MILLIMETER - WAVE RADAR SCATTERING FROM TERRAIN: DATA HANDBOOK

Thomas F. Haddock

Fawwaz T. Ulaby

Radiation Laboratory University of Michigan Ann Arbor, Michigan

Technical Report 026247-1-T

January, 1990

THE VIEW, OPINIONS, AND/OR FINDINGS CONTAINED IN THIS REPORT ARE THOSE OF THE AUTHOR(S) AND SHOULD NOT BE CONSTRUED AS AN OFFICIAL DEPARTMENT OF THE ARMY POSITION, POLICY, OR DECISION, UNLESS SO DESIGNATED BY OTHER DOCUMENTATION.

U.S. Army Research Office

Contract DAAL03-89-K-0056

· I.	INTR	IODUCTION	•••••	1
11.	MMV	V DATA FOR DRY SNOW		. 6
	A. B. C. D. E. F. G. H. I.	Smooth Surface Slightly Rough Surface Very Rough Surface Heavily Metamorphosed Snow Unmetamorphosed Fresh Snow Small Crystal Size Large Crystal Size with Rough Surface Large Crystal Size with Smooth Surface	10 12 14 . 17 . 21 . 25 27	
Ш.	MMV	V DATA FOR WET SNOW		. 34
	A. B. C. D. E.	Manmade Wet Snow	39 43 46	
IV.	MMV	V DIURNAL DATA FOR SNOW		49
	A. B. C.	31 March, 1988	. 55	
٧.	MMV	V DATA FOR ICE-COVERED GROUND		62
VI.	MMW	V DATA FOR TREE CANOPIES		64
	A. B. C. D. E. F.	Cedar Trees	67 72 74 88	
VII.	MMW	/ DATA FOR GRASSES		94
	A. B.	Short Grass		

VIII.	MMW DATA FOR ROAD SURFACES							
APPE	NDIX	A.		Millimeterwave atterometer				
APPE	NDIX	В.	Re	levant Publication	าร	• • • • • • • • • • • • • • • • • • • •		B1

I. INTRODUCTION

This handbook provides plots of millimeter-wave (MMW) radar scattering data for terrain based on backscattering measurements made by the University of Michigan's Millimeter-Wave Polarimeter system during the 1987-1989 time period. It is planned to issue an updated version of this handbook in late 1990 that will include additional data acquired in 1990 as well as MMW scattering data reported in the literature by other institutions.

Measurements made in 1987 and early 1988 consisted of observations of the backscattering coefficient σ^o at 35 and 94 GHz. Later measurements included 140 GHz observations as well. Most of the data are presented in the form of plots of σ^o versus the incidence angle θ for each of the three principal linear polarization configurations: VV, HV, and HH, where H denotes horizontal polarization and V denotes vertical polarization. The radar measurements were often augmented with close-up observations of the target including such measurements as water content and surface roughness, where appropriate. For each data set, a summary of these observations and a photograph of the target scene are provided.

The Millimeter-Wave Polarimeter is a mobile truck-mounted radar system capable of making observations from a 20 m high platform at any incidence angle between 0° (nadir) and 80°. In some cases, however, because of truck-access considerations or signal-to-noise limitations, it was not possible to make observations over this entire angular range. Figure 1 shows a photograph of the system in operation and Figure 2 shows a close-up of the antenna platform. Table 1 provides a summary of the present system specifications and Appendix A includes a paper reprint that describes the system operation in more detail, although some of the specifications given in Appendix A are somewhat out of date.

No effort will be made in this handbook to provide any analysis of the radar data or to compare the data with model predictions. Instead, a list of relevant publications is given in the bibliography for the interested reader.

Fig. 1 Photograph of the Millimeter-Wave Polarimeter system with the boom extended about half way.

Fig. 2 Close-up view of the RF sections, showing the 35, 94, and 140 GHz radars on the right side, and radiometers at the same operating frequencies on the left side.

Table 1. Millimeter-wave Polarimeter system parameters.

FREQUENCIES: 35, 94, 140 GHz

IF BANDWIDTH: 0 to 2.0 GHz

TRANSMIT POWER: 35 GHz: +3 dBm 94 GHz: 0 dBm

140 GHz: -4 dBm

SWEEP RATE: 1 m-sec/freq., 51, 101, 201, 401 freq./sweep

POLARIZATION: HH, HV, VV, VH

INCIDENCE ANGLES: 0 to 70 degrees

PLATFORM HEIGHT: 3 meters minimum, to 18 meters maximum

NOISE EQUIV. σ° : 35 GHz: -22 dB

94 GHz: -28 dB 140 GHz: -21 dB

CROSSPOL ISOLATION: 35 GHz: 23 dB

94 GHz: 20 dB 140 GHz: 10 dB

PHASE STABILITY: 35 GHz: ~1 degree/hour

94 GHz: ~1 degree/minute

140 GHz: ~10 to 50 degrees/second

NEAR FIELD DIST: 35 GHz: 2.7 m

94 GHz: 7.3 m 140 GHz: 2.7 m

BEAMWIDTH: 35 GHz: R: 4.2 deg T: 4.2 deg

94 GHz: R: 1.4 deg T: 2.8 deg 140 GHz: R: 2.2 deg T: 11.8 deg

ANTENNA DIAMETER: 35 GHz: R: 6 inches T: 6 inches

94 GHz: R: 6 inches T: 3 inches 140 GHz: R: 3 inches T: 0.36 inches

SIGNAL PROCESSING: HP 8510A/8511A based

OUTPUT PRODUCTS: -received power verses range

-received power verses frequency (at fixed R)

-phase and amplitude for each frequency

TERMINOLOGY

- Average Leaf (or Needle) Dimensions the approximate main axis length of the individual leaves (or needles).
- **Backscattering Coefficient** radar cross-section per unit area averaged over the illuminated area of the radar footprint, expressed in dB. Also referred to as Sigma-zero or σ^o .
- Cut this term is applied to grasses when they have been cut, and no longer have the natural termination on their blades.
- Data set code the unique alphanumeric sequence describing each data set. Typically it is the date of the measurement, in the sequence YYMMDD, with a numeric suffix if required for uniqueness.
- **Dry** a material is called "dry" when its moisture content (in the case of soils and vegetations) or its liquid water content (in the case of snow) is within experimental uncertainty of 0 %.
- Ice Crystal Diameter the approximate semi-major axis of an individual scatterer. This is typically a statistical quantity, arrived at by examining a number of individual scatterers.
- **Metamorphosed** snow crystals having extensively undergone the natural sublimation process that alters their shape from its original form toward the spherical.
- Moisture Content the percent of water, by mass, contained in a representative sample of soil or vegetation. The measurement consists of weighing a sample in its natural state, and again after drying it in an oven.
- Percent Vegetation Cover the percent of the ground covered by tree vegetation when viewed from above.
- Rough this term is applied to surfaces which are typically rougher than the natural state in which they are usually found. Often, in the case of soils or snow, it is used to describe a surface that has been artificially roughened.

- **Smooth** this term is applied to surfaces which are smooth compared to the natural state in which they are usually found. Sometimes it may be used to describe a surface which has been artificially smoothed.
- **Snow Density** the mass/volume density of undisturbed samples taken from the snowpit.
- Snow Depth the distance from the average top level of the snow to the underlying ground.
- Snow Liquid Water Content (LWC) the quantity of liquid (non-frozen) water contained in snow, by weight (gravimetric), measured in percent.
- Surface RMS Height the root-mean-square deviation of the surface height relative to the mean surface
- **Surface Temperature** the temperature registered by a mercury-bulb thermometer with the bulb just covered by the top layer of the surface.
- Tree Density number of trees per unit area.

Snow is a very complex target and many of the following data sets could be categorized in several ways. In the interests of simplifying the data organization, and facilitating its use by the reader, the data have been categorized into subsections by their most salient feature.

The following chart is included in order to give a more complete overview of the characteristics of the data:

	smooth surface	slightly rough surface	very rough surface	heavily metamorphosed	unmetamorphosed fresh	small crystal size	large crystal size
Data Set Code	A	В	С	D	Е	F	G
880329 (S)	X			х			х
880329 (SR)		х		х			Х
880329 (VR)			х	х			X
890210	X			х			Х
890223	х				Х	х	
890302 (SM)	х				х	х	
890302 (LG)	х				х		Х
890307 (RO)		х			k		х
890307 (SM)	Х				K		х

A. Smooth Surface

Dry snow

Data set code: 880329(S)

Depth: 20-30 cm

LWC: 0 %

Surface RMS height: 1 cm Density: 0.3 to 0.4 gm/cm³

Ice crystal diameter: 1 to 4 mm Surface temperature: -2.0 C

Description: smooth snow surface

Surface roughness profile with 1 cm grid

880329(S)

Snow crystal from surface

Metamorphosed crystal from middle of snowpack

880329(S)

Smooth snow at Houghton

Smooth snow at Houghton

B. Slightly Rough Surface

Dry snow

Data set code: 880329 (SR)

Depth: 20 to 30 cm

LWC: 0%

Surface RMS height: 1 cm Density: 0.3 to 0.4 gm/cm³

Ice crystal diameter: 1 to 4 mm

Surface temperature: 0 C

Description: snowpack of highly metamorphosed

snow with a slightly rough surface

Surface roughness profile with 1 cm grid

880329(SR)

Slightly rough snow at Houghton

Slightly rough snow at Houghton

C. Very Rough Surface

Dry snow

Data set code: 880329(VR)

Depth: 20 to 30 cm

LWC: 0%

Surface RMS height: 4 cm Density: 0.3 to 0.4 gm/cm³

Ice crystal diameter: 1 to 4 mm

Surface temperature: 0 C

Description: snowpack of highly metamorphosed

snow with a rough surface

Surface roughness profile with 1 cm grid

880329(VR)

Very rough snow at Houghton

Very rough snow at Houghton

D. Heavily Metamorphosed Snow

Dry snow

Data set code: 890210

Depth: 27 cm LWC: 0.0 %

Surface RMS height: ~ 1 cm

Density: 0.5 gm/cm³

Ice crystal diameter: 2 to 4 mm Surface temperature: -4.8 C

Description: heavily metamorphosed snow

Metamorphosed crystal from top of the snowpack

890210SNOW PIT PROFILE FOR 890210

air temperature: -4.4 C

890210

Snow at Brighton

E. Unmetamorphosed Fresh Snow

Dry snow

Data set code: 890223

Depth: 12 cm

LWC (at 2:15 PM): 0 % LWC (at 3:52 PM): 0 %

Surface RMS height: 1.4 mm

Density: 0.2 g/cm³

Ice crystal diameter: 1 to 2 mm

Surface temperature: -7 C

Description: dry unmetamorphosed snow

Surface roughness profile with 1 cm grid

890223

Snow pit

890223

Dry snow at Brighton

Dry snow at Brighton

890223

Dry snow at Brighton

F. Small Crystal Size

Dry snow

Data set code: 890302(sm)

Depth: 10 cm LWC: 0 %

Surface RMS height: 0.15 cm Density: 0.1 to 0.2 gm/cm³ Ice crystal diameter: 1 mm Surface temperature: -5 C

Description: smooth snow surface

Surface profile with 1 cm grid

MMW DATA FOR DRY SNOW 890302(SM)

Snow crystals from surface

Snow crystals from bottom of snowpack

890302(SM)

Small snow crystals at Brighton

Small snow crystals at Brighton

890302(SM)

Small snow crystals at Brighton

G. Large Crystal Size

Dry snow

Data set code: 890302(Lg)

Depth: 10 cm LWC: 0 %

Surface RMS height: 0.15 cm Density: 0.1 to 0.2 gm/cm³

Ice crystal diameter: 2 to 2.5 mm

Surface temperature: -5 C

Description: fresh smooth snow surface

890302(LG)

Large snow crystals at Brighton

Large snow crystals at Brighton 890302(LG)

Large snow crystals at Brighton

H. Large Crystal Size with Rough Surface

Dry snow

Data set code: 890307(ro)

Depth: 10 cm LWC: 0 %

Surface RMS height: 1.17 cm

Density: 0.4 gm/cm³

Ice crystal diameter: 2 to 4 mm Surface temperature: -10 to -12 C

Description: dry, slightly metamorphosed snow

Surface roughness profile with 1 cm grid

890307(RO)

Data collection scene

Snow crystals from surface

890307(RO)

Dry rough metamorphosed snow at Brighton

Dry rough metamorphosed snow at Brighton

890307(RO)

Dry rough metamorphosed snow at Brighton

I. Large Crystal Size with Smooth Surface

Dry snow

Data set code: 890307 (Sm)

Depth: 10 cm LWC: 0 %

Surface RMS height: 0.28 cm lce crystal diameter: 2 to 4 mm

Density: 0.4 gm/cm³

Surface temperature: -10 to -12 C

Description: dry slightly metamorphosed snow

890307(SM)

Dry smooth metamorphosed snow at Brighton

Dry smooth metamorphosed snow at Brighton

890307(Sm)

Dry smooth metamorphosed snow at Brighton

III. MMW DATA FOR WET SNOW

As in the previous chapter on Dry Snow, the following chart is included in order to give a more complete overview of the characteristics of the data:

	manmade wet	slightly wet with smooth surface	wet w/ smooth surface	very wet with rough surface	very wet with smooth surface
Data Set Code	A	В	С	D	Е
890220		X			
890309 (vw w/ rs)				x	
890221			x		
890309 (vw w/ ss)					Х
890215	х				

A. Manmade Wet Snow

Wet snow

Data set code: 890215

Depth: 27 cm

LWC: (at 3:25 PM): 8.82 % Surface RMS height: 1.6 cm

Density: 0.48 gm/cm³

Ice crystal diameter: 2 to 4 mm

Surface temperature: 0.0 C

Description: manmade wet snow

Snowmaking scene

Surface roughness profile with 1 cm grid

Data collection scene

890215

Wet snow at Brighton

Wet snow at Brighton

890215

Wet snow at Brighton

B. Slightly Wet Snow with Smooth Surface

Data set code: 890220

Depth: 6.5 cm

LWC (at 2:08 PM): 0 % LWC (at 4:23 PM): 1.88 % Surface RMS height: 0.11 cm Density: 0.1 to 1.0 gm/cm³

Ice crystal diameter: 1 to 2 mm

Surface temperature: 0.0 C

Description: smooth, wet natural snow

SNOW PIT PROFILE FOR 890220

air temperature: 1.1 C

Data collection scene

Snow crystals from surface

890220

Wet snow at Brighton

Wet snow at Brighton

890220

Wet snow at Brighton

C. Wet Snow with Smooth Surface

Wet snow

Data set code: 890221 LWC (at 12:48 PM): 4.53 % LWC (at 1:20 PM): 5.50 % LWC (at 3:08 PM): 6.57 %

Depth: 13.5 cm

Surface RMS height: 0.22 cm lce crystal diameter: 1 mm

Density: 0.13 gm/cm³

Surface temperature: 1.0 C

Description: smooth, wet natural snow

Surface roughness profile with 1 cm grid

Snow pit

Data collection scene

890221

Wet snow at Brighton

Wet snow at Brighton

D. Very Wet Snow with rough Surface

Wet snow

Data set code: 890309(RO)

Depth: 4.0 cm

LWC (at 2:30 PM): 16.89 % LWC (at 3:09 PM): 15.47 %

Surface RMS height (sample 1): 1.36 cm Surface RMS height (sample 2): 1.78 cm Surface RMS height (sample 3): 1.79 cm Surface RMS height (sample 4): 2.29 cm

Surface RMS height: 0.15 cm

Density: 0.42 gm/cm³

Ice crystal diameter: 2 to 4 mm Surface temperature: 4 to 6 C Description: rough, wet snow

890309(RO)

Wet rough metamorphosed snow at Brighton

Wet rough metamorphosed snow at Brighton

890309(RO)

Wet rough metamorphosed snow at Brighton

E. Very Wet Snow with Smooth Surface

Data set code: 890309(sm)

Depth: 4.0 cm

LWC (at 2:30 PM): 16.89 % LWC (at 3:09 PM): 15.47 % Surface RMS height: 0.30 cm

Density: 0.42 gm/cm³

Ice crystal diameter: 2 to 4 mm Surface temperature: 4 to 6 C Description: wet, smooth snow

890309(SM)

Wet smooth metamorphosed snow at Brighton

A. 31 March, 1988

Snow

Data set code: 880331

Depth: ~ 71 cm LWC: 0 to 10.2 %

Smooth surface RMS height: 0.49 cm

Slightly rough surface RMS height: 0.88 cm Very rough surface RMS height: 1.98 cm

Density: surface: 0.39 gm/cm³

15 cm depth: 0.50 gm/cm³ 30 cm depth: 0.54 gm/cm³

45 cm depth: 0.53 gm/cm³

60 cm depth: 0.58 gm/cm³

71 cm depth (ground): 0.65 gm/cm³

Ice crystal diameter: 0.5 to 1 mm Surface temperature: -2.7 C to 4.5 C

Description: metamorphosed snow divided into

three sections, one natural surface (smooth),

and two with roughened surfaces

Surface roughness profile of smooth snow with 1 cm grid

Surface roughness profile of slightly rough snow with 1 cm grid

Surface roughness profile of very rough snow with 1 cm grid

Snow crystals from surface

880331

Houghton snow with smooth surface

Houghton snow with slightly rough surface

880331

Houghton snow with very rough surface

Houghton snow with smooth surface

Houghton snow with slightly rough surface

Houghton snow with very rough surface

B. 27 February, 1989

Snow

Data set code: 890227/28

Depth: 9.5 cm LWC: 0 to 5 %

Surface RMS height: 0.1 cm

Density: 0.31 gm/cm³

Ice crystal diameter: 1 mm

Surface temperature: 0.0 C to -9.0 C

Description: partially metamorphosed snow

890227/28

SNOW PIT TEMPERATURE PROFILE (°C)

890227/28

Liquid water content during snow diurnal at Brighton

Surface roughness profile with 1 cm grid

890227/28

Snow diurnal at Brighton

Snow diurnal at Brighton

890227/28

Snow diurnal at Brighton

C. 2 March, 1985

Snow

Data Set code: 890302

Depth: 10 cm LWC: 0%

Surface RMS height: 0.15 cm Density: 0.1 to 0.2 gm/cm³

Ice crystal diameter: 2 to 2.5 mm Surface temperature: -4 C to -5 C

Description: partially metamorphosed snow

SNOW PIT TEMPERATURE PROFILE (°C)														
Time		0400	0500	0600	0700	0800	0900	1000	1100	1200	1300	1400	1500	1600
To	op 10 _	-4.0	-5.0	-5.0	-5.0	-5.0	-4.0	-4.0	-3.0	-3.0	-2.0	-2.0	-2.0	-1.9
depth (cm)	9 - 8 - 7 - 6 - 5 - 4 - 3 - 1 -	-7.0	-7.0	-6.0	-6.0	-6.0	-5.0	-4.0	-3.0	-3.0	-1.5	-1.0	-1.8	-1.7
b	ottom -	-13.0	-11.0	-10.0	-10.0	-8.5	-6.0	-4.0	-1.0	-1.0	-0.5	-0.0	-1.5	-1.5
air	temp _	-15.0	-13.5	-13.0	-12.0	-10.0	-6.0	-5.0	-5.0	-5.0	-3.5	-4.0	-4.5	-5.0
Tim	ъе	1700	1800	1900	2100	1400	1500	1600	1700	1800	1900 2	2100		
Гор	10_	-2.8	-3.7	-4.0	-5.0	-2.0	-2.0	-1.9	-1.9	-3.7	-4.0	-5.0		
depth (cm)	8 — 7 — 6 —		j	-3.1	-3.5	-1.0	-1.8	-1.7	-1.7	-2.7	0.1	-3.5		
bott	om	-1.8	-2.0	-2.2	-2.5	-0.0	-1.5	-1.5	-1.5	-2.0	-2.2	-2.5		

-5.0

-5.0 -6.0

-6.5 -7.5

-4.5

-5.5 -6.0

-6.5 -7.5 -4.0

Snow diurnal at Brighton

Snow diurnal at Brighton

890302

Snow diurnal at Brighton

V. MMW DATA FOR ICE-COVERED GROUND

V. MMW DATA FOR ICE-COVERED GROUND

Data set code: 880308

Depth: 3 to10 cm

Surface RMS height: 1 mm Surface temperature: 0 C

Description: ice formed by the freezing of sheetflooded terrain, about 10% of the surface was

covered by pools of water

Ice covered ground

MMW DATA FOR ICE-COVERED GROUND

880308

Ice

Ice

VI. MMW DATA FOR TREE CANOPIES

A. Cedar Trees

Cedar trees

Data set code: 871111

Tree density: 0.07 trees/m²

Average leaf (or needle) dimensions: ~ 2 to 3 cm

Leaf moisture content: ~ 70 %

Ground cover moisture content: ~ 35 %

Percent vegetation cover: 90 %

Percent cover of undergrowth: 100% Moisture content of undergrowth: 35%

Description: Stand of mature oak trees over low

ground cover

Cedar trees

MMW DATA FOR TREE CANOPIES

Needles of Cedar trees

Ground cover beneath Cedar trees

MMW DATA FOR TREE CANOPIES

871111

Cedars at Arboretum

Cedars at Arboretum

B. Red Pine

5 -11 November, 1987 Data set code: 871105

Tree density: 0.14 trees/m²

Average leaf (or needle) dimensions: 10 to 15 cm

Leaf moisture content: ~70 % Percent vegetation cover: 90 %

Percent cover of undergrowth: 100% Moisture content of undergrowth: 35%

Description: Stand of mature red pines over dry, fallen needles

Red pines

Needles of Red Pines

Ground cover beneath Red Pines

Red Pines at Arboretum (5 November, 1987)

871107

Red Pines at Arboretum (7 November, 1987)

Red Pines at Arboretum (7 November, 1987) 871109

Red Pines at Arboretum (9 November, 1987)

Red Pines at Arboretum (10 November, 1987) 871111

Red Pines at Arboretum (11 November, 1987)

C. Apple Trees

Data set code: 880811 Tree density: 0.1 trees/m²

Average leaf (or needle) dimensions: 4 by 8 cm

Leaf moisture content: ~80 % Percent vegetation cover: 90%

Percent cover of undergrowth: 100% Moisture content of undergrowth: 80%

Apple tree

Leaves of apple tree

880811

D. Bur Oak

Bur Oak (Quercus macrocarpa) Data set code: 880930-1027 Tree density: 0.09 trees/m²

Average leaf (or needle) dimensions: 8 by 12 cm

Moisture content of undergrowth: ~ 70% Percent cover of undergrowth: 100%

Percent vegetationcover: 95%

Description: Stand of mature oak trees over low ground cover

Bur oaks at Botanical Gardens -- 880930

Leaves of Bur oaks at Botanical Gardens -- 880930

Bur oaks at Botanical Gardens -- 881007

Leaves of Bur oaks at Botanical Gardens - 881007

Bur oaks at Botanical Gardens -- 881015

Leaves of Bur oaks at Botanical Gardens -- 881015

Leaves of Bur oaks at Botanical Gardens -- 881027

Ground cover beneath Bur oaks at Botanical Gardens -- 881027

880930-1027

Bur Oaks (Quercus Macrocarpa)

Bur Oaks (Quercus Macrocarpa)

Bur Oaks (Quercus Macrocarpa) 880930-1027

Bur Oaks (Quercus Macrocarpa) 880930

Bur Oaks (Quercus Macrocarpa) Leaf Moisture Content = 59.7%

Bur Oaks (Quercus Macrocarpa)

Bur Oaks (Quercus Macrocarpa) Leaf Mositure Content = 54.2%

Bur Oaks (Quercus Macrocarpa) Leaf Moisture Content = 63.4%

881014

Bur Oaks (Quercus Macrocarpa) Leaf Moisture Content = 50.1%

Bur Oaks (Quercus Macrocarpa)

Bur Oaks (Quercus Macrocarpa) Leaf Moisture Content = 55.2%

Bur Oaks (Quercus Macrocarpa)

Leaf Moisture Content = 42%

Bur Oaks (Quercus Macrocarpa)

Bur Oaks (Quercus Macrocarpa) Leaf Moisture Content = 27%

Oaks (Quercus Macrocarpa) Leaf Moisture Content = 27%

E. Spruce Trees

~6 mm

Spruce (Picea abies)

Data set code: 881031/881122 Tree density: 0.03 trees/m²

Average needle dimensions: 2 cm

Leaf moisture content: 53.1%(881031); 56%

(881122)

Percent vegetation cover (est.): 80 % Percent cover of undergrowth: 100% Moisture content of undergrowth:35%

Description: stand of mature spruce trees with weedy ground cover

881031

Norway Spruce (Picea Abies)

Norway Spruce (Picea Abies)

881122

Blue Spruce & Norway Spruce (Picea Puryens & Picea Abies)

Blue Spruce & Norway Spruce (Picea Puryens & Picea Abies)

F. White Cedar Bushes

White Cedar bush (Thuja occidentalis)

Data set code: 881116

Height: 3 m Density: 80 %

Average leaf (or needle) dimension: 5 cm

Leaf moisture content: 56 %
Percent vegetation cover: 80 %
Percent cover of undergrowth: 50%

Description: dense stand of White cedar bushes

White Cedar bush

Close-up view of branches of White Cedar bush

White Cedar at Botanical Gardens (Thuja Occidentalis)

White Cedar at Botanical Gardens (Thuja Occidentalis)

White Cedar (Thuja Occidentalis)

VII. MMW DATA FOR GRASSES

Grass

Data set code: 871102

Description: cut grass with wet surface

Grass Height = 10 cm

Cut grass at North Campus (Height = 5 cm)

Cut grass at North Campus (Height = 5 cm)

Cut Grass (Height = 6 cm)

Tall Grass (Amaranthus) Data set code: 881202

Grass Moisture Content: 37.6%

Height: 50 cm

Description: uncut

Amaranthus over chickweed

MMW DATA FOR GRASSES

881202

Amaranthus over chick weed

Amaranthus over chick weed

Amaranthus over chick weed

881103

Tall Grass (Andropogon gerardi)

Data set code: 881103

Leaf Moisture Content = 33%

Height: 80 cm

Description: dry, uncut

881108

Grass (Andropogon gerardi)

Data set code: 881108

Leaf Moisture Content = 44.5%

Height: 80 cm

Description: moist, uncut

Turkey Foot or Big Bluestem (Andropogon gerardi)

Turkey Foot or Big Bluestem (Andropogon gerardi)

Turkey Foot or Big Bluestem (Andropogon gerardi)

881027

Tall Grass (Bromus inermis)

Data set code: 881027

Leaf Moisture Content = 70 %

Height: 80 cm Description: uncut

881114

Grass (Bromus inermis)
Data set code: 881114

Leaf Water Content = 43.1%

Height: 10 cm Description: cut

Broom grass (Bromus inermis)

Broom Grass (Bromus inermis)

Broom Grass (Bromus inermis)

Broom Grass (Bromus Inermis)

881115

Grass (Bromus inermis)
Data set code: 881115
Leaf Water Content = 50%

Height: 25 cm Description: uncut

Broom Grass (Bromus inermis)

Broom Grass (Bromus inermis)

Broom Grass (Bromus inermis)

881117

Grass (Lythrum salicaria)

Data set code: 881117

Leaf Moisture Content = 24.8%

Height: 1 m

Description: uncut

Purple loose strife (Lythrum salicaria)

Purple Loose Strife over water (Lythrum salicaria)

Purple Loose Strife over water (Lythrum salicaria)

890406

Grass

Data set code: 890406

Leaf Moisture Content = 70 %

Height: 4 cm

Description: cut, packed down by winter's snow.

This is the grass from under the Brighton snow for which data was taken in early 1989.

Brighton grass substrate

Brighton grass substrate

Brighton grass substrate

VIII. MMW DATA FOR ROAD SURFACES

A. Asphalt

Asphalt

Data set code: 860918

Surface RMS height: 0.7 mm

Description: smooth, dry asphalt

860918

Dry Asphalt at Willow Run

Asphalt

Data set code: 871113

Surface RMS height: 0.42 mm Condition: dry, smooth asphalt

Asphalt

Data set code: 880923(1)
Surface RMS height: 0.42 mm
Condition: smooth, damp asphalt

Damp Asphalt at Dow Parking Lot 880923(2)

Dry Asphalt at Dow Parking Lot

Rough Asphalt Data set code: 881109

Surface RMS height: ~ 2 mm Condition: rough, dry asphalt

Asphalt at Botanical Gardens

Rough Asphalt at Botanical Gardens

Rough Asphalt at Botanical Gardens

871113/880815

B. Gravel

Gravel

Data set code: 871113 and 880815

Surface RMS height: ~ 2 mm Typical stone size: ~ 6 mm Description: dry gravel

Gravel in North Campus parking lot

Gravel in North Campus Parking Lot

880815(2)

Gravel in North Campus Parking Lot

APPENDIX A

A Millimeterwave Network Analyzer Based Scatterometer

Fawwaz T. Ulaby
Thomas F. Haddock
Jack R. East
Michael W. Whitt

Reprinted from
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING
Vol. GE-26, No. 1, January 1988

A Millimeterwave Network Analyzer Based Scatterometer

FAWWAZ T. ULABY, FELLOW, IEEE, THOMAS F. HADDOCK, MEMBER, IEEE, JACK R. EAST, MEMBER, IEEE, AND MICHAEL W. WHITT, STUDENT MEMBER, IEEE

Abstract—The Millimeterwave Polarimeter (MMP) is a network-analyzer based scatterometer and reflectometer system that has been developed in support of a program to characterize radar clutter at 35, 94, and 140 GHz. A HP 8510A network analyzer is employed in the MMP system as a signal conditioner and processor to facilitate real-time data reduction, to reduce the short time-delay leakage noise inherent in traditional FM/CW radar, and to further enhance the signal-to-noise ratio of the system through signal processing techniques. Operation of the system at millimeter wavelengths is achieved with upconversion and harmonic downconversion. The use of harmonic downconverters permits low-frequency signal connections between components of the system and allows easy reconfiguration in either scatterometer, bistatic, or reflection/transmission modes.

I. Introduction

THE PRIMARY design objectives of the Millimeter-wave Polarimeter (MMP) is to achieve a system that can operate at 35, 94, and 140 GHz with full polarization and phase capability. It should operate from a truck platform as a scatterometer for backscatter measurements and in the laboratory for bistatic and transmission measurements, and should have ranging and real-time processing capabilities. The HP 8510A is an automatic vector network analyzer with a computer-control system that allows vector error correction of imperfections through the use of calibration standards. It provides the needed flexibility and signal conditioning and processing for our requirements.

The three configurations of the MMP are illustrated in Fig. 1. Fig. 1(a) illustrates the 94-GHz system in its back-scatter mode. In this configuration it operates from a variable-angle mount on the end of an extendable boom mounted on a truck. The front end RF and IF components are mounted on the boom top, while the network analyzer and ancillary data processing and recording equipment are mounted in a control house on the bed of the truck. Fig. 1(b) shows the bistatic measurement configuration in which the transmitter and receiver sections are separated from one another and used to make bistatic measurements. Fig. 1(c) illustrates the transmitter and receiver subsystems, operating without the lens-horn antennas, to make transmission and reflection measurements. In this

Manuscript received January 12, 1987; revised July 30, 1987.
The authors are with the Radiation Laboratory, Department of Electrical Engineering and Computer Science, The University of Michigan, Ann Arbor, MI 48109-2122.

IEEE Log Number 8717530.

Fig. 1. The three operating configurations of the MMP.

configuration the two subsystems directly face one another, so the transmitted signal passes directly through the sample.

Note that in the bistatic and reflection/transmission modes the receiver and transmitter sections must be positioned independently of each other. Scatterometer usage requires that the entire system be portable, with the front end moving remotely and independently from the HP 8510A back end. The MMP system illustrated in Fig. 2 addresses each of these goals, while providing standard operating procedures and data format for all three types of data acquisition.

II. MMP Design

The design goal was to produce a single versatile instrument with the ability to be configured in the three de-

Fig. 2. Scattering configuration of the system, detail, and block diagrams. (a) System diagram in scatterometer mode. The 94-GHz system is illustrated, 35- and 140-GHz systems are analogous. (b) Scatterometer configuration of the system.

sired configurations. Discussion of each of the configurations follows.

A. Backscatter Mode

Fig. 2 illustrates the system in its backscatter mode, in detail (part a) and in block diagram form (part b). At each RF frequency a fixed-frequency Gunn source and mixer are used to upconvert a 2-4 GHz swept signal, controlled by the HP 8510A, to a swept 93-95 GHz signal. This signal is transmitted (in vertical or horizontal polarization) through a lens-horn antenna to the target. A sample of the transmitted signal is harmonically downconverted with a low-frequency LO (~10 GHz) and transmitted

through flexible coaxial cable to the reference signal (a_1) port of the network analyzer. The reflected signal, picked up by a second antenna, is downconverted and fed into the return signal (b_1) port. The polarization switch allows the selection of either the horizontal or the vertical returned signal. Due to the low frequency (2-4 GHz) and (2-4 GHz) coaxial interconnections between the various up and down converters, the transmitter and receiver subsystems are independently mobile.

In a traditional FM/CW radar [1]-[3] the noise floor is set by nonvarying leakages and reflections within the system. For short-range calibrated radars, or scatterometers, this level is typically about 30 to 35 dB above the thermal

Fig. 3. Like- and cross-polarization traces for a typical MMP antenna.

noise floor of the system. The HP 8510A has error correction routines that correct for imperfections in the test circuitry through measurements of standard calibrators. By using an HP 8510A as a radar back-end, sources of system measurement error can be characterized and partially subtracted from the signal, hence, greatly increasing system sensitivity over that provided by a conventional design.

In addition, since the HP 8510A makes measurements by determining the phase and amplitude of returned signals over a series of stepped frequencies, all phase information is retained. When both horizontal and vertical modes of polarization are measured, complete polarization information can be obtained. This allows the reconstruction of any mode of polarization, linear or circular, thus making the system completely polarization agile. This capacity can be used to completely specify the scattering matrix of an object or target of interest.

The HP 8510A has the capability to perform complex pinary math operations on pairs of swept signals. For example, a signal may be memorized and used to operate on subsequent signals to remove or reduce unwanted responses. This can be used to reduce reflection and leakage noise from within the system, as well as to reduce unvanted responses from outside the instrument.

The HP 8510A can perform real-time fast-Fourier ransforms from the frequency domain, in which the data s taken, to the time domain. Range-gating capabilities in he time domain allow setting the response of the instrunent to a specified time range. This can be used to reject ignals reflected from targets outside of the desired range,

TABLE I
TRUCK MOUNTED SCATTEROMETER PARAMETERS

Frequencies:	35 94 140 GHz	
RF Bandwidth:	0 to 2.0 GHz	
Sweep Rate:	1 ms.freq., 51, 101, 201, 401 freq./swe.p	
Polarization:	HH, HV, VV, VH, magnitude and phase	
Incidence Angles:	0 to 70 degrees	
Platform Height: Noise Equivalent of:	3 meters m 35 GHz:	inimum, to 18 meters maximum -36 dB *
	94 Ghz:	34 dB *
	140 GHz:	-37 dB *
*These values for h=10 both parameters.)	meters and $\Theta=5$	iO degrees - the actual values will vary wit
Near Field Distance:	35 GHz:	5 53 m
	94 GHz:	3 71 m
	140 GHz:	1 36 m
Footprint:	35 GHz:	0 006 to 16 9 sq.m
	94 GHz:	0.002 to 4.78 sq.m
	140 GHz:	0 004 to 8 22 sq.m
ignal Processing:	HP 8510A/8	511A based
Adput Products:	-received power verses range (ΔR = c/28)	
	-received po	wer verses frequency (at fixed R)
	.cheen end	amplitude for each frequency

as well as to measure the backscattered power as a function of range. In studying the scattering from vegetation canopies, for example, it is possible to record the differential scattering as a function of range from the top of the canopy down to the underlying ground surface.

Table I lists projected system performance specifications, based on laboratory tests and specifications of our

Fig. 4. Bistatic configuration of the system.

Fig. 5. Reflection/transmission configuration of the system.

equipment. The values for the noise-equivalent σ° for the 94- and 140-GHz systems were derived on the basis of tests in the laboratory.

The bandwidth of the MMP can range from 0 to 2 GHz, and can be changed in real-time. Narrow bandwidth allows the system to have high spectral resolution, and hence have good determination of frequency-dependent features of the targets. Wide bandwidth allows good temporal resolution and can be used to reduce and study the effects of fading.

Antenna patterns of a typical MMP antenna are given in Fig. 3. These antennas have corrugated conical feed horns with matched dielectric lenses. Note that the cross-polarization isolation is better than 40 dB.

B. Bistatic Mode

The bistatic configuration diagram is shown in Fig. 4. The operation is similar to that in the backscatter mode,

only here the transmitter and receiver sections move independently of each other in making the measurements at various angles. Ease of movement of the two subsystems comes from the low-frequency IF (2 to 4 GHz) and LO (X-band) interconnections. Note that due to range-gating, bistatic measurements can take place anywhere, in the field, where the numerous unwanted reflections can be time-gated out, or in the usual anechoic chamber setting.

C. Transmission Mode

The transmission configuration diagram is shown in Fig. 5. Operation is as in the bistatic case, with the transmitter and receiver units positioned independently, only now the lens-horn antennas are removed and samples are placed directly against the waveguide probes. In this configuration the polarization switch is used to select either the response from the reflected signal or the transmitted signal.

RETURN FROM TREE CANOPY VS. RANGE

Fig. 6. Histogram of time-domain response of trees at 35 GHz.

Fig. 7. Backscatter measurements on asphalt at 35 GHz.

III. PRELIMINARY RESULTS

Fig. 6 shows a histogram of the time-domain response of the system operating in the scatterometer mode at 35 GHz. The target was a dense stand of trees, and the data was taken with a full bandwidth of 2 GHz at an angle of approximately 45 degrees. Calibration was performed against a 15-in sphere, and the estimated 1- σ accuracy was 1 dB for the total canopy $\sigma^{\circ} = -9.6$ dB. The histogram shows the power, given as a percent of the total removed power, through the canopy in 10-ns bins.

Fig. 7 shows σ° measurements of an asphalt surface versus angle for H-H, V-V, and V-H polarizations. This data was taken at 35 GHz with a 2-GHz bandwidth.

Fig. 8 shows a plot of the radar-cross-section versus incidence angle for a leaf of cross section of approximately 40 cm², with 63-percent moisture content. This data was taken in an anechoic chamber at 35 GHz with the system operating in the backscatter mode.

IV. CONCLUSION

The HP 8510A network analyzer shows great promise as the back end of centimeter- and millimeter-wave FM/CW scatterometers and reflectometers. Use of its various error correction and signal processing capabilities should greatly improve signal-to-noise ratio over equivalent conventional systems. Furthermore, the versatility in

35 GHz, VV POLARIZATION

Fig. 8. Leaf backscatter cross section versus angle at 35 GHz for a leaf with 63.4-percent moisture content.

bandwidth, polarization, and configuration of the MMP allow for a flexible system for field as well as laboratory use.

REFERENCES

- W. K. Saunders, "CW and FM radar systems," in Radar Handbook, M. I. Skolnik, Ed. New York: McGraw-Hill, 1970.
- [2] M. I. Skolnik, Introduction to Radar Systems. New York: McGraw-Hill, 1962.
- [3] F. T. Ulaby, R. K. Moore, and A. K. Fung, Microwave Remote Sensing: Active and Passive, vol. I. Reading, MA: Addison-Wesley, 1981.

Fawwaz T. Ulaby (M'68-SM'74-F'80) was born in Damascus, Syria, on February 4, 1943. He received the B.S. degree in physics from the American University of Beirut, Lebanon, in 1964 and the M.S.E.E. and Ph.D. degrees in electrical engineering from the University of Texas, Austin, in 1966 and 1968, respectively.

From 1968 to 1984, he was with the Electrical Engineering Department at the University of Kansas, Lawrence, where he was the J. L. Constant Distinguished Professor, and the University of

Kansas Center for Research, where he was Director of the Remote Sensing Laboratory. He is currently with the Radiation Laboratory and the Department of Electrical and Computer Engineering, University of Michigan, Ann Arbor. His current research interests involve microwave propagation and active and passive microwave remote sensing. Along with R. K. Moore and A. K. Fung, he is a coauthor of the three-volume series *Microwave*

Remote Sensing: Active and Passive (Reading, MA: Addison-Wesley). In addition, he is coeditor of the Manual of Remote Sensing, 2::d ed., vol. I, American Society of Photogrammetry.

Dr. Ulaby is a member of Eta Kappa Nu, Tau Beta Pi, and Sigma Xi. He has been named the Executive Editor for IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 1984-1985, and was the Geoscience and Remote Sensing Society's Distinguished Lecturer for 1987. He was named an IEEE Fellow in 1980 "for contributions to the application of radar to remote sensing for agriculture and hydrology," received the GRS Society's Outstanding Service Award in 1982, and its Distinguished Service Award in 1983. In 1984, he also received a Presidential Citation for Meritorious service from the American Service of Photogrammetry. He received the University of Kansas Chancellor's Award for Excellence in Teaching in 1980, the University of Kansas Gould Award for "distinguished service to higher education" in 1973, and the Eta Kappa Nu MacDonald Award as an "outstanding electrical engineering professor in the United States of America" in 1975.

Thomas F. Haddock (M'86) was born in Washington, DC, on November 2, 1949. He received the B.A. degree in mathematics and the M.S. and Ph.D. degrees in physics from the University of Michigan, Ann Arbor, in 1972, 1977, and 1984, respectively.

From 1984 to 1985 he was Manager of Development Projects at Applied Intelligent Systems, a machine vision firm involved in real-time optical, infrared, and X-ray vision systems. He is currently with the Radiation Laboratory and the De-

partment of Electrical Engineering and Computer Science, University of Michigan. He has conducted research in the fast flux density variations of quasi-stellar objects at a wavelength of 12.5 mm. Other research has included development of real-time alphanumeric character recognition algo-

rithms and ultrasonic weld inspection algorithms. Prior to receiving the Ph.D. degree, he worked as Applications Engineer for Sams/3M, a manufacturer of heart-lung machines and cardiac assist devices, where he developed electrodes for manufacturing applications. Current research interests are millimeter-wave scattering and emission from natural targets.

Dr. Haddock is a member of the American Astronomical Society.

*

Jack R. East (S'70-M'72) received the B.S.E., M.S., and Ph.D. degrees from the University of Michigan, Ann Arbor.

He is now an Associate Research Scientist in the Solid-State Electronics Laboratory of the University of Michigan, working in the area of microwave- and millimeter-wave solid-state devices.

Michael W. Whitt (S'83) was born in St. Charles, MO, on December 3, 1962. He received the B.S. degree in electrical engineering from the University of Arkansas, Fayetteville, in 1985 and the M.S. degree in electrical engineering from the University of Michigan, Ann Arbor, in 1986. Since September 1985, he has been a Graduate Research Assistant at the University of Michigan Radiation Laboratory, where he is currently working toward the Ph.D. degree.

His research interests include millimeter-wave radar, radar polarimetry, and polarimetric scattering from terrain and vegetation canopies.

APPENDIX B: RELEVANT PUBLICATIONS

- [1] F.T. Ulaby, T.F. Haddock, J.R. East AND M.W. Whitt. A Millimeterwave Network Analyzer based Scatterometer. IEEE Transactions on Geoscience and Remote Sensing, Vol. 26(1). Jan.1988.
- [2] M.W. Whitt and F.T. Ulaby. Millimeter-Wave Polarimetric Measurements of Artificial and Natural Targets. IEEE Transactions on Geoscience and Remote Sensing, Vol. 26(5). Sept. 1988.
- [3] T.F. Haddock and F.T. Ulaby. 140-GHz Scatterometer System and Measurements of Terrain. Submitted for publication in IEEE Transactions on Geoscience and Remote Sensing.
- [4] M.W. Whitt and F.T. Ulaby. Millimeter-wave Polarimetric Measurements of Artificial and Natural Targets. Proceedings of IGARSS '87 Symposium, Ann Arbor, May 1987.
- [5] F.T. Ulaby, T.F. Haddock and R.T. Austin. Fluctuation Statistics of Millimeter-Wave Scattering from Distributed Targets. IEEE Transactions on Geoscience and Remote Sensing, Vol. 26(3), May 1988.
- [6] M.T. Hallikainen, F.T. Ulaby and T.E. Van Deventer. Extinction Behavior of Dry Snow in the 18- to 90- GHz Range. IEEE Transactions on Geoscience and Remote Sensing, Vol. GE-25(6). Nov.1987.
- [7] M.T. Hallikainen, F.T. Ulaby and T.E. Van Deventer. Extinction Coefficient of Dry Snow at Microwave and Millimeterwave Frequencies. Proceedings of IGARSS '87 Symposium, Ann Arbor. May 1987.
- [8] T.E. Van Deventer, J.R. East and F.T. Ulaby. Millimeter Transmission Properties of Foliage. Proceedings of IGARSS '87, Ann Arbor. May 1987.
- [9] F.T. Ulaby, T.E. Van Deventer. J.R. East. T.F. Haddock and M.E. Coluzzi. Millimeter-wave Bistatic Scattering From Ground and Vegetation Targets. IEEE Transactions on Geoscience and Remote Sensing, Vol. 26(3). May 1988.

- [10] F.T. Ulaby, T.F. Haddock and M.E. Coluzzi. Millimeter-wave Bistatic Radar Measurements of Sand and Gravel. Proceedings of IGARSS '87 Symposium, Ann Arbor. May 1987.
- [11] K. Sarabandi, F.T. Ulaby, and T.B.A. Senior. Millimeter Wave Scattering Model for a Leaf. Accepted for publication in Radio Science.
- [12] F.T. Ulaby, T.H. Haddock and Y. Kuga. Measurement and Modeling of Millimeter-wave Scattering from Tree Foliage. Accepted for publication in Radio Science.
- [13] Y. Kuga, R.T. Austin, T.F. Haddock and F.T. Ulaby. Millimeter-wave Radar Scattering from Snow Part I--Radiative Transfer Model with Quasi-Crystalline Approximation. To be submitted for publication in IEEE Transactions on Geoscience and Remote Sensing.