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THE ECONOMIC LOT AND DELIVERY SCHEDULING PROBLEM:
MODELS FOR NESTED SCHEDULES

Abstract,

We investigate the problem of simultaneously determining schedules for the
production of several assembly components at a captive supplier and delivery of those
components to the customer. We consider situations in which production economies of
scale in the form of setup costs and/or setup times make it desirable for the supplier to
produce in batches that are larger than the desired order quantity of the customer. The
objective is to minimize the average cost per unit time of transportation, inventory at
both the customer and the supplier, and where applicable, setup costs.

We develop a heuristic solution procedure and a lower bounding approach for this
problem. We also report experimental results which indicate that the heuristic provides
solutions close to the lower bound in most instances. Our results provide a means to
answer the often-asked question of whether just-in-time suppliers are (or should be)
asked to hold inventory for their customers, and the question of how much setup costs
and setup times need to be reduced so that the suppliers no longer need to hold that

inventory.



THE ECONOMIC LOT AND DELIVERY SCHEDULING PROBLEM:
MODELS FOR NESTED SCHEDULES

1. INTRODUCTION

Recent surveys of suppliers delivering parts on a "just-in-time" (JIT) basis have
indicated that a majority of such suppliers believe that inventory reductions at their
customers are being achieved by forcing the suppliers to hold the inventory instead.
(See, for example, the annual automotive supplier survey in Ward's Auto World, July
1990.) Of course, these statistics may represent perceptions rather than fact, but they do
raise the question of exactly how production and deliveries should be scheduled. We
investigate the interface between a customer and one of its JIT suppliers and develop
models that will provide insight into the appropriate degree of coordination, and the
appropriate levels of inventory at each location.

In this paper, we focus on situations where a captive supplier produces several
products for a single customer and makes direct deliveries to that customer. Such
situations are not uncommon in the automobile industry, and they occur in other
industries as well. Our model incorporates scheduling of the final manufacturing stage
at the supplier, which, for simplicity, is assumed to consist of one machine or production
line. Since the final manufacturing step at the supplier is the one most closely linked
with the delivery process, we considered it most important to include in the model. We
implicitly assume that the upstream manufacturing stages can supply input materials at
the required rate.

The customer (or "assembly facility") uses the components at a nearly constant
rate. This may be due to higher-level production smoothing, or various characteristics
of the demand or manufacturing processes. For example, in the automotive industry

applications that motivated this research, the customer is a final assembly facility that



uses a fixed-pace assembly line. To facilitate both workload smoothing and just-in-time
arrangements, the assembly line is scheduled so as to smooth the usage rate of each
component. Consequently, components required for every vehicle are used at a
(perfectly) constant rate, and other components have usage rates with only small
fluctuations.  (See Schonberger (1983) for a discussion of the role of production
smoothing within a just-in-time context.) Considering a situation with constant demand
also allows us to gain insight into major tradeoffs that are less visible in models with
time-varying demand.

The production line at the supplier can produce only one component at a time, and
changeovers between components incur a setup cost and/or setup time. Since we are
concerned with whether inventories are being "pushed back" to the supplier, we consider
situations where the economic production quantities at the supplier are larger than the
supplier's desired delivery quantities. If this were not true, the suppliers would not
"complain” about holding inventory for the customer.

In this paper, we develop a procedure to simultaneously find a delivery interval
and a common production cycle (interval) for all components which is an integer
multiple of the delivery interval. Thus, during the production cycle, each component is
produced once, while one or more deliveries are scheduled during the cycle. In a sequel
(Hahm and Yano 1991b), we allow multiple production batches per cycle. The objective
is to minimize the average cost per unit time of transportation, inventory at both the
supplier and the customer, and setup costs at the supplier. In the next section, we provide
a formal statement of the problem. The subsequent section contains a formulation.
This is followed by development of a procedure to find a lower bound for a given
production sequence. We then discuss sequencing issues, and develop a heuristic
procedure. We report experimental results which indicate that the heuristic performs
quite well. Finally, we conclude with a summary and a discussion of the implications

of the model.



2. PROBLEM STATEMENT

We analyze a system with a single supplier at which the final production stage
involves producing multiple components on a single machine or production line. The
components are delivered directly to an assembly facility which uses these components
at a constant rate. The supplier incurs a sequence-independent setup cost and/or setup
time each time the production line is changed over from one component to another. On
the other hand, setup costs and times for the assembly facility are assumed to be
negligible, which is reflective of many assembly environments.

We assume that there is a fixed charge for each delivery. Later in the paper, we
explain how this assumption can be relaxed to incorporate a fixed charge per truck.
Deliveries to the customer occur at equal intervals (duration to be determined). The
delivery lead time is assumed to be deterministic, and without loss of generality, equal
to zero. (Incorporating in-transit inventory is straightforward.)

The supplier produces one batch of each component in each production interval
(i.e., there is a common production cycle for all components). During the production
interval, there are M (integer) equally spaced deliveries to the customer. In each
delivery, the shipment quantities are exactly equal to the customer's requirements until
the subsequent delivery arrives. Since the deliveries are equally spaced in time and the
demand rates are constant, each shipment has the same composition. Inventory holding
costs are charged on time-weighted average inventory levels, and the inventory holding
cost of a component is assumed to be the same at the supplier as it is at the assembly
facility. (Relaxation of this assumption is also straightforward.)

The objective is to minimize the average cost per unit time of setups, inventory,
and transportation while ensuring that both demand and the supplier's capacity
constraint are satisfied. We must decide the delivery and setup (or production)

intervals and the detailed production schedule for the components.



A considerable amount of research has been done on multi-stage production
systems with known constant demands. Nevertheless, little research has been done that
considers both the cost of inventory accumulation prior to delivery and the cost of
transportation in the determination of jointly optimal production and delivery
schedules. One reason why the former has been ignored is that many models assume
instantaneous production (e.g., Crowston et al. 1973, Blackburn and Millen 1982, Roundy
1985, Maxwell and Muckstadt 1985). Other papers incorporate capacity constraints but
ignore some or all of the accumulation inventory (e.g., Caie and Maxwell 1981,
Billington et al. 1983, Jackson et al. 1988), or treat transportation costs as fixed (Maxwell
and Muckstadt 1981). Likewise, there is some research on procurement policies that
include transportation costs, either as quantity discounts (e.g., Lee 1986) or fixed charge
per shipment (e.g, Lippman 1971 and Lee 1989), but none explicitly considers the impact
of the selected delivery schedule on the supplier’s inventory levels. We are not aware of
any papers that treat all of the issues in our problem. In the interest of brevity, we will
review only those models most closely related to ours. The reader is referred to Schussel
[1968], Taha and Skeith [1970], Jensen and Kahn [1972], Schwarz and Schrage [1975],
Graves and Schwarz [1977], Bigham and Mogg [1979], Szendrovits [1981], Williams
[1982], Blackburn and Millen [1982], and Moily [1986], among others, for a variety of
results on continuous-time, multi-stage lot-sizing models.

Our problem might be viewed as a generalization of the "product cycling” problem
first posed by Hanssmann (1962). The product cycling problem involves the scheduling
of several items, each with a constant demand rate, that are produced on one machine.
Each item is produced once in each cycle and the cycle is repeated. Setup times and
costs may be incurred in changeovers between items. The objective is to minimize
average setup and inventory costs per unit time. Hanssmann shows that a closed form
solution exists for this problem. The product cycling problem is a special case of the

well-known economic lot scheduling problem (ELSP). The ELSP allows multiple



production runs of each item within a cycle, whereas the product cycling problem allows
only one. A review of the ELSP literature appears in Elmaghraby (1978), and more
recent references can be found in Dobson (1987) and Zipkin (1991).

Our problem differs from Hanssmann's in several ways. First, usage of
components occurs at a location other than where the components are produced. Thus,
the supplier experiences periodic spikes in demand (at delivery times), and
consequently, inventory of the components must be accumulated prior to each delivery.

Second, because of this inventory accumulation between deliveries, both (i) the
sequence in which the componehts are produced and (ii) the exact timing of the "start"
of the sequence relative to the times at which deliveries are made can affect the solution,
even when setup times and costs are sequence-independent. If the production cost per
unit time is similar across components, the production sequence between deliveries may
not matter in practice, since the rate at which value is being added would be similar for
all sequences. On the other hand, even with careful scheduling, the cost of holding the
inventories accumulated prior to delivery may be greater than the cost of holding
inventories at the assembly facility. The magnitude of the accumulation inventories
can be controlled by appropriate choices of the delivery interval and the detailed
production schedule.

A third difference between our problem and the product cycling problem is that
solutions for the latter typically include idle time only when setup costs are the
dominant factor. In our problem, idle time may occur even when setup costs do not
drive the production interval decision. By scheduling idle time, it may be possible to
reduce accumulation inventories substantially.

A detailed review of articles that explicitly consider both transportation and
inventory costs in a continuous-time setting appears in Hahm and Yano (1991a).

These articles include models of single-item problems (Burns et al. 1985, Benjamin



1989, Hahm and Yano 1991c¢) and a multi-item model in which each item is shipped to a
different customer (Blumenfeld et. al. 1991).

Hahm and Yano (1991a) model a problem similar to ours in which several
components are produced on a single machine for a single customer by a captive
supplier. They consider "just-in-time" schedules where one batch of each component is
produced and these units are combined for delivery to the customer. Thus, the time
between deliveries is equal to the duration of the overall production cycle. They develop
an iterative heuristic procedure in which an initial production sequence is determined
ignoring setup times. The corresponding optimal production (and delivery) cycle is
then determined. An updated production sequence is found using this production cycle
and incorporating setup times. The procedure iterates between updating the production
sequence and the production cycle. The procedure is shown to converge, and to perform
well in computational tests. They also present an associated lower bounding procedure.

Our model generalizes the Hahm and Yano (1991a) paper to allow for multiple
deliveries within a production cycle. This generalization creates the need to partition
the components into groups and to sequence the groups of components, as we will explain

in more detail later.

3. FORMULATION

: number of components.

.- demand for component j per unit time.

>

transportation cost per delivery.

%]

.+ setup cost for component j.
pj: production time per unit of component j.

T : production interval (time between setups).

R: delivery interval (time between deliveries).



M: number of deliveries per production interval = (T'/R).

hj : inventory holding cost per unit of component j per unit time.

sj . setup time for component j.

For the convenience of the reader, a list of these and other notation, along with their

definitions, appears in Appendix 1.

We first develop the capacity constraint. During the production interval (T), each

component is produced once. Thus we must have

J
X(sj+p DN T,
j=1
which is equivalent to T>21
Lsj
where 7= —f— .

Two terms in the objective function are evident: the average setup cost per unit

L5

i
T

time is , and the average delivery cost per unit time is % . The inventory holding
costs are somewhat more complicated. Inventory holding costs are incurred at both the
supplier and the assembly facility. In our model, the average inventory of component j

at the assembly facility is %DjR and the average inventory at the supplier is

%DJT(I PDy + ijJQR . %DJR
if we ignore the time during which a component must wait for other components to be
produced. Consider a component that does not have to wait for other components to be
produced before delivery takes place. The system-wide inventory of this component is
the same as in the standard economic production quantity (EPQ) model, except for the

additional inventory that must accumulate to ensure availability of delivery quantities.



The first term in the above expression is simply the average inventory in the EPQ

model. The second term reflects the fact that prior to each delivery, a quantity D; R
must be available p;R time units earlier than would have been required in the EPQ
model. Since this extra inventory must be incurred in each delivery interval, the
additional inventory per unit time is ijjzR. The last term captures the portion of the
inventory that is present at the assembly facility rather than at the supplier.

With multiple components, any component j that is not produced immediately
before a delivery occurs must wait an additional period of time equal to the duration of
production of other components produced after j but prior to the first delivery of
component j from the production batch in question. We define the earliness of
component j, ej, as the time between the start of the production of a batch and the first
delivery of components from that batch. With this definition, we can re-express the total

inventory holding cost per unit time (at the two locations) as the sum of the average

inventory cost per unit time without consideration of earliness, T)J;aj, where ¢; =

%Djhj (1-p;D;), and the average inventory cost per unit time caused by earliness, j‘_:Djhjej.
(Note that the latter term includes the cost associated with the "accumulation” inventory,
?hj (p;D/R) = JZ'Djhj (p;DiR) )

Although T and M are decision variables, to clarify earliness in the context of our
problem, let us first analyze the scheduling problem with T and M given. We need to
determine (i) which delivery point to assign to each component as the basis for its
earliness and (ii) the sequence of components assigned to a common delivery point. We
will refer to the set of components assigned to the same delivery point as a "group” and

the procedure to form groups as “grouping.”
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Figure 1. Effect of schedules (sequence and grouping) on earliness.

Figure 1 illustrates an example that shows the effects of scheduling on earliness.
In this example, T = 2R and J = 3. Two different schedules are compared in the figure.
In each schedule, there are two groups: (1,2} and (3} in schedule 1 and {1,3) and {2} in
schedule‘ 2. Also, the sequences used in the two schedules differ. Components 2 and 3
have the same earliness in both schedules, but the earliness of component 1 differs
between the two schedules.

We now present a formulation for simultaneous grouping and scheduling:

®)
Minimize % iSj + Tf:aj + iDthej + % (1)
A =) g

subject to T=MR (2)
T21 3)
ej2p;DiR forj=1toJ (4)
bik] + sik) + PIRIDRIT < bk+1) for k=1toJ (5)
b[k] + S[k] + e[k] = E[kIE for k=1toJ (6)
bgs1)=br)+ T (7
b[r120 for k=1to J (8)



g(k] 2 0 and integer for k=1to J (9)

M > 1, integer (10)

where (k] is the index of the component which is produced in the k-th position in the

sequence, b;is the time when the setup for component j begins, g; is the group index of

component j, and g;R is the delivery time to which component j is assigned (for

computing earliness). Constraints (4) ensure that the delivery quantity of each
component is available at each delivery time and constraints (5) ensure that only one
component is produced at a time. Constraints (6) capture the assignment of components
to delivery points. Constraint (7) ensures that the production interval has duration T.
Constraints (8), (9) and (10) are nonnegativity and integrality constraints. In this
formulation, constraint (3) is redundant because constraints (5) and (7) together imply
constraint (3).

Conceptually, the problem could be solved as a dynamic program if T and M were
given. One would proceed backward in time, starting at the end of the production
interval. Since T is given, the setup plus processing time for each component is known.
The state is represented by the starting time of the component with the earliest starting
time (recall that we are scheduling backward in time), and the set of components that
still need to be scheduled. The decision at each point is which component to schedule
and whether it should be the last component scheduled in the previous (earlier) delivery
interval, potentially requiring the scheduling of idle time after it. Since the total idle
time is fixed for a given T, some assignments and some choices of idle times are not
feasible and can be eliminated from consideration. Since all sequences are feasible,
this problem is very difficult if J is large. Indeed, unless two or more components have
identical characteristics, the solution of the dynamic program would involve complete

enumeration in most instances. Since we also must determine M and T, such a

10



dynamic progam would need to be solved many times if the sequencing subproblem
were solved in this fashion. For these reasons, we do not use this dynamic program in
our solution procedure.

Problem P with M and T as decision variables is a mixed-integer nonlinear
program and convexity of the feasible region is not guaranteed. Therefore, direct
solution of P does not seem practical. We suggest a hierarchical solution procedure,
which disaggregates the above formulation into several manageable sub-problems.
First, however, we describe a lower bounding procedure that also provides some insight

into good values of R.

4. LOWER BOUNDS

For the moment, let us suppose that the sequence (¢) is given and that the
components are reindexed so that component j is produced in the j-th position in the

sequence. Then, the problem can be formulated as:

(P1)
1 d N A
Minimize E;J;Sj +Tj=21aj + Jg,lehjej+ 7
subject to ej 2 piD;R forj=1toJ (11)
bj+sj+ej=gR for j=1toJ (12)
bj +sj+p;DiT < bjy1 for j=1to J (13)
bjs1=061+T (14)
"T=MR (15)
T>1 (16)

11



bj20 forj=1tod 17

gj 20, integer forj=1toJ (18)

M > 1, integer (19)

Let TC(M, R, q) be the optimal objective value of P1 when the values of M, R and

the sequence (q) are given. Suppose we have the corresponding solution. Components

with the same gj value are in the same group. (Some groups may be empty.) Let us now
examine the earliness of components in an isolated group & (1< k <M). Let np denote
the number of components in group k. Also, let the superscript 2 index the group to
which the component belongs. Suppose the components in this group are reindexed so that
component j is produced in the j-th position in the sequence within that group. Then, we

can characterize the earliness of the components in group k£ as follows:

ok _pnkak R, (20)
k _ Lk k k k
€l = €p, *Sp, * pnk_anh_lT, (21)
and el{ = eé + s2 +p1DkT (22)

In general, we can express e , J=1tong -1, as follows:

ef = lj+1 + s’j"+1 + kakT. (23)

We now derive lower bounds on e . Let us define

k
Gknk —pnkD R
and Hf = 8?+1 + pri.‘R forj=1tong -1 (24)

Then, because sf 0 and T 2R, it is obvious that

12



f > 9“ forj=1tong and all k. (25)

As a result,

J M
3, D = 3 Sphpkok z Ehkef (26)

kIJlJJJ k=1 j=1

for any sequence and grouping. Note that the expression on the right hand side of the
inequality in (26) provides a lower bound by ignoring setup times (essentially assuming
that they are zero) and underestimating the production times by using R rather than T

in the production time expressions.

The value of Z f,Dj‘hj‘Of can be interpreted as the total weighted earliness
k=1 j=1

(considering time-weighted average inventory) for an identical processor scheduling
problem where (1) the components in a group are assigned to the same machine, (2) all

components are shipped at the end of the delivery interval, (3) setup times are zero, and

(4) the production quantity of component jis D;R for all j. For this related scheduling

problem, the processing time of component j is p;D;R and the weight for component j is

Djhj. Since the grouping is constrained, Z f‘thk(yE is greater than or equal to the
k=1 j=1

total weighted earliness of the best schedule in which J components are assigned to M
machines with no constraints on grouping. (With appropriate transformations, the
problem can be posed as a multiple-machine total weighted flow time problem and
related results can be used directly. Refer to Baker (1974) for results on this version of
the problem.) Let C(M, R) be the total weighted earliness of the best unconstrained

schedule for this related scheduling problem. Then, the following theorem holds.

13



Theorem 1.

COM, R)2 max( fR, 3 Zq*R +*£1gr 1) @n
J
where B =_leijhj ,
J=
J J
Z(@*) = Z Diithii] P0G (28)

and g* is the sequence in which components are sorted in non-increasing order of %L .
J

Proof. See Appendix 2.

In Theorem 1, SR is the total weighted earliness of the schedule in which each of
the J components is assigned a separate machine and Z(¢g*)R is that of the schedule in

which all components are assigned to one machine. Therefore, SR and Z(g*)R represent

lower and upper bounds on C(M, R), respectively, and % [Z(g*)R +A% BR1is a

weighted sum of these two values.

J
Let E(M, R, q) be the optimal value of } Djhj; in P1 when the values of M and R,
=

and the sequence (g) are given. Then, by Theorem 1 and (26), for any sequence gq,

E(M, R, @) 2 max( R, 5 (2q*) + 252 51). (29)
As a result,
1 g > R M-1 A
TCM,R, q)ZMRZiS-’ +MRj§an + max{ﬂR,M[Z(q*) +5g ﬁ]}+R . (30)

For simplicity, let LB(M, R) represent the right-hand-side of the above inequality. Then

it is obvious that LB(M, R) does not depend on the sequence. Therefore, if we define
TC(M, R) as n}lin{TC(M, R, q)), we have

14



TC(M,R)2LB(M,R). (31)
We now determine a lower bound on LB(M,R). Consider the following problem:

(P2) minimize LB(M, R)
subjectto MR > 7
R>0
M > 0, integer
Let M* and R* be optimal values of M and R, respectively, for P2. Then, LB(M*, R*) is
a lower bound on LB(M, R) under the constraints of P2, and therefore also on TC(M, R).
We will use M* and R* as the initial values of M and R. As we will discuss later, these
initial values yield a reasonably good solution.
LB(M*, R*) is calculated using the sequence ¢*. However, it does not necessarily
mean that ¢* will yield the minimum TC(M, R). Therefore, we need to find out what

characterizes a good sequence.
5. SEQUENCING ISSUES AND A HEURISTIC PROCEDURE

As mentioned earlier, the earliness of the components in group & can be expressed

as in (20) through (22). If the total setup and processing time for each group is less than
or equal to R, then erlfk = p,’ka:k R (i.e., the minimum possible) for all k. If not, the

value of er}fk may depend on the schedules of the other groups. However, once the value of
k

en, is determined, the earliness of each of the other components in the same group is

determined so as to satisfy (21) and (22). It is easy to show that if we know which
component produced last in a group, the other components in that group should be

arranged in non-increasing order of ﬁ sj+ p;D;T). (For fixed T, this is a single-
J

machine weighted earliness problem. By making appropriate transformations, results

15



in Baker (1974) for the single-machine weighted flow time problem can be applied
directly.)

Since a value of e,’fk greater than pr}kafk R has an adverse impact on the earliness
of all the components in the group, it might be advantageous to equalize the total setup
and production time across groups so as to minimize the interactions among the groups.
If this is not possible, it would be desirable to alternate groups with long and short
production times. This has two beneficial effects. First, it helps to eliminate the
"domino effect” that would occur if groups with long production times were placed
sequentially. Second, it helps to reduce unnecessary idle time in the schedule, which
may permit a shorter production interval (and therefore less inventory). These

considerations lead us to the following sequencing algorithm.

Algorithm SEQ

Step 1. Let tj=s;j + p;D;T and w; = h;D; for all j.

Let M be the number of groups.

Step 2. Select the unassigned component with the largest ¢j and assign it to the group
whose total production time is the shortest thus far.
Repeat until all components are assigned.

Let PT}, be the total production time of group £ (e, PTp= Y  tj), k=1to M.

component j
in group &

t.
Step 3. Arrange the components in each group in non-increasing order of'-u')L_.

J
Step 4. Arrange the groups in increasing order of PTy , k=1 to M.
Let (k) be the k-th group in the sequence.
Sequence the groups in following order: (1}, (M}, (2}, (M-1), (3}, (M-2},... . i

16



Step 2 in algorithm SEQ tends to minimize the maximum PT} and thereby also

attempts to equalize the PTps. Step 3 determines the sequence within each group and Step

4 determines the sequence of the groups. The resulting sequence usually is not optimal
for a given M and R. Because of the combinatorial complexity of the problem, however,
it is usually impractical to find the optimal sequence. In practice, the number of
components produced on one production line typically falls in the range from a few to
several dozen depending upon the application. At the low end of this spectrum, optimal
solutions can be obtained by complete enumeration. In the upper portion of this range,
however, the problems of partitioning and sequencing become difficult because the
number of deliveries per cycle (M) tends to increase with the number of components,
and the number of possible partitions increases dramatically with M. We believe that
the procedure described above is a practical and logical means to find a good sequence.
Another alternative would be to find the optimal sequence once the final values of M and
R are determined.

We now have a way to obtain initial values of M and R and a procedure to
construct a sequence given M and R. We now examine how to improve the initial
solution. If the production sequence and the values of M and R were given, we would be
able to solve problem P1 to find the best grouping using a variant of the dynamic
program mentioned earlier. (The only decisions would be which component should be
last in the cycle and when to start a new group.) The grouping resulting from solving
this problem may differ from the original grouping. If so, we can adjust the sequence of
the components in each of the new groups to achieve a further reduction in the inventory
cost. However, we want to do this without affecting the schedules of the other groups.
One way to do this while ensuring an improvement in the objective function is to allow
changes in the sequence within a group with the exce};tion of the components in the last

position of each group. By retaining the identity of the groups, we prevent them from

17



affecting the schedule of the preceding or succeeding groups. The reason for retaining

the position of the last component in each group is to ensure that we maintain e,lfk =

p,'kak R. If another component is placed in the last position in the group, the value of

ng

e,}fk may increase and we then cannot guarantee an improvement. With these

restrictions, it is optimal to rearrange the remaining components in each group in non-

increasing order of ﬁ( sj+ pjD;T), as mentioned earlier. Of course, it would be
J

possible to consider retaining the groups and evaluate all components in each group as a
candidate for the last position in the group, but preliminary results indicated that this
would not provide much additional benefit.

This adjustment will result in a new sequence. However, the value of g; for each

component will remain the same, as will the value of M. At this point, we could take the

new sequence and the associated g; values as given, and improve the solution further by

J J
allowing R and the ejs to change. Let @= ) ajand S = } S;. The sum of terms related to
=1 =

R in the objective function, % +aMR + é, is convex in R.  We now consider the ejs

and define the related problem P3 as follows.
J

(P3) minimize Y Djhje;
pa!

subject to (11) through (17).
Given the values of M and the gjs, P3 can be reformulated as a parametric right-hand-
side linear program where the parameter is R. The parametric right-hand-side linear
minimization problem is well-known to be convex in the parameter. Therefore, the
objective function in P3 is convex in R and the problem can be solved optimally. Let

f(R) be the objective function value of P3 for a given R. Also let F(R) = flR) + aMR.

Then, the problem is to find the value of R which minimizes F(R) + MiR + % . The

function F(R) is easily verified to be convex in R, and _Z&;I% +% is convex decreasing

18



in R. Therefore, we can restrict our attention to values of R >r, where r
= argmin {F(R)}. Note that the value of r is easily found by linear programming.
R

Discussions thus far suggest the following algorithm to solve problem P when

initial values of M and R are given.
Algorithm BESTR
Step 1. Apply algorithm SEQ to provide an initial sequence gq.

Step 2. Solve P1 using a mixed integer programming technique. The resulting objective

function value is TC(M, R, q).

Step 3. Arrange all except the last component in each group in non-increasing order of

ﬁ( sj + p;D;T), retaining the position of the last component in each group.
Step 4. Find r = argmin (F(R)} using a LP technique.
R

Step 5. For R 2 r, find the value of R which minimizes F(R) + MSE + % using a

parametric LP technique. ®

Step 3 in algorithm BESTR changes the initial sequence and Step 4 and 5 changes
the value of R. These steps are designed to produce a further cost reduction. Let
TCB(M, R) be the total cost resulting from algorithm BESTR for a given M and initial
R. Then,'TCB(M, R) will be less than or, at most, equal to TC(M, R, q) in Step 2.

Algorithm BESTR solves problem (P) when values of M and R are given. We will
use M* and R* as initial values in algorithm BESTR. However, in the special the case

where M = 1, we use the specialized algorithm developed by Hahm and Yano (1991a).
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Before we describe the entire algorithm, let us define some notation and introduce

a preliminary result. For any positive integer M, let

R(M) = argmin{LB(M,R)IMR 2 1]} .
R20

Lemma 1.

LB(M, R(M)) is unimodal in M .

Proof. See Appendix 3.

Suppose M* is 1. Then, we can use the algorithm developed by Hahm and Yano

(1991a) for the special case of M = 1 (henceforth referred to as the HY Algorithm). Let us
refer to the associated lower bound as LB1. Then, the new lower bound for the case of M
= 11is max(LB1, LB(1, R(1))}). Furthermore, if LB1 is greater than LB(2, R(2)), the lower
bound for problem (P) no longer occurs at M=1 but occurs at M=2 by Lemma 1. (Figure 2

illustrates an example.) In this case, we will reset M* to 2.

g
o
3
m
-l
LB1
LB(2, R(2))
LB(1, R(1))
1 2 —>M

Figure 2. Lower Bound for M = 1 and 2.

We now present the entire algorithm.
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Heuristic Algorithm

Step 1. Find M* and R*.

Step 2. If M*> 2, go to Step 5.
Using the HY algorithm, find the total cost and the lower bound and let us refer to
these as TC* and LB*, respectively. Also let M* be 1 and R* be the resulting value

of R.

Step 3. If LB* < LB(2, R(2)), then stop.®

Set LB* to LB(2, R(2)) and find the value of TC8(2, R(2)) using algorithm BESTR.

Step 4. If TC*< TC(2, R(2)), then stop.®
Set M* to 2, R* to the value of R resulting from algorithm BESTR in Step 3, and

TC* to TCB(2, R(2)). Stop.®

Step 5. Using algorithm BESTR, find the value of TCB(M*, R*).

Set R* to the value of R resulting from algorithm BESTR and TC* to TCB(M*,

Stop. ®

A flow chart of the algorithm is represented in Figure 3. Experimental results are

discussed in the next section.
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Find M* and R*

Use BESTR to find TC *(M* R¥) no

Set TC* = TC" (M* R%)
LB* = LB (M*R¥)

yes

Use HY Algorithm

Find new R*

Set TC* = TC1
LB* =LB1

Set LB* = LB(2.R(2)) no

LB* < LB(2,R(2))

-

Find TC. (2R(2) \
yes
B Set M* = 2
TC*<TC (2,R(2) ) .
Set TC* = TC " (2,R(2))

»
-

Solution is M*, R(M*)
with cost TC*

Figure 3. Flow Chart of the Heuristic Algorithm.
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6. EXPERIMENTAL RESULTS

We tested the heuristic algorithm on a set of 72 problems which was designed to
evaluate the impact of various problem parameters on the performance of the algorithm.
Three major factors were considered. The first factor is the tightness of the capacity

constraint. We consider two levels of tightness: Y p;D; drawn from a uniform
J

distribution on [0.3,0.5] (not tight) and from [0.7,0.9] (tight).

The second factor is the spread of the natural production intervals among the
components. Since our problem requires T >R, we determined constrained natural
production and delivery intervals by solving the following problem, which is a

variation of the original problem in which the accumulation inventories are ignored:

S; d A
S o} m. a4
Minimize AT + j=1aJTJ + bR *R
J g; J
subject to Y %’- < 1-3 pjDj (32)
j:l J J:l
Tj; 2R forj=1tod (33)

where T} is the production interval of component j, and R is the delivery interval. Let

Tj' and R’ be the optimal values of T and R; for this problem, which we refer to as the

constrained natural production intervals and delivery interval, respectively. These

values can be expressed as:

(34)

and (35)

where A, is chosen so that constraint (32) is satisfied as an equality, or A, = 0 if the

constraint is not binding; and for each j, 4; is chosen so that constraint (33) is satisfied
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as an equality or Aj = 0 if it is not binding. We measure the spread of the constrained

natural production intervals using the ratio of the maximum to the minimum Tj'. This

ratio is generated from a uniform distribution on [1.5,2.5] for half of the problems (low
variance) and on [4,8] for the other half (high variance).

The third factor is the magnitude of the unconstrained optimal delivery interval
(i.e, the optimal delivery interval considering only the assembly facility's inventory
costs and the transportation cost) relative to the natural production intervals. We say

that the optimal unconstrained delivery interval is relatively small if it is less than or

equal to the minimum TJ", medium if it is strictly between the minimum T; and
maximum Tj', and large if it is greater than or equal to the maximum Tj'. In the first
case, we might expect 7" to be constrained by the minimum T;; in the second case, we
might expect T” to be close to the unconstrained optimal R; and in the third case,
economic tradeoffs may dictate the solution.

The two levels of capacity tightness, two levels of natural production interval
spreads, and three levels of unconstrained optimal delivery intervals give twelve
(2x2x3) combinations of levels. For each combination, we generated a set of six
problems: two problems with three components, another two with six components, and
two with nine components.

Summary statistics appear in Table 1. The average deviation of the cost of the
solutions from their respective lower bounds is 5.93%. The lower bound that we use here
is LB(M*,R") as described earlier. The maximum error is 16.8%, and we were able to
confirm that 9 of the 72 solutions are optimal (solution equal to lower bound). The
maximum error occurs in a problem with 9 components and a medium unconstrained
optimal delivery interval. For this problem, the value of M* is 2. In this case, only 2
delivery points are shared by 9 components and therefore, earliness costs are
significant. Note that earliness of a component is incurred during the production times

as well as the setup times of the subsequent components. The lower bound does not
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account for setup times at all, and includes only the effects of R/T (= 1/M) of the
processing times. Therefore, if setup times are fairly large, M >> 1, and/or many
components share a small number of delivery points, the lower bound may be quite
loose. Nearly all of the problems with large gaps between the cost of the heuristic
solution and the lower bound had these characteristics. Thus, the larger gaps appear to
reflect the poor quality of the lower bounds in these instances rather than large

deviations from optimality of the heuristic solutions.

Table 1

The practical benefits of the heuristic are more dramatic. We considered a variety
of alternative benchmarks. One apparently simple alternative is to use independent
solutions for the production and delivery intervals. Unfortunately, adapting the
independent solutions to construct a feasible solution is not easy. If the independently-
determined value of T is not an integer multiple of the independently-determined R, it
would be possible to construct a schedule in which the overall cycle duration is equal to
the least common multiple of T and R. One could, instead, choose M to be close to T/R
and then choose T and R accordingly. Unfortunately, both of these approaches ignore
the grouping and sequencing issues, and consequently do not specify a complete
solution. Furthermore, even for an arbitary grouping and sequencing decision,
sufficient inventory must be interjected into the system to eliminate shortages, and
determining how much inventory to interject is not a simple matter. Moreover, with
arbitrary grouping and sequencing, we might expect the aggregate level of earliness to
be quite large. For these reasons, we decided to use a different benchmark obtained
from a constrained version of the problem.

Our benchmark involves setting M = 1 and finding the constrained optimal
solution. This solution might be viewed as the best "just-in-time" schedule given

current system costs and parameters, and the difference between the cost for M = 1 and
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M unconstrained can be viewed as the cost of using just-in-time when just-in-time is not
optimal. We report the ratio of the cost of the heuristic solution to the cost of this "just-in-
time" schedule in Table 1. If the ratio is 1.0, then M = 1 is optimal. From the table, it is
clear that this happens infrequently in this problem set. The average penalty from
using the best just-in-time schedule versus the heuristic is over 20%. Thus, it may be
desirable in many instances to allow production quantities to be larger than the delivery

quantities until setup costs and times are reduced.
7. CONCLUSIONS

We have developed a heuristic procedure and a lower bounding approach for the
problem of simultaneously scheduling the final production stage of a captive supplier
and deliveries from that supplier to the customer. Experimental results indicate that the
héuristic performs well in an absolute sense. The results also show that a "just-in-time"
schedule with equal production and delivery quantities may not necessarily be optimal.

It is important to point out that the procedure can be adapted to a "fixed-cost-per-
truck” transportation cost structure with minor modifications. It is easy to show that
with such a cost structure, the optimal solution has a delivery cycle less than or equal to
the time supply of one truckload of goods, i.e., there is one truck per shipment. The
unimodality and convexity results presented here imply that the optimal value of the
delivery cycle (for a given production sequence) is either the unconstrained optimal
value (if it is less than the time supply of one truckload), or exactly equal to the time
supply of one truckload.

The heuristic can be used in a variety of ways. First, it can provide first-cut
guidance on the frequency of deliveries and the relative frequency of production.
| Second, it can be used to study the system-wide effects of setup cost and setup time
reductions, and the effects of transportation cost reductions that might be achieved

through co-location or a change of suppliers. Finally, solutions from the heuristic can be
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used to obtain estimates of the benefits from better supplier-customer coordination

through the joint determination of production and delivery schedules.
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Table 1. Summary of Experimental Results

J : Number of Components. TC: Total Cost from Heuristic.

C: 1if capacity is not tight and 2 if capacity is tight. LB: Lower Bound.

D: 1 if low spread of natural setup cycles, 2 if high. JIT: Cost of Solution with

V: 1 if unconstrained del. interval is small, 2 if medium, 3 if large. M=1
] ¢ DV TC/LB TC /T J] C DV TC/LB TC/JT
31 1 1 101.69% 109.25% 31 2 1 100.00% 112.38%
31 1 1 102.56% 103.96% 301 2 1 100.00% 110.94%
31 1 2 102.81% 100.67% 31 2 2 100.00% 100.00%
31 1 2 102.11% 104.06% 31 2 2 100.00% 100.00%
3 1 1 3 102.55% 101.41% 31 2 3 100.00% 100.00%
31 1 3 102.69% 102.16% 31 2 3 100.00% 100.00%
3 2 1 1 103.17% 146.55% 3 2 2 1 101.39% 138.61%
3 02 1 1 101.47% 136.70% 3 2 2 1 103.59% 132.84%
3 2 1 2 113.80% 121.47% 302 2 2 100.19% 100.00%
32 1 2 114.72% 119.45% 3 2 2 2 103.26% 103.59%
3 2 1 3 102.80% 100.00% 3 2 2 3 100.00% 100.00%
3 2 1 3 111.72% 107.25% 3 2 2 3 102.35% 100.00%
6 1 1 1 106.20% 125.38% 6 1 2 1 101.46% 121.88%
6 1 1 1 105.89% 130.16% 6 1 2 1 101.07% 118.01%
6 1 1 2 104.84% 106.80% 6 1 2 2 106.44% 107.17%
6 1 1 2 106.47% 105.75% 6 1 2 2 104.58% 104.40%
6 1 1 3 105.59% 106.22% 6 1 2 3 100.00% 100.00%
6 1 1 3 105.78% 106.78% 6 1 2 3 100.00% 100.00%
6 2 1 1 106.08% 169.99% 6 2 2 1 102.28% 129.10%
6 2 1 1 112.42% 152.22% 6 2 2 1 107.69% 143.96%
6 2 1 2 110.10% 138.69% 6 2 2 2 105.66% 108.16%
6 2 1 2 109.55% 148.24% 6 2 2 2 107.37% 107.43%
6 2 1 3 105.90% 109.91% 6 2 2 3 109.22% 108.33%
6 2 1 3 112.14% 119.61% 6 2 2 3 106.28% 100.12%
9 1 1 1 108.86% 127.60% 9 1 2 1 105.91% 122.02%
9 1 1 1 108.58% 125.32% 9 1 2 1 101.90% 118.81%
9 1 1 2 110.42% 114.89% 9 1 2 2 106.88% 106.60%
9 1 1 2 116.80% 118.09% 9 1 2 2 106.33% 107.11%
9 1 1 3 111.69% 111.19% 9 1 2 3 106.56% 102.23%
9 1 1 3 110.79% 107.14% 9 1 2 3 102.74% 100.00%
9 2 1 1 106.08% 182.58% 9 2 2 1 108.36% 134.07%
9 2 1 1 109.48% 158.09% 9 2 2 1 105.34% 166.48%
9 2 1 2 107.68% 171.91% 9 2 2 2 113.80% 137.68%
9 2 1 2 110.04% 136.28% 9 2 2 2 109.78% 165.94%
9 2 1 3 109.11% 125.12% 9 2 2 3 111.65% 107.64%
9 2 1 3 110.43% 148.25% 9 2 2 3 112.18% 132.81%
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APPENDIX 1
LIST OF NOTATION

(in order of presentation)

production interval (time between setups).

number of components.

setup time for component j.
production time per unit of component j.

demand for component j per unit time.

J

jl)j

minimum production interval = —%

1-

&

-~

setup cost for component j.

transportation cost per delivery.
delivery interval (time between deliveries).

earliness of component j (time between the start of the production of a batch
and the first delivery of components from that batch.

inventory holding cost per unit of component j per unit time.
1

§Djhj (1-p;D)).

number of deliveries per production interval = (T/R).

index of the component which is produced in the k-th position in the
sequence.

time at which the setup for component j begins.
group index for component j (for computing earliness).

a sequence.
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TC(M,R,q):

ng:

B

<R

CM, R):

Z(g*):

EM,R, q):

LBM,R):
TCM, R):
M*:

R*:

optimal objective value of P1 when M, R and q are given.

number of components in group k.

earliness of the jth component in group &.

k

lower bound on e .

total weighted earliness of the best unconstrained schedule for the
scheduling problem with M and R given.

J
,21 piD?h;

sequence in which components are sorted in non-increasing order

pj
of .
hj

J J
EI D[iJh[i]gp[j]D[jJ :

J
optimal value of ) Djhjej in P1 when the values of M and R, and
p=t

the sequence (q) are given.
right-hand-side of (30).
mqin[TC(M, R, q)).
optimal value of M for P2.

optimal value of R for P2.

sj +p;D;T .
h;Dj.
total production time of group & (i.e., PTp= Y  tj).
component j
in group &
J
2. 9
J=1
J
2. S
A
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TCB(M, R):

R(M):

LB1:

TC1:

objective function value of P3 for a given R.

f(R) + cMR.

argmin F(R)
R20

total cost resulting from algorithm BESTR for a given M and
initial R.

argmin{LB(M,R)IMR 21} .
R20

lower bound on solution from HY algorithm (M=1).

objective value of solution from HY algorithm (M=1).
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APPENDIX 2

PROOF OF THEOREM 1

Theorem 1:

CM, B)> max( BR,]%[Z(q*) +%‘iﬁ]} (A2-1)

J
where B =3 pDj*h;
j=l
J J
29 =% DﬁJh[iJgp[fJDw,

. . . . . . p
and g* is the sequence in which components are sorted in non-increasing order of EL
J

E]‘QQ‘.

Note that C(M, R) has been defined as the total weighted earliness of J components when

the processing time of component jisp;D;R for allj and the components are assigned to

M identical machines. Eastman et al. (1964) proved the following result.

C(M, R) > max( C(J, R), —]}4— C(LR)+ A;—A} CU.R)). (A2-2)

For our problem, C(J, R) and C(1, R) are defined as follows.
J
CJ,R)= ;D[i]h[i] DGR = BR. (A2-3)

C(1, R) = min Z(q)-R = Z(q*)-R. (A2-4)
q

Substitution of (A2-3) and (A2-4) into (A2-2) gives the result in (A2-1).®
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APPENDIX 3

PROOF OF LEMMA 1

Lemma 1:

LB(M, R(M)) unimodal in M.

Proof.

Throughout this proof, we use the term unimodal to refer to a function that initially
decreases in the argument and then increases (i.e., first order conditions define a local
minimum, not a local maximum). We want to show that LB(M, R(M)) is unimodal for
positive real values of M and thus, also unimodal for positive integer M. Therefore,

initially, let us assume that M is a positive real number.

By definition,

LBULR) =—=$S: + MRS o R E 7% + ML
M, )'MRJ§J+ j;a,+ma><[/3 vy 2@ + 75

pl)+4
) J A
= max { M———Rglsj +MRJ§1aj + R tR

Y B Mlg, A
MR_%SJ +MRj_§aJ +37 @M +75 Bl+% ).

Let us define
’ 1< S; + MR o R A
LB (M,R): MRJ_Zl j + nga-} + ﬁ +R

J J -
and LB'M,B)= 37z 5.5 + MR3c; B zgn + g1k

Then,
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LB(M,R) = max{ LB'(M,R), LB"(M,R) ).

Let
R'(M) = argmin(LB'(M,R)IMR > 1)
R0
and R"(M) = argmin{LB"(M,R)IMR >1).
R0

Then, it is easily verified that
LB(M,R(M)) = max{ LB'(M,R'(M)), LB"(M, R"(M)) }.

As a result, if both LB’ (M, R'(M)) and LB"(M, R"(M)) are unimodal in M, LB(M,
R(M)) which is the maximum of these, is also unimodal in M. (This property is easy to

prove for univariate unimodal functions of the type considered here.)
First, let us show LB'(M, R'(M)) is unimodal in M,

It is easy to show that

R'(M)= max (R(M), 37 )

where Ry(M)= 4| M%aiﬂ%éﬁ)— .

Let m be the value of M which satisfies R, (M) = AL/I . Then, it is easily verified that the

value of m is unique and it is expressed in the following form.

ay2—S +V(ay2—S)? + 4A8y2
m = 2A .

(A3-1)

Also, because m is unique, it is clear that

T
R'OM) = 4M forM<m
R, (M) for M >2m
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As a result,

LB'(M,i—)=§+ay+QY+M for M < m
T M T
LB'(M, R'(M)) = -
LB'(M, R, (M)) = 2\f 3 (S + MA)aM + f) for M >m
Note that
n% = R,(m) and LB'(m, % )= LB'(m, Ry (m)). (A3-2)

To show that LB '(M,-TM) and LB'(M, R, (M)) are unimodal, we use the following

lemmas.

Lemma 2: LB(M, R;(M)) is increasing in M for M 2 '\/ /—‘g%,
decreasing in M for M < ‘\, fﬁ .
a

LB(M, R, (M) = 2 \[ (S+M.A]3!(aM+ B

It is easily verified that (S+M-A)(aM+B)/M is increasing in M for M > '\/ AS% and

decreasing in M for M < ‘\’ ;f—% . Therefore, Lemma 2 follows.*

Lemma 3: LB (M, ]—;I— ) is a convex function of M and achieves its minimum at M =

T

F
-4
=]
]

z,_8 By . A
LB (M, )'1: tay+ s +M-T .

< oac : i T 9 Ty _
It is easily verified that M2 LB (M, i )> 0 and that LB (M, i )=0atM =

X
M R"’
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Let M! and M? be the values of M that minimize LB'(M, L ) and LB (M, R, (M))

respectively. From Lemmas 2 and 3,

Ml=1 \/:2— and M2= \/f‘g .

Before we prove Lemma 1, we want to show that

() if M'>m,then M2 2m

and (i) ifM!<m, then M2 <m.

Proof of (i).

First we want to show that, if M1 > m, % >7.

Suppose ‘\/% < 7, which means ay?2> S . Then,

_ay2-8 +V(ay?-S)? + 4ABy?

=M

which contradicts the assumption M! >m.

Therefore, ‘\/ S 27,
a

As a result,

W:\/Agg 21\/§=M12m.

The proof of (ii) is similar to that of (i) and is omitted here.

(A3-3)
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Case 1: M! > m.

IfM'>m, LB'(M, ﬁ ) 1s monotonically decreasing in M for M <m by Lemma 3.

By (A3-2), LB'(m, —;—): LB'(m, R (m)). Moreover, by (i) and Lemma 2, LB'(M,

R, (M)) is monotonically decreasing in M for m<M <M? and monotonically

increasing for M>M? . As a result, LB'(M, R'(M)) is unimodal in M.

Case 2: M! < m.

IfM'>m,LB'(M, é— ) is monotonically decreasing in M for M <M'!and

monotonically increasing in M for M! <M <m by Lemma 3. By (A3-2), LB'(m, -;7)

=LB’'(m, R (m)). Moreover, by (ii) and Lemma 2, LB'(M, R.(M)) is monotonically

increasing in M for M >m. As a result, LB'(M, R'(M)) is unimodal in M.
Consequently, LB’(M, R'(M)) is unimodal in M.

The proof that LB"(M, R"(M)) is unimodal in M parallels the proof for LB'(M, R'(M)).
Since LB'(M, R'(M)) and LB"(M, R"(M)) are unimodal in M,LB(M, R(M)) is

unimodal in M.
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