completely
specify the semantics of a data type. It only specifies the
relationship between’ the "data items{* In ofder to
completely characterize the "behaviour" of a data type, we
need operations to be performed on data structures. A pair,
data structure and its opefation set, yields a "data type."
A preliminary and informal definition of a data type |is
given below. A more rigorous definition will be presentéd
in the next chapter after we define the "Data Structure

Operations." A data type, t, is a pair (ZL,O) where 2 is a
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11

Figure 2.3
Data Structure Configurations.

L-level data structure, and O is a set of operations which

enable us to make transitions between elements of ZLQ

The set O will be referred to as the set of Data
Structure Operations(DSQ). 1t should be noted that for a
given data type, the number of levels L of its data

structure remains unchanged under any DSO operations.

Chapter 3 identifies the nature of the DSO operations

and a minimal set of operations which would universally
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specify data types. We shall see that, in the presence of
such wuniversal operators, some "fine tuning knobs" made
available to the user would suffice in order to specify the

particular behaviour which is desired.



CHAPTER 111

DATA STRUCTURE OPERATIONS

The behaviour of abstract data types 1is generally
determined by the operations defined on them. We shall
refer to such operations as data structure operations. A
major problem has always been to define a set of operations
in order to completely specify some desired behaviour. The
use of 1logical axioms and equations to specify data
structure operations(DSO) have been most popular in the last
decade. In almost all cases however, the techniques
deploying the axiomatic approach, have left the user with
some degree of uncertainty regarding the completeness and
consistency of the specification. Such problems are common
even in the case of simple and reasonably well understood

data types.

Data structure operations may, in general, be divided
into two categories: the characteristic set and the
auxiliary set of operations. The former characterizes the
behaviour, hence it includes the constructor operations and
operations concerning the access of data entities. The
auxiliary set contains operations that are not crucial to

the behaviour exhibited by the data type. For example in a

42
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stack, push, pop, and top are all elements of the
characteristic set. The auxiliary set of operations for
stack may contain operations such as is_empty or is_full.
It should be noted that the latter operations may all be
derived from the elements of the characteristic set, a

process commonly referred to as "enrichment.”

In this chapter a universal DSO set will be presented.
These operations are employed to define the characteristic
set of operations of a specific data type with the aid of
three types of first order predicate expressions.

Notation: Throughout this chapter for notational brevity as
well as clarity we have referced to nodes mostly by their
third index value m. In such cases the values of 1 and k
are either assumed or the argument presented may readily be
extended to nodes having different 1 and/or k values. Also
implicit in some of our discussions, will be the levels of
the underiying structure. In many instances the arguments
are presented either for 1level 1 only of an L-level Z-
structure or simply a 1-level structure 1is assumed. Once
again unless otherwise stated, we may readily extend the
arguments to the general case. Unless otherwise specified
all the Z-structures terminate with SSN. In order to
identify the traversal functions at a given level, we employ
the abbreviation described below. This would enable us to
express both the p-expression as well as the traversal
functions needed to decide the satisfaction of the p-

expression. I1f we assume that the underlying structure, o,
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has the traversal functions ty t2,...,tn associated with
it, then
- i<t (1) yeooy i<>t (i) replaces every occurrence of i<>j
in the p-expression. .
- i<, (1) U u i<#tn(i) replaces evefy occurrence of

‘wi<>j in the p-expression.

Using the above notation, we can explicitly state the
actual traversal functions associated with every level as
well as specifying the p-expression at that level. As a
final note, let a(i) be a first order predicate formula; we
say a(m)=true in the presence of some structure o iff o
satisfies . ali) with any assignment function s[i|m];

a(m)=false iff a(i) is not satisfied with s[i|m].

3.1- Characteristic Set of Operations

Every data type is required to have a set of operations
defined over 1its data structure in a manner which
characterizes the intended behaviour of the data type. For
example we are not allowed to delete a node from the middle
of a stack data type. As a result insertion and deletion
operations must ensure that no such illegal operations are
carried out. We shall see that due to the way we define
DSO's the "correct" configurations will always result.
Furthermore, the p-expressions may be wused 1in order to
assert the correctness of the DSO operations by Floyd/Hoar
approach to program correctness. For example p-expressions

may be employed as pre- and post-conditions before and after
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every data st;ucture operation respectively. Consequently
we would ensure that the structure remains intact. 1In
general, from an abstract point of view, we are interested
in developing some common characteristics exhibited by the
DSO's of all data types. We shall present certain
requirements to be possessed. by the élements bf a

characteristic DSO Set.

It will be shown that we can form all the
configurations of a data type using the "characteristic DSO
set." This philosophy is similar to the notion of the
canonical algebras and the constructor signature approach of

Goguen et. al., although we pursue a more general approach.

Before defining the elements of the characteristic DSO
(CDSO) set, the notion of "b-expression” is
introduced. These predicate expressions will be wused to
define "behaviour." Hence illegal insertion and deletion of

nodes in a structure are avoided.

A b-expression is a first order predicate calculus
expression whose function is to determine the "boundary
conditions" of an insertion or a deletion function defined
for a aata structure. For'example insertion into a full-
stack violates the boundary conditions of the push
function: deletion from an empty-stack is also inconsistent
with the boundary conditions of the pop function. Insertion
into the ‘miadle of a FIFO queue is another example of an

erroneous operation.
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The index of the node to be inserted(or deleted) has
to meet certain conditions. Such conditions are specified
by the b-expressions associated with the data structure. A
b-expression, b(i), defines the range of values that the
node index can take for insertion (deletion) purposes. Thus
if m is within the desired range, then b(m)=true; b(m)=falsé
otherwise. Clearly the satisfaction of a b-expression,
defined below, depends upon the underlying structure.
Consider a stack of depth 4. A b-expression associated with
this stack may, or may not, permit further insertion into
the stack depending on what the maximum length of the stack
is supposed to be. Let us assume.that the maximum permitted
length is 5. After one more insertion into the stack of
length 4, the b-expression would have to prevent any further
insertions. Thus the b-expression associaﬁed with a class
of structures must be able to dynamically convey, to the
system, sufficient information for insertion and deletion
purposes. Intuitively, a b-expression, b, defines. the
places where insertion (deletion) of a node is, or is not,

allowed.

There is always a possibly empty set of nodes that may
be inserted into a data structure configuration without
disturbing the intended behaviour of the data type. Such a
set varies with different cdnfigurations of a data
structure. Similarly, there always exists a finite set of

nodes that may be.subjected to deletion. Hence there exists

a variable set from which deletions can be made with respect
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to the configurations of a data structure. More precisely,
consider a configuration of a data structure z=(S,u) where S
is the union of all S,,, then we may define a "cogstruction
set" for each (slk’ulk) of z as follows. The construction
set of sik, Csik, is a subset of the total construction set
(TCS) for Sik defined below. Let m denote an element of
I°§kl and n denote an element of Sik, then

TCS§k={m: |=4t

1k
where s 1is any assignment function and S§k¢{slk¢}. If

p; with either s[ijm]l[j|n] or s[j|ml[i|n]}’
r-
TCS, ={S : m=MAX( S, )+1}
1k {S1km 1 Sla

where MAX(]JS,,)=] where SlkjeLJSIk and for all Sy, ;ellS;y.
j2i; also MAx({<1k1ﬂ>,<1k2¢>,..,<1kn¢>)=1, krzﬂ; and

MAX({})=1 where 1 is some integer greater than zero.

Corollary 3.1

For a given Sik' the set TCSik is recursive.

Proof

We can define a characteristic function ¢ such that
é(m)=1 if meTCS’i'k and ¢(m)=0 otherwise. To show that
meTCSik; we need to demonstrate the satisfaction of:

I=°§k p; sli|m]lj|n] or I=°§k p; sliimlli|n]

’ i and j are the two free variables, if any, that may
occur in a p-expression p;- .
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By lemma 2.1, this problem is decidable. Hence the
characteristic function ¢ is computable. Therefore, TCS§k

is recursive.

Trivially, a ;otal destruction set ofta Sik is the set
Sik less the empty node slkﬁ’ But more interesting is the
set of nodes permitted for deletion from a given
configuration, the latter will be referred to as the
destruction set(DS). The "b-expression for deletion™ would
define the exact subset of Sik which is equal to the Dsik.
Let us now define a "b-expression" for a data structure Z.
In chapter 2 we pdinted out that a data structufe z'may be
equipped with a set O of "insertion" and "deletion" as well
as some other functions of interest. The insertion and
deletion functions enable transitions from one configuration
of Z to any other configuration, in 2, by addition or
subtraction of nodes. The b-expressions help us to

determine the domain of these functions.

Definition 3.1

Let wff denote a well formed formula of first order
predicate calculus. Then a b-expression well formed
formula, denoted as bwff, is defined as a universal wff in
which there exists exactly one occurrence of a free

variable.
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We shall deal with two types of b-expressions for every
level 1 of a data structure: b-expression for deletion, bé,

and b-expression for insertion, bi.

The satisfaction of the b-expressions is essentially
the same as that of pwff's. Consider a structure oik as
defined in chapter 2. Let the range of values of the free
variable, i, be Tcsikgloikl, and the range of values of all
the other variables be Sik' 1f TCSik is empty then the b-
expression is not satisfied with any s. Recall that ¥

refers to "for all elements in Sik."

Definition of the satisfaction of b

same as that of b{

é is exactly the
above, except that s maps all the

variables, including the free variable i, to Sik.

Now using the two b-expressions mentioned above, we may
define the two sets: the construction set and the
destruction set for Sik:'°

csf ={i & bI(i)}

Dsf ={i : b3(i)]
For every data structure we associate a b-expression bi (bé)
for insertion (deletion) at level 1, for all 1levels 1<L.

Then for every level, we may associate CS's and DS's for

every Sik at that level using the above definition.

1o A={i : (i)} denotes that for every value of i, say m,
that a(i) is satisfied with, then meA.
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Lemma 3.1
Given a structure oik, it is decidable whether b% (bé)

is satisfied, or not, for a given s.

Proof

The proof is the same as that of lemma 2.1. Note that
here we have added a domain, TCSik, to our universe of the
structure. However, since there are no quantifiers over

Tcsik, therefore the satisfaction problem is decidable.

Using the above result, it becomes a trivial task to
determine whether for a given structure, (Slk'ulk)' in a
configuration of a data structure, a certain node index is,
or is not, in its construction set. Let 2 be a data
structure and let b%(i) ( bé(i) ) denote the associated b-
expression for insertion (deletion) at 1level 1 of ZL.
Consider now a set Sik at 1level 1. Define the
characteristic function for Csik as follows:

$(m)=1 iff bl(m)=true
=0 otherwise
Since the satisfaction of the b-expression is decidable for
a given s, ¢ is computable. 1In other words for every Sik,

r r . g r
CSlk (Dslk) is a recursive set. It also follows that CSlK

is r.e.

Example

Consider a configuration of the list data structure
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Sqqr where the p-expressioﬁ is i<>i+1:!
12 3 4

The question is whether a node indexed <1,1,675> (say) is an
elemenﬁ of Cs,,? This is not the case since there exists no
isS11 such that i+1=675 or 675+1=1, see definition of TCS.
Hence <1,1,675> 1is not an element of TCS11. Therefore
$(<1,1,675>)=0. Now consider a node <1,1,5>, abbreviated as
5; by the same argumént we would find that ¢(5)=1. Hence
5eCS ;. Finally consider a list data structure.where the
length of its elements must be less than or eqgual to four
nodes. Such a restriction, on the 1length of the
configurations, is imposed using the b-expression for
insertion, viz. b}EiS4. Then although 5 is an element of

TCS11, 5¢CS11, since the b-expression for insertion, i<4,

would yield b1(5)=false.

Before we define functions for insertion and deletion
of nodes it ‘is necessary to introduce the notion of
accessibility 6f nodes. This is essential since insertion
and deletion functions must be restricted only to the

structures that are contained in "accessible" nodes.

1 Note that for all the nodes <1lki>, the value of 1 and
k is fixed, i.e. (1,k)=(1,1). Hence a node may be referred
to by its third index i. Henceforth we may write relations
such as <lki>2, where S,,. is a node and 1 is an integer.
This relation merely impli%gl i2y. Same approach may be
adopted in case of functions; for instance slki+1 denotes

Slki+1. ) ¥
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The issue of data access and security has gained
considerable importance in the study of data base systems as
well as the operating systems. In order to incorporate this
concept into our model, another function of crucial
importance is introduced, namely the probe function. The
purpose of a'probe fﬁnction, as suggested by its name, is to
enable the user to have access to various nodes in the
structure. However an important issue is whether every node
is permitted for access or not. In the stack, for example,
the only node which is permitted for access is the top node.
This may also be the case in a queue data type where the
"front”™ node is the only node accessible. 1In contrast.in an
array data type one may probe any one of the nodes in the

structure.

An abstraction of the notion of the accessibility of
nodes may be carried out by means of a certain kind of
predicate expressions described below. With every data
structure, Z;, we may associate a family of first order
predicate formulas, namely the a-expressions. An a-
expression defines the set of nodes which may be accessed in

every configuration of that data structure.

The well formed formulas of the a-expressions, denoted
awff, are the same as bwff's. The definition of their
satisfaction in the presence of a structure oik (defined

earlier in chapter 2) is exactly the same as that of bé with
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the following exception. Let al(i) denote the a-expression
at level 1, then oy, satisfies ul(i) with s if

al(i)s AND if 1<L then oy, satisfies a1+1(j)

|=
Olk 3|

with S[jlsl+1'q,k] for some g.

For every level 1 of a data structure Z, . we associate
an a-expression, al(i). The above definition  of
satisfaction of the a-expressions implies that, to access a
node at level 1, one must have access to all the other nodes

at levels 1+1 and above that contain the desired node.

We are now in a position to define the three types of
functions that comprise the "characteristic data structure
operation set.” The i-function is defined first followed by

the d-function and the p-function respectively.

Definition 3.2

Let z=(S,u), z'=(S',u')eZL, where ZL is a data
% be the b-expression for insertion, and

oy be the a-expression, associated with level 1, 1£1<L. A

structure and let b

primitive insertion function (i-function) is a partial

mapping: 3
' 1 :ZLxN .>2L

where 1(z, 1, k, m) is defined and ‘equal to z' if the

following conditions hold at level 1; let k,m21:'?

12 This equation denotes: insert a node indexed m at
level 1 of the configuration z in node k of the (1+1)th
level. The resulting configquration is z'; and the inserted
node 1is 1labeled S'km' Note that, the primed sets and
symbols refer to t%e new configuration. Double primed
symbols are merely "temporary" variables.
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1l,. . . . . . .
1) bl(l) is satisfied with 01k with s[1|Slkm],

2) If 1<L then 01+1

.q satisfies “l+1(sl+1,q,k) for some q,

3) Sygm#S1k-

8) If'*

then-

Slkm>MAX(Slk)
Let S"=SU{Slkm}. Renum?er the ?odes at level 1 of
S" starting with the structure contained in all the
1-successors of k and all the structures contained

in nodes for any «k such that g>k. The

Sl+1,K,q
renumbering is done using the convention of

definition 2.2, such that for every slq’ whose
elements are renumbered to get S"lq'
(qu'ukq)z(s s Aq)' Note that the renumbering.

would not affect the l-index(level indicator) of the

nodes. Also SX=S N for 1<)<L and SAK=S Ak for =1

and k<k. S' is then assigned to be the same as S".

else- S'=SU{slkm}.

5) C(Sikm)=2

undefined if 1=1 & I terminates with SSN,

=C 3
-51-1,m,¢ otherwise.

Example

An
S

Py

i~-function for the stack

{Sy117 S1127 S1137 Sqq4}
i<>(i+1)

1(21111:5)"2'

Si= (811, S{yps S

51120 S113r St1ar Sirs!

13

MAX ( Slk ) means the node slkieslk such that for all

S1kn€S1kr 12n-
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<(s

¥
W=y 11475115

(S} (S

u1 =<( 111' 112) (8112' 113) 113' 4)' 114" 315)>

bl(i): vi(j<i)
For i=5, the above b-expression is satisfied. But for any
value other than 5, bl(i)=false. For values of i26 the node
cannot be inserted since it violates the definition of data
structures which requires a predecessor of the node to be
present. In other words, for the given configuration,
s(i)=6 is not an element of TCS,,, consequently 6¢CS .
Note that in the above insertion, since we are dealing with

a 1-level structure we do not need to be concerned about the

accessibility of the structure.

Another component of a characteristic set of

operations is a deletion function.

Definition 3.3

A primitive deletion function (d-function) is a partial

mapping: (following the same notation as in definition 3.2)

. 3
50 ZLXN -sz

where §(z,1,k,m) is defined and equal to z'=(S', u'), if the
following conditions are satisfied:'*
1) bé(i) is satisfied with o, with s[i|s;, 1,

2) If 1<L then 0141 satisfies a1+1(51+1 q k) for some q,

g

4+ The deletion equation denotes: delete the node at
levels% of configuration z,indexed m, 1in node k of the
(1+1) level.
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3) sucset(S;, )=¢ AND s;,. contains either S1-1,m,g ©F
Zyndefined’
4) If Sy <MAX(S;,)
then- Let S"=S_{Slkm}U{Slkﬁ}' Renumber the nodes at level
1 of S" starting with the structure contained in all

‘the 1-successors of k and all the. structures

contained in nodes S, for any k such that g>k.
14

K,q
The renumbering is done using the convention of

definition 2.2, such that for every Slq’ whose
elements are renumbered to get S"Aq’
(qu'“xq)z(s i Aq)' Note that the renumbering

would not affect the l-index(level indicator) of the

nodes. Also SA=S" for 1<)<L and SAK for =1 and

A
k<k. S' is then assigned to be the same as S".

e]se- S’ =S-{Slkm}U{slkg} °

The i-function described above restricts insertion only
to those nodes which are not already in the structure.
Likewise the deletion function may only delete the nodes
with no successors. In certain cases where such
restrictions are not acceptable we may use the i- and d4-
functions described in appendix D. Iﬁ any case, as it will
be demonstrated later on, one may define other functions

using the primitive i- and d-functions.

A probe function, defined for a data structure ZL, is

any function whose codomain, for every configuration



57

z=(S,u)sZL, ié S. There are many different probe functions
that one may define for a structure Z;. The range of values
of a probe function would always be a subset of the existing
nodes in any given configuration of . In every
configuration, zelp, for every level 1, every structure
(Slk'ulk) is assbciated'with the same set of probe functions
defined for that 1level. Consider a tree data type, there
are many different probe functions that one may define for
it. For example a function that always returns the leftmost
leaf node in a given configuration of the tree is a probe
function; so is a function that given a node Slkm returns
one.of its 1-successors. In order to be able to define such
functions in general, we 1introduce the notion of the
"primitive probe function." A primitive probe function may
be considered to be a tool by means of which one may

"correctly" define other probe functions.'?®

Given a configuration of a data structure and a node,
S1ki in that structure, the primitive probe function returns
a node, slkj' of that structure only if the latter is
allowed access by the appropriate a-expression. In the
binary tree data type, a possible probe function would be
one that given a node as one of the arguments of this
function, it would then return one of its 1-successors.

Therefore with two primitive probe functions, one returning

s The correctness of a probe function is decided by
whether the value of such function satisfies the a-
expression for the structure or not. More will be said
about this later in this chapter and chapter 5.
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the left child and the other the right child, every binary
tree configuration may be "scanned." Our choice of the
primitive probe functions is arbitrary, and not every probe
function does, or should, necessarily return the I1-successor
of its argument. In a stack data type, say, not every 1-
successor of every nbde is to be accessible. For instance,
consider a configuration of depth 4 of the stack; if the
probe function were to return the 1_successor of a node then
the 1;successor of the node indexed 2 is 3. Since 3 is not
the top node it 1is therefore not to be accessed. It is
conjectured that using the following definitions of the
primitive probe functions, one is able to define any other
probe function such that all the nodes permitted for access

may be probed.

Definition 3.4

Let Zp be a data structure, and al(i) be the a-
expression associated with 2, at level 1. A primitive probe
function (prfunétion), at level 1<L, is a partial mapping:

Py ¢ ZLxS-»S
such that for any Sy, eS;, and z=(Slk,u1k) if
P1(2,Sy1yn)=S1y, then S;,,eS;, and
01k satisfies ai(i) with s[ilslkn],

pl(z'slkm)=slkﬂ otherwise.

It should be noted that not every node argument, S;,.

in the above p-function, causes the function to return a



59

value slkneslk' n#d. This was illustrated in the above
stack example. In addition S1km itself is not necessarily
in the range of the p-function. It may be any arbitrary
node in Sk~ The only important issue is whether the value
of the function, viz. Sikn" satisfies the a-expression or
not. I1f these conditions are ﬁot satisfied then the p-

function evaluates to the empty node Slkﬁ‘

Example

First consider the list and the binary tree data types.

The p-expression ( for the sake of brevity, assume a 1-level
structure) for the list data type may be defined as: i<>i+l.
To define a "p-function; for the 1list we employ Church's
Lambda-notation (see appendix C), so tﬁat the p-function of
the list is p(z,i)=xi. (i+1). This function takes a node,
i, and a list configuration z as its arguments and returns a
node labeled (i+l) corresponding to its 1-successor, if any,
in z.'¢ For the case of the binary tree data type; The
corresponding p-functions are:

p-functionL(z,i)=xi. i=@+1, 2i

p-functionR(z,i)=xi. i=@s1, 2i+1

The a-expressions for both the list and binary tree are i21.

v Note that the p-function and the p-expressions are
not necessarily related, as implied in this example. In
majority of the cases, however, this approach enables one to
use these p-functions recursively in order to enumerate the
set of all nodes which are accessible. Also a node <lki> is
represented by i, since 1 and k are assumed fizxed.
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Nexf‘we léok at the p-function for the stack data type:
This is defined recursively, so that it always yields the
"top" node of the stack. Assume 1 and k are fixéd, then
p(z,i)= xi. Vvj(izj)+i, p(z,i+1)
Clearly the expression V¥j(i2j) is satisfied in the presence
of cik if s(i) is equal to the "topmost" node in some Sik'in
z. This expression is indeed the a-expression for the stack

data type.

A node <1,k,m> of a data structure configuration, z, is
accessible at level 1 iff {1,k,m>eR§k, where Rik is the set
of nodes {i: al(i)} and al(i) is the a-éxpression associated
ﬁith level 1 of =z, For example, for every stack
configuration (Slk'ulk)' the set of accessible nodes 1is:
{i: vj(j§<i)}. Similarly for an array configuration,
(Slk'ulk)' R§k={i: i21}. It is needless to say that the
predicates defining the latter two sets are the a-
expressions for the stack and the .array data types

respectively.

The notion of accessibility of nodes is particularly
useful in the area of maintaining the integrity and security
of data in a data base environment. For example consider a
set of data items shared by many users. In such an
environment each user (or group of users) may have his own
a-expression associated with the data in a manner that would

confine him to his own allocated area(s). Such an
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arrangement implies that the given set of data items would

behave differently to each user.

Three types of primitive functions have now been
identified. To characterize a data type these functions are
. put together to form a "characteristic operation set" of

that data type.

Definition 3.5

A Characteristic DSO Set (CDSO), V¥, with respect to a

data structure zL, is defined as a set:

Py=1..D..P
where, o

- I 1is a set of i-functions, il, one for each level 1<L of
ZL.
- D is a set of d-functions, dl, one for each level 1<L of
le
- P is a set of p-functions, p;, one or more for each level
1<L of ZL,
such that for every z#({SL1¢},p), if glreIUQ and
z=gl (lolglz(gl1(¢'11’k1'm1)112,k2,m2).|c'ln,kn,mn)
n
is defined then for every 1 and every k, the destruction set

DS?“.k is non-vacuous.

So far we have talked about three types of predicate
expressions: p-, b- and a-expressions. These expressions
may be associated with different levels of a data structure

in the manner described earlier. We shall refer to these
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predicate expressions, associated with each level i, as the

base predicate expressions(set), I, associated with that

level 1 of ZL.

3.2- A Definition of Data Types

In chapter 2 the notion of data structure was
introduced. In the preceding section we presented a set of
operations that may be associated with a data structure.
Using the elements of this set of operations one may make
transitions from a configuration of the data structure to
another. Recall that 2 is the largest set of ZI-structures
which is implementable wrt some family of p-expressions bp.
We are often interested in only a subset of Z. That is only
those configurations in 2 that are "valid" configurations.
For example if we are interested in list configurations of
length less than 10 (say) then only a subset of the set of
all 1lists 1is of interest. Let us now present a definition

of data types.

Definition 3.6

Let 2 be a data structure and ¢ be a CDSO set defined

wrt Z, then t=(Z,y) is a data type.

Definition 3.7

Let t=(Z;,), then a configuration of t is a pair (z,V)
where zel; is a data structure configuration and ¢ is the

set of DSO's.
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Let us now introduce the concept of reachability of the

elements of a data type.

Definition 3.8

Let z, z'eZ;. Let G=I,D denote the set containing i-
functions, i, and d-functions, d, of y defined wrt ZL. Then
z' is reachable from z wrt {, denoted z|-¢z', if for some
geG and 1, k, meN:'’

1) z'=z or
2) z'=g(z,1,k,m), or

3) z"|-¢z and z'=g(z",1,k,m)

Definition 3.9

Let t=(z,y) and t'=(z',y)et;'* then the reachability
relation(p-relation) on t is:

p={ (t,t'): zl-wz"}

In some cases where ¢ is understood, we may say (z,z')

is in the p-relation if (t,t')ep.

Lemma 3.3

17 z=z' means S=S' and u=u', where =2z=(S,u) and
z'=(Ss',u'"). :

'8 t=(z,}y)ect denotes zeZ, where t=(Z,y).
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Let t=(Z,y) be a data type such that for zeZ and every

1 and k, 01k satisfies the b-expression for insertion,

b{(i), with every s(i)eTCSlk, and oy, satisfies the a-

expression, ay, for every 1 and k, then z is reachable from

¢ wrt .

Proof
In order to simplify the discussion, we shall only
consider a single-level structure. The proof for the

general case follows in a straight forward manner.

In chapter 2 it was shown that, every data structure 2
is recursi&ely enumerable. Using this fact we can show that
every z=(S,u)eZ, 1is reachable from ¢ wrt y. We employ an
inductive argument on the number of nodes in the

configuration z=(S,u).

Let z" denote the configuration (Sn,p) where n denotes
the number of nodes in S" other than the empty node S11¢.

Then zg=({s11g},p) is indeed reachable from ¢ by definition.

Let us now assume that for every configuration, zn-1,

n-1

with n-1 nodes, 2z is reachable from ¢, then the question

is 1if every zn=(Sn-1U{S11j},p)eZ is reachable from ¢. Let

n-1

n—11p)=z ’

z“=(s“’1u{s11j,p)ez, and let us assume that (S

n-1

then 1i(z ,1,1,j)=zn. The latter equality is true, since

811j must have satisfied the p-expression with some existing

node of z" ! otherwise z"¢2. This is of course a

contradiction. Therefore S11jeTCS and also S11jeCS of zn—1,
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recall that the b-expression is also satisfied. Hence by
the definition of i-function zn=i(zn_1,1,1,j). Therefore z"

is reachable from ¢.

Using the above 1lemma, we ‘can immediately say the

following.

Corollary 3.2

' ' : 1
Let t=(Z;,¥); let ¢|—¢z =(s',ple2;, if bl(Slkm)=true
and a1+1(51+1’q’k)=true for some q and 1<L, then

¢I—¢z=(S'U{Slkm} ' b)eZL.

Corollary 3.3

Let t=(Z,y) be a data type; for every zeZ if ¢|—$z then

z|—¢¢.

Proof

The proof is a consequence of the definition of 4.

Theorem 3.1

Let t=(Z,y) be a data type. The reachability relation,

p, defined on t is an equivalence relation.

Proof
The transitivity and reflexivity follows from the
definition  of p. The symmetry 1is a consequence of

corollaries 3.2 and 3.3.
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So far we have been examining a global view of data
types. In the next section we shall delve into the

properties possessed by each data type.

3.3- Data Types as Lattices

In section 3.2, it was shown that some elements of the
structural component 2, of a data type t=(Z,y) may be either
é or i(z',1,k,m) where iey, z'eZ and z' is reachable from $.
These elements of 2 may be represented in terms of the
elements of the corresponding "word algebra", also known as
the Hénbrand Universe. For example a stack of length 3‘may
be represented by its i-function, PUSH, namely:
PUSH(PUSH(PUSH(¢,1),2),3). Similarly a binary tree

configuration may be represented by i(i(i(¢,1),2),5).

Consider a data type t=(Z,y), then the word algebra,
WORD(y)=(W,y), of t 1is defined as follows. For each
constant in Z there exists a term f,eW of rank zero. Also
for each non-negative integer there exists a term foeW of
rank 0. The elements of rank zero are called the
generators, or alphabet, of the word algebra, WORD(y). For
every i- and/or d-function f4e¢, f4(x1,x2,x3,x4) there
exists an element of W defined as any expression (also
called word or term) of the form f4x1x2x3x4 of rank m, where
m is a positive integer, and there exists at least one X of

rank m—1 and no X 1<i<4, with rank greater than m-1. It
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should be noted that for a data type t=(Z,y), there exiéts
only one constant, namely the starting configuration ¢. The
alphabet of the corresponding word algebra would then
contain the generators correspbnding to ¢ and the elements
of the set of non-negative integers N. From now on, fo; the
sake of claritf, we have taken the liberty of using the
symbols ",", "(" and ")" in the representation of the terms

of the word algebra.

Using the above representation, there are many terms of
the word algebra, of a data type t, that represent the same
configurations of t. Only one representation of such terms
would be desired. & Consider for example the term
push(pop(push(4,1),1),1) which represents the same
configuration of a stack as push(¢,1) does. Under such
circumstances we are only interested in a single
representation. Let Wt represent the set of terms W-R(N),
where t=(Z,y) and word(y)=(W,y) and R(N) is the set of
elements of rank zero representing the elements of N. ' The
set W, contains one or more terms that correspond to some
configuration zegZ. Also in L there are certain terms that
do not make any sense as far as t is concerned. In other
words they do not represent any of the elements of Z that
are reachable from ¢. For example we may have a term in W,
where t is a stack (say), in  the form of
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pop(pop(pop(¢,2),4),5).'* Such a term does not of course

make any sense in the stack data type.

As pointed out above there may be more than one way of
representing a configuration of a data structure using the
corresponding word algebra. .In order to have a unique,
representation for every data structure configuration of a
data type t, an equivalence relation is defined on Wi this
relation will be referred to as the "v-relation.” A v-
relation, v, partitions Wt into egquivalence classes
resulting in a gquotient set wt/u‘ The definition of v on L
will be presente§ shortly after we distinguish between the
t&o 'kinds of terms that 6ne may find in wt, viz. either the
"non error" kind or the "error" kind. The non-error terms
are defined recursively as follows:

1) ¢ is a non-error term,
2) g(t 1 km) is a non-error term if t is a non-error
term and g(t,1,k,m) is reachable from ¢, where t is

the corresponding value of t in 2,2°

3) There are no other non-error terms.

The set of all the non-error terms is referred to as
NET. Clearly NETth. The second category of terms in LA
namely the set of terms t¢NET, as noted earlier, are the

error terms. The set of error terms in wt, where t=(zL,¢),

1 The 1- and k-values for the node indices are assumed
to be some fixed value, hence not specified.

2o For a term g(t,1l,k,m), g(t,1,k,m) denotes the value
of the function g.
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may be generated as follows. Let g, be either an i-

]
function or a d-function in ¢, where 1.<L. Then

]
t'=g1.(t,l,k,m) is an error term, and is referred to as an
overflow term if at least one of the following is satisfied.

- g;. 1is an i-function and t is reachable from ¢ and t'
isjnot reachable from Et. |
-t is not an underflow term (see below) and not
reachable from ¢ and g, 1is an i-function.
- t is an overflow term. ?
Similarly, t'=gl'(t,l,k,m) is an error term, denoted as an
underflow term, if one of the following is satisfied.
- g, is a d-function and t is reachable from ¢ and t' is
nog reachable from t.
- t is not an overflow term and not reachable from ¢ and
9, . is a d-function,
-t gs an underflow term.
In summary, there are two types of error terms: the

overflow and the underflow. The former set will be denoted

as OFT and the latter will be referred to as UFT.

Let us now define the v-relation. Let t,, t,oeW.;
t1 v t2 iff either
1) Both t, and t, are non error terms and E1=Ez,." or
2) Both t, and t, are overflow terms; or

3) Both t1 and t2 are underflow terms.

24 t1=(S1,ul) = t2=(52.U2) means S,=S, and u,=u,.
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1f (t1,t2)eu, then this may be denoted as "t1 is vu-
equivalent to tz." It is obvious that the v-relation is an
equivalence relation. Hence W, can be partitioned 1into
equivalence classes. To choose a representative for each
class and to be consistent in our approach, we select a term
of that class'kho&n as the "minimal form" of the terms in
that class. A minimal form(MF) of a term, t, representing a
configuration, 2z, 1is a term tyur which is free of redundant
deletion or insertion function symbols. We shall shortly
demonstrate that for every data type the underlying system
is "Church-Rosser" [CHU 36, ROS 70, SET 74]. Hence every

non-error term may be- condensed to a unique MF.

In order to have a formal notion of MF, and indeed to
show the existence of such a unique representation for each
confiquration, we adopt the following approach. A
replacement system, (W,=>), 1is a set of objects and a
transformation on the objects[SET 74]. Let us assume that,
for our purpose, W is the set W, , where t=(2,,¥). Define =>
as a transformation on W_ as described below. Let

t

t, ty, tzewt, and 9, denote either an i-function or a d-
function symbol, then t, reduces to t,, or t=>t,, if at

least one of the following rules is satisfied.

Rule 1:
t1=d1(g1n(..911(i1(t,l,k,m),11,k1,m1)..),1n,kn,mn),l,k,m)
and

t2=gln(..911(t,l1,k1,m1)...),ln,kn,mn) AND t,s, t,eNET.
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Or Rule 2:

t,=1, (...1
1 ln 12
wvhere teNET and there are no instances of a d-function

(111(t,11,k1,m1),12,k2,m2)...,1n,kn,mn)sNET

symbol in t1, and

t2=;ln‘...111(112(t,12,k2,m2),l1fk1,m1)...ln,kn,mn)eNET |

such that at least one of the following conditions is

satisfied:
i) 12>11.

ii) 12=l1 and k2<k1

iii) 12=11 and k2=k1 and my<m, .

Or Rule 3:
£1eOFT (UFT) and t2=oft(uft), where oft(uft) is any one of

the terms in OFT(UFT) which may be selected arbitrarily.

The following theorem shows that when a non error term
t, reduces to a term to, the value of the term does not

change, i.e. 1f t,=>t, then t,=t,.

Theorem 3.2

Let t=(zL,w) be a data type, and let t,, t,eW, be non

error terms; if t,=>t, then E1=Ez.

Proof
There are four ways of performing a reduction. These
are considered separately below.
i) let g; denote either an i-function or a d-function at

level 1; and let

t1=dl(gln(...gll(il(t,l,k,m),11,k1,m1)...),ln,kn,mn),l,k,m)
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and

t2=gln(...gl1(t,l1,k1,m1)...),ln,kn,mn)
Let us now assume that the set of nodes 1inserted 1in the
configuration represented by t, is S;» and let the set of
nodes that are deleted in t, be Sj. Then E1=(Si—Sd,p),
where D 'is the family of'p-expressiohs associated with .

Similarly, the value of t, is

E2=(si-{slkm}-(sd_{slkm} ) ,p)=(si"sd,b)=t_:1

ii) Let t1=i1n(...112(111(t,11,k1,m1),lz,kz,mz)...ln,kn,mn)

where there are no occurrences of a d-function symbol in t,.
I1f 12}11 and . ‘
t2=11n('"111(112(t'12'k2'm2)'11'k1'm1)"'1n'knfmn)

then we want to show that E1=Ez. Two cases are considered:

a) Slz'szmz contains a structure 1in which 511,k1,m1

occurs. This cannot possibly be the case, since it
implies insertion of a node without the presence of
its supporting node.

b) S does not -contain a structure in which

12,k2,m2 :

S occurs. In this case the two insertions are
lyoky,my

independent in the sense that if the higher level node
is inserted first, with the insertion of the lower
level node next, it cannot possibly alter the value of

the term t1.

iii) Let t, and t, be as in case (ii) above and 12=11,

Commuting il and il does not alter E1 because of the
1 2 b o
following. The node S is inserted after Sy & in

2rkgimy prkqomy
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t, where k,<k,, the latter implies that m,<m,. Consequently

if m,<m, and 312'k2'm2 then
it can surely be inserted before it without changing t

caq be 1nserted after 511,k1,m1

1.

iv) Finally, consider the case where l1=l2 and k1=k2 which

is similar to that of case (iii) above.

We can also think of => as a binary relation on W, i.e.

0

t,=>t, may also be expressed as (t,,t,)e=>. Let =>" denote

.

the identity relation, and let =>1= =>.=>1—1 for all i>0,

where "." denotes composition of the two relations => and

_,i-1 1

, i.e. if x=>y and y=>""2z then x=>1z, The reflexive

#, is given by =># =>OU=>. The

, is given

closure of =>, denoted by =>

reflexive transitive closure of =>, denoted by =>*

by I N S e ... . AN element teW, is irreducible or
U U U t
in minimal form(MF) wunder => if there is no t' such that
t=>t'. The completion of =>, denoted by =>" s
{(x,y) : x=>*y and y is irreducible }, and if (x,y)e=>" then
y is the MF of x. A replacement system, (W,=>) is finite if
for all xell, there is a constant kx such that if x=>1y then
i<k, [SET 74]. Finally, a finite replacement system |is

Finite Church-Rosser(FCR) if =>" is a function. Note that

the latter implies a unique MF for every element.

Theorem 3.2

Let t=(2Z, ¢) be a data type and (W =>) be the

t'

corresponding replacement system. (W_, =>) is Finite Church-

tl
Rosser (FCR).
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Proof
To show (Wt, =>) is FCR two conditions must be
" satisfied(see Theorem 2.1 in [SET 74]):
a) (W, , =>) is finite, and
b) for all ZyrZiW,X in Weo if z, and z, ;re equiva;ent
and 2z,=>W and zz=>#x imply that for some y and i,
where y is equivalent to z, w=>*y, and x=>%z. This is

shown pictorially figure 3.1.

= implies v-equivalence.

z, =% 2,
#

W X
* *
Y = z

Figure 3.1.
Reachability of Elements in 2.

To show that the above condition (a) is satisfied,
consider the 4 types of reduction that may be performed on a
term teW,. The number of times that the reduction rﬁle 1
may be applied on t is bounded by the number of d-function

symbols in t. The number of times that the reduction rule
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2(1) may be applied on t is also bounded by a constant
multiple of the number of i-function symbols in t less the
number of d-function symbols. And indeed the remaining two
types of reduction are bounded by even a smaller number than
that of 2(i). Hence for any given term t the total number

of reductions is bounded.

To show the satisfaction of condition (b) consider
Z,,Z,eW, such that z, is v-equivalent to Z,. Therefore if
z1=(S1,u1) and zz=(82,u2), then (S1,u1)=(52,u2). If z,=>w,
where w=(Sw,uw), then (Sw,uw)=(51,u1). This is true since
the => transformation does not affect the underlying
structure represented by z,, namely its:value. By the same
argument, §=(Sy,uy)=(sw,uw)=(s1,u1) and
z=(Sz,uz)=(Sx,ux)=(52,u2). Therefore (Sy,uy)=(sz,uz), i.e.

y and z are u-eQuivalent.

As a result of the above theorem, we conclude that,
fhere exists a unique minimal form that every term of a data
type may be reduced to. Clearly all the terms reducing to
the same MF are members of the same equivalence class of wv.
For example a stack configuration of 1length 3 may be
represented by any of the following formulas, where i
denotes the push function and d denotes the pop function,

d(i(i(i(a(i(i(4)))))))
1(1(ai(i(9)))))
1(i(i(4)))
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The latter form represents the MF, and would be
considered as the representative of its own v-equivalence

class.

Finally let W, denote an epimorphic image  of

NETUUFTUOFT. containing all the MF's of the elements of Wi

such that we contains exactly one element, the MF,

corresponding to each equivalence class of wt/u‘ Thus we
contains oft, which is the image of all the elements of OFT,
and exactly one element, uft, which is the image of all the
elements of UFT; and all the MF's of the elements of NET.
Note that this mapping is no more.than the completion of =>;

i.e.

w.={y : x=>'y & xeW, }

0

With the above set of terms,'we, we can define a word
algebra of minimal forms, namely (we,w), as follows. Let
typ denote the MF of teW,, then if twre¥yg and g is either an
i- or a d-function in ¢ then g(tMF,l,k,m)=tﬁF,” where
t'=g(tMF,1,k,m)ewt. We may now show that for every element
ze2, of a data type t=(Z,y), one can find what its

corresponding minimal form representation is.’

Lemma 3.4
Let t=(Z,y); for every z=(S,p)eZ we can decide what its

corresponding MF representation, tswe, is.

22 Note that we have used the same function symbols for
both (W_,y) and _(We,w); the context should remove any
ambiguiEy. ‘
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Proof
Let z=(S,p) and let ty, denote the MF of t. Construct

typ @s follows: if S={Slkﬂ} then tMF=¢’else starting with
the nodes slkmss with the largest first index 1 in S, write
1, where .
1=1(...i(i(¢,1,k1,m1),1,k2,m2),...,l,kn,mn)
such that k,s<k,<...<k and m1$m25mn.(1n case of ambiguity
the k-index has the higher precedence.) Next select the
nodes Sl-I,k',m'es’ if any, and write 1' as follows:

T'=i(...i(1,l—1,k',m%),...,l-1,kﬁ,m6)
Repeat the above procedure until all the nodes in S are
exhausted. The resulting term, t, is in MF since the above

node selection process is no more than the application of

rule 2 of reduction discussed earlier.

Test to see if t is reachable from ¢ wrt ¢y. It should
be noted that if the insertion is made in the sequence of
nodes in t, then t is not necessarily reachable from ¢ in
that sequence. Thus testing fog reachability myst be such
that if there 1is a "valid" way to get to t then t is
considered reachable irrespective of the sequence of nodes
in its corresponding MF. 1In general if t is given, form the
set S={Slki:<1,k,i> occurs in t}. By lemma 2.2 we can

decide if (S,p)eZ or not, if it is not in Z then t,.=oft,

MF
else proceed as follows. For every intermediate term 1, T1',
™",... and finally t we can perform the reachability test as
prescribed below.

test T to see if T is reachable from ¢, if so
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test 1' to see if 7' is reachable from ¢, and so on
At each stage to see if 7" is reachable from ;n—1, test for

U but not in Tn_1, all

every 1 and k values, that occur in 1
the possible sequences of insertion of the node indices for
a given 1 and k. If for at least one segquence " is

-n-1

reachable from <t then 13F¢oft, i.e. T&F may be obtained

by the above procedure.

Finally the fact that t is unique follows from theorem

3.3.

Theorem 3.4

v is a congruence relation on (Wt,w),

Proof
v is obviously an equivalence relation. To show that v

is also a congruence relation it must be demonstrated that
it exhibits the substitution property. Assume tut', i.e. t
and 't' are v-equivalent; then the claim is that

t=g(t,1,k,m) v t'=g(t',1,k,m)
where g is either an i-function or a d-function in 4. Now,
since tut' then t=t', therefore

T=g(t,1,k,m)=g(t',1,k,m)=1"
But if T=7' then Tut', i.e.

g(t,1,k,m) v g(t',1,k,m)

Note that if T is an error term then t' would also be

an error term of the same nature, i.e. they both would be
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either overflow terms or underflow terms. As a result T

would still be v-equivalent to T1'.

Notation- In the following discussions i*z2 implies an
application of a sequence of length zero or more
of the samelor different i-functions. Similariy.
in d*z1, d* denotes zero or more applications of
d-functions. Also i¥ (d% denotes a sequence of at

least one i- (d-) function. Such sequences of all

i-functions (d-functionsi are referred to as i-

monotonic(d-monotonic). A bitonic sequence is

obtained as follows. A monotonic sequence is
bitonic; if By and B, are bitonic then B=B 4B, is
also a bitonic sequence. The node indices <1,k,m>
may be dropped for notational brevity in places
where the ambiguity 1is not important. Thus,
i(i,l,k,m) is denoted by i(z) or iz. Finally we

may use (ik)j to denote a séquence of, possibly

distinct, i-functions of length k.

Lemma 3.5
Let t=(2z,y) be a data type. Every term teNET is vu-

equivalent to a term i*¢ewe.

Proof
The set We contains the MF of every term teNET.
Consider a term teNET, t cannot be d#¢. If so then t=d*d$.

'Let us consider the value of t'=d¢, namely t'. According to
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the definition of d-function, in order to have a value for
d$, the node to be deleted must be in the DS of the
configuratioh, in this case, ¢. But the DS of the ¢ is
empty since the TDS of ¢ is empty since there are no nodes
in ¢ gther than the empty node, Sikg: Hence d¢ 1is an

element of UFT, thus t¢NET.

Now, if t is an i-monotonic sequence concatenated with
¢, then, by rule 2 of reduction, t may be reduced to its MF
in the form of i*¢ewe. If t is not a monotonic sequence, by
definition of =>, for every deletion of a node there must
have been an insertion of that same node. This 1is a
necessary condition since for a node to be deleted it must
be an element of TDS. The latter implies thét the node must
have been inserted into the configuration otherwise deleting
a non-existent node would resﬁlt in teUFT(OFT). The latter
is of course contrary to our original assumption that teNET.
Thus by multiple applications of =>, using the first rule of
reduction, all instances of the d-function symbols may be
eliminated resulting in an i-monotonic sequence concatenated
with ¢. This would then reduce the problem to the one we

considered earlier.

Every element tewe-{uft,oft} corresponds to a
configuration zeZ which is reachable from ¢. The
configuration z=t 1is the value of t. In order to define

values for the two terms uft and ofteW we 1introduce two

0
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special elements, namely top (]) and bottom (]), associated
with every data type t. These two elements will be referred
to as the improper elements of t (or 2). Note that they are
not necessarily elements of Z. The improper elements are
intended to "absorb" all the error instances of that data
tjpe. We hay think of | and | as representatives of all the
elements that may, or may not, be in Z and not reachable
from ¢. The value of oft (uft) is defined as the [ (]).
Note that the value of a term teW,, where t is v-equivalent

to oft (uft) is also defined as | (]).

Intuitively, the uft and the oft elements are really a
"trap" as' defined by [AFS 80]. It should be noted }hat T
and | are not reachable from ¢ or any configuration which is
reachable from ¢, whereas oft and uft are "monotonically

reachable™ (see below) from every teW,.

Let us now examine some of the properties of the word
algebra of a data type t. . We define a monotonic
réachabilify relation(MRR), >>, on Wé as follows. Let
t1,tzewt, t,>>t,, read t, is monotonically reachable from
to if t1=i*t2 (t1=d*t2). Note that the monotonic
reachability relation is not symmetric but it 1is both
reflexive and transitive. Henceforth, unless otherwise
specified, we shall only deal with the cases where ¢t >>t,
implies t1=i*t2, where i* is an i-monotonic sequence. Above

definition defines MRR on Wt; we can also define the MRR,
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>>, on the corresponding set We in a similar manner,?? Let
t1, tzewe, then t1>>t2 if

. % . X . ¥
t;=i’t, OR }teW, (t v t; & t=i"t; OR t v t, & t =i t)

Lemma 3.5
Let t=(zL,¢) be a data type. Then the Monotonic.
Reachability Relation, denoted by >>, is a partial ordering

on we.

Proof

To show >> 1is a partial ordering, it suffices to
demonstrate that it is transitive, reflexive and
antisymmetric. Let t,, t

eW The transitivity and

279"
reflexivity of >> is obvious from the definition of >>., The
relation >> is also antisymmetric since if t>>t, then for
some sequence 11*, 11*t2=t1. If t2>>t1 then t2=iz*t1 for
some i-monotonic sequence iz*. The only possible way for

* * 0

t2 and t2=12 t1 to be true is 1if t2=1 t1, therefore

Theorem 3.5

For a data type t=(zL,¢), (We,>>) is a lattice.

Proof
First consider a single-level structure. We have

already shown that (we,>>) is a po. To show that it is a

213

Note that we are using the same symbol >> in both
cases of W, and W, to define MRR on these sets. The context
removes an§ ambiggity.
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lattice we just need to demonstrate that for every pair of
elements t,, tzewe there exists a unique lub and a unique

glb [sTO 77].

Let t=i( ... (i(i(¢,my),my) ... my)eW,,  then its
corresponding structure, 1if any, is defined as (S,p) where
S={Sj: j is a node index occurring in t}. Let t,, t,eNET,
define 1ub(t1,t2)=t3 where t, is the MF of the term
representing (S, u Sar p). Recall that by lemma 3.4 it can
be decided what the MF representation of z=(S,pleZ is.
Define glb(t1,t2)=t3, where tg is the MF of the term
represgnting (51,A Sy p). If t, and/or-t2 are error terms,
then define |

lub(t,,oft)=oft
1ub(t1,uft)=t1
glb(t1,oft)=t1
glb(ti,uft)=uft

If lub(t,,t,)=t; then t, is unique. That is if there
exists a t>>t, and t>$£2 then it must be the case that’
t>>t3. To show this, let us assume that such a term exists,
i.e. ta>>t and t>>t, and t>>t,. If this is the case then t
corresponds to a structure (S,p) as defined above. Since
t>>t, and t>>t, then either S must at least contain both §,
and S,; i.e. the least value of §=§, . S, which 1is indeed
the same as S, defined above or t is oft. The former case
implies that t=t3. The latter, i.e. t=oft, is true only if

t3=oft, hence t3 is unique.
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The case for glb(t,,t,) is very similar to the above.
That 1is if glb(t1,t2)=t3, then there exists no other term t
such that t,>>t and t>>t and t>>t,. Employing the same
approach as above, assume t>>tg, then S, the set of nodes
corresponding to t, can bg at most S, A Sy which is exactly

the same as S3. Hence t=t3.

Finally for the general case of L-level data structures
the proof is simply a straight forward extension of the

above,

The CDSO set, defined earlier, requires the presence of
both the i- and d-functions, as well as the probe functions,
for every level of the data type. However in order to
generate all the possible confiqurations of a data type
t=(ZL,¢), not every element of {y is necessarily needed. One

only needs the "generators" of t which are defined below.

Definition 3.10

Let t=(2,y) where y=I,D,P. A generator function (or a
constructor) of t is an i-function 1 (a d-function, §) such
that if ze¢Z and z is reachable from ¢ wrt {, then z is not

reachable from ¢eZ wrt y-{1} ( ¢¥-{§}).

Note that for those data types that we have been
dealing with so far, i.e. with no primitive nodes, the only

generators are the elements of Icy. Clearly, in the stack,
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push is a generator function; whereas the function pop 1is
not since there exists no d-monotonic sequence in the word
algebra of MF's of the stack, i.e. the starting

configuration followed by a sequence of pop's.

The following results may be readily concluded using

the latter theorem 3.4.

Corollary 3.4

Let t=(2,y) be a data type, and let (we,w) be the
corresponding word algebra of MF's, then uft is the least
fixpoint [STO 77] for every d-function dey; and oft 1is the

greatest fixpoint for every i-function iey.

The above corollary implies that the i- and d-functions
in (We,w) are "strict" functions [STO 77]. Thus if a term t
is an element of OFT (UFT) then no matter what sequence of
i- or d-functions are applied to t the result is always an

element of OFT (UFT).

We can reassert the fact that every confiquration of
zeZ, which may be represented by an element of NET, is

monotonically reachable from ¢. This is demonstrated below.

Corollary 3.5

Let t=(zL,¢), then

glb{t: teW t#uft }=¢

-~

0 A
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Corollary 3.6

Let t=(ZL,¢) be a data type apd let X=(We,>>) be the
corresponding lattice. Then for every configuration, if
there exists n nodes at level 1<L which contain Sl~1,k,¢'
then that configuration is the glb of n sets‘of terms of We,
say Wi, where each (wi;>>)' is a sub-lattice of X and

isomorphic to the lattice of the structure defined at level

1-1.

Intuitively, the above corollary states that, in every
node, S;,;, ¥We can construct all the possible configurations

of the structure defined at the next lower level(s).

3.4- The Primitive Data Types

The data structure operations, defined earlier,
explicitly referred to levels one and above. Thus 1level
zero structures, to which we referred to as primitives,
could not be subjected to any insertion, or deletion,
operation defined earlier. In this section it is intended
to justify this exception and formalize the concept of what

is commonly referred to as the "primitive (data) types."”

There are a number of reasons that has made it
apparently desirable to treat primitive data types
differently from any other ("non-primitive") data type.
Firstly almost all the conventionally accepted, primitive

data types such as the integer, real, char etc. have been
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taken as already well established (defined)g by the system
(compilers). Secondly, primitive data types are assumed to
be well understood concepts, for instance the integer and
the real data types. In most cases there exists a
mathematical model to describe such data types. This is
exemplified ‘by the Peano's axioms or the theoff of real

numbers.

But both of the above reasons are not, in our view,
valid arguments. The former point raised the issue of
primitive data types being "built-in" data types. However
it is not at all uncommon to have a machine with a built-in
stack! Does this imply that the stack is a primitive data
type? The widespread use of the stack data type aS a built-
in (hardware) data type strongly raises the importance of
implementing many more non-primitive data types in a like-
wise manner. As for the second 1issue, raised above,
although most commonly used primitive types are well
understood concepts there may be other primitive types that
are not so well understood. For example, we may want to
specify a subset of the integer; or describe the
days_of_week data type. Such concepts are presently being
employed in some high level languages such as Pascal as the

"user-defined" data types.

Most, if not all, authors employing graphs have not
presented specification schemes that are equally applicable

to primitive types [MAJ 77B, EAR 73, SHN 74]. In contrast
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the advocates of the algebraic approach do not make any
distinction between primitive data types and other non-
primitive data types. However, their treatment of
parameterized data types does imply an implicit presence of
the primitives as “parameter types"[GHM 76, TWW 79, GOG 78].
In their approach'a data type such as the staék may not bé
defined independently of a "primitive" or a parameter data
type. Hence the stack is defined as stack-of-( ). As a
result a great deal of work has been unnecessarily added to
formalize the parameterization of data types. In our
model, however, this is not the case. All data types may be
specified independently of other data types as prescribed by
the model. Hence parameterization 1is just another "type

manipulation operation"(see the next chapter).

Informally, a primitive data type- is defined as one
which is "transparent"” to the user. In a stack-of-integers,
the stack represents the organization of the integer, i.e.
the‘discipline under which they are maintained, whereas the
integers are concrete objects both written into and read
from the stack by the user. By the same arguments, in a
list-of-char, the char constitutes the primitive data type.
Because of the indivisibility of the primitive data types,
we have designated level @ of I-structures as primitive
nodes. This approach enables us to define data types
irrespective of their "parameter" data type. The latter can
always be embedded in the former with a type manipulation

operation.
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3.4.1- Operations to Characterize Primitive Data Types

A primitive data type is a data type whose structural
component is always of level zero. As in any other data
type it needs a set of operations to characterize its
behaviour. The integer, for example, may be characterized"
by a characteristic set of operations, viz. its "i-function”
and "d-function", suc and pred. The probe function is no
longer of necessity since at level zero the structures are

indivisible.

A characteristic data structure operation(CDSO) set for
a primitive data type 1is- composed of only the insertion
functions and the deletion functions. An insertion function
would cause a transition from a given configuration to
another. A deletion function would do the inverse of an i-
function. The correctness of these functions is ensured by
their .boundary conditions which are maintained by their
appropriate b-expressions(see later). Consider the string
data type with 26 "Eonstructors", ﬁamely the 26 letters of
the alphabet. Each application of any of these i-functions
results in a configuration which may be represented by the
concatenation of that particular letter of the alphabet to
the current configuration. For instance, starting from the
null string ¢, 11 applied to the null configuration results
in "A" (say), which 1is represented as i,(¢). Moreover

i,,(1,($))=VA, and i,3(i;5(ip,(i,(¢))))=NOVA.
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We have already pointed out that a necessary condition
for a characteristic set of data structure operations is to
ensure that any two configurations are reachable from each
other wrt this set. Now consider the bool data type with
the two i-functions i, and i,, where .i1¢ represents FALSE
” and‘ iz¢ represents TRUE. These two i-functions, on their
own, do not yield a complete DSO set, since 1i,(¢) 1is not
reachable from i,(¢) and vice versa. An obvious solution
would be the presence of the "NOT" function. However 1in
order to establish a consistent approach, and indeed a more
general one, we require a deletion function for each i-
function of bool, nameély d1 and d2, such that |

d1(i1(b))=b and dz(iz(b))=b

As a result false is now reachable from true and vice versa.

A characteristic DSO set for a primitive data type is
composed of two types of "primitive functions": the 1i-
function and the d-function. If t=(zﬂ, ¥) is a primitive
data type, its i-function i is a mapping:

i Zg - zg
similarly, the d-function

d: Zg -> Zg

A d-function causes the inverse of an i-function. It
"undoes" what 1its corresponding i-function "does." As a
result if iz(i1(i12(i12(¢))))=BALL then we get the equation:
d2(i2(11(112(112(¢)))))=ALL=i1(i12(i12(¢))).
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Definition 3.11

A primitive data type is a pair (Zg, V), where Zg is a
g-level I-structure and ¢y is a set of partial functions
defined on Zg such that for oey

(3 Zg > Zg

In chapter 2 we introduced a numbering scheme for the
nodes of a I-structure in which each node could be
uniquely identified (cite definition 2.2). Thus a node
<1, k, m> describes a node at level 1, contained in the kth
node of level 1+1, and m indicates 1its index. For the
primitive nodes however the latter is not bf any value
since primitive data  structure configurations are
indivisible. Therefore a different meaning is attached to
m. For a primitive dafa type, m designates a numbering of
the data structure configurations of that data type. More
simply, each integer m may represent a unique configuration
of the primitive data type. For example the ASCII code for
string symbols indicate the value of m for each 1individual

letter of the alphabet, i.e. 41 represents "A" and 42

represents "B", and so on.

Each configuration zely is merely an indivisible
element rather than a pair (S,u) as in the case of the non-
primitve data types. Furthermore, the p-expressions are of
no more value in the case of the primitive data types. With

the above convention of 1indexing for a data structure



92

configuration terminated with primitive nodes, each node
S1qk contains at most one element Sﬁkm where the index m
designates a configuration of the primitive data type. The
insertion and deletion operations at level @ would of course
differ from that of any other level described earlier. This

is discussed below.

3.4.2- Constructors of Primitive Data Types

Before delving into the definition of the i- and d-
functions, let us introduce the b-expressions for the case
of the primitive data types. The b-expression for primitive
data types perform basically the same function as in the
case of the non-primitive data types. However there are
some minor differences between the two types of expression.
The bwff's for primitive data types contain exactly one free
variable as before. For primitive data types, however, the
free variable denotes an element zsz0 rather than a node
index. Every i-function has a b-expression associated with
it, so does every d-function. There may exist more than one
b-expression, one for each i-function and one for each d-
function. The function of a b-expression, associated with
an i-function(d-function) is basically to determine for what
elements zezg is the i-function(d-function) defined. For
example, if bi(z), the b-expression for an insertion
function i, is satisfied then i(z)ezg. Similarly if bd(z),
the b-expression for a d-funcfion d, 1is satisfied then

d(z)ezg. For example, 1if d denotes the pred function for
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the integer, the b-expression’for d, denoted bd' has only
one free variable and is defined as:

bg(z)=true if z#4
=false otherwise

which implies that the predecessor function may be applied
to any integer (the configurations of the integer),
including zero, but not to the starting configuration, $.
Oon the other hand, the i-function to represent the integer
0, ig (say), has a b-expression defined as:
b, (z)=true if z=¢
g =false otherwise
One may use the d-function, mentioned above, to reach

the integer "-2"(say) starting from "0", i.e. d(d(ig(¢))).

The definition of the structure in which the
satisfaction of a b-expression, for primitive data types,
may be determined, is slightly different from that described
earlier; this distinction is described next. Let Zg be a
set of 0-level configurations. A representation for the
elehenfs of this set may be found in its corresponding word‘
algebra. The set zg is simply considered to be the universe
of the structure. All the variables, in a b-expression for
a primitive data type, denote the elements of zg and all the
constant symbols are also assigned to the elements of zg.
Finally, any computable function and decidable relation may

be defined in the structure as before.
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We are now in a position to present a more specific
definition of the constructors of a primitive data type,

namely its i- and d- functions.

Definition 3.12

A primitive insertion function, or am i-function, 1,
for a primitive data type t=(Zg, ¥) is a partial function,
12 Zg +Z¢
where the domain of 1\ is defined by its corresponding b-
expression, b1(Z)' i.e. 1(z1) is defined iff bl(z1) is

satisfied.

Definition 3.13

A primitive deletion function, or a d-function, §, for
a primitive data type t=(2¢, ¥) is a partial function,
§: zg *zg
where the domain of § is defined by 1its corresponding b-
expression, bS(Z)' i.e. &(zy) is defined iff ba(z1) is

satisfied.

Let us now define the characteristic set of operations,

namely CDSO, for a primitive data type.

Definition 3.14

A CDSO set for a primitive data type t=(zg, ¥) is

¢=IUD, where
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D={dK}KSK
- for every ij there exists a dK, and vice versa, such
that for zazg:
dK(1j(z))=z if 1j(z)ezg,
AND

ij(dK(z))=z if dK(z)eZg;

We define the reachability relation for primitive data
types in the same manner as we did for the non-primitive
data types. As before the symbol "|-" will be employed to
denote this relation. If i,¢ corresponds to the letter "B",

then ALLI— i

{ d }BALL indicates BALL is reachable from ALL
2'

wrt either 12 or d2. Note that ALL is also reachable from

BALL wrt d2 i.e. BALL|- i

ALL.
{ 2!d }

3.4.3- Primitive Data Types as Posets

In this section we shall present some informal
discussions about the primitive data types  and their
similarities with the non-primitive data types. In most
cases, due to their close resemblance to the non-primitive
data types, the results of the preceding sections may be

applied directly to the primitive data types.

The word algebra for the case of the primitive data
types is defined in the same manner as before. Once again
we are only interested in the MF's for every term. For

example, there are many ways of representing the string ALL.
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For example, d,(i,(i,(i,,(11,(¢))))) or i,(i,(1,,($))) are
among many ways of representing this string. Obviously
every configuration of a data type may be represented by a
series of insertion and/or deletion functions. As before we
are only interested in a wunique representation of each
configurétion. first let us define the minimal form of a
configuration, z, of a primitive data type. This is defined
recursively. Let t=(Zg,¢) be a primitive data type with i-

functions: i1, iz, ees ,1i_, and d-functions: d1, dz, ces,d

n m

in . Then the minimal forms, or irreducible terms, of the
word algebra of t are defined as follows:
either
1) ¢ is a MF,
2) ij(z) is a MF if z is a MF and ij(z) is defined, 1<j<n
or
1) ¢ is a MF,

2) dj(z) is a MF if z is a MF and aj(z) is defined, 1<j<m

Using the result of theorem 3.2, every term may be
condensed into an irredundant deletion-free (or insertion-
free) form using the reduction rule:

- if tyrtoeW, and t1,tzszg and t2=d1(11(t1))or

t2=i1(d1(t1)), then t,=>t .

The reachability relation implies two configurations of
a data type are reachable from one another wrt a finite
number of application of zero or more constructors. Since

reachability as defined before is a reflexive relation then
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every configuration is reachable also from itself wrt zero
number of constructors. Similarly, as for the case of non-
primitive data types, let >> denote the monotonic
reachability relation(MRR). The >>-relation denotes
rea;hability wrt a set of either monotonically increasing
" or monotonically ‘decreasing functions, buf not boﬁh.
Looking back at the string example given earlier, BALL>>ALL
but ALL>¥BALL, where >> denotes MRR wrt the i-functions

only.

As in the case of the non-primitive data types, the >>-
Jrelation defines a partial ordering(po) on the set We of a
primitive data type. Furthefmore, it may be shown that the
primitive data types are also lattice structures ‘under the

>>-relation.

For every primitive data type there are a number of
insertion and/or deletion functions without which one cannot
generate (or reach) all the desired configurations. It 1is
precisely this set of functions that is of interest to us.
For example for string data type, 11(¢), or A, is one such
term that is not reachable in the absence of 11. The
definition of a generator function for a primitive type

follows from definition 3.10 given earlier.

The characteristic set of DSO's presented above defines
the ground axioms for all the primitive data types. To
specify a specific primitive data type our task reduces to

defining the boundaries of the desired operations, by way of
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the b-expressions, such that, nothing but the desired set of

configurations would result.

Finally we extend the definition of i- and d-functions,
for a primitive data type, for those cases where the
primitive data type 1is at level zero of a data structure.
Note that every i- and d-function associated with level zero
would then become an element of Y, where t=(ZL,¢) and Z

L
terminates with primitive nodes.

Definition 3.15

Let t=(zL,¢) be a data type and Z; be terminated with
primiti§e nodes. Let ig( dg-) denote an i-function(d-
function) at level 0. For z, z‘eZL and igew,z‘

ig(z,O,k)=z'
iff z' is exactly the same as z except that

C(S%Qk)=igc(s1qk) for some g

Also dc(z,O,k)=z' iff 2z' 1is exactly the same as z
except that

In chapters 2 and 3 we identified the essential
elements that are required in order to isolate the desired

behaviour of a data type. In the following chapter we shall

4+ Intuitively, the equation 1implies that change the
content of the node <igk>, say m=C(<igk>), to the new
configuration i,(m). It is noteworthy that for this change
to happen, the g-expression for ig (or dg) must of course be
satisfied with m, v
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examine the concepts of "completeness" and "soundness" of
the specification of data types. We shall also look at ways
of generating new data types, using the existing ones, in

order to get a data type of a different behaviour.



CHAPTER 1V

COMPLETENESS AND TYPE MANIPULATION OPERATIONS

In this chapter we shall examine the concepts of
completeness and soundness of the specification of data
types and show that every configuration that is a true
configuration may be deduced and vice versa. The notion of
"truth" of a term is introduced and used to examine the
validity of’ the configurations that may be reached wrt the

operations introduced in the enrichment process.

Another useful concept in specification techniques, for
data types, is the capability of defining operations in such
a way that two or more data types are combined to arrive at
a new data type. This should be done in a manner that the
newly-defined data type preserves the original properties of
the constituent parts. Thus the characteristic operations
of the newly-defined data type may be automatically defined
in terms of the operatioh sets of the constituent data
types. The "type manipulation operations" (TMO) are
intended to facilitate the construction of new data types
in terms of the existing ones. The latter may be user-
defined or paft of the system, 1i.e. system defined. In

chapter 3 it was shown that data types may be modeled as

100
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lattices. Each lattice structure is formed from a
reachability relation equivalence class. The TMO's,

therefore, may be considered to be operations on lattices.

4,1- Completeness and Soundness

There are many notions of "completeness” defined for
different purposes in logic and other branches of
mathematics. Logicians, for example, define a complete set
of axioms as one with which every wff or its negation can be
proved as a theorem, or one for which all models are
isomorphic. Sometimes a complete set of axioms is related
to the notion of "cbnsistency." "For instance, to say a set
of wff's is complete 1is an -equivalent phrase for a
"maximally consistent" set of wff's. The latter notion
indicates that by adding any wff,'not an element of the set,
to the given set, we would have an inconsistent set of

wif's.

Our 1interest in completeness is that if a term is true
in a data type t, then we must be able to reach this ,term.
The converse of this is also important, i.e. if a term is
reached, it must be the case that it is a true term. These
notions, we shall refer to, as the completeness and

soundness respectively.

To investigate the notions of completeness and
soundness of a data type specification we need to define the

concept of "truth" or "falsity" of a term. For example,
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given a term't=i(i(§)), éne may be interested to know under
what circumstances, or what "values" of i and ¢, is t, the
value of t, a legitimate configuration of a data type t.
Thus for certain assignments of values to the function
symbols, constants, variables etc., one can claim that t is
an element of t. Or we may use the paraphrase: t is true in
t whenever the assignment of the functions, constants and
variables is understood; or using the terminology of chapter
3, teNET of t. To express the above concepts formally, we
need to define the well formed formulas of our language.??®

Their interpretation will then be investigated.

Let gg denote an n-ary function symbol. An individual
variable or an individual constant 1is a term. If Tqr
n .
Tyreeer Ty are terms then gK(T1,12,..,1n), n21, or ¢ 1is an
atomic term well formed formula (twff).
1) An atomic twff is a twff.
n . . .
2) gK(Y1'Y2""’Yn)' n21, 1is a twff if Y50 1<j<n, are
twff's.
3) Only those formulas obtained by a finite number of

applications of 1) through 2) are twffs.

As an example of a set of twff's, one may consider the

set of non-error terms, NET, of.a data type. Recall that

zs Note that these are not the wff's of the first order
predicate logic described earlier. These are an extension
of the terms of the word algebra that we talked about in
chapter 3. ‘
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every teNET 1is only composed of function symbols and

constant symbols.

Now consider a set of twffs T. Let yeT'. 1In the
presence of a structure t and an assignment function s, a
meaning may be attached to  each twff y; then we can say
either "y is true in t" or "y is false in t." The former is
denoted by |=,y[s] where s is an assignment function (see
below); the subscript t may be dropped when it is clear from
the context. For example, if yeNET then |=tY[s]' The
assignment function s assigns values to the function and
constant symbols in vy. In general, s is a function
S: ‘Var¢zUN, where Var is the set of all Qariables: namely
l1,k,i,.. to denote N, and 2z, Zys 2Z5y... are individual
variables to denote elements of 2Z where Z 1is a data

structure.?¢

Let us novw define what is meant by the satisfaction of
a twff y in the presence of a "structure" t=(Z,y) and a
function s. The symbol t, strictly speaking, is of course a
data type. However it is also used to denote a structure,
as described below, the context will remove any ambiguities.
Let t=(2,y) and recall that 2={z: z=(S,u)}, where every S is
the union of Sl for every level 1. For each level, S1 is
itself composed of the sets Slk' Thus when we talk about t,

as a structure, we mean a family of structures, Oigr @S

1¢ z, Zi1 2o, ... May also be used as constant symbols.
The context shoald remove any ambiguity.



104

defined in chapter 2. In addition eachvo1k is also equipped
with the i-, d- and p-functions for that level, 1. The
universe of t is ZUSUN+, where S is the set of all nodes,
slki‘ As in chapter 2, implicit 1in our notation of the
structure, is the presence of the traversal functions as
well as any othef function which may be neéessary ’dépending
on the structure at hand.?’ Let 2cZ be the set of
configurations that are reachable from ¢ wrt y. It 1is now
possible to define "t satisfies y with s", denoted by
|=tY[s] if y is one of the following. Let ¢ be a twff, x be
a term symbol, and let z=s(g)
1) |=,x[s] if s(x)el.
2) |=tg4(c,l,k,i)[s] if |=tc[s] and 945*5(1) and either
5§(1ki)€CS§(1k) if g4 is an i-function or
sé(lkl)enss(lk) if 94 is a d-function. And if 1<L,

141,k satisfies a1+1(sl+1 k) with s.

Iq!

Some explanations, regarding the above definition, are
in order. Item (2) imposes the restriction that for a twff,
i(g,1,k,i), to represent a true configuration of a data type
t, it must be the case that the value of ¢ itself is a true
configuration of t and the value of the node represented by
<1l,k,i> is in the construction set of (slk'ulk)' Where

(Slk’ulk) is a configuration at a level, 1, in z.

27 Every function symbol, g, is assigned to a function g
by the structure. Also s(lki)=(s(l),s(k),s(i)), and

s[g(y1,72,...,yn)] g(sly,l,sly,1,...,8ly ).
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If T is a set of twff's, then T|=y denotes that for
every structure t and every function s such that t satisfies
every element of T with s, t also satisfies y with s. For a
given t and s we may write T|=,y[s] to denote that t

satisfies every y;el as well as y with s.

In the following definition y[s] denotes s(y), where 1y
is a twff. Also T[s], where I is a set of twif's: {y;},
denotes the set {y;[sl}. Finally rl_wY[S] denotes
r[s]|~wy[s]; the latter means y[s] is reachable from one or
more y'[s)erls] wrt y where the underlying logical structure

is tf(z,w).

Definition 4.1

A data type t=(Z,y) contains a set of twff's, T, if
there exists an assignment function s such that for every
veT, ¢|—¢y[s].

L]

Let t=(Z,y) and t'=(2',y'); we say that t contains t'
if t contains Wé-{oft,uft}, up tolreﬁaming; Note that the
above definition implies that for any data type t=(Z,y), t
always contains itself. It may also be concluded that for
two data types t=(2Z,y) and t'=(2',y'), if Z'cZ then t
contains t', Or, in éther words t is a correct extension of

t!

4.1.1- Deduction of terms

The notion of reachability introduced earlier in
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chapter 3 deals with the values of the twff's. In othef
words if y and y' are twff's then in the presence of a data
type we may say that y[s] is reachable from y'[s]. On the
other .hand, if we are not concerned with the underlying
structure but interested only in _knowing if a term is
"deducible", 1i.e. reaéhable in‘ a syntactic sense, from
another term, we must introduce some rules of inference.
Let T be a set of twff's, y, and let B be a possibly empty,

set of ground instances (sentences) of b-expressions,

bl1 (m), bl‘S (n), and a-expressions ai(r) associated with

vel', where m, n, and r are some node constant symbols. Let

us denote the pair (r,B) by T Let i and 4 denote i- and

BD
d-function symbols and 1, k, and m be integer constant

symbols. The rules of inference are as follows: let yel

contain no variable symbols,

1

1) if yel and b (<1,k,m>)eB and a$+1(<1+1,q,k>)es then

Y .

Y ~» i(lerkrm)
2) if yel and bl6 (<1,k,m>)eB then
Y :

Y > d(Y,l,k,m)

3) if o=i(y,1,k,m)el and bl6 (<1,k,m>)ep then
o
o »> Y
11 (<1,k,m>)eB then
a

4) if o=d(y,1,k,m)el and b

a > Y

We say that y is deducible from Tg denoted TBI—Y," if

yel, or y can be obtained by a finite number of applications

28  Note that the subscript ¢ of |- is missing to denote
deduction rather than reachability.
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of the rules of inference. In other words, if there exists

a finite sequence of zero or more inferences 1-4:

Qqr Qs OgresesQp

where the 1left hand side (with respect to ») of each oy

1<i<n, is either a term from T, or the right hand side of an
1<j<i, such that the riéht hand side of o_ is Y.

N n

Theorem 4.1

Let t=(2,y) be a data type; let y and rB be a twff and
a set of twff's, with the associated set of b-expression and
a-expression sentences B, respectively. If b%, bé, and al
denote the b- and a-expressions, at level 1, associated with

t, then let B be the set of sentences bl1 (my), bl6 (ny),

and ai(rl), where my and ny are the 0‘c:orxsta‘nt sgmbols
corresponding to the elements of the CS's and DS's of als],
at level 1, respectively, and r, are the constant symbols in
R%ﬁs] for all k, where ael'. Then rl—wy[s] iff TBI—Y for

some S.

Proof

If r—¢y[s]. then y[s] 1is reachable from one or more
alsler[s]. Therefore y is some sequence of i- and 4-
functions "concatenated" with ¢. But if y 1is such a
sequence then y|—-¢ and ¢|-y. Now if alslells] then al-¢,
therefore o|-y. Now let T'|-y, then there exists a term qerl
such that a|-y since at every step of deduction the b-
expression for insertion (deletion) must be satisfied plus

the fact that the starting configuration, in this case a,
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must be satisfied, then al[s] itself is reachable from ¢ and
v 1is, therefore, reachable from als], i.e. a[s]l-wy[s]. The

latter implies that T|—,y[s] since «eTl.

b

. Theorem 4.2-completeness theorem

Let t be an arbitrary data type with the b-expressions

and bé, and a-expressions al at each level 1. Let T, be

B

bl
1

as defined in theorem 4.1, then T|=y implies rBI—y.

Proof :

Let us select an arbitrary data type t=(Z,y) and show
by an inductive argument that if r|=ty[s] then y[s] is
reachable from ¢ wrt {, since, by theorem 4.1, if «y[s] is

reachable wrt ¢ then y is deducible from ¢.

Since t satisfies y with s we may assume that Y[s]=ié¢

where ig is an i-monotonic sequence and I={i1,iz,...,in}g¢.
If T|=,v[s], then r[s]|=ti; for some segquence iX.  The

q
latter may be written as r[s]|=iji271¢. for some 1<j<n.

Since t satisfies y[s], then t satisfies ijié:1¢. By the
definition of satisfaction, therefore i;T1¢ is also
k-2
q" .
above argument we have assumed that y[s] is in MF composed

satisfied, and so is i_,“¢ and so on. Note that 1in the
of an i-monotonic sequence. The presence of the d-functions
as well as i-functions does not alter the above argument.
All that 1is needed 1is to replace the symbol i with d to

denote their presence.
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Thus vIsl=i for 3, j1,..,jJSn,

1. 1. ... 1
TR PR AL
therefore, by the definition of reachability, the latter
equation denotes:

¢|-¢Y[s] ceees (1)

Let us now consider a term y'el and let dm,be, elements
of ¢, forming an inverse sequence of i™, such that if
y'[s]=im¢ then ¢=d"y'[s].?* Therefore

Y'[S]I-¢¢ eee. (2)

Since is transitive, therefore (1) and (2) yield

=y
Y'[5]|‘¢Y[5]- But y' was <chosen arbitrarily, hence
rl—wy[s]._ But, by theorem 4.1, the latter implies that

I'BI"‘Y.

The above theorem ensures that all the twff's that are
true in some t=(Z,y) are deducible and hence their

corresponding configurations are also reachable from ¢ wrt

/8

The converse of the above (completeness) theorem is the

soundness theorem presented below.

Theorem 4.3-soundness theorem

Let t=(Z,y) be an arbitrary data type; let PB be a set
of twff's and B as defined in theorem 4.1, then if rsl-y

then T|=vy.

29 Note tha& since t satisfies y with s, once again we
may write y'[sl=i"¢ by definition of satisfaction.
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Proof
Once again we take an arbitrary data type t and show

that if T|-,y[s] then T|=_y[s]; the result would then follow
Y t

from theorem 4.1.

Let 2z denote yl[s]. I1f z is reachable from every
element, y[sl, of T[s] wrt ¢, then if <y'[s] 1is satisfied
with t then z is reachable from ¢ wrt ¢ since y'[s] must be
reachable from . Let us also assume that the configuration
z is reachable after n applications of the operations f1,
fz,...,fnew, not necessarily distinct. By an inductive
argument on n we show that: z is true in t(i.e. t satisfies
y with .s), where z=fn(...(f2(f1(¢))...). But ¢ is true in
t, by definition. Also f1(¢) is true in t, 6therwise either
a p- or b- expressions would be violated. But if this was
the case, and f1 is one of the many possible operations
needed to reach 2z, then there would be no operations to
make 2z a reachable éonfiguration. This is contrary to our

assumption. Assume f _.(...(f,(¢),...) is true in t; by the

n-1

same arguments as above there must be a operation fn such

that z=fn(fn_1(...(f1(¢),... ) and therefore z is true in t.
But then if this is the case, then
2|=f£ (£ _,(...(£,(¢),... ) is true by definition. Hence z

is true in t, therefore Z|=z. But since T[slcZz, therefore

rlsl|=,z, i.e. T'|=,y[s].
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Now since every configuration corresponding to a true

twff is reachable from ¢, we can state the following.

Theorem 4.4

Let t=(Z,y) be a data type; if y is a twff which is

true in t with some s, then y[s] is reachable from ¢ wrt ..

Theorems 4.3 and 4.4 imply that if a configuration,
y[s], is reachable from one or more configurations of a data
type t, then it must be the case that t satisfies y with s

and vice versa.

Assume a family of p-expéessions, b-expressions, and a-
expressions, then the sets I and D can be uniquely
determined, since I and D are uniquely characterized by p-,
b-, and a-expressions (see the definitions 3.2 and 3.3 of
i- and d-functions). The p-functions are also characterized
by their corfesponding a-expressions. By theorem 4.4, (¢,¢)
is sufficient  to enumerate all the elements of a data type
(z,y). Hence the base predicate set is sufficient to define
t=(2,¥). Thus to specify the "behaviour" of a data type one
may only specify the p-expressions, b-expressions, and the

a-expressions at every level.

4.2- Type Manipulation Operations

Burstall and Goguen [BUR 77] argde that : "as soon as
the theories get to be interesting they - become

incomprehensible. We wind up with a large set of equations
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that no one can understand and which are almost’ certainly
wrong. So we must build our theories up from small
intelligent pieces. For this we need
i) The ability to write (small) explicit theories,
ii) Four operations on theories:
| 1) Combine
2) Enrich.
3) Induce
4) Derive
enabling us to build up theory expressions denoting complex

theories."

Our principal objective, in the use of type
manipulation operations, is to provide a framework for the
above operations and more. The parameterization of data

types will also follow naturally from this approach.

Definition 4.2

The embed of a I-structure I';.eZ’, where Z' is a data
structﬁre terminated with SSN, and a data structure Z"L"'
terminated with SSN (1=1), or with primitive nodes (i1=§), is
a set of I-structures Z, denoted Zp=L' [ x2 " wi where L=L'+L"
and

z.={%.=(S,u) : S= || S, and u= u such that
L "L w<IzL 1 1<££L 1

z=(o u)é( S u,) =%'., AND
' L"<££L 1 "pedler 1 L

VS . €0 (C(SL"+1,k,i)=z" wvhere I"e2") }

L"+1,k,1
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We may represent each element zeZ by z=(2',{z$}|sal) where
the latter indexed set contains elements z;eZ" such that
each z; is the configuraﬁion contained in a node of I
corresponding to S;kmsS', in other words ms{1,2,...,]s;|}.

The embed of two data structures Z' and 2" is denoted
by 2=2'x2" where 2 is the set of I-structures:

4 Z'xz"

2=
2'el’

Reminder: a subscripted operation symbol o, denotes an
operation defined for the 1 th level structure of a data

structure.

Definition 4.3

The embed of two data types t'=(Z'L. , V') and
t"=(z"L,,w") is denoted by t=(ZL,¢)=t'xt", such that

=2

I={il: L"+1<1<L"+L' & il_L"el' or @<1<L" & ileI" }

x Z"; = and y={1, D, P} where

' D={d;: L"+1SI1SL"+L' & d;_; neD' or @<ISL & d&;eD" }

P={p;: L +1<1SL"+L' & py_neP' or PSISL” & pyeP" ]

Consider now the word algebra of the embed of two data
types. The embed of t and t' is composed  of the
configurations which may be represented in the form of
(t, (t1,t2,...,tn)) where n is the numb;r of nodes at level
1 of the confiquration represented by t. Consider two térms

of the word algebra of MF's of txt': t=(t, (t1,t2,...,tn))

and t'=(t’', (t'{,t'z,...,t‘m)), where n2m; t>>t' 1iff t>>t'
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and (t1,t2,...,tn)>>(t'1,t'2,...,t'm)) where the latter
means t1>>t§, t2>>té,...,tn_i>>t& for some igN. For the
sake of notational convenience we shall consider the second
term in each pair: t=(t, (t1,t2,...,tn)) collectively, so
that t may be denoted as (t,7*"). Thus

150 15sm -

(t1,11*n)>>(t2,11*m)'iff t;>>t, and 1 7T>>1

Note that the above definition of >> is consistent with
the definition of >>-relation on We given earlier in chapter
3. The MF's for the configurations represented by t and t'
are unique so that if t and t' are translated into their

corresponding MF's, tMF and tﬁF respectively, then ¢t ->>t;

MF MF
iff t>>t'. The latter statement is true since, intuitively,
for tMF>>t' , 1t must be the case that the corresponding
"components", viz. structures contained in each node, must

be monotonically reachable.

Theorem 4.5

Let « and w' be congruence relations on (Wt ,¥) and

(Wt. +¥'), where t=(Z,y) and t'=(2',y'). Let t,, toeW, and
t}*m, t;*n be elements of L then the definition of the

relation W, such that

1>m 1sn . 1sm ,_1sn
(t1,t1 )wx(tz,tz ) iff bty wty, &t 0",
1sn_
2 =ltpqitagreceitynhy

gives a congruence relation on (tht. r Y ).

>M_

Proof

First we show that the following three properties hold

for W, s
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symmetry:
Show that:

1sm 10 150 1om

LHS is true 1iff t1 w t2 and t}*m w' t;*n iff t2 w t1 and
t;*“ 0’ t}*m iff RHS.

reflexivity:

Show that (t1, 1*m) w, (t1,t1*m)

1*m w' t}*m. The latter is clearly true, hence w is

reflexive.

This is true iff t1 W t1

and t

transitivity:
Show if (t1,t1*m)w (t,,t1°™) and (t,,t]*Mu (ty,t3”5)  then
M (ty,t375)
(t1 w t3) 1ff(t1 w t, ) and (t2 w t3)
(e g e 1K) iff (t‘*m ot and (1M et e1) ifs

2
1om 1k
(t1r 1 ) w (t3;t3 )

(t

Finally we have to show that the substitution property
holds, note that we only deal with "unary" functions.
(t, w ty) »f (t,) w £(t,), and
(1M 121 L £ (e]™) W' £'(8,*") then
(t1,t}*m)mx(t2, 3"
£ ((t,t1"™) w £ ((ty,,>™)
PEE (t,t0°™) o (ty,t5™")
But the latter conditions are true by definition, heﬁce the

substitution property holds and W, is a congruence relation

on (wtxt. , ¢U¢').



116

It can be concluded that the v-relation is preserved by

the'x—operator.

In some cases the structure at the lower levels of a
T-structure presents us with extraneous detail to the
extent -that we may only be interested in the structures of
the top few levels. Thus it 1is beneficial to define a
mechanism by means of which, structures at lower levels can
be removed. This facility is particularly helpful in cases
where the I-structures are terminated with primitive
nodes. A reduction operator, /, 1is employed for this
purpose. The following definition identifies a I-structure
which is formed by removing the level zero, or one, of a Z-

structure.

Definition 4.4

The red-structure of an L-level I-structure I, L-121,
terminated with level 1, 1=0 or 1, is an L-1 level structure

Z‘L_l terminated with SSN such that each node of I’

Sl'k'i' is defined as follows:

L=-1\°

Let Slki denote the nodes of ZL' then for all values of
l, k, and i, if L terminates with SSN (i.e. 1=1) then
<1',k",i'>=<(1l-1),k,i> AND 1'21 ... (1)

else <1', k', i'>=<]1, k, i>

N.B. For the resulting red-structure, the nodes with 1'=1

support I Also the /-operator 1is undefined for

undefined’
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ZL' when L<1, terminated with SSN, since 1' becomes less

than 1 in equation (1) above.

Example

Consider the reduction operator /, applied to the 3-
level structure G twice; the result is depicted 1in Figure

4.3.

Thus the reduction operator, /, is a morphism such that
if /(t)=t' and if t 1is the product t1xt2x.;.xtJ, then
th=t xtox...xty_y where t is either a 1-level data type at
level one and the structure terminates with.SSN, or ty is a

primitive data type.

In the above example of figure 4.1, the result of
applying / to G yields the red-structure of G. The
reduction of a I-structure may be extended to define the
reduction of a set of I-structures, or a data structure.
The reduction of a data structure Z; is a data structure 2
such that for every zeZ, there exists a z'eZ!, such that

z'=/(z), and there are no other elements in Z!,. If Ls1 AND

i is terminated with SSN, OR L<1, then 2z, is undefined.

Definition 4.5
Let £=(z,¢) be a data type such that either L>1, or if
L=1 then 2, terminates with primitive nodes. A
reduct ion(red) operator /, is a partial mapping such that

/(t)=t'=(2', ¢'), and 2' is the reduction of 2, and
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Figure 4.1

Removal of Inner Structures by /-function.

D-{dl:

P-{pl:

1=1

1=1

1

1
1=1
1

Z terminates with SSN,
otherwise } U

e

f
g
é Z terminates with SSN,

[

otherwise } U

f Z terminates with SSN,
g otherwise }.

0 -
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The red-operator may be extended to remove more than
one level of a data type rather than just the lowest level.
Finally it 1is noteworthy that the reduction operator
performs the .reverse operation of the product operation in
the sense that /(txt')=t where t' is a data type with a

single—lével‘data-strucfure;

In order to make our model more susceptible to
automatic programming, the TMO's are designed such that the
resulting data type preserves the attributes of the operand
data types. AS é result it would be possible to
automatically determine the characteristic functions of the
resulting data iypes without much difficulty. Another
advantage of the TMO's is that it allows complex data types
to be safely and correctly built hsing the more common and
better understood data types. Hence break-down of complex
structures, a valuable tool in structured programming, is

strongly encouraged.

The type manipulation operationsvare of valuable help
to the user of an abstract data type language. Our
experience 1is that, because of the presence of the graph
structures, one requires less effort to specify a data type
using our approach over any one of the algebraic or

axiomatic techniques.®°® The virtue of the type manipulation

39 This is particularly true for simple data types, such
as stack, list, and tree. As the ADJ group[GOG 78] has
already pointed out, even for -simple data types the
algebraic technique can be trivially mis-specified or the
specification may be incomplete and/or inconsistent.
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operations, however lies in the fact that they enable us to
define complex data types without much effort. This is
because the resulting data type retains the original
properties of the constituent, or the operand, data
types. The TMO's remove the burden of defining generator
operations, as well as épecification of error instances, fof
the resulting data type, from the programmer to the machine.
With a few simple data types at hand, one may employ TMO's
in order to construct, or gradually build, more complex data
types. Users may define auxiliary operations at every stage
either "for convenience" or "change of behaviour.” This
will be pursued in the next chapter where we shall discuss
one more TMO, namely the "enrichment" operation as weli as

the notions of equivalence and error.



CHAPTER V

ENRICHMENT, EQUIVALENCE AND ERROR

We shall investigate the enrichment process in the next
section and examine the yalidity of the enrichments in
general. Some conditions will be developed in order to
signal "illegal enrichments." The concept of equivalence of
data types will also be discussed. ' This subject is of
particular interest where an implementation of a data type

is sought. Finally the "error" criteria will be examined.

5.1- Enrichment of Data Types

Enrichment of the data types is the process by which
new operations are introduced. Enrichment may therefore
result in a chénge of behaviour  of a dafa type.
Consequently it may be employed in order to realize one data
type in terms of another. There are also cases where
enrichment does not alter the characteristic of the original
data type. Under these circumstances enrichment is merely
used for convenience. Enrichment is particularly useful in
implementation process of data types [NOU 79]. That is the
new operations are used to introduce new configurations

resulting in a change of behaviour of the data type. At

121
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this stage we would like to peoint out some of the
deficiencies of the past technigues regarding the enrichment

of the data types.

In the process of enrichment it is very easy to distort
the behaviour of a data type. Consider, for example, the
stack data type. One can easily enrich the stack by a "non-
constructor" operation: bottomnode, say, to peek at the
bottom node of the stack configurations. This 1is a
distortion of the stack behaviour and yet it may be legal to
define this type of operations in cases where there are no
axioms to prevent the user. I1f the intrpduction of the
above opération, by the user, is intentional then indeed
there 1is no problem. However if such operation is carried
out inadvertently, which 1is more likely in a more
complicated data type, the consequences are obviously

undesirable.

5.1.1- Changing Behaviour by Enrichment

A problem of different nature also related to the. above
example is that of the correctness proof methodology of
Goguen et. al. [GoG 78]. Their approach 1is based on
cannonical term algebras (cta) and the concept of
constructor signatures. Briefly, two data types are assumed
to be the same up to renaming if their cta's are isomorphic.
The idea advocated is that: "to know a data type is to know
its constructors." By the above stack example it is

immediate that this 1is not always true. Consider the
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original stack (a normal stack data type) and the modified-
stack, with the new operation bottomnode. Note that
bottomnode is not a constructor operation, both of these
"stacks" have the same cta and constructor signatures.

However they do not exhibit the same "behaviour."

The introduction of the probe function, in 'the
characteristic set of DSO, obviates this problem. 1In the
next section it will be shown that the modified-stack is no
longer equivalent to the original stack, since their a-
expressions are not the same. Hence any attempt made, by a
user, to add an illegal operation of this nature would be
immediately.detected and pfevented. Any other‘ operaéion

that does not distort the original behaviour may be added.

. The question 1is then- if we are not allowed to change
the characteristic set how can we realize one data type in
terms of other data types? The answer is that certain
mechanisms must be built-in to signal the change of
characteristics in the process of enrichment. In an array,
for example, introduction of bottomnode does not cause a
change of behaviour of the array since we already have
access to the bottom node (first node inserted) anyway.
Thus, the gquestion is how can we detect this change or no-
change in behaviour? By enriching the operations of the
characteristic set we either relax certain conditions or

restrict them. To detect when a transition 1in behaviour
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occurs, we adopt the following approach based on the three

base predicate expressions characterizing a data type.

The change of behaviour, if any, which may result from
an en:ichment may be detected by examining if the newly
introduced functions are in line with the p-, b-, and a-
expressions when they are evaluated. This 1is explained
below in more detail. Let us consider a stack data type.
The construction sets for it 1is determined by 1its b-
expression. So that every node to be inserted must satisfy
the related b-expression bl(i)=Vj(j$i). Thus the domain of
the i-function is 1limited to that of the top node for
every given configuration. ZClearly to introduce another
insertion function i' to allow insertion at the "bottom-end"
of the stack would cause a change of behaviour. As a result
the b-expression would not be satisfied with such an
ingertion. Similar arguments are also applicable in the

case of the deletion function.

In general, there are two categories 6f enrichment.
Firstly a data type may be enriched merely for the sake of
"convenience" rather than change of behaviour. A second
category of enrichment "is "enrich to change behaviour."
That is to obtain a data type with a different
characteristic to that of the original one. A more
"priviledged” operation is now needed to change the

behaviour of a data type.
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It should be noted that enrichment 1is a type
manipulation operation. Consider the "ENRICH" operator
which may be performed on a data type t. In case of the
enrichment for convenience the ENRICH operator evaluates to
the o;iginal data type. If only the b-expression is
cﬁanged, then the resulting data -type ENRICH(t) woﬁld either‘
contain t, i.e. t ¢ ENRICH(t),®' or vice versa depending on
whether the b-expression was made more "strict" or more
"relaxed" respectively. For the cases of enrichment where
the a-expression is changed, t and ENRICH(t) would be
isomorphic but not "behaviourally isomorphic."” 1In order to
show that one data type mimics the behaviour of another one

needs to demonstrate their "behavioural isomorphism.”

Auxiliary operations(AO) are introduced in the next
subsection. These are the class of operations that when
added to a data type t the characteristic of t would not be
changed; that is ENRICHAO(t)=t where the equality implies
behavioural jisomorphism (see later), and the subscript AO

denotes the type of functions that t is enriched with.

5.1.2- Auxiliary Operations

So far we have only discussed three types of data
structure operations, namely i-, d- and p-functions. Such
functions are of primary importance since their role 1is to

completely specify the behaviour of the desired data type.

3t ¢ denotes sub-isomorphism.
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There exists another class of operations for the purpose of
users' convenience rather than essential to the
specification. Such operations are referred to as The

auxiliary operations (AO).

The auxiliary operations define the "class of
programmed operations.” They may be thought of as
procedures in a programming language. For example we may
define the attach_leftmost operation on the binary tree data
type in order to insert a node to the leftmost node in a
binary tree configuration. This operation does not change
the characteristic of the binary tree it merely provides us
with an extra tool ih order ﬁto implement other, more
complex, operations. 1In a sense, the auxiliary operations
are "non-essential" to the extent that their absence or
presence does not influence the underlying behaviour of the
data type. AO's are also, 1in general, non primitive
because fhey may be broken up into more primitive
operations. For example consider an operation that performs
parallel insertion into an element of the binary tree data
type. That is it inserts one or more nodes into a
configuration of the binary tree concurrently. Such an
operation may sound to be a constructor opefation. However,
it may be implemented in terms of the more primitive serial
i-functions of the binary tree hence it is not a generator
function for the binary tree. Thus parallel insertion of
the binary tree would be categorized as an AO. It will be

shown later that the latter operation would not affect the
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overall behaviour of the binary tree since the
configurations of the binary tree would remain unchanged.
On the other hand, introduction of a parallel operation of
insertion in a stack, such as inserting more than one node
at a time, would violate its associated b-expression and/or

a-expression, resulting in an illegal enrichment.

In order to define the auxiliary operations, one would
need a media in which such operations may be specified with
clarity and without ambiguity. Such a facility is provided
by the language of "equational theory." This is discussed

next.

5.1.2.1- Equational Theory

Many basic properties of algebras are expressed by
means of equations, i.e. ordered pairs (f,,f,) often
represented as f,=f, using the language of equational logic
[TAR 66]. We shall be concerned with formulas of the type
u=v where u and v are the extension of the twff's defined in"
chapter 4. These extended twff's, denoted as well formed

sentences, will be described shortly.

The data structure operations are, in general, divided
into the characteristic set { and the auxiliary set, A. We
have already discussed the former type of operations
extensively in chapter 3. The set A will be the subject of

what follows.
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The central idea is to define a set of operations in
terms of the elements of the .characteristic set of
operations. The correctness of the auxiliary operations'is
guaranteed by the fact that the constituent parts of an AO
are themselves valid operations of the data type.
Therefore we neéa not worry about thé "error" instances.
These are already taken care of by the operations of y. 1In
any case such error instances resulting from an auxiliary
operation would not lead to a change of behaviour, it may
only cause undesired restriction on the actual auxiliary
operation being defined. For example we may define a
parallel insertion operation on the binary tree using its
more primitive i-function. The error instances of such a
parallel operation is restricted to those of the primitive
i-function, since the semantics of the parallel operation
may be defined in terms of the sequential i-function. The
parallel operation would neither add a configuration to the
set of tree configurations nor .will it take one 'away from

it.

In order to determine if an auxiliary operation is a
"legal" operation, in the sense that it does not alter the
behaviour of the data type t, we define the "satisfaction”
of the newly defined operations, viz. the AO's. First let
us define what is meant by an auxiliary operation. An
auxiliary operation (1;0), defined for a data type t=(2,0),
is a partial function f such that

f: A1xA2x...xAn > ZUS
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where AI, 1<1€n, is either Z or S, where S is the set of all
the nodes Slkm for 1,k,meN. an a0, f, 1is an auxiliary
constructor operation(ACO) if the range of values of f is in
z, it is an auxiliary probe function if the range of the

values of f is in S.

In order to enhance the power of specification for the
auxiliary operations a new operator symbol is introduced,
namely ifthenelse, its value, wrt a data type t, will be
defined later 1in this section. With the introduction of
this operator we need to extend the definition of our
twff's. The extended version 1is referred to as the term
Wefl formed sentences (twfs). These are defined below. Let
pz denote an n-ary predicate constant, for k21 and n20. An
atomic term well formed sentence is either a twif or
constant symbols: Zyr Zgrees denoting the elements of Z, or
constant symbols: c,, Cp/..n denoting elements of S.

1) An atomic twfs is a twfs.
2) if pglTyiTgre. i Ty) then T else 1
is a twfs if LN and 1' are twfs's.??
3) Only those formulas obtained by a finite number of

applications of 1) through 2) are twfs's.

Note that the set of twff's is a subset of the set of

all twfs's.

2  We may also write "if r then z, else z," as an
alternative for ifthenelse(n,z1,zz).
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The satisfaction of twff's was defined earlier. It
only defines the satisfaction of twff's only if they have a
value in Z. However we would like to extend this definition
so that if a twfs evaluates to a node value we also have a
notion of satisfaction for it. Let us now define the

satisfaction of those function symbols whose value is in S.

Let f be an auxiliary probe function symbol. We say t
satisfies f with s, denoted by |=tf[s] iff the value of f,
denoted by f,*® for any argument values regardless of the
arity of £, 1is such that f=slkm and al(slkm) is satisfied
with Ok’ where a) is the a-expression associated with level

1 of 2.

The definition of satisfaction of the twfs's containing
the ifthenelse operator is defined next.
N ¢ . .
= = Uif P1{Yqreery,) then vy else y )[s] if |=ty[s] and
|=tY'[s]°

We may define the value of the ifthenelse operator as’
follows. Let y=if 7 then y' else y" be a twfs, in the
presence of a data type t and some assignment function s,
the value of y is s[y'] if t, the corresponding structure,
satisfies 7 with s, otherwise the value of y is s[y"].

We define an AO set, A, for a data type t=(Z,y) using a
set of equations £ as follows. Let ec£ be £=z, then e

defines ¢ subject to the following conditions:

33 E(T1,T2’000’Tn) denotes g[f(T1lT2’OOO'Tn)]-
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1) £ is a twff of the form fn(11,12,...,1n), where f" is
an n-ary function symbol, n20, and each T, is a term,
i.e. either a variable or a constant symbol, and there
are no other equations e'e£ in which £" occurs in the
LHS of e'. And 7 is a twfs.

2) If fn(11,12,...,1n) is the LHS' of eck then f" is
distinct from the function symbols g, corresponding to
elements of y, and ¢.

The satisfaction of the newly defined operator ¢ 1is
defined as follows.

|=,£ls] iff |=,cls],

For example, lét t be the tree data type. We are
interested in an operation, ins2, in order to insert two
nodes in a tree configuration every time that ins2 is
invoked. Let ins denote the primitive tree insertion, then
we may define

in52(2,<lki>,<lkj>)=ins(insﬂz,<lki>),<lkj>). Thus
if

|=tins(z,<lki>)[s] and |=tins(ins(z;<lki>),<lkj>)[s]

then |=tins2(z,<1ki>,<lkj>)[s].

The above idea of defining new operations may be
extended in order to define parallel, insertion and
deletion, operations only if all the”nodes to be inserted
into, or deleted from, z are in the appropriate construction
sets or the destruction sets of z. Recall that this 1is a
decidable problem as shown in lemma 3.1. Consequently, such

a powerful facility may readily be utilized without any
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concern about the correctness of parallel operations. The
ability to define such operations is most valuable in
performance measures. For example, given the binary tree
specification, it is péssible to specify parallel insertion

and deletion operations or both.

The following is an example of an APF.

Example

Consider a binary tree data type. We wish to define a
probe function which always returns the nearest leftmost
leaf node to a node m. Assume tebinary tree and let P
denote the left prdbe function of the binary tree.

leftmest(t,m)= if p,(t,m)=f then m
else leftmost(t, pl(t,m))
To get the leftmost leaf of the tree, use leftmost(t,1).

Recall that in chapter 3, we introduced the reduction
of the terms of a data type; before leaving this section, it
must be added that if ¢ is defined by ¢, i.e. §&=r, then
g=>r, meaning §{ reduces to g. To this end, in the presence
of the auxiliary operations, we have the extra axioms, the
auxiliary equations, by means of which the terms may be
reduced to their MF. Hence the MF for 1ins2 operation,
defined above, is given by the MF of the RHS of the equation
in terms of the primitive i-function of the binary tree. B

Finally, we can define what we mean by -a specification

of a data type.
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Definition 5.1

A specification of a data type is a pair (I, £) where II
is an indexed family of base predicate sets m,, H={n1}l€L,
such that each T is the set of p-, b- and a-expressions,
the base predicate set for level 1, and L is the index set;

‘and £ is a set of auxiliary egquations.

5.2- Equivalence of Data Types

In the algebraic approach of [GOG 78, NOU 79], the
philosophy is that "to know a data type 1is to know its
constructors." Clearly in the simple example of stack given
in section 5.1.1 we showed a contradiction to this
philosophy. Because of this, and the vital importance of
data security, we have chosen to include the probe function
in the characteristic set of operations of a data type. In
here, we shall see that the two stacks of section 5.1.1 are
not "behaviourally isomorphic" although they have the same

configurations in their respective data structures.

The notion of "weak equivalence" is defined next; this
will be followed by a stronger notion of equivalence, viz.
the behavioural isomorphism or simply "egquivalence." This
notion would aid us to see if a certain implementation of a
data type, t, 1is behaviourally isomorphic to the original
specification. Thus by showing that t' is equivalent to t

one may then say t' is a "correct implementation” of t.
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Let Z and Z' be data structures. A data structure
homomorphism from 2 to 2' is a pair H=(u,n) such that
u: 2-2' and if wu(z)=z', with z=(S,u) and 2'=(S',u'), then
n: S-»S' preserving the u-relation; i.e. if (x,y)eu then
(n(x),n(y))eu'. A data structure Jjsomorphism is a data

‘structure hohomorphism when both u and n are bijective.

Definition 5.2

Two data structures Z and Z' are weakly equivalent if

there exists a data structure isomorphism from Z to Z'.

We say that two data types t and t' are weakly
equivalent if their respective set of data structure
configurations, Z and Z' respectively, are weakly

equivalent,?**

Consistent with the definition of the equivalence of
twff's of the first order predicate calculus we define the
equivalence of pﬁff's, bwff's and awff's 1in a likewise
manner. Let @ denote any of the latter three types of
formulas, then w and w' are equivalent if for any structure
oik that satisfies w with s then it satisfies w' with s and

vice versa.

34 Reminder: Z denotes those configurations of 2 that
are reachable from ¢ wrt ¢ in a data type t=(Z,¥).
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Theorem 5.1

L ) | 1 ] 1 l
Let t=(Z ,¥) and t =(27,¥ ); let py (bl) and pj (b1 )

be their p-éxpressions (b-expressions) associated with level

1 of 2z, and 2] respectively. If for every level 1<L, p; and
pi are equivalent, then

: l vl ; ' 5 C3

if bl..b1 and a;+a; then ARx3y

% denotes sub-isomorphism, and » means logical implication.

Proof
Using induction on the number of nodes, let wus start
with the starting configurations ¢ and ¢'. Let u($)=¢’
where y is a morphism. Since P; and pi are eqQuivalent
 therefore TCS; =TCS;,. If for every level 1, b{»b{l, then
for level L, bU»b!". Now, if CS =empty then Z ={$}; b,
however, may be satisfied for some values of TCS£1. If this
is the case, then i£={¢'}U{other configurations} in which
case iLSiﬂ' 1f b;L is not satisfied, then of course
}. Once again 2L$2£' Now consider the case when CS.,
not aempty._ That 1is there are certain values of TCS; 4

that b%(i) is satisfied with. But every value that bE

is
satisfied with, it also satisfies b;L(i). Hence CS; ,cCS;,.
Assume CSL1={mj: 1<j<n} and CS£1={m5: 1<j<n'}. Therefore
those configurations having a single node and reachable
from ¢ are 1(¢,m5), 1<j<n. Also those configurations having
a single node and reachable from ¢' are 1'(¢',m&), 1<ks<n'.
Therefore for every 1(¢,mj) there exists a configuration

1'(¢',m)  such  that mj=mé. " Define u such that

u(1(¢,mj))=1'(¢',mi). Let us refer to the latter two
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configurations, having only one node, as z, and za, where
z§=u(z1). The TCS's for each S, in a z, is also identical
to that of some Sik in the corresponding za since Py and pi

are equivalent for every level. Now, if b%+b;l then for
each §,, in z, there exists a S1x in z; such that CSyCCS1

see the definition of CS.

Consider now two arbitrary configurations =z and z',
after n steps(each having n nodes), such that u(z)=z'. By
precisely the same arqument as above, for each S1k in z
there exists a Sik in z' such that TCSlk=TCSik; and since
p%#bll then CslkgCSik. Therefore for every configu;ation
having n+1 nodes reaéhable from z there exists a

corresponding configuration reachable from z'. This

correspondence is of course defined by u as described above.

Theorem 5.2

Given two arbitrary data types t and t', there exists a
procedure that stops with a YES answer if t and t' are not

weakly equivalent.

Proof

Consider two data types t=(Z,y) and t'=(Z',y') where
z={z : z=(S,u) } and 2'={2' : 2z'=(S',u') }. For the sake of
brevity assume 1-level structures Z and 2'. The following
proof is a construction of Z and Z' such that if t 1is not

weakly equivalent to t' it stops with a confirmation else it



137

continues. In the process we try to find bijections n and

such that n maps every $ to S', where u(S,u)=(S',u').

In order to find a bijection m which maps S to §', it

must be the case that |S|=|S'

. Now, each (S,u)eZ may be
represented by (S,p). Similarly each (S',u')eZ' may be
represented by (S',p'). By lemma 2.3 and corollary 3.2,
both Z and Z' are recursively enumerable. Therefore
enumerate elements of Z, and Z', starting from zg(i.e. $),
and zé(or $') and let u(z¢)=zb. Enumerate the rest of the
elements 2z=(S,p)eZ in the ascending order of |S|. If there
are more than one ¢0nfiguration with the same number of
nodes, enumerate all such configurations first, then
enumerate the next set of configurations, whose number of
node indices is that of the previous set plus 1. Enumerate
Z' in the same fashion. Let zi=(S,p) denote a configuration
of Z such that |S,|=i. For every i find all the elements z;
of Z and z} of Z'. Note that there are only a finite number
of configurations with i nodes, for a data type, since the
Construction Set, Cslk' for every Slk is finite. Let
zg=(sj,uj)=(sj,p), 0<j<n, be those elements of Z such that
.ISj|=i for all .j. In other words n 1is the number of
configurations of Z having i nodes. Similarly let n' be the
number of elements Zij=(5'j,p')ei' having ls'j|=i, where
0<js<n’'. If n#n' then stop, t and t' are not weakly
equivalent; else find an n such that for every value of m
and n in Sj that satisfies p, p' should also be satisfied

with n(m) and n(n) and vice versa.
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The search for such an 7n may require back-tracking so
that if we are currently dealing with those configurations
zZ; and zi such that i=I, then the mappings m and u that we
have found so far for values of i=I-1,...,0 may no longer be
valid. This implies that we have to try some other mapping,
nj and ¥, such that it works for-i=0,...,I. This strategy
implies that we may have to try every possible mappings of
{z.:2.eZ & isf} to {zi:ziei & i<I}; and for every such
mapping try different combinations to try and find the right
n. Note that the number of such mapping is finite. If such

n cannot be found stop. Otherwise set i=I+1 and try to find

(u,n) as, above.

For the case of L-level structures, the proof 1is a

straight forward extension of the above.

Let (Z,0) be a data type where Z is an L-level data
structure such that the CDSO_seting, and O-¢y is a, possibly
empty, set which contains the auxiliary operations. Also
let zy denote a configuration of zl, the data structure

defined at the 1lth level of Z.®® Finally <lkm>, denotes a

A
node at level A; and 0,c0 denotes the set of operations at

level 1.

35 Note that 2, does not denote a l-level structure. It
is a 1-level struc%ure defined for level 1 of Z.
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Definition 5.3

Let t=(ZL,O) and t'=(Z'L.,O') be data types. A I-
homomorphism, H, is a family of data structure
homomorphisms, Hl=(nl,ul) for 1<L, preserving the
operations, i.e.

H: tat'
where H is a family of pairs of morphisms: (ul,nl) such that
"t (21'01)*(2i"°'1') and mny: Sy+Sj., 1sL and 1'<L',
preserving the operafions, i.e., if £ and £' are functions
in 0 and O' respectively then

HI £(27 ,27 ,eeer2q7 ,<lkm>, ,...,<lkm> ) 1=
l1 12 ln 1q lr

f'(u11(zl1),...,uln(zln),nlq(<lkm>lq),...,nlr(<lkm>lr))

Two data types t=(ZL,O) and t'=(Z'L.,O') are

.behaviourally isomorphic, or equivalent, denoted by t«t', if

(z 1'.D') are ZI-isomorphic and for every

L’ 'L" U
,zgiL, for all 1 and k, if <lki>eR§k then there Vexists an

IUD) and (2

<l'k'i'>=n(<lki>)eR§:k., z'=u(z), and vice versa, where Rfk
is the set of accessible nodes in z having the first and

second indices 1 and k in common.

Let t=(2z,0), and let t'(Z',0') be an enrichment of t
such that $cO and $'cO', and OcO'. Then t' is an enrichment
for convenience of t if t is behaviourally isomorphic to t',

otherwise t' is an enrichment for change of behaviour of t.
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The latter may also be referred to as the implementation of

t' by t.

5.3- Implementation by Emulation

‘Consider two almost similar structures dépicted in
figure 5.1. Cleéfly the two structures (a) and (b) afe not
isomorphic. Let us use the well known replacement theorem
of predicate calculus [MAN 74] as follows: Let p, (p,) be
the p-expression associated with the data structure

represented by the structure in figure 5.1-a (5.1-b). Then

Figure 5.1,
Structural Similarity.
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p, = 1<>1 A i>1 and
Py = (1<>i A i>1) U (i<>i+1) or
Ppb 2 Pay (i<>i+1)

But the second expression on the right hand side of the last
identity denotes the p-expression for a structure which is
isomofphic to a list structure. Let us denote the p-

expression for the latter as Per therefore

pb =Pay P

As a result a star and a 1list structures combined,
simulate the structure of figure 5.1(b). This simple
derivation illustrates the idea that, by emulating one data
structure in terms of others, we can implement da£a-
structures in terms of their equivalent structures. For
behavioural isomorphism, however, we need to consider the

b- and a-expressions as well as the p-expressions.

Theorem 5.3-Correctness Theorem

Let t=(zL,O) and t'=(Z!,0'), then t 1is behaviourally

isomorphic to t if for all 1<L,

: 1,
P12P; and b1=b1

1 e
and ajsa;

Proof
As a corollary of theorem 5.1, because thé
corresponding p- and b-expressions are equivalent, 2=7',
That is Z and 2Z' are isomorphic. The behavioural

isomorphism follows from the definition.
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Thus it is immediate that:

(stack, P) / (stack, 1 {bottomnode})

TuPy uPuPu
(array, I1;D,P) v (array, IUDUPU{bottomnode})

but

It can be seen that the range of values of the
Auxiliary Probe Function: bottomnode does not satisfy the a-
expression for the stack for every stack configuration.
Hence the resulting data type does not behave the same as

the stack would.

Implementation of data types is a step by step
procedure of realizing one data type in terms of the other
data types. Every step would bring us to a lower level of
abstraction until, finally, the lowest level of abstraction,
which is the physical realization. The following theorem

would enable us to ensure the correctness of this approach.

Theorem 5.4-Implementat ion Theorem

Let t=(ZL,O) be a data type with p-, b- and a-
expressions at level 1<L denoted as p,, by, and a;
respectively. Let t' be the data type resulted from
replacing one or more of these expressions, or parts of
them, at one or more 1levels of t by their equivalent

expressions respectively. then t and t' are equivalent.

Proof:
Follows from theorem 5.4 and the well known replacement

theorem of logic[MAN 74].
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The implementation of one data type in terms of another
is just a matter of "matching" their p-, b- and a-
expressions. Thus complex structures may be broken down
into the existing ones and therefore implemented. For
example, we can realize a stack by introducing appropriate
b-expressions and a-expreésions to an érray since their p-
expressions are the same. The following examples illustrate

the idea.

Example

Given an array data type with the following base

expressions:

p: i<>i+1
b i1
1
. i>
b&' 121
a: i=1
then,

a) A stack is defined by modifying the b- and a-
expressions of the array as follows:
b1(i): vi(j<i)
bé(i): vi(j<i)
a(i): vj(j<i))
b) A binary tree data type can be defined by modifying
only the p-expression of the array as follows:

p: (i<>2i)U(_i<>21+1)
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The b- and a-expressions remain unchanged. Figure 5.2
illustrates the node formation of the binary tree :for a

particular configuration of the array.

O,
O

()

)

of

O—E@O——O@—®

Figure 5.2
array Implementation of binary tree.

Similarly the queue, the list or any other type may be

obtained by merely modifying one or more of the base
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predicates of a given data type in order to arrive at the

desired behaviour.

The array implementation -of a binary tree presented
above confronts us with an interesting problem of morphisms
between the data types. It can be observed that since for-a
given number of nodes a binary tree may have more elements
than an array, there exists no epimorphism from the array to
the binary tree data type but there does exist a
monomorphism, Furthermore, there exists a (partial)
morphism 1 such that n: treesarray, where n is isomorphic
for some subset of the the binary tree data type. In other
words, the array is sub-isomorphic to the tree. By defining
a suitable congruence relation, for example "eqﬁal-number—
of-nodeé", E, on the binary tree to get binary tree/E, one
can define an isomorphism which maps binary tree/E to the
array. The question 1is of course: when is a data type t'
sub-isomorphic to another data type t? This may be answered
immediately by the statement: when t contains t'.(Recall

definition 4.1.) 1In general, this problem is undecidable.

Finally,‘ it is a trivial task to enrich a stack in
order to make it emulate the behaviour of the FIFO queue.
The p- and a-expressions remain the same as that of stack.
The b-expression for deletion would not be altered. The b-
expression for insertion 1is the only change needed to
simulate a queue behaviour. This example illustrates the

extremely useful feature of "extensibility” exhibited by our
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model. In comparison, 1in order to do the same extension
in any one of the existing algebraic techniques, one has to
change the whole specification. The concept of
extensibility was discussed in chapter 1, it is one of the
important properties desired of any specification techniques

aimed at data types.
5.4~ Error

The specification of an abstract data type 1is, by
definition, dependent upon the operations performable on
that data type. For every data structure operation, defined
-for a data type, there are ‘instances of that data type that,
wvhen subjected to this operation, would result 1in an
"undefined” state. For example for an empty stack:
pop(empty stack)=undefined. Similarly
push(full stack)=undefined. Ideally we are interested in
specifying these undefined states so that we know what to do
when such a state arises. We are also interested in knowing
‘about the origin of the undefined séate; this would help us
to determine the cause of the error. For instance for a
stack of integer, if the result of a certain operation is
undefined then we would 1like to know which data type the

undefined state is associated with- stack or integer?

The undefined states are also referred to as errors.
These are no more than the | and [ that we discussed
earlier. The error criteria is an integral part of every

specification. Indeed in the absence of an adequate error
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criteria the specification of abstract data types would have
no significant value and the whole purpose of a formal
specification would be defeated. The past approaches to the
way the error criteria has been handled are in general
either incomplete and unsuitable [GuT 75], or the error
issue has -become SO complic#ted that it has proved to be a

problem of unreasonable magnitude to tackle [GoG 78].

In our approach, instead of depending on extra axioms
to define error instances we tackle the problem by defining
the domain of the data structure operations using the
appropriate p-, b- or a-expressions. In essence, when an
operation résults in error it causes a transition from one
reachability equivalence class to another. For instance,
consider a stack10, which ié a stack of maximum depth 10.
The 11th push causes an error instance. Such an error
instance may be interpreted either as the "overdefined"
element of the stack10, namely [, or we may interpret the
11th push operation as one causing a transition from stacki10,
data type to another, e.g. stack20 or stack50. The latter
approach has a number of shortcomings. For instance, push
or any other DSO defined for stacki0 can only result 1in
elements of stackl0, so how can it possibly result in
elements of stack50 or any other type? Even if we did
overcome the latter problem it would not be clear which
particular type the transition is made into, namely stack11
or‘ stack67? The former problem, however, 1is more

significant and profound than the latter. It leads to the
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same difficulties encountered by some advocates of the

algebraic technique in their error treatment [GuT 751].

We shall pursue the idea that the | and | elements of
a data type define the error instances of that data type.
Recall that for every data type there are two fixed points
with respect to all constructor operations of that data
type; these are oft and uft whose values are represented by
T and | respectively. Thus every DSO is strict or bottom
preserving. Since the | and | define the "limits" or
"boundaries" of a data type, it is then possible to define
such boundaries using the b-expressions. This is indeed
what the b-expréssisns were primarily intended to do. |
Example
A stack4 lattice is illustrated below.
oft (stack4 overflow)

depth 4
depth 3

depth 1
depth 0 ¢

|
I
I
.depth 2 -
|
I
I
uft . (stack4 underflow)
PUSH(oft)=(oft)=PUSH(depth4)

POP(uft)=uft=POP(¢)

In fact theorem 3.1 would ensure that all the "non

error" configurations are reachable from each other and all
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the error configurations are trapped in their own
equivalence classes. Hence no error configuration may reach

a non error configuration and vice versa.

5.4.1- Domain of DSO's

In general, we are interested to know precisely what
are the domain of DSO's. It is sufficient to consider only
the operations of the characteristic DSO set { since all

other operations are defined in terms of these.

Recall the definition of i- and d-functions in chapter
3; their domain was described to be Z x L x K x M, where L,
K,"M are some subsets of N+. Fér a given level of a data
type, we are only concerned with Z and M, keeping lel and
keK at a fixed value. Since for given values of 1 and Kk,
the only variable is m and it is precisely this variable
whose range of values affects the behaviour of the
structure. Similarly, for the case of the probe functions
it suffices to consider ZxM as their domain.®¢ The problem
is how to define the appropriate subsets of Z and the set M
for each kind of function i-, d-, and p- respectively. As
an example consider the above stack4 data type. Let Li
denote a stack configuration of depth i, then

Z = {¢,L1,L2,L3,L4}

3¢ Note that the probe function is really a mapping of
the form zx<lkm>s<lkm'>; but for fixed values of 1 and k
every <lkm> may be denoted by, merely, meM.
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M- varies dynamically depending on the depth of the
stack, i.e. it depends on zeZ. We saw that this was

determined by the b-expression for the stack.

For a stack configuration of depth 3, M={S114}. Since
s[i]l=s,;, ~is the only element of the TCS of L3 (a
configuration of depth 3) that stack satisfies b1(i) with.
Consider now a stack of depth 4, L4. The value of M would
be equal to { }, which implies that nothing may be pushed on
the stack. Note that the elements of M in the above example
are determined by the b-expressions of the stack. Hence for
stack of depth 4, M is empty, and therefore no more nodes
may; be pushed onto it. As a result“an error state is never
entered. The task of introducing extra consﬁraints in order
to alter the construction and destruction sets is a rather
straight forward task. For example, the depth of the stack
configurations may be limited to a maximum size of 100 by
ANDing the extra constraint of i<100 to its b-expression,

b .
1

It should now be obvious that for an i-function
1: ZxLxKxM+2, where 1(z,1,k,m)=2", M=CSy,. Similarly for a
d-function §: ZxLxKxMs2, where 5(z,l,k,m)=z';} M=DS, . But
we have already seen that the CS's and the DS's for a given
zeZ are recursive sets. Hence for every configuration =zel
the domain of the i- and d-functions are recursive at every

level, for every structure (slk'ulk)'
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It can be seen that the process of specification is
reasonably straight forward. The "extension" of
specifications is even simpler. Behavioral changes may be
made through "addition" or ‘"omission"™ of appropriate
constraints in one or more of the predicate expressions.
Hence given a data type with its related B¥expfessions ié is
easy to change such expressions in order to come up with a
new desired behaviour. The same approach may indeed be
adopted in order to modify the behaviour of a data type via
p- and a-expressions. Such facility makes the process of
implementation or extension a trivial task. For instance,
given the b-expressions for thé stack, we could readily
specify (or implement) a .FIFO queue by making minimal
changes to the stack b-expression for insertion. The a- and
p-expressions remain unchanged. The same process, using the
algebraic approach, means that we will have to discard the
"gifted" stack specification and start with a fresh
specification of the queue and yet worry about the

correctness of this latter specification.



CHAPTER VI

CONCLUSIONS AND FURTHER WORK

The scheme which we have adopted, for specification of
data types, is a blend of ‘definitional and operational
methodologies. The advocates of the axiomatic techniques
reject the graph models because of their implementation
bias. The degree of such a bias varies from one graph model
to another. We must emphasize that the I-structures are not
to be interpreted as actual memory layout of data nor do the
edges represent access paths as in Earley's approach [EAR
73]. In our approach, a much more abstract notion of access
is employed, namely the a-expressions. In general the
presence of implementation bias may be detected in almost
every} technique; this includes both the expiicit as well as
implicit techniques. A problem of considerable importance
is the difficulty of construction and comprehension which
faces the present formal implicit technigques. Our usage of .

graph structures has considerably alleviated this problem.

A major problem with previous techniques has been to
define a set of operations to completely and consistently
characterize the behaviour of a data type. The

characteristic set y and the properties required of them

152
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provide us with sufficient information to characterize data
types both completely and consistently. By employing the
DSO functions, viz. the i- and d- functions, we showed that

data types may be modelled as lattices.

As a valuable merit to our approach, we showed that
all that is required to specify a data type is to specify
the p-expressions, b-expressions and the a-expressions for
the desired data type. Also demonstrated was the fact that
a given data type specification may conveniently be extended
to exhibit a different behaviour. This was exemplified in
the case of the stack where by making a small change in a
single expréssion the FIFO queue was realized. Becéuse of
this built-in facility of extensibility, in our model, in
most cases one can realize the desired data type by a few
minor and simple alterations to an existing specification.
However, as noted earlier in the introduction, the price
that one pays for such conveniences is the minimality of the
specification. For example, the set data type may only be
expressed as an indexed set. Thus an extra constraint is
unnecessarily imposed on the set data type. Among other
potentials of the base predicate expressions is their use in
program verification. They provide the user with predicates
that must hold for every instance (configuration) of a data
structure so that every configuration is true in the sense
that was defined in chapter 4. Furthermore, both the

-~

soundness and completeness properties of a specification
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were demonstrated so that all the true configurations are

deducible, and all the deducible configurations are true.

As a further facility to specify data types of a more
complex nature we introduced type manipulation operations.
These "operations enable us to arrive at more complex data
types without the burden of redefining their operation set;
since their characteristic set 1is automatically obtained
from the constituent parts. This 1is 1indeed a very
" convenient tool in specifying less commonly used data types
and be certain of their validity. Thus, data types may be
defined independently from each other, and then combined
according to the users' recipe. Tﬁis philosophy is highly
related to the concept of abstraction 6f data found in
SIMULA [DAH 66] and other languages that followed from it.
It is clear that parametrization of data types is a direct

application of the embed TMO.

Two types of enrichment were introduced: enrichment . for
convenience and enrichment for change of behaviour. Using
the inherent properties of our model, it was shown that, one
may enrich a data type by any other operation. Such
auxiliary operations' are defined in terms of the more
primitive operations. The "correctness" of the former is
automatically decided by'the elements of the existing base
predicate set. We also demonstrated that in order to enrich

a data type for change of behaviour we must change its base
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predicates. This process was referred to as implementation

by emulation.

The base predicate expressions are of tremendous value
in order to prevent reaching the error instances of a data
type. These expressions are employed to define the domain
of the characteristic functions of every data type. This
idea alleviates the complex and tedious error theory
approach of the past. By merely specifying the base
predicate expressions of a data type the domain of its
characteristic functions, as well as the error instances,
would become decidable. Hence the burden of specifying the
extra "error equations" [GbG 78] and other exceptional

equations such as that of [KAP 80] are removed.

An important and valuable merit of our approacﬁ is the
fact that the issue of parallelism of operations is
inherently built into the specification of a data type. The
b-expression for insertion (say) of a data type defines the
construction set of aﬂy configuratioh §f that data type.
The latter set would in turn define the nodes which may be
inserted into the <configuration. As a result of this
arrangement, for every giveh configuration the elements of
the construction set may all be inserted in parallel into
that configuration, Likewise the elements of the
destruction set may all be deleted in parallel. Toward this
end, parallel insertion and/or deletion and/or probe

operations may be " defined and in addition such operations
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may be used to define other operations of a more complex
nature. Wwith this facility, a number of operations may be
carried out at different levels of the structure on possibly
distinct nodes of that structure concurrently. The
correctness of such operations is quaranteed by the base
predicate expressiohs; The ability to define operations
acting concurrently on the same set of data is indeed
invaluable in many systems such as data bases and operating

systems.

The combination of structure and behaviour enables us
to specify certain criteria which have not been demonstrated
before by other techniques. For example the a-
expressions,or equivalently the probe function, and its use
in security of data. For example: in an operating system
environment one may readily allocate different a-expressions
to different users, for the same data type, so that the more
priviledged users have more access than others. Finally by
renumbering the nodes it is possible to reconfigure data
types such that a given data type may exhibit a
characteristic distinct to that originally intended. Thus a
set of data items may perform different behaviours to
different users, all at the same time, depending on the
numbering scheme associated with its nodes. This, of
course, is a very useful tool in data base systems.
Appendix B presents a brief introduction on the potentials

of our model regarding this concept.
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Further Work

- Extension  of our model to specification of
"algorithms.” An algorithm is a collection of one or
more data types. To define an algorithm, we would like
to bring together, or T"combine", all the necessary
elements of different algebras, and define operations
which may or may not cause transitions between
different sorts of the resulting algebra. For example,
in order to sort elements of the array of integers, we
may need the help of the bool data type. In the
presence of bool, we are able to define an operation
such as >: NxNibool. Other operéticns méy also be
added such as EX(z,i,j) operation which exchanges the
contents of the nodes i and j of the array

configuration z.

- In some cases wheré two data types t, and t, are
combined to get t,xt,, we may be interested 1in adding
extra constraints to the resulting data type. We may
be interested in modifying the b-expression, i.e.
enrichment for change of behaviour; or it may be
necessary to add extra axioms in order to define some
desired equivalence relation on the set of data
structure configurations, 2. As an example consider
two terms of a set-of-char data type: t, and t,. If t,

and t, contain the same .elements then they are

equivalent no matter what is the order in which the
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elements are inserted. The following rule of reduction
may be introduced for the set-of-char: let seset-of-
char and a,bechar, then

1(1(s,i,a),j,b)=1(1(s,i,b),j,a)
Specification of parallel operaﬁions;

Possible extension of the model such that each node at
a given level may contain (behaviourally) different
structures. In the presence of such (extended) :-
structures, we can also define a "join" TMO to combine

data types.
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APPENDIX A

Examgles.

A few examples of data type specification is presented
in this appendix. More specifications can be obtained
either by direct specification or by the use of TMO's. We
also demonstrate specification of an algorithm, namely

Binary Search Tree Insertion, using our model.

array
p: i<>i+1
bl(i): i21
b6(1): i21

a(i): i1
stack
p: i<>i+1

b (i):  ¥j(j<i)
ba(i): vi(jsi)

a(i): vj(j<i)

binary tree

p: (i<>2i) U (i<>2i+1)
bl(i): i>1
ba(l): i1

a(i): i>1
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int

There are two i-functions iﬂ and i. The

are: for zeint

blg(z)=tnue if z=¢

- =false otherwise
b (z)=true if z#$

=false otherwise

ba(z)=true if z#¢

- =false otherwise.

b-expressions

i is of course the Peano's suc function, where d is the pred

function.

nat

The 1i-functions are the same as int with the following

added restriction. The b-expressions are:
blg(z)=tnue if z=¢
=false otherwise
br(z)=true if z# | -
=false otherwise
bs(z)=true if z#¢ or z¢1¢(¢)

=false otherwise

bool

There are two i-functions 11 and 12 and their inverse.

. For both i-functions ij' 1<§<2,

bl_(z)=true if z=¢
J
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=false otherwise.
ba(z)étrue if z#4

=false otherwise

We may also enrich bool to include functions other
than the insertion and deletion functions. For example the

AND function is described as follows:

Let b1' bzebool
AND(b,, by)= if b,=i,(¢) or by=i,(¢)
then i,(¢)
else i,(¢).
string

There are 26 constructors, each having a b-expression
as follows: let zestring
blj(z)= true if z#¢  1£j<26
= false otherwise.
blg(z)=true if z=¢
=false otherwise

b6(2)= true if z#¢

= false otherwise.

balanced tree

A balanced tree data type is one that contains binary
tree elements such that every node of the latter |is

balanced. Where balancing of a node j means the difference
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between the left and right subtree of j 1is 1less than or
equal to 1. The specification is an extension of the binary
tree specification.?’

p: i<>2i 1<>2i+1

U

b i21 Vj(((1zjz+i/k¢)Ak=2‘

1 reN').|BF(§)|<1)

A

byt i21 U Vj(((12jz+i/k¢iﬂk=2r reN+)+|BF(j)|s1)

§ A

a: i21

where BF(j) is a function which returns the Balancing Factor
of j defined as follows: Define the height of a node j as

h(j)=max(h(23),h(23+1))+1

if 1k p(k,j) =1
= -1 otherwise.

then, BF(j)=Z(h(23))-Z(h(2j+1))
where Z(i)=1i if i20

=0 otherwise.

traversable stack

An example of a "traversable stack"(T.stack) was cited.
in [MAJ 77A}, and it has demonstrated that such a simple and
plausible data type is not axiomatizable using the algebraic
approach. In here, we shall show how simple it is to arrive

at the desired specification using our approach{

It 1is required that the T.stack can perform the
following operations:

pushL- same as the conventional stack push.

37 X+ means the’Floor value of x.
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popL- same as the conventional stack pop.
readL(z,i)- probe a node indexed 1i.
downL(z,i)- returns the node index neighbouring to i in

the direction of the bottom of the stack.

returnL(z,i)- returns the top node of the stack.

Such a behaviour may be obtained using the following
base predicate set:

p: i<>i+1

bl(i): vi(j<i)

bd(i): vj(j<i)

a(i): i21
Note that the above behaviour is obtained by a simple
adjustment to an already existing stack specification. This
facility of extensibility, in our model, is most wuseful in
such cases where an almost similar behaviour to an existing
data type is needed. Now we may introduce some auxiliary
operations in order to implement the desired operations:
downL, returnlL etc. The operation downL may be defined as:

downL(z,i)=i-1

Since the range of downL is the set of node indices, it is
therefore a probe function. For downL to be a legal probe
function, for every i, i-1e{j: a(j)}. For example, let z be
a stack of length 1; then downL(z,1)=1-1=0¢{j: a(j)};

therefore downL(z,1)=error since a(0) is not satisfied.
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Finally, the operation returnL(z,i) may be readily
defined. This is the same as the p-function of stack
introduced earlier, i.e.

p(z,i)=xi. ¥vj(i2j)si, p(z,i+1)

As we mentioned earlier, to specify the ~above T.stack
with the algebraic approach, an infinite number of equations
may be needed. This is not of course acceptable. To get
around this an extra operation is needed, "hidden" to the
user, such that the T.stack may be axiomatized in a finite
number of steps. A pointer, viz. shove, which 1is always
pointing at the bottom of the stack, is used[TWW 79]. This
would enable one to detect when and if the bottom of the
stack 1is reached. It should be notéd that ﬁhe introduction
of shove présents us with some information which 1is not
really needed for a minimal specification, 1i.e. an
implementation bias. Furthermore, the specification given
in [TWW 79] does not include error instances, i.e. the so
called error equations. To do so it would be a .formidable.

task hardly worth the effort.**

38 A potential use of T.stack would be as a syntax
analyzer. '
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APPENDIX B

Dynamic Change of Behavior

Different "views" and "authorization" of data are
crucial issues in data base design and maintenance[CHA 75].
The potential of b-expressions to define'different views of
the same data for different users 1is apparent. This is
accomplished by having different b-expressions and a-
expressions for each user. Furthermore,, a more global
change of behaviour may be observed if the p-expressions are
modified, by the Data Base Adminstrator(say), in order to
allocate distinct views to each user of the data base.
This may be done by adding more, or less, constraints to the
b-, p- and a-expressions already specified. Consider an
array pf some dataA items, by having different b- and a-
expressions fof different users distinct behaviours would be
exhibited by the data items. Thus for the given array, each
user would be concerned only with his own "view", i.e. his
own b- and a-expressions. Another, more subtle, way of
maintaining different views is to keep the a-, b- and p-
expressions constant and change the numbering associated
with the nodes. In the presence of a clever algorithm very
efficient changes of behaviour may be observed at the cost

of permuting the node numberings.



166

Maintaining different views of data for different
users, concurrently, 1is most efficient since it saves
duplication of data items into behaviourally different
structures. Change of b- and a-expressions only causes
behavioural reshuffling while maintaining the same
underlying structure. A structﬁral as weil as behavioural
reorganization may result by either a "renumbering" of the
nodes of the structure or changing the p-expressions
associated with the structure. Consider, for example, the
problem of maintaining an ordered 1list of items. This
problem can be handled by constantly updating the
renumbering of. the nodes dynamically as the nodes are
inserted. So that the nodes would be numbered in ascending
(or descending) order depending on their content. Another
view of the same ordered list may be held by numbering the
nodes, not according to their alphabetic ordering but by
some other "key" value. Hence depending on the type and
frequency of the queries different numbering of the'nodes
may be a}located, or varying p-expressions may be adopted

to imply variable relationships between the items.
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APPENDIX C

yv-Notation-Basic Idea

Suppose E(x) is some expression involving x such that
whenever deD 1is substituted for x- and we shall denote the
result of such a substitution by E(d)- the resulting
expression (viz. E(d) ) denotes a member of D'. For example
if both D and D' are set of natural numbers then E(x) could
be  x+1 (so E(5)=5+1=6) or perhaps XxX (then

E(5)=5x5=25). For such expressions the notation

Ax. E(x)
denotes the function f: D & D' such that:
for all deD then £(d)=E(d)
For example:
i) ax. x+t | denotes the successor
function.
ii) AX. XxX denotes the squaring
function.
iii) Ax. (x=0)strue, false denotes test-for-zero
function.

An expression of the form Ax. e(x) is called a -

expression, x is its bound variable and e(x) its body.

This is the central 1idea of A-notation. For more

elaboration on this topic the reader is referred to [CHU 56,
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KAT 48, GOR 79]. Note that the body of a A-expression
always extends as far to the right as possible; thus Ax.x+1

is Ax.(x+1) not (xx.x)+1.
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APPENDIX D

More on Insertion and Deletion

The characteristic set of DSO's‘§requires inverse
operations for every i- and d- functions such that terms can
be reduced to their minimal form. Consider a term
z=i1(d1(i1(i1(d1(i1(¢,1),1),1),2),2),2); then the question
is whether we can reduce z to z=i1(i1(¢,1),2). Indeed this
can be done by the reduction rule given in chapter 3. If
the node 1indices match, clearly the reduction can be
performed no matter what sequence of i- and d-functions
exists provided that the p- and b-expressions are satisfied.
There are cases however where the node to be deleted has a
non-empty successor set. For example consider an array
configuration, 1z, of length 5. The node indexed 3(say) may
be deleted by the épprépriate d-function 4 as follows:

d(i(i(i(i(i(¢,1),2),3),4),5),3)
As a result we end up with a "gap" caused by the removal of
a node 1indexed 3. What happens to nodes 4 and 5? They
cannot exist without the presence of their predecessor node
3. In fact the resulting configuration is an element of the
UFT. There are a number of alternatives as to what we
should do, with the successors of a deleted node, such that

the resulting term is not an error term. One alternative is



170

to make this decision at the level of the primitive d-
function. This is discussed below, giving the user the
choice to either define an alternative host for the
successor set of the deleted node or delete the successor
nodes all together. Same philosophy is pursued when an

existing node is displaced by a new insertion.

A more general approach, however, is to allow the user
to specify the "destiny" of the successor set by means of
some "auxiliary equations."™ The auxiliary equations would
enable us to define functions in terms of the existing ones.
In the above example one can use Such a tool to define the
function d' such that d} not only deletes node 3 bu£ also
specifies whether node 4 and 5 should remain in the
structure, and if so what index values should they take.
Eo} example after deletion of node 3, node 4 could change to
3, and node 5 may be changed to 4. Alternatively both 4 and
5 may be deleted, i.e. their index is changed to ff. Let wus
"assume that we are interested in the former approach of
shifting the node indices down by 1. Then d' should be
composed of the following sequence of primitive operations;
assume z is the original array configuration of 1length 5
described above:

z'=i(i(d(a(a(z,5),4),3),3),4)

It can be seen that by our reduction rule the above

term reduces to:

2'=1(i(i(i(4,1),2),3),4)
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Note that in this example, since the array nodes contain
empty structures, the resulting configuration z' would be
the same no matter which one of the 5 nodes is deleted
provided that the successor nodes are "shifted do&n" by one

as assumed above.

Constructors with Hidden Parameters

The i- and d-functions defined in here are intended as
an alternative to those defined in chapter 3. They may be
employed in cases where the definitions 3.2 and 3.3 are
either not acceptable or not convenient to use. An example
of this situation would be the FIFO queue data type, wheré
deletion always requires "displacement"” of the nodes already
in the queue. Note that in this case the deletion function
may just as well be defined in terms of the definitions 3.2

and 3.3.

Definition 3.2'

Let z=(S,u), z'=(S',u)ezL, where Z, is a data structure

and let b}v be the b-expression associated with level 1,

1<1<L. Also let 1 denote an isomorphic mapping of two Z-

structureé. An insertion function (i-function) is a partial
mapping:

1 H ZL p 4 N4 > zL

such that, 1(z, 1, k, m, n)=2'=(S', u') where 1<1<L, and

the following conditions hold at level 1l:°°

3 This equation denotes: 1insert a node indexed m at
level 1 of the configuration =z in node k of the (l+1)th
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1
1) bl(slkm)

2) If 1<L then oy satisfies “l+1(sl+1 ) for some Q.

+1,q eras

3) 8] = {Siymly
{Sikj : E(Sl'slkj) A j¢sucset (m) }U
{ n(sy;)" ¢ (Slkissucset(s1km U i=m)Ab%(i)}
- such that (Sikn,n(slkm)')eui and “(Slkm)¢SUCSét(Sikn)
and (sucset(n(slkm)'),pl)z(sucset(slkm),pl).

4) The m-index of the 1tP Jevel ‘nodes contained in nodes
(k+1), (k+2),...of the (1+1)th level will change only if
the maximum value of the m-indices in node k of
(1+1)th level is modified. The renumbering follows from
the numbering rules of I-structures described in-
definition 2.2. Also the k-index of the (l-1)th level
nodes contained in m and the sucset(m) nodes in k, k+1,
k+2,...(if any), would change correspondingly according
to definition 2.2. The 1indexing of the nodes SAKu’

where A=1+1 or )21 and kx<k-1, would remain the same such

that for every S €S which satisfy the latter

AKU

condition, there exists a node'SiKusS'.

Definition 3.3'

A deletion-function (d-function) is a partial mapping:

(following the same notation as in definition 3.2)

level. The displaced sucset(m), if any, becomes the suc-
set{n) such that the node previously labeled S would
become n(S K )', for some n. The resulting configu}g@ion is
z'; and thé Pnserted node is labeled S! me Note that, the
primed sets and symbols refer to the n%b configuration.
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4
such that &(z,1,k,m,n)=2'=(S', u'), and the following
conditions are satisfied:*°

1
1) ba(slkm)
2) 1f 1<L then oy,

satisfies cxl_”(s1+1 ) for some q.

yq ’ql_k

3)'sy - {Sikj : j¢sucset(m)Aj¢m}U
{n(Sy,4)" ¢ Sikjesucset(Sy, ), bo(i)]}
- such that the latter set is a subset of sucset(Sj, )
and structurally isomorphic to sucset(Slkm).
If n=0, then the elements of sucset(m) will become empty
nodes, hence they would be deleted.
4) The m-indices, of the 1l th levgl’nodes, contained in
(k+1), (k+2),.... nodes.of the (l+1)St level, if any

kth node

would change if the maximum node index in the
of (1+1)St changes, according to the definition 2.2.
Also The k-index of the 1-1 level nodes and the levels
below will change correspondingl?. The nodes skKu’
with A, «k and u the same as that of definition 3.2,

remain unchanged.

It should be noted that the extra parameter n in the
above functions are really "hidden" parameters. Therefore

to a user such functions would behave the same way as those

4 The deletion equation denotes: delete the node at
level 1 of configuration z,indexed m, in node k of the
(1+1)st level. The displaced sucset(m),if any, will become
the sucset(n). The resulting configuration 1is z'.
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of definitions 3.2 and 3.3. For a queue, say, the value of

n in the deletion function of 3.3' is always equal to 1
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