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THE ECONOMIC LOT AND DELIVERY SCHEDULING PROBLEM:
POWERS OF TWO POLICIES

Abstract

We investigate the problem of simultaneously scheduling the final production line
of a captive supplier and the delivery of components produced on that line to an
assembly facility that uses these components at a constant rate. The supplier incurs a
sequence-independent setup cost and/or setup time each time the production line is
changed over from one component to another. On the other hand, setup costs and times
for the assembly facility are negligible. We consider two types of delivery costs: a
fixed charge for each delivery, and a fixed-charge-per-truck cost.

We develop a heuristic procedure to find a cyclic production and delivery schedule
with the power-of-two property. That is, in each cycle, each component is produced 2%
times for some small integer 1, where the value of 1 may differ across components. In
addition, several equally-spaced deliveries occur in each cycle, where the number of
deliveries is equal to the least common multiple of the component production
frequencies. The objective is to find the cycle duration that minimizes the average cost
per unit time of transportation, inventory at both the supplier and the assembly facility,
and setup costs at the supplier.

Computational results suggest that the heuristic performs well in an absolute
sense, and that significant savings can be achieved by using coordinated production
and delivery schedules rather than approaches in which they are decided sequentially.
The results also indicate that in many situations, pure just-in-time policies (in which
production and delivery frequencies are equal) are far from optimal. Our model
provides a basis for determining the type and extent of improvements needed in the

quest for just-in-time.



THE ECONOMIC LOT AND DELIVERY SCHEDULING PROBLEM:
POWERS OF TWO POLICIES

1. INTRODUCTION

Coordination of production and outbound delivery schedules has become more
important with the adoption of "just-in-time" systems in major industry segments,
including the automobile industry, which motivated our study. A recent survey of
suppliers of automotive components (see Ward's Auto World, July 1990) shows that a
majority of suppliers feel that they are being forced to hold inventory for their
customers, which are typically assembly facilities. This suggests that suppliers may be
producing components in batches that are larger than the delivery quantities, and then
shipping the components to the assembly facilities as needed. This raises two important
questions. First, what constitutes a good schedule (i.e., how much coordination is
desirable) under the existing economics of transportation and production? Second, when
should suppliers hold inventory, and when is "just-in-time" truly optimal?

We investigate these issues by studying the linkage between a large assembly
facility such as an automotive assembly plant and its immediate suppliers, often
referred to as "first tier" suppliers. Because of the magnitude of their impact on total
production and transportation costs, we focus on first tier suppliers that are large enough
to justify direct shipments between the supplier and the assembly facility. We also
assume that the supplier is captive and produces (multiple) components only for the
assembly facility in question. Such situations are not uncommon in the automobile
industry, and other examples exist in a wide variety of industries. From a technical
viewpoint, our reason for considering this situation is that it allows us to investigate the
just-in-time production/transportation problem unfettered by the complications of
scheduling the production and deliveries of components for multiple customers. Such

generalizations are natural extensions of this work and we encourage research in that



direction. However, as we will see later, even this single-customer problem is difficult.
We anticipate that the results obtained here will be helpful in solving more general
problems.

The next issue that needs to be addressed is the level of detail at which to model the
manufacturing process at the supplier. We have observed that at most first-tier
suppliers, the primary scheduling efforts are focused on the last stage of production at
that facility, with the overriding concern being that of producing the components on
time. At many of these suppliers, the last stage of production is a single production line
where these components are assembled. Generally, the upstream stages of production
(e.g., fabrication, subassembly) are expected to provide the necessary inputs as needed.
We therefore include only the final production stage at the supplier in our model.
Further research is needed to incorporate scheduling decisions upstream stages.

We assume that rates of use of the components by the assembly facility are, for
practical purposes, constant. Smoothing production is a very important prerequisite for
making just-in-time workable (see Schonberger 1983 for related discussion), and
automobile companies have made a concerted effort to smooth component usage rates as
much as possible. Thus, this assumption is fairly realistic in our motivating examples.
Considering a situation with constant demand also allows us to gain insight into
general principles that are less apparent in more complicated models.

We assume that there is a fixed charge for each delivery, but explain later in the
paper how the model and solution procedure can be generalized to consider a fixed
charge per truckload. Deliveries to the assembly facility occur at equal intervals
(duration to be determined), and each shipment consists of exactly enough of each
component to satisfy the requirements at the assembly facility until the subsequent
delivery occurs. Since the deliveries are equally spaced in time and the demand rates
are constant, each shipment has the same composition. The delivery lead time is

assumed to be deterministic, and without loss of generality, equal to zero.



(Incorporating in-transit inventory requires a simple modification of the parameters in
the objective function, but no change in the structure of the solution procedure.)

Inventory holding costs are charged on time-weighted average inventory levels,
and the inventory holding cost of a component is assumed to be the same at the supplier
as it is at the assembly facility. (Once again, relaxation of this assumption is fairly
straightforward.)

The supplier incurs a sequence-independent setup cost and/or setup time each time
the production line is changed over from one component to another. On the other hand,
setup costs and times for the assembly facility are assumed to be negligible, which is
reflective of many assembly environments.

In this paper, we address the problem of finding a cyclic production and delivery
schedule with the power-of-two property. That is, in each cycle, each component is
produced 2" times for some small integer u, where the value of u may differ across
components. Powers-of-two policies are very useful because they facilitate the
construction of good schedules with little loss of optimality. (For related references see
Maxwell and Singh 1983, Maxwell and Muckstadt 1985, Roundy 1988, and references
therein.) In addition, several equally-spaced deliveries occur in each cycle, where the
number of deliveries is equal to the least common multiple of the component production
frequencies. The objective is to minimize the average cost per unit time of setups,
inventory, and transportation while ensuring that both demand and the supplier's
capacity constraint are satisfied. We must decide the duration of the overall cycle, the
number of deliveries during the cycle (and consequently, the time between deliveries) ,
the number of production runs of each component during the cycle, and the exact
production quantities, sequence and timing of these production runs.

We provide a review of related literature in the next section.  Section 3 contains a

formulation of the problem. We propose a hierarchical heuristic procedure in Section 4.



Computational results appear in Section 5, and we conclude with a summary and

discussion in Section 6.

2. LITERATURE REVIEW

Much research has been done on continuous-time, multi-stage production systems
with known constant demands, but relatively little of it considers both the cost of
inventory accumulation prior to delivery and the cost of transportation in the
determination of jointly optimal production and delivery schedules. One likely reason
why the former has been ignored is that many models assume instantaneous production
(e.g., Crowston et al. 1973, Blackburn and Millen 1982, Roundy 1988, Maxwell and
Muckstadt 1985). Other papers incorporate capacity constraints but ignore some or all of
the accumulation inventory (e.g., Caie and Maxwell 1981, Billington et al. 1983, Jackson
et al. 1988), or treat transportation costs as fixed (Maxwell and Muckstadt 1981). The
reader is referred to Schussel [1968], Taha and Skeith [1970], Jensen and Kahn [1972],
Schwarz and Schrage [1975], Graves and Schwarz [1977], Bigham and Mogg [1979],
Szendrovits [1981], Williams [1982], and Moily [1986], among others, for a variety of
results on continuous-time, multi-stage lot-sizing models.

Transportation costs have been considered in a variety of procurement models,
either as quantity discounts (e.g., Lee 1986) or fixed charge per shipment (e.g, Lippman
1971 and Lee 1989), but none of these models explicitly considers the impact of the
selected delivery schedule on the inventory at the supplier. There are only a few papers
that treat all of the issues that we consider in this paper, and these papers consider
restricted versions of our problem. In the interest of brevity, we will review only those
models most closely related to ours.

Our problem might be viewed as an extension of the economic lot scheduling
problem (ELSP) in which several items, each with a constant demand rate, are produced

on one machine. Each item is produced one or more times in each cycle and the cycle is



repeated. Setup times and costs may be incurred in changeovers between items. The
objective is to minimize average setup and inventory costs per unit time. See
Elmaghraby (1978) for a review and Dobson (1987) and Zipkin (1991) for more recent
references. Several results and solution procedures for restricted versions of the ELSP
have proved to be useful in solving certain aspects of our problem. We will discuss these
in more detail as we explain our solution procedure.

In our model, the fact that deliveries occur only periodically imposes a structure
that bears some resemblance to "basic period” approaches to solving the ELSP. In the
basic period approach, the continuous time problem is transformed into a discrete time
problem where the duration of the period is a decision variable. Each item has one or
more production runs in a cycle. For any basic period duration, the problem is to assign
each production run to one of a set of consecutive periods without allowing the production
runs to span adjacent periods. This set of consecutive periods forms a repeating
(cyclic) schedule. The number of basic periods is also treated as a decision variable.
Some examples of basic-period approaches to the ELSP include Bomberger (1966),
Madigan (1968), Stankard and Gupta (1969), Doll and Whybark (1973), Goyal (1973),
and Haessler (1979). Other related papers are reviewed by Elmaghraby (1978). It is
useful to note that given a basic period and a production frequency for each item, the
problem of finding a feasible schedule is NP-hard (Hsu 1973). Thus, it is unlikely that
an efficient optimal solution procedure can be developed for our problem, since it is even
more complicated than the basic-period ELSP.

In our problem, the delivery interval (time between deliveries) is, in essence, the
basic period. However, our problem differs from the basic-period version of the ELSP in
several ways. First, demand occurs at a location other than where the components are
produced. Thus, inventory of the components must be accumulated prior to each
delivery. These accumulation inventories do not occur in the ELSP. Second, because of

this inventory accumulation between deliveries, the sequence in which components are



produced affects the solution, even when setup times and costs are sequence-independent.
In basic-period approaches, the sequence within a basic period does not matter if setup
times and costs are sequence-independent. Only a limited amount of research has been
done to address sequence dependence in the ELSP (Dobson 1989, Sahinidis and
Grossman 1991), but these results could be incorporated into our basic framework.

If the setup times and costs are sequence independent, and if production costs per
unit time are similar across components, the sequence within a delivery interval may
not matter in practice, since the rate at which value is being added is relatively
constant. Our point, however, is that unless the number of delivery intervals in the
overall cycle is nearly as large as the number of components (in which case, few
components would have to wait for very long prior to delivery), these inventories may
be as substantial as the cost of holding inventories at the assembly facility. The
magnitude of these inventories is influenced by the duration of the delivery interval
and the number of intervals in the overall cycle, and thus should be considered in these
decisions.

Another somewhat related body of research pertains to the joint replenishment
problem in which there is a (joint) setup cost per procurement (or a joint cost per setup for
a product family) plus an individual setup cost per item procured (or produced). The
objective is to minimize the total setup and inventory cost per unit time. See the
references in Jackson et al. (1985) for related literature. Although there is some
similarity between the cost structure of this problem and that in ours, we have the
additional costs associated with inventory accumulating prior to shipment, and the
concomitant problem of sequencing between shipments. Moreover, in a procurement
setting, capacity is normally not a consideration, whereas we need to consider
production capacity constraints at the supplier.

We now turn a review of articles that explicitly consider both transportation and

inventory costs in a continuous-time setting. Burns et al. (1985) develop a single-item



model with the objective of minimizing the sum of transportation and inventory costs
per unit time. Production-related costs are not included. The transportation cost
consists of a fixed charge per truck movement. It is assumed that production is not
synchronized with delivery, and the cost of inventory accumulating prior to delivery is
estimated accordingly. The optimal delivery quantity is obtained by a tradeoff analysis
similar to the economic order quantity (EOQ) model.

Benjamin (1989) investigates a single-item version of our problem, in which
multiple deliveries may be made out of one production batch. He excludes from his
objective function the cost of inventory accumulation prior to delivery and the additional
inventories that would be required to avoid shortages when the production interval (or
batch) is not an integer multiple of the delivery interval (batch). These two implicit
assumptions lead Benjamin to the conclusion that the problem can be solved optimally
by independent EOQ-type formulas for the production and delivery batches.
Unfortunately, the independent solutions generally will not have the integer multiple
property that is implicit in his formulation.

This difficulty is corrected by Hahm and Yano (1991¢) who show that for the
single-item problem, the optimal solution has the property that the production interval is
an integer multiple of the delivery interval. They also provide a procedure to find the
optimal solution, and derive conditions on setup costs and setup times for which a "just-
in-time" solution (production interval equal to delivery interval) is optimal.

Blumenfeld et al. (1991) study a problem in which the supplier uses a single
machine to produce several components, each of which is shipped to a unique
destination. Setup times are not incorporated. Their model allows each component to be
produced more than once in each production cycle. Unlike Benjamin's formulation, it
does include accumulation inventories that accrue when production runs are equally
spaced in time, and when production batch sizes are integer multiples of the respective

delivery batches. However, it does not include accumulation inventories that must be



held if either of these conditions is not satisfied. Consequently, when their results are
specialized to the problem treated by Benjamin, they arrive at similar conclusions.
They suggest rounding the ratio of the production batch to the delivery batch to obtain an
integer multiple, but do not indicate how the rounding should be accomplished. For the
case of N components with identical cost and demand characteristics, they present
results for the special case in which the machine is 100% utilized. Unfortunately,
because of this assumption, the results do not specialize to the case of N = 1. General
results for the case of N components are not presented.

Hahm and Yano (1991a) address a special case of our problem in which there is
exactly one production run of each component and exactly one delivery per cycle. They
develop properties of the optimal production sequence for a given cycle duration, and use
these results in a heuristic procedure that iterates between finding the best cycle duration
for a given production sequence, and finding the best production sequence for a given
cycle duration. Their computational results indicate that the heuristic provides optimal
or near-optimal solutions.

This model is generalized in Hahm and Yano (1991b) to consider multiple
deliveries per cycle, while retaining the assumption of one production run of each
component in each cycle. They develop a heuristic procedure to determine the number of
deliveries, the sequence of production runs, and the timing of deliveries relative to the
production schedule (i.e., which production runs should occur between consecutive
deliveries). The heuristic is shown to provide solutions close to the lower bounds, and to
yield signficant savings over the more constrained problem with only one delivery per
cycle in instances where the independently-determined economic production cycles are
larger than the independently-determined economic delivery cycle.

In the following, we generalize the Hahm and Yano (1991b) model to allow

multiple deliveries and multiple production runs of each component in a cycle.



3. FORMULATION

Recall that we must decide the time between deliveries, the number of deliveries
per cycle, the number of production runs of each component during the cycle, and the
exact production quantities, sequence and timing of these production runs. The last set
of decisions generates a complex problem, even if the other decisions have already been
made. Consider such a situation. We are still left with the problem of assigning
components to delivery intervals while ensuring that each component has the proper
number of production runs. We refer to this process as "grouping.” For each
assignment (or potential assignment), the sequence of production must be decided. We
refer to this process as "sequencing." Finally, the allocation of the total cycle demand
of each component among its production runs and the exact timing of the schedule need
to be determined. We refer to this as the issue of "fit." As we will see later, the
grouping, sequencing, and fit decisions are interrelated, and they all affect the cost of
inventory in the system.

For the sake of clarity, we begin with a formulation in which it is assumed that all
production batches of a particular component are equal ("equal lot size assumption”).

Later in the discussion, we relax this assumption to allow for unequal batch sizes.

Notation:
A:  cost per delivery;
S setup cost for component j;
sj:  setup time for component j;
Dj: demand per unit time for component j;
pj production time per unit for component j;
R: delivery interval (time between deliveries);

M;: ratio of production interval of component j to the delivery interval;



Tj: production interval (time between production runs) for component j
= MR,

M : ratio of scheduling horizon (overall cycle) to the delivery interval
= least common multiple of the Mjs;

T: overall cycle duration (= MR)

Fj: number of setups (production frequency) of component j during the production
cycle;

bi.  time (relative to the "beginning" of the cycle) at which the setup of component j
is begun;

eji . earliness of the i-th production run of component j during the production cycle
(time between the start of this production run and the time of delivery);

gji: index of the delivery in which components from the i-th production batch of
component j are first shipped;

[£]: index of component produced in the k-th position (k-th production run) in the

sequence.

The objective function has several elements. The first two elements are clear: the

S.
average setup cost per unit time is Z‘T‘L , and the average delivery cost per unit time is
J4J

% . The inventory holding costs can be separated into two parts by noting that a portion

of the inventory is that which would be incurred in the ELSP without deliveries. Under

the equal lot size assumption, the associated average inventory cost per unit time is

JZaJTJ , where ¢ = %Dj hj(1-p;Dj)/F; . For convenience, we will refer to this inventory as

"cycle inventory" since it is a direct consequence of the production cycle (production
interval) of each component. (This portion of the inventory holding cost is identical to

that in the economic production quantity (EPQ) problem when the time between

production runs is Tj; =M /Fj) The remainder of the inventory cost is caused by the

inventory accumulation necessary to ensure that the delivery quantities are available
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when needed, and by inventory waiting while other components are being produced
during the same delivery interval. We refer to all of this additional inventory

collectively as "earliness” or "accumulation” inventory. The average inventory cost

J Fi Dihe;
per unit time caused by earliness is ), 2‘, Jﬁ'& Since the production batch size is
J=li=1 J

D;T/Fjand this quantity is held for a duration eji at a cost of h; per unit per unit time,
the earliness cost incurred by the i-th production run of component j is Djh;iTej/F;. This
cost is incurred only once during an interval of Tj time units, so the cost per unit time is
Djh;Tej;/F;T;. But F;T; =T, so this is equivalent to D;hje;; . This average cost rate is
incurred during 1/Fjof the cycle. Taking a time-weighted average over all of the
production runs of component j, then summing over all components, we obtain the

expression given above. A formulation follows.

P)
J S J F A
e o A
Minimize ]=Zl ; + 2 0 + Zi §1 F; +7 (1)
subject to Tj=M;R forj=1todJ (2)
M; 21 and integer forj=1todJ 3)
M = LCM(M,y, ..., M) (4)
M _
Fj= % for j=1to J (5)
J
N=3 Fj (6)
J=1
eji 2 p;D;R for j=1to dJ, i=1to F; (7

11



bikl> + S[k1 + PIRIDIRIT k] < blk+1] fork=1to N (8)

bik] + S[k] + e[k] = &[kIE for k=1to N 9
gji+Mj = 8j(i+1) for j=1to J, i=1to Fj-1  (10)
gk1< M 1y
&[k] 2 0 and integer for k=1to N (12)
bk+1]=b<1> + MR (13)
bx)20 for k=1to N (14)
]ﬁl% < 1-j=}‘flp-j (15)

Constraints (2) through (5) define the multipliers as discussed earlier. Constraint (6)
defines the total number of production runs in the cycle. Constraints (7) ensure that
production runs are started early enough prior to the first delivery of units out of that
run so that the delivery quantity is available when needed. Constraints (8) ensure that
the production runs do not overlap. Constraints (9) establish the timing of the start of
each production run in relation to the time of the first shipment of components from that
production run. Constraints (10) ensure that consecutive production runs of a given
component are equally spaced in time. Constraints (11) and (12) are constraints on the
indices of the delivery intervals. Constraint (13) ensures that the schedule is cyclic,
while constraints (14) ensures that the starting times are non-negative. Constraint (15)
is the aggregate capacity constraint and is similar to one first introduced by Bomberger
(1966). In this formulation, constraint (15) is redundant because constraints (8) and (13)

together imply constraint (15).
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4. SOLUTION APPROACH

Many solution procedures for the ELSP have used power-of-two policies. Such a

policy restricts the value of M; to be some power of two and thus, simplifies the problem

because M is then the value of the largest ;. Roundy (1988) shows that this policy has

an error bound of less than 6% in the ELSP. In fact, it has been empirically observed
that within the class of policies in which each component is produced in equal amounts
and at equal time intervals, this policy is often optimal, and if not, it is near optimal
(Elmaghraby 1978 and Haessler 1979). Therefore, we will employ powers-of-two policies
here.

Even with the power-of-two restriction, problem (P) is a large nonlinear mixed-
integer program with general integer variables in addition to binary variables. As
such, optimal procedures would be computationally intractable. We instead develop a
hierarchical procedure which decomposes the problem into manageable subproblems.

The general structure of the procedure can be described as follows.

Step 1. Determine M, the Mjs and R using a power-of-two policy, ignoring the issues of
"fit" and grouping.

Step 2. Determine the production sequence for the overall cycle using the values of M,
the Mjs and R from Step 1.

Step 3. Resolve the issue of "fit" by relaxing the equal-lot-size assumption.

Step 4. Determine the relative timing of the production schedule and the delivery
schedule (i.e., which production runs should be in each delivery interval).

Step 5. Select the value of R that minimizesl the objective function in (P) with the other

decisions from steps 1 through 4 held constant.

The structure of this hierarchical procedure is based on insights gained in the

process of solving a more restricted version of the problem (Hahm and Yano 1991b). In
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particular, we observed that the largest elements of the total cost are the production setup,
transportation, and cycle inventory costs. Consequently, it is logical to first determine
the values of M, the Mjs and R because they are the decision variables that most
strongly influence these costs. We also found it beneficial to develop a production
schedule in which the total setup and processing duration in the various delivery cycles
are approximately equal, which can be accomplished by appropriate grouping of the
production runs. This helps to avoid unnecessary earliness costs, which we will explain
in more detail later.  After this is done, minor changes can be made to the batch sizes
and delivery times to further reduce earliness costs. The last step in our procedure tries
to achieve a reduction in the cycle duration if this is possible. Such a reduction will
decrease cycle inventory and tends to reduce earliness costs, also.

We now explain each step in more detail.
Determination of M, the M;s and R

If we ignore the issues of "fit" and grouping and use a power-of-two policy, (P) is

reduced to the following problem.

P1)
J S. J F; D.hg..
Minimize JgiTj +j§alTJ%+j§i§1 Fj 'R

subject to (2), 4), (6), (7) and (15)
M; =2l forj=1tod (16)

K 2 0 and integer forj=1tod amn

It is easily verified that (P1) has an optimal solution such that ej; is equal to p;D;R for

alli and j. In other words, if feasibility of the production schedule is not an issue,
production runs should be started just in time for the delivery quantity to be available at

the end of the delivery interval. Also, constraint (4) does not play a role when the issue
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J
of "fit" is not considered. Therefore, removing (4) and replacing ej; by pjDjR, YDih;
J=1

by B, and F; by % in (P1) leads to the following formulation.
J

S A
SR far' A m. 4
Minimize ]=21 T * jgiaJTJ + PR + R (18)

~

subject to (2), (15), (16) and (17)

Problem (P1) has several general integer variables, which makes this problem

difficult to solve. Let us, instead, consider a problem where M j 1is any real number

greater than or equal to 1 instead of a power-of-two. Let (P2) refer to this problem, as

shown below.

(P2)
S 4 A
SR =l . 4
Minimize AT + j=1aJTJ + PR + R
subject to (15)
T; 2R forj=1tod (19)

Let Tj*and R* be the optimal values of Tj and R in (P2). These values can be expressed

as:

(20)

and (21)

where 1, is chosen so that constraint (15) is satisfied as an equality, or 1, = 0 if
constraint (15) is not binding, and 4; is chosen so that constraint (19) is satisfied as an

equality or 4; = 0 if constraint (19) is not binding for a given j.
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Let TC* be the optimal objective function value for (P2). Then TC* is a lower
bound on the optimal objective value for (P1) as well as (P). We now proceed to describe
an algorithm for (P1) which is similar to one that Roundy (1988) has proposed for

finding production frequencies for the ELSP. This algorithm finds a set of feasible R

and Tjs for (P1) in the neighborhood of R* and Tj*, j=1,..,J, and then selects the one

with the lowest total cost.
For all j, let R;j and integer u; be defined by

*
Tj*=R;j2", % <Rj <R*. (22)

We assume that the components are reindexed so that Rj< Rj,; for all j. For each k,1<

k <J, we consider a solution of the form Tk = {T?-, 1<j<J ) where

k
T’; =Rk 2" | 23)
E_Jui-1 j<k
Vj= {uj i>k |’ 24)
and R* is a positive scalar.

Let TC(T, R) be the objective value of (P1) when T and R are given. We wish to choose

R so as to minimize TC(Tk,Rk). Let

J J
Sk = ZSjZ’"ﬁ and o* = Y 0 5 (25)
J=1 Jj=1
Then
k
TC(T*, RF) = %,; + R + R + £ (26)

The value of R% which minimizes TC(T*, R®) is clearly

k _
Rk = m @2n



However, (15) implies that R is greater than or equal to

_L Yt
= 2527 (28)
J
where w= 1-_2iijj . (29)
J=

Since TC(T*, R*) is a convex function of R® , the optimal solution of R” is given by

S+A,1k}'

R = max( P2y (30)

In our procedure, we choose the (T**, R%*) which minimizes TC(T*, R®) over all k. We

now suggest algorithm (A1) to solve (P1).

Algorithm Al

Step 1. Determine R; and u;j for all j using (22).
Step 2. Re-index the components so that R; < Rj,, for all j.
Step 3. For each k, 1<k <J, apply (24) through (30) to compute TC(T*, R¥).

Step 4. Select the vector (T**, R¥*) with the minimum cost.

The following theorem provides a worst case error bound for our procedure.

Theorem1. TC(T**, R¥*) <—2_TC* ~ 1.06TC*. 31)
In2

e

Proof. See Appendix 1.

We now have a procedure to compute both a delivery interval and production

intervals that are power-of-two multiples of the delivery interval. This solutions has an
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error bound of less than 6% if production schedule feasibility is ignored. In our
problem, the combination of periodic deliveries and schedule feasibility considerations
give rise to earliness costs. In the next step, using the values from Step 1, we determine
a production sequence while placing more attention on schedule feasibility and

earliness costs.

Determination of the Production S

Dobson (1987) develops a procedure to determine production frequencies and a
sequence for the standard ELSP. He finds relative production frequencies ignoring the
issue of "fit" and integrality of frequencies. Then, he uses a variation of the Longest
Processing Time heuristic (cf. Graham 1969) to determine a sequence. A feasible
schedule is found for the selected sequence by relaxing the equal-lot-size assumption.
He shows that if the lot size deviates by at most 100a percent from the lot size in the
relaxed solution in which fit is ignored, then the increase in the total cost caused by this
error is no more than 100a2 percent.

In our problem, the presence of delivery intervals complicates the sequencing
decision. One major consideration in constructing the production sequence is to ensure
that demand is satisfied on time by restricting production runs of a particular
component , say j, to be assigned to delivery intervals that are M; delivery intervals
apart. (In the remainder of this paper, we will use the term 'production run' to refer to a
setup and the processing time immediately following it.) For example, if M=4 and
M;=2, there are two choices: assign production runs to the 1st and 3rd delivery intervals,
or alternatively, to the 2nd and 4th delivery intervals. Not only does this ensure that
demand is satisfied, but it also allows us to avoid the excess inventory carrying costs
that would be incurred if the production runs are not assigned to equally spaced delivery

intervals.
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The second consideration pertains to the subset of production runs assigned to a
particular delivery interval. If the total setup and processing time for these runs is too
long, the earliest production run in the subset may start prior to the beginning of the
delivery interval. In this case, additional earliness costs will be incurred for all
components in the preceding delivery interval. If there are "domino" effects into yet
earlier delivery intervals, the impact may be far worse. There are other interactions
that need to be considered. The last production run started in a delivery interval may
not be complete at the end of the interval. Generally, only the delivery quantity is
produced prior to delivery and the remainder of the production batch, if any, is produced
at the beginning of the next delivery interval. The time required for this "overflow" in
the succeeding delivery interval may make it impossible to finish all of the required
production (for that delivery interval) prior to the corresponding delivery. Thus, it
would be advantageous to construct groups with approximately the same total setup and
processing time so as to reduce the frequency and extent of the domino and overflow
effects. It is well-known from the scheduling literature that the Longest Processing
Time (LPT) rule is fairly effective in equalizing the workload among several
machines for realistic problems (French 1982) Stated simply, under the LPT rule, the
production runs are sequenced in non-increasing order of their total (setup and
processing) time requirements. The production runs are considered in this sequence,
and are assigned to the machine for which the resulting assignment has the "most
equal” machine loads. Because we also have to ensure that production runs of a given
component are assigned to equally spaced delivery intervals, we make a minor
modification to the LPT rule to account for this difference. In Algorithm A2, we assign
all production runs of a given component simultaneously, taking into account their

impact on all relevant delivery intervals.
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Algorithm A2

Step 1. Let tj=s;j + p;D;M;R for all j.
Let M be the number of groups.
Let L; =0,1<i<M. (L; is the total setup and processing time assigned thus far

to delivery interval i.)

Order the components in (non-decreasing) lexicographic order of (M i, t)).

Step 2. Select the first component not yet assigned. Let it be component j.

Let i* = agkgrsrb}in{max[Ll I 1=k, k+Mj, ..., k+(Fj -1)M; }}. (32)
1 .

Assign the F; production runs of component j to delivery intervals i*, i*+M;, ...,

and i*+(Fj —l)Mj )

Let Ly =Lp +t; for k = i*, i*+Mj, ..., i*+(F; -1M; .
Repeat until all components are assigned.

t.

Step 3. Arrange the components in each group in non-increasing order of D
JJ

Steps 1 and 2 have been suggested by many researchers (e.g., Dobson 1989, Doll
and Whybark 1982, etc.) in the context of solving the ELSP. Step 3 has been added to
consider the effects of earliness. Observe that each component has at most one
production run assigned to any delivery interval. Thus, in determining the sequence
of production within a delivery interval, we can refer to components (rather than
production runs) in specifying the sequence. We have shown elsewhere (Hahm and
Yano 1991b) that for a given assignment of production runs to delivery inter;/als, the
total earliness cost for a particular group (ignoring possible interactions with other

groups) are minimized by sequencing all components, except possibly the last

20



component in the group, in the sequence given in Step 3. (Since the last component in
the group may complete only a portion of its production run prior to the end of the
delivery interval, its earliness may be less than the full processing time of the batch.)
Qualitatively, we want to process the components with high inventory holding costs and
short production runs late in the delivery interval, while components with low inventory
holding costs and long production runs should be processed early in the delivery
interval. Note that the duration of the production run affects the waiting time of all
components produced earlier in the interval. Thus, both the holding cost and the
duration of the production run affect earliness costs.

Thus far we have assumed that all lot sizes of a particular component are equal.
However, because of the issue of "fit", this is not always possible, as explained in the

next subsection.

The issue of "fit" is best explained by an example. Suppose there are three
components, A, B and C, and the policy is to produce components A and B every two
delivery intervals and component C every four delivery intervals. Also, suppose that
the production sequence is A, B, C, A, B. Components A and B consume half a delivery
interval for each production run and component C consumes 1.5 delivery intervals. In
this example, M is 4. Therefore, this schedule satisfies the aggregate capacity

constraint. The Gantt charts for the components are shown in Figure 1.
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1 Numbers on charts indicate the sequence of production runs

Figure 1. Gantt Charts for the Components.

It is not possible to fit these three production patterns together. Hodgson and Nuttle (1986)
resolve this difficulty by relaxing the zero-switch rule but retaining the equal-lot-size
assumption. They show that the resulting problem can be solved optimally by using
parametric linear programming. In the above example, the resulting solution involves
pushing back production runs 1 and 2 by half a delivery interval each (see Figure 2). In
this case, production runs 1 and 2 start before the components produced in production
runs 4 and 5, respectively, are consumed. Thus, the equal-lot-size policy may have an

unnecessarily large amount of inventory in some cases.

component A ) mmfﬁnmnn 5 llIIl]IlI1!lIIII1111
component B
component G 3—
| | | I I
0 1 2 3 4

Figure 2. Gantt Charts with relaxation of the zero-switch rule.

Another approach is to relax the equal-lot-size assumption but retain the zero-switch
rule (e.g., Delporte and Thomas 1977 and Dobson 1987). In our example, this can be done
by increasing the lot sizes of production runs 1 and 2, and decreasing the lot sizes of

production runs 4 and 5 (see Figure 3).
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Figure 3. Gantt Charts with relaxation of the equal-lot-size assumption.

Matthews (1988) derives conditions in which the zero-switch policy is optimal in the
ELSP. In a computational study of various ELSP policies, Bourland and Yano (1991)
show that the zero-switch policy outperforms the equal-lot policy in nearly all instances.
We therefore use the zero-switch policy here.

Before we describe a procedure to address the issue of fit, let us define some
additional notation.

k': index of the first production run after the k-th production run in which [£] is
produced, 1<k <N.

mp : number of delivery intervals between the starts of the k-th and £'-th production

runs, 1<k <N
= (bpr] - b7y B.

I; : set of production runs in which component j is produced, i.e.,

{k1 component j is produced in the k-th production run}, 1<j<J.

For ease of presentation, we will use % rather than [k ] when the meaning is clear from

the context.

Because we are relaxing the equal-lot-size assumption, the mp, values for ke I ;, are

not necessarily equal. With this relaxation, the issue of "fit" can be resolved by

finding a solution satisfying the following constraints.

k-1
mipR 2ppDpmpR + Li‘_‘,gsi +piDim;R) +sp’, 1<k <N. (33)
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The k-th production run requires ppDpmiR time units. Also, during the time between

the k-th production run and the k'-th production run (mpR), production runs k+1,....k'-1

k-1
must be completed and these runs require kZ(si + p;D;m;R) time units. The number of
i: +1

units produced during the k-th production run must be large enough to satisfy demand

until the the next production run of the same component. Therefore, the setup for the %'

th production run also must be done during mpR. Constraint (33) incorporates all these

factors to ensure feasibility. Note that sp’ is the same as s; because k and %' are the

same component. Therefore, constraint (33) can be simplified to:

k-1
mipR 2 g,k(si +piDim;R) , 1<k <N. (34)

We also need to ensure that the total production of each component is enough to
satisfy demand during the production cycle. That is, we require that

Ezmk =M, 1<j< J. (35)
k Ij

For any value of mp , the average inventory cost per unit time incurred by the k-th

oapmi2R

7 (The average cost per unit time during the production

production run is

interval is apm pR, and the aggregate average cost per unit time is obtained by

m
multiplying this value by -ll_lli , the proportion of the overall cycle during which this cost

is incurred.) As a result, if we do not consider grouping, and if M, R and the sequence

are given, the best mj values can be found by solving the following problem.

(P3)
N
Minimize % Y apmp2
k=1
subject to Ymp =M 1<j< dJ
ke Ij
k-1
mrpR > Y(s; + piDimiR) 1<k<N
i=h
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Problem (P3) is a simple convex quadratic program. We use linear complementary
programming to solve this problem, but any appropriate technique can be used.
If we ignore the the issue of "fit" (i.e., the last set of constraints in the above

formulation), the problem is separable by component. The optimal solutions to the

invidual subproblems have mj = M[] for all k, and the sum of the costs of these

solutions provides a lower bound on problem (P3). Suppose the solution to the relaxed

version of (P3) is not feasible. Let mp be defined as M[z] + 8. Then,

M=Ymp = Y M[z]+6) (36)
kEIj kelj

As a result, for all j, Y 8 1is zero. The following proposition is due to Dobson (1987).
k€

Proposition.

If 1651 < oM[g] for all &, then the total additional error caused by the issue of "fit" is at

most 10002 %.
Proof. See Dobson (1987).

Thus we see that the additional error (i.e., in addition to the potential 6% error
caused by the power-of-two policy) due to the issue of "fit" will be small if the lot sizes
are not far from being equal. For example, a 20% adjustment of all lot sizes would
cause an additional error of 4%. We have now resolved almost every issue except

grouping, which we discuss next.
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Grouning of the Production R

In this step, we take as given the production sequence from Algorithm A2 and the

myp, values resulting from (P3), which collectively define the entire production schedule.

The problem is to determine when the M equally-spaced deliveries should occur. Since

a group is defined as the set of production runs assigned to the same delivery interval,

the grouping decision is equivalent to the delivery-timing decision. Note that the my

values are generally non-integer so determining the best relative timing of production

and deliveries is not a straightforward matter.

One important consequence of non-integer values of mj is that the delivery of a

component may occur before the assembly facility has depleted its supply of that

component. Therefore, to be more precise, let us redefine the earliness of the k-th

production run (eg) as the time between the start of the k-th production run and the time

when the units produced in the previous production run of the same component are

depleted. Let yj denote the time between the start of the £-th production run and the first

delivery of units from that batch. Thus, we have

bp+sp+yr =grR, 1<k<N (37

where g1 is positive integer, 1<k <N .

Since the units cannot be depleted prior to delivery, e must be greater than or equal to yz

for all k. Figure 4 shows the notation graphically.
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inventory of component ¢,

in the system

DR
]
Dy¥y i
A
Sk Y, “""‘"""’AR_ o +Y, I T b T T
by giR e
Y >t oA >

%4 delivery points

Figure 4. Graphical representation of notation ek and y.

At time gixR, the delivery quantity (D3zR) must be available. If no additional
production of £ were completed between (gx -1)R and giR, the inventory in the system at
time grR would be Dy(e - y£). Thus, is it necessary to complete at least Di(R -ex + yk)
additional units in the k-th production run prior to time gzR. That is, the k-th production

run must start ppDi(R -ef + yi) time units before gxR, or
br + sk +prDr(R e + yp) <grR, 1<k<N. (38)
Other constraints are as follows.
br + sy + ppDpmpR <bpy1, 1<k<N. (39)
bp+sp+ep+mpR =bp +sp' +ep’, 1<k<N. 40)

Constraints (39) prevents the production runs from overlapping. Constraints (40)

prevents component shortages. Note that by + s; +er and by’ + sp’ +ep’ are points in

time when the units produced in the k-th and &'-th production runs, respectively, begin to
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be consumed. Therefore, the time between these two points must be mpR , the duration

whose demand is covered by the k-th production run.

The objective of grouping is to minimize costs caused by the earliness of all
production runs. The inventory caused by the earliness of the k-th production run is
illustrated by the shaded area in Figure 5. The average cost per unit time caused by this

mpDyh
inventory is k ]; k ek . A formulation for the grouping problem follows.

(P4)

Minimize § mkl;;hk ek
k=1

subject to br+1 -bE - Sk 2 prDpmiR 1<k<N
by’ +ep’ -bp-ep=mpR 1<k<N
bi+sk+yr =gkR 1<k<N

PkDrer, + (1 - ppDg Jyr 2piDiR 1<k<N

ek 2 Yk 1<k<N

gk , positive integer 1<k<N.

In (P4), constraints (40) have been simplified by subtracting s; (= sp’ ) from both sides

of the inequality. Constraints (38) have been simplified by substituting for gzR using

equality (37). Problem (P4) can be solved using any mixed integer programming

technique.
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Adiustment of R

At this point, a feasible solution has been constructed. Sometimes it is possible to
further reduce costs by adjusting the value of R, with all of the other decisions held
constant. With R as the only decision variable, problem (P3) is a parametric linear
program whose whose right-hand-side parameter is R. It is well known that the objective
function value of such a problem is convex in the parameter. Furthermore, the original

objective function (of problem (P)) can be expressed as

N mpDphy A
7 €

L g‘,mkSk L %akmkz +3 E+5
MR k=1 M k=1 k:

2 R- (41)

This objective function is convex in R since the third term of (41) is convex in R (from
the discussion above) and the other terms are obviously convex in R. Therefore, using a
parametric linear programming technique, we can find the optimal value of R when the

values of all other decision variables are given.

rithm lve (P
Algorithm A3
Step 1. Find M, the Mj*s and R* using (20) and (21). Then find the corresponding
power-of-two policy using algorithm (A1).

Step 2. Determine the production sequence using algorithm (A2).

Step 3. Solve problem (P3) to find the values of mg , 1<k <N.

Step 4. Solve problem (P4) to find the values of g5 , 1 <k <N.

Step 5. Minimize (41) with B as the decision variable, holding the other decision

variables fixed.®
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5. EXPERIMENTAL RESULTS

We generated a set of 72 problems to test the algorithm. Several factors were

varied in generating the problems. The first factor is the tightness of the capacity

constraint. We generated the value of 3 p;D; from a uniform distribution on [0.3,0.5]
J

for half of the problems (not tight) and on [0.7,0.9] for the other half (tight).
The second factor is the variance of the natural setup cycles among the

components. We use the term 'natural setup cycle' of component j to refer to T;* in

equation (20) and the term 'natural delivery cycle' to refer to R* in equation (21). We

AN

measure the variance of the natural setup cycles using the ratio of the maximum T}* to

the minimum Tj*. This ratio is generated from a uniform distribution on [1.5,2.5] for

half of the problems (low variance) and on [4,8] for the other half (high variance).
The third factor is the magnitude of the natural delivery cycle. We say that the

natural delivery cycle is relatively small if it is similar to or less than the minimum

Tj*, medium if it is strictly between the minimum T;* and maximum 7T}*, and large if

it is equal to the maximum T}*.

The two levels of capacity tightness, two levels of natural cycle variances, and
three levels of natural delivery cycles give twelve (2x2x3) different combinations of
levels. For each combination, a set of six problems is generated: two problems with
three components, another two with six components, and two with nine components.

Since it is not possible to find optimal solutions for these problems in a reasonable
amount of computing time, we compare the solutions from the algorithm with lower
bounds obtained from Algorithm Al. Recall that Algorithm Al determines power-of-two
policies, but ignores all of the detailed scheduling issues, and does not include any
earliness costs. Thus, in most cases, it provides a very loose bound. However, because

of the complexity of the problem, finding tighter bounds is not easy.
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Results are shown in Table 1. The average deviation is approximately 16% and
the maximum is roughly 37%. More detailed analysis indicates the deviations increase
as the problem becomes more complicated. It appears that this is the result of the lower
bound becoming looser as the details of scheduling and the effects of earliness have a
greater impact on the solution. The solutions are likely to be much closer to optimal
than the bounds indicate. Although we could not obtain optimal solution for all
problems, we solved one problem to optimality to get a better assessment of how well the
heuristic performs. For this problem, our heuristic provides a solution that is about 1.3%
greater than the optimal solution, even though the deviation from the lower bound is
nearly 12%. This demonstrates the looseness of the bounds, and suggests the need for
tighter bounding procedures.

To provide an assessment of the practical benefits of the procedure, in Table 1, we
also compare the solutions to optimal (or very near optimal) "just-in-time" policies (the
constrained case in which M = M; = 1). Solutions for the just-in-time case were obtained
using the algorithm of Hahm and Yano (1991a) which was described earlier in the
paper. The average savings is over 13%, with savings of up to 46% in some problems.
In only 4 of the problems was our heuristic solution worse than the just-in-time solution,
and in 3 of these 4 problems the difference was less than 1%. Thus, in many instances,
pure just-in-time policies may not perform well, and considerable savings may be
achieved by using policies in which the production intervals are greater than the
delivery interval.

We also compared our heuristic with two sequential approaches that capture more

decentralized decision-making policies. They are described below.
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Sequential Decision Approach 1:

Step 1. Determine the best production cycle for each component using a power-of-two
policy without considering deliveries. (Refer to Roundy 1988.)

Step 2. Set the delivery interval equal to the minimum production interval among all
the components. (This ensures that there is at most one production run of each
component during each delivery interval and that unnecessary deliveries are
avoided.)

Step 3. Resolve the issue of “fit” by solving the quadratic program (P3).

Step 4. Solve the grouping problem using the mixed integer program (P4).

Sequential Decision Approach 2:

Step 1. Determine the delivery interval considering only the delivery cost and the
inventory at the assembly facility.

Step 2. Determine the best production cycle for each component using algorithm Al with
the initial value of R as determined in Step 1.

Step 3. Resolve the issue of “fit” by solving the quadratic program P3.

Step 4. Solve the grouping problem using the mixed integer program P4,

Note that Steps 3 and 4 of these sequential decision approaches are the same as the
corresponding steps in our heuristic. Thus, the primary distinction is that the delivery
and production scheduling decisions are decoupled in these sequential decision
approaches. It is also important to point out that these are relatively sophisticated
heuristics that rely heavily on optimization procedures, and are not simply rule-of-
thumb procedures.

We randomly selected 15 of the 72 test problems and applied these sequential

decision approaches to each. The results (not reported in detail here) show that costs
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from the sequential decision approaches are approximately 18% larger than the
corresponding costs from our heuristic, on the average. The range for SD1 is
approximately 40% less to 0.5% greater, and the range for SD2 is approximately 30% less
to 5% greater. In the few cases where the sequential decision approach outperformed our
heuristic, we found that the production and delivery frequency decisions in our heuristic

were largely responsible for the discrepancy. In these problem instances, the difficulties

of scheduling and the extent of earliness costs made it ultimately less cosﬂy to have M;

= 1for all j, or even Mj= M = 1 for all j. Our heuristic does not modify the M; values

after the scheduling and earliness issues have been considered, and consequently, may
not identify such solutions even if they are less costly. We should note that 11 of these 15
problems have parameters for which Mj=1or Mj= M = 1 would be logical (i.e.,
unconstrained optimal production intervals, or both production and delivery intervals,
that are similar in magnitude). Thus, this turned out to be a rather challenging set of
problems for our heuristic. Nevertheless, even for these difficult problems, it is clear
that there are benefits from coordinating production and delivery schedules. Additional

details can be found in Hahm 1990.
6. SUMMARY AND DISCUSSION

We have developed a hierarchical heuristic procedure to find coordinated
production and delivery schedules with power-of-two policies. This complements
algorithms developed for the more restricted cases in which either there is exactly one
production run of each component and one delivery in each cycle (Hahm and Yano
1991a) or exactly one production run of each component and multiple deliveries in each
cycle (Hahm and Yano 1991b). The heuristic decomposes a large mixed integer
nonlinear program into a set of manageable subproblems that can be solved more
easily. Computational results suggest that the heuristic performs relatively well in an

absolute sense, and generally much better than some relatively sophisticated

33



alternatives that do not determine the production and delivery intervals simultaneously.
It also provides solutions that, in general, are much better than pure just-in-time policies
where production and delivery intervals are equal. Our model can be used to
investigate what types of improvements in setup times and costs, production rates, etc.,
would be needed for pure just-in-time policies to be optimal.

The model in this paper can be extended to consider a fixed cost per truck, under
the assumption that all trucks have the same capacity. Because the composition of each
shipment is the same, there is a delivery interval corresponding to the truck capacity
and we define p to be this interval. It is easy to show that an optimum value of R less
than or equal to p exists, and incorporating this fact into the algorithms is
straightforward. The proof parallels that in Hahm and Yano (1991b) and is not given
here.

Further research may be warranted to provide feedback from the scheduling
aspects of the problem to reconsider the choices of the delivery interval and production
frequencies. Research is also needed to consider more complex and realistic models
with multiple customers and more detailed models of the manufacturing system. In
addition, the impact of time-varying and uncertain demand, machine down time, and

other random events need to be incorporated into these models.
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Table 1. Summary of Experimental Results

J : Number of Components. TC: Total Cost from Heuristic
C: 1if capacity is not tight and 2 if capacity is tight. LB: Lower Bound

V: 1if low variance of natural production cycle, 2if high.  JIT: Cost with Mj=M = 1
D: 1 if delivery interval is small, 2 if medium, 3 if large.

] ¢ vV D TC/JIT TC/LB J] C V D TC/JIT TC/LB
31 1 1 93.22% 107.79% 31 2 1 82.66% 117.56%
3 1 1 1 92.10% 104.12% 31 2 1 76.06% 108.75%
31 1 2 93.02% 103.21% 31 2 2 93.25% 110.07%
31 1 2 94.18% 107.48% 31 2 2 94.16% 111.92%
3 1 1 3 100.00% 113.58% 31 2 3 99.64% 113.94%
3 1 1 3 100.00% 116.60% 31 2 3 98.00% 111.19%
3 2 1 1 80.45% 127.73% 3 2 2 1 68.23% 115.49%
3 2 11 80.40% 115.35% 3 2 2 1 71.91% 118.10%
3 2 1 2 77.88% 111.45% 3 2 2 2 98.76% 113.38%
3 2 1 2 74.96% 104.53% 32 2 2 94.28% 114.98%
3 2 1 3 100.00% 118.96% 3 2 2 3 100.00% 115.70%
3 2 1 3 100.00% 122.73% 3 2 2 3 93.82% 111.49%
6 1 1 1 85.27% 115.54% 6 1 2 1 75.23% 109.72%
6 1 1 1 84.50% 118.10% 6 1 2 1 77.34% 109.67%
6 1 1 2 100.00% 118.91% 6 1 2 2 91.04% 118.78%
6 1 1 2 100.41% 121.55% 6 1 2 2 100.31% 127.79%
6 1 1 3 97.14% 118.61% 6 1 2 3 100.00% 117.22%
6 1 1 3 109.75% 133.33% 6 1 2 3 96.08% 115.96%
6 2 1 1 55.53% 110.87% 6 2 2 1 79.48% 122.29%
6 2 1 1 64.86% 111.67% 6 2 2 1 66.56% 110.32%
6 2 1 2 73.84% 121.24% 6 2 2 2 93.28% 127.20%
6 2 1 2 74.19% 123.78% 6 2 2 2 92.20% 123.98%
6 2 1 3 100.00% 133.81% 6 2 2 3 98.23% 136.78%
6 2 1 3 91.19% 136.58% 6 2 2 3 100.52% 132.711%
9 1 1 1 88.63% 127.29% 9 1 2 1 83.19% 125.12%
9 1 1 1 92.17% 130.71% 9 1 2 1 80.33% 108.50%
9 1 1 2 100.00% 133.03% 9 1 2 2 89.82% 120.31%
9 1 1 2 100.00% 143.28% 9 1 2 2 92.17% 119.62%
9 1 1 3 100.00% 134.82% 9 1 2 3 94.34% 123.18%
9 1 1 3 100.00% 132.24% 9 1 2 3 100.00% 119.21%
9 2 1 1 53.29% 105.82% 9 2 2 1 75.09% 117.11%
9 2 1 1 62.61% 108.68% 9 2 2 1 59.36% 109.56%
9 2 1 2 57.90% 110.56% 9 2 2 2 73.59% 124.03%
9 2 1 2 79.21% 127.84% 9 2 2 2 64.18% 123.58%
9 2 1 3 80.40% 132.33% 9 2 2 3 94.36% 138.83%
9 2 1 3 85.15% 153.08% 9 2 2 3 76.75% 129.28%

39




APPENDIX 1

PROOF OF THEOREM 1

Portions of the proof of Theorem 1 are similar to that of Theorem 6 in Roundy

[1988]. Before proving the theorem we need to introduce some notation and preliminary

results. Recall that the value 2* has been selected so that

TC(T**, R¥*) = min (TC(T*, R¥)).
1<k<]

Therefore,
B* ph*y ¢ k ph
TC(T*", R*™) < Yw,TC(T*, R?)
k=1
J
where Ywg =1 and wg > 0 for all .
k=1

Let wg, be defined as follows.

Ry
W = logz(—Rzl ), 1<k<d-1
2Ry
and stlogz(RJ ).

Let

Rt 2R; j<k
—Rj i>k |’

-~

Let

J
TCy = YwrTC(T%, RF).
k=1
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The following lemmas are used in the proof.

Lemma 1:

k k

Ifi<j then zw Bz, L (A-T)
J k Rk R: < \/—,‘;_, . -
Proof. By (A-4) and (A-5)
J R): Ijj_ R;
glwk [Rj‘. + 7 1=R R ) (A-8)
where fx)=(x + L ) logo(2x) + (2x + —1—) lo (l) (A-9)
- x : 2y’ 1082 )

R;

Since i <j , (22) implies that <p < 1. On the interval [2 , 11, the function f is concave
J

and attains its maximum value of V2 + L atx = L .®

VT
Lemma 2:
J R’ 9
13
k§1wk [Eflselnz .
Proof.
Casel. i<j.

By (A-4) and (A-5)

k

S it 1= A A
2k I_ef —ﬂRj (A-10)
where flx) = x logy(2x) + 2x log, (Jl?). (A-11)
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oL - 1_R; . 1 . ps
Since i <j , (22) implies that 2 < R < 1. On the interval [—2- , 11, the function f is concave
J
and attains its maximum value of 2 atx = 2 .
e In2 e
Case2. i>j.
By (A-4) and (A-5)
J }: R;
Ywr[=k1=f5) (A-12)
=1 R, j
where fx) = & logy(x) + x gy (%). (A-13)
o 1 R; .
Since i >j , (22) implies that 1 < R < 2. On the interval [1, 2], the function f is concave
J
and attains its maximum value of 2 atx = 4 .*
e In2 e
Theorem 1: TC(TH, R¥) < —2=TC* ;, 1.06TC*.
Proof.

Sj J
Case 1. ZE;% <w, where w = 1-3, p;D;.
jiJ J=1

_ s:
Suppose we were to decrease the value of w from its current value to Z'jil.; . The
i ~J

cost of TC(T*, R*) would be unaffected because (T*, R*) is still feasible for (P2).

However, the cost TC(T*, R*) would either increase or remain unchanged. Therefore

the relative cost for Case 1 is bounded by the relative cost for Case 2.

s
Case 2. Zi:% =w.
i J
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2 2

We will show that TC(T**, R¥*) < TinglC* by showing TCys

Note that (A-5), (24) and (22) imply that
k vk u;
ij2!=Rj X2 =Tj*.

s aj S;
LethE-f:;;, Y= -,_,—,f,; and Zj = _’f# . Then by (25) we have

St = YZR: and o = T4 |
J jRj

X j
Let xj= =L Note that xj 20 and ij = 1. By assumption w = 2;* =
ZX. J j J

5 J
implies
w
t = X = YxjR; .

J

We can write TC(T%, R®) as

TC(T",R"‘):%i +a"z‘k+[31k+% .

By (20) we have
Yj=Zj+ AoX;j + AT
So,
TC(T*, R¥) = ZJEZJ + 102;)(1 + JZ:leJ* +[ BR* +—Ré*— ]
and
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J

TC*.

(A-14)

(A-15)

2X;, so (28)

(A-16)

(A-17)

(A-18)

(A-19)



S2F;

—
TR +[Jz;c,RJ][Jz%n

J

TC, =§wk[
PR ¢
+ Ao Ywp [SxRI [ TF]

k ] JRJ

b AT
+ Twp (TR T-]
k Jj J RJ

+ ﬂZwk[Z,ijf-] +A Jwpl——1). (A-20)
k J k 9

[1
AP

J

The remainder of the proof is divided into four parts. We show term by term that each

term in (A-20) is at most

" 12n2 times the corresponding term of (A-19).

Part 1.
Let z;= 4 . Then z; >0 and ), zj = 1. We need to show that Z < 4 where
J Z% J 7 e In2
J
k
2ziR; _
Z=Yuwp (o + SRS E]) (A-21)
F Ry TR

J
By Jensen's inequality and by Lemma 1,

Z < Twp (TR 50 + BRI D)
j J

ko ph
J ; B
= E)’ [xjzi +xiz;) giwk [I—Bf + E]f] + 2?‘;{,2]'



<2+ -\/%) {i%[szi +x32j] + ?sz_,- )

L el = (V2 L)< 2
s(ﬁ+\[§)[§xﬂ[§ﬁﬂ‘(ﬁ+\/§)< eln2 -

Part 2.
We need to show that X < 2 where
e In2
.
X =Ywp [SxRA 131, (A-22)
k J J J Rj
By Lemma 1,
J E pk
- . i, 2
A = izq{xjx, k‘Z‘;wk[Rj+R';]}+§'xJ
1 1 2 2y_1 1 2
52(\/'2}\/5) (5 257+ 3y }'2(‘5*\/'2‘“ =
Part 3.
We need to show that L < 2 where
e In2
l.
L= Swp [Y5RA Y4 (A-23)
k J J Jj RJ
and P (A-24)
n j= S+ 1Sis. -
SAT;

Note that /;2 0 and }/; = 1. By Lemma 2,
J
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L i Sn
= .Z_lszk‘élwk[ﬁ]}

iandj

2
e 1n2 ,a%,f li = eln2°
Part 4.

We need to show that

G1 +Go 9
Hqi +Hg ~eln2 (A-25)
where G = fR*, Gg = 1—?; yHy= ﬁ)l;,wk [Z,ijf-] and He=A %wk [ 7 -
J : J
Let
k
R ¢
pfgl—iﬁ,lsj'sJ. (A-26)

Then by Jensen's inequality and Lemma 1,

G1 +Gg G_l G
Hy +Ho H, T H,

= 2wk { [ijpjh[E—z]}
J JJ

< Swpl (Txip + (34 1)
k J J Pj

k

3 (i Swp [k P+ 5
—iqxjxlk=1wk;§+9,- +jJ
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J R'; R* 9
= i})q{x,xl h%wk[l_?f+1_?f]] +JZ_,xJ

1 1 1 1 2
<1 1 2 2y-1 1
_2(‘/—2-+\[§){i242xj + ;xj ) 2(‘/§+\/E)< 13 -

As a result of Parts 1 through 4,

TC, < —2-TC*
W= eln2 :
Also, because TC(TH*, RE*) < TC,, TC(TH', R¥) < - fnzTc*.-
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