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THE ECONOMIC LOT AND DELIVERY SCHEDULING PROBLEM:
THE COMMON CYCLE CASE

We analyze the interface between a supplier and an assembly facility, where
direct shipments are made from one to the other. The final manufacturing step at the
supplier involves multiple components produced on a single machine or production line.
The assembly facility uses these components at a constant rate. The supplier incurs a
sequence-independent setup cost and/or setup time each time the production line is
changed over from one component to another. On the other hand, setup costs and times
for the assembly facility are negligible. We consider two types of delivery costs: a
fixed charge for each delivery, and a fixed-charge-per-truck cost.

We develop a heuristic procedure to find a "just-in-time" schedule in which one
production run of each product and a subsequent delivery of these products to the
assembly facility occur in each cycle. The objective is to find the cycle duration that
minimizes the average cost per unit time of transportation, inventory at both the supplier
and the assembly facility, and setup costs at the supplier. We also develop an error
bound for this procedure, and use some of the insights gained from the analysis to
explain how delivery schedules can influence the attractiveness of reductions in

production setup costs.



THE ECONOMIC LOT AND DELIVERY SCHEDULING PROBLEM:
THE COMMON CYCLE CASE

1. INTRODUCTION

The importance of coordinating the scheduling of production and outbound
deliveries has been highlighted by the recent adoption of "just-in-time" systems in
major industry segments, including the automobile industry, which is the motivation
for our study. A recent survey of automotive industry suppliers (see Ward's Auto
World, July 1990) indicates that a majority of suppliers feel that they are being forced to
hold inventory for their customers, which are typically assembly facilities. These
results, as well as our own conversations with some suppliers of major components,
suggest that suppliers are producing components in batches that are larger than the
delivery quantities, and gradually shipping the components to the assembly facilities.
On the other hand, a "just-in-time" schedule would have the suppliers producing only
what is required for the next shipment. In this paper, we investigate what
characteristics such a schedule should have, taking into account system-wide costs.

We investigate the linkage between a large assembly facility such as an
automotive assembly plant and its immediate suppliers, often referred to as "first tier"
suppliers. Because of the magnitude of their impact on total production and
transportation costs, we focus on first tier suppliers that are large enough to justify direct
shipments between the supplier and the assembly facility . Examples of such suppliers
within the automobile industry include engine and transmission plants, bumper
fabrication and assembly, and wheel fabrication plants.

In this paper, we consider a situation where the supplier is captive and supplies
multiple components to only one assembly plant. Such captive suppliers exist in the
automobile industry, as well as in other industries. From a technical viewpoint, our

reason for considering this situation is that it allows us to investigate the just-in-time



production/transportation problem unfettered by the complications of scheduling the
production and deliveries of components for multiple customers. Such generalizations
are natural extensions of this work and we encourage research in that direction.
However, the more complex combinatorial nature of the multiple-customer problem tends
to obscure the qualitative insights that are important in making strategic decisions
regarding setup-related improvements.

Under the aforementioned assumptions, the problem becomes separable by supplier.
Because our focus is on the interface between a supplier and the assembly facility, we
concern ourselves only with the scheduling of multiple components on one "machine” at
the supplier. In the applications that motivated this work, the "machine" typically would
be the final assembly line of the supplier. This represents the closest interface with both
the transportation system and the assembly facility. Moreover, this stage tends to be the
one where most of the production planning activities are focused in practice. Later in
the paper, we discuss how our general approach might be extended to the cases of
multiple customers with unique components, and multiple machines in parallel.

In addition, we focus on situations where the usage rates of the components by the
assembly facility is, for practical purposes, constant. In our motivating examples, and
in other situations as well, the usage rates of component parts is smoothed considerably
by a higher-level production smoothing procedure, or in a less sophisticated fashion,
simply to make just-in-time workable. (See Schonberger 1983 for a discussion of the role
of production smoothing within a just-in-time context.) Considering a situation with
constant demand also allows us to gain insight into major tradeoffs that are less visible
in more complicated models.

The goal of this paper is to develop a procedure to find a common production and
delivery interval that minimizes the average cost per unit time of transportation,
inventory at both the supplier and the assembly facility, and setup costs at the supplier.

The model also permits positive setup times. In the next section, we provide a formal



statement of the problem. The subsequent section contains a formulation. This is
followed by the development of an iterative heuristic solution procedure based on
properties of the optimal solution. We show that the procedure converges and provide an
error bound for it. We report experimental results which indicate that the heuristic
performs quite well. Since the initial model assumes a simple fixed-cost transportation
cost structure, we extend the model to incorporate a more realistic fixed-charge-per truck
transportation cost structure. Finally, we conclude with a summary and a discussion of

the implications of this model on the attractiveness of setup cost reductions.

2. PROBLEM STATEMENT

We analyze a system with a single supplier which produces multiple components
on a single machine or production line. The components are delivered directly to an
assembly facility which uses these components at a constant rate. The supplier incurs a
sequence-independent setup cost and/or setup time each time the production line is
changed over from one component to another. On the other hand, setup costs and times
for the assembly facility are assumed to be negligible, which is reflective of many
assembly environments.

Initially, we assume that there is a fixed charge for each delivery, but relax this
assumption later in the paper. Deliveries to the assembly facility occur at equal
intervals (duration to be determined). The delivery lead time is assumed to be
deterministic, and without loss of generality, equal to zero. (Incorporating in-transit
inventory requires a simple modification of the cost parameters.)

The supplier produces exactly one batch of each component between deliveries,
where the batch sizes are exactly equal to the assembly facility's requirements until the
subsequent delivery arrives. From an economic perspective, this restriction is most
realistic when the unconstrained natural setup intervals (economic production cycles of

the individual components) are similar in magnitude to the natural delivery interval



(economic delivery cycle of the assembly facility when considered separately).
However, our intent in this paper is to characterize good schedules with such a "just-in-
time" requirement imposed exogeneously. As we will see later, the analysis of this
constrained problem provides a basis for determining what improvements are
necessary so that the "just-in-time" constraint is no longer problematic.

Since the deliveries are equally spaced in time and the demand rates are constant,
each shipment has the same composition. Inventory holding costs are charged on time-
weighted average inventory levels, and the inventory holding cost of a component is
assumed to be the same at the supplier as it is at the assembly facility. (Once again,
relaxation of this assumption is fairly straightforward.)

The objective is to minimize the average cost per unit time of setups, inventory,
and transportation while ensuring that both demand and the supplier's capacity
constraint are satisfied. We must decide the delivery interval and the (rotation)
sequence in which to produce the components. Note that without the restriction of equal
delivery and setup intervals, the problem involves determining (i) the delivery interval,
(ii) which components are produced between consecutive deliveries, and (iii) the exact
production schedule between consecutive deliveries--both quantities and sequence of
components. We consider more general versions of our problem in sequels (Hahm and
Yano 1991 a,b). The results that we obtain in this paper are useful in solving these more
general problems.

Although a considerable amount of work has been done on multi-stage production
systems with known constant demands, little research has been done that considers both
the cost of inventory accumulation prior to delivery and the cost of transportation in the
determination of jointly optimal production and delivery schedules. One reason why
the former has been ignored is that many models assume instantaneous production
(e.g., Crowston et al. 1973, Blackburn and Millen 1982, Roundy 1985, Maxwell and

Muckstadt 1985). Other papers that do incorporate capacity constraints ignore some or



all of the accumulation inventory (e.g., Caie and Maxwell 1981, Billington et al. 1983,
Jackson et al. 1988), or treat transportation costs as fixed (Maxwell and Muckstadt 1981).
Likewise, there is some research on procurement policies that include transportation
costs, either as quantity discounts (e.g., Lee 1986) or fixed charge per shipment (e.g,
Lippman 1971 and Lee 1989), but none explicitly considers the impact of the selected
delivery schedule on the supplier’s inventory levels. We are not aware of any papers
that treat all of the issues in our problem. In the interest of brevity, we will review only
those models most closely related to ours. The reader is referred to Schussel [1968], Taha
and Skeith [1970], Jensen and Kahn [1972], Schwarz and Schrage [1975], Graves and
Schwarz [1977], Bigham and Mogg [1979], Szendrovits [1981], Williams [1982], Blackburn
and Millen [1982], and Moily [1986], among others, for a variety of results on continuous-
time, multi-stage lot-sizing models.

Our problem might be viewed as an extension of the "product cycling” problem
first posed by Hanssmann (1962) in which several items, each with constant demand
rates, are produced on one machine. Each item is produced once in each cycle and the
cycle is repeated. Setup times and costs may be incurred in changeovers between items.
The objective is to minimize average setup and inventory costs per unit time.
Hanssmann shows that a closed form solution exists for this problem.

Our problem differs from Hanssmann's in two ways. First, demand occurs at a
location other than where the components are produced. Thus, inventory of the
components must be accumulated prior to each delivery. Second, because of this
inventory accumulation between deliveries, the sequence in which components are
produced affects the solution, even when setup times and costs are sequence-independent.
One might argue that if production costs per unit time are similar across products, the
production sequence may not matter in practice, since the rate at which value is being
added is relatively constant. The key issue, however, is that there is inventory

accumulation at the supplier between deliveries, and the cost of holding these



inventories may be as substantial as the cost of holding inventories at the assembly
facility. The magnitude of these inventories is influenced by the delivery frequency,
and therefore should be included in this decision.

A more distantly related body of research involves the joint replenishment
problem in which there is a (joint) setup cost per procurement (or a joint setup cost per
setup for a product family) plus an individual setup cost per item procured (or produced).
The objective is to minimize the total setup and inventory cost per unit time. See the
references in Jackson et al. (1985) for related literature. Although there is some
similarity between the cost structure of this problem and that in ours, we have the
additional costs associated with inventory accumulating prior to shipment, and the
concomitant problem of sequencing between shipments.

We now turn a review of articles that explicity consider both transportation and
inventory costs in a continuous-time setting. Burns et al. (1985) develop a single-item
model with the objective of minimizing transportation and inventory costs per unit time.
Production-related costs are not included. The transportation cost consists of a fixed
charge per truck movement. It is assumed that production is not synchronized with
delivery, and the cost of inventory accumulating prior to delivery is estimated
accordingly. The optimal delivery quantity is obtained by EOQ-type analysis.

Benjamin (1989) investigates a single-item version of our problem, in which
multiple deliveries may be made out of one production batch. He excludes from his
objective function the cost of inventory accumulation prior to delivery and the additional
inventories that would be required to avoid shortages when the production interval (or
batch) is not an integer multiple of the delivery interval (batch). These two implicit
assumptions lead Benjamin to the conclusion that the problem can be solved optimally
by independent EOQ-type formulas for the production and delivery batches.
Unfortunately, the independent solutions generally will not have the integer multiple

property that is implicit in his formulation.



This difficulty is corrected by Hahm and Yano (1991a) who show that for the
single-item problem, the optimal solution has the property that the production interval is
an integer multiple of the delivery interval. They also provide a procedure to find the
optimal solution, and derive conditions on setup costs and setup times for which a "just-
in-time" solution (production interval equal to delivery interval) is optimal.

Blumenfeld et al. (1991) study a problem in which the supplier uses a single
machine to produce several components, each of which is shipped to a unique
destination. Setup times are not incorporated. Their model allows each component to be
produced more than once in each production cycle. Unlike Benjamin's formulation, it
does include accumulation inventories that accrue when production runs are equally
spaced in time, and when production batch sizes are integer multiples of the respective
delivery batches. However, it does not include accumulation inventories that must be
held if either of these conditions is not satisfied. Consequently, when their results are
specialized to the problem treated by Benjamin, they arrive at similar conclusions.
They suggest rounding the ratio of the production batch to the delivery batch to obtain an
integer multiple, but do not indicate how the rounding should be accomplished. For the
case of N components with identical cost and demand characteristics, they present
results for the special case in which the machine is 100% utilized. Unfortunately,
because of this assumption, the results do not specialize to the case of N = 1. General
results for the case of N components are not presented.

Our model and results differs from earlier research in several ways. First,
unlike most of the pure production lot sizing literature, we explicitly model the finite
production rate at the supplier, and thereby also capture the impact of inventory that must
be accumulated prior to each delivery. Second, we incorporate transportation costs for
the movement of goods between the two facilities. Finally, we allow multiple
components to be shipped to a single customer and deal with the related sequencing

decisions.



3. FORMULATION

It is useful to point out that in our problem, it is never beneficial to make multiple
production runs of a given product between deliveries. (The proof is straightforward
and therefore omitted.) Thus, under the "just-in-time" assumption, we need not make

decisions about the number of production runs per delivery interval.

Notation
J number of components.
D;: demand for component j per unit time.
S;: setup cost for component j.
pj: production time per unit of component j.
T: setup interval (time between setups); also equal to the delivery interval
(time between deliveries).
hj : inventory holding cost per unit of component j per unit time.
8j - setup time for component j.

We first develop the capacity constraint. During the delivery interval (T),

components necessary for the next delivery are produced. The delivery quantity of

component j is D;T, so the total setup and production time for component j is s; + p;D;T.

Therefore, the time needed to produce all components is >.(s; + p;D;T), which must be
J

less than T'. Therefore, we must have

hich is equivalent to > .
which is equi l—ZPJDJ



Inventory Holding Costs

Inventory holding costs are incurred at both the supplier and the assembly facility.

: . . TDh;
The average inventory of component j at the assembly facility is —2‘L'L , just as it is in

the economic order quantity model. On the other hand, the average inventory of
component j at the supplier depends upon the accumulation during the production time of
component j itself and the amount of time the inventory must wait during production of
other components produced after j but prior to delivery.

For example, production sequences (1) 3-2-1 and (2) 1-2-3 in Figure 1 result in

different inventory levels for the supplier.

mmsmm  setup time for each component

NN

component 1 component 2 component 3

Let [i] be the index of the component produced in the i-th position in the sequence. Then

the average inventory cost per unit time at the supplier is as follows:

J { 1 J+l
2 D o T0wpi + 2 (TDGp(+ sm>} W
i=1 =i+

The first term in the outer summation is the inventory cost per unit time incurred
during production of [i], while the second term reflects the cost per unit time of holding

[i] until delivery takes place. The above expression can be rewritten as:



J { J+1 } J 1
g'l D[i]h[i]ﬁ%‘:l(TDU]P[/% sgP S+ TEI §Di2pih,i 2)
d1
=Z(@Q)+Z, ()T + T;EDiQpihi

where  D{J41]=h(J+1)=PlJ+1)= 0,
ge @ (Q is the set of all possible production sequences),
J J+l
2@ = Dk 2507

J+1

J
and Zy(q) = EID[i]h[i] J%IDU]P[J] :

Form n
3§ 1 T A
=l = - . 4 20k L2
(P1) Minimize j=le + 2J'=21TD_,h_, +2,q) +Z,(@q)T + 2;;1Djpjhj +7
subject to T21
Zs.
where T= E}"EJ .
The objective function in (M1) can be expressed in another form:
JS; 1d T A
=1 = B . = 20, L
,-;T + 2jgiTDth +2,(q) +Z, ()T + 2_}§iDJ pihj +7
S A
=7 +aT + Z,(q) +Z,(Q)-T +pT + T 3)
J
where S= 35,
i=1
1 d
a=5 i=1Djhj (1-p;D)),
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J
and B= Y Dpjh;
A

Note that oT is the standard expression for the average inventory in the economic

production quantity model, and Z,(q) + Z, (¢)-T + BT is the cost of inventory that is

induced by the delivery schedule (because inventory must accumulate at the supplier

prior to each shipment). We can reexpress Z,(q) + Z, (¢)-T + BT as shown below.

J J+1
Z,(@) + 2, @-T + BT = 2 Dighyy {TDmpm + 2IDGp(* () }

J
= X, Dl (4)
=1
J+l
where e[;)=TDpp) +  X(TDyp(j1+ sj])» Which is the "earliness” of the component
J=i+l

produced in the i-th position in the sequence, and earliness is defined as the time

between the start of production (after setup) of a component and the time of delivery.
4, HEURISTIC SOLUTION PROCEDURE

We first consider the problem of finding the best production sequence for a given
T. Since the second term in eq. (3) is constant for fixed T, the best sequence is that

which minimizes

J { Jsl }
2, Dbt 2TDGpye s J -

This value is minimized by arranging components in non-increasing order of
1 o . P | —_— 1 L .
7D; (Tpj Dj+ s;), that is, i precedes j if Eﬂ_{Tp,Dﬁ i) 2 @(ij Dj+ sj). (See Appendix

1 for a proof.) Thus, roughly speaking, components with long processing times and low

holding costs are produced early in the sequence while components with short processing
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times and high holding costs are produced late in the sequence. This delays the
accumulation of "expensive" inventory until close to the delivery time. (Observe that if
the setup time is negligible compared to the production time, the best sequence is

generally determined by the values of %L , which are independent of T.) Therefore, for
)

any value of T, the best sequence is uniquely determined. Note that our problem is a
variant of a single-machine weighted earliness problem in which there are positive
setup times and earliness costs are accumulated on a unit-by unit basis. Thus, once
appropriate transformations are made, our results are similar to those for the single-
machine weighted flow time problem (see Baker 1974).

Note that Z,(q) and Z, (¢) are functions only of the sequence. As a result, if the
sequence is given, the objective function is convex in T. Moreover, the best sequence
can be found by the procedure discussed above. This leads us to the following heuristic

algorithm which iterates between selecting the sequence and selecting 7.
Algorithm Al

Step 1. (Initialization) Set n=0.

. . . pPj
Sequence the components in non-increasing order of -‘L

hJ
Let this sequence be ¢ . Calculate Z, (¢).
Step 2. Setn=n+1.
A+S
(n) —
Let T(™) = max { T, \/a B+ Zo@® D) } (5)

The second term in braces is the optimal unconstrained value of T (which

minimizes (3)) for sequence n-1.
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Step 3. Determine a new sequence by sorting all components in non-increasing order
1 .
of h_—jDJXT‘(")pj Dj+ s)). Let this sequence be g™ .

If g is same as ¢V, stop.
If T™ = 1, stop.

Otherwise, calculate the value of Z, (g™ ) for the new sequence; go to Step 2.

Let us examine how Algorithm Al works. Let
S A
TC(T,q) = T +aT + Z,(q) +2Z,(q@)-T + BT + T
By construction, algorithm A1l has the property that
TC(T®) gn)) > TC(T+D gn)) > TC(Tr+1) gln+1) )

because T+ is the optimal value of T given the sequence ¢, and ¢**!) is the best

sequence given T¥*1)  Algorithm Al is guaranteed to converge by Theorem 1 below.
Theorem 1 :
Suppose algorithm Al terminates at the N-th iteration where N>2. Then,

a. T®+) <T™®  for all n such that 1<n <N.

b. TC(T™), g™ ) < TC(T,q) for all T, q and n such that T>T™ ge @, 1<n <N.
Proof. See Appendix 2.

If T(+1) = T qr+1) also must be the same as ¢ and Algorithm Al stops. Therefore,
by Theorem 1, the same T will never repeat. Furthermore, the number of sequences is

finite and the total cost is strictly decreasing at every iteration. Consequently, finite
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convergence of Algorithm Al is guaranteed. The behavior of the algorithm is

illustrated in Figure 2.

TC(T,g)

g;: jth production sequence.

T; . optimal production interval under g;.

Figure 2. Behavior of Algorithm A1 in Example 1.

In Figure 2, the initial sequence is q5 . Given sequence g5 , the optimal production

interval is Ts , and the cost is TC(T5, q5 ). See in the figure. Given T5 , optimal
sequence is g4 with a cost of TC(T'5 ,q4 ). See . The procedure continues and point
is the final solution found by Algorithm Al. In this example, Algorithm Al finds the
global optimum. However, this does not always happen. For example, in Figure 3,

Algorithm Al does not find a global optimum but it finds a local minimum.

14
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Figure 3. Behavior of Algorithm A1 in Example 2.

As discussed above, Algorithm Al finds a local minimum. To evaluate the
quality of the heuristic solutions, we developed a procedure to calculate an error bound.

This procedure is described in Lemmas 1 and 2.
Lemma 1.

Suppose ¢‘? in Algorithm Al is the sequence in which the components are sorted in non-

increasing order of p# , and Algorithm Al (without the termination rule, "if T™) = 1,
J

then stop,” in Step 3) terminates at the N-th iteration where N>2. Then,
a. T+ > T for all n such that 1<n <N.
b. TC(T™), g ) < TC(T, q) for all T, q and n such that T <T®)  ge@,1<n < N.
Proof. See Appendix 3.
Lemma 2: Error Bound on the solution from Algorithm Al.
Let the values of T found by algorithm Al and Lemma 1 be T and T", respectively.

Also let ¢’ and ¢” be the sequences found by algorithm Al and Lemma 1, respectively.

15



Let T* be the optimal value of T and ¢* be the optimal sequence. Then,

a. T"<T'

b. If T"=T', T’ is an optimal solution.

¢. If T'#T" and if an optimal solution exists at T* such that T"<T*<T", then

\fa+B+Zg(q") Na+ B+ Zy(q")

TC(T',q") - TC(T*,qg*) < (Z,(q")- Z,(g")) .
! ! \/71+[3+Z2(q")+\fa+[3+Z2(q')

Proof. See Appendix 4.
Remark. Lemma 2¢ can be shown to be true also for TC(T",q") - TC(T*,q*) if T" > .

5. EXPERIMENTAL RESULTS

We tested algorithm A1l on a set of 72 problems which was designed to evaluate the
impact of various problem parameters on the performance of the algorithm. Three
major factors were considered. The first factor is the tightness of the capacity

constraint. We consider two levels of tightness: Y piDj drawn from a uniform
J

distribution on [0.3,0.5] (not tight) and from [0.7,0.9] (tight).
The second factor is the spread of the natural production cycles among the
components. We determined constrained natural productionand delivery cycles by

solving the following problem:

J S J A
Minimize E,l ; + rgaﬂ‘j +PR+5
I S;
. __L <
subject to le T, 1- ;=21ij] (6)
T; 2R forj=1toJ N

16



where Tj is the production cycle of component j, and R is the delivery cycle. We

impose the constraint T > R here because our representation of inventory in the objective
function is not accurate for the case of T < R. Moreover, our own discussions with
component suppliers do not suggest that suppliers are being forced to produce
undesirably large batches because shipments are too infrequent; indeed, the converse
appears to be true.

Let Tj'and R’ be the optimal values of T; and R for this problem, which we refer to
as the natural production cycle and delivery cycle, respectively. These values can be

expressed as:

(8)

and

9)

where 4, is chosen so that constraint (6) is satisfied as an equality, or 4, = 0 if the
constraint is not binding; and for each j, Aj is chosen so that constraint (7) is satisfied as
an equality or 4; = 0 if it is not binding. We measure the spread of the natural
production cycles using the ratio of the maximum to the minimum Tj'. This ratio is
generated from a uniform distribution on [1.5,2.5] for half of the problems (low variance)
and on [4,8] for the other half (high variance).

The third factor is the magnitude of the natural delivery cycle relative to the

natural production cycles. We say that the natural delivery cycle is relatively small if

it is similar to or less than the minimum Tj', medium if it is between the minimum Ty
and maximum Tj', and large if it is similar to or greater than the maximum Tj'. In the
first case, we might expect T to be constrained by the minimum T'; in the second case,
we might expect T" to be close to the unconstrained optimal R; and in the third case,

economic tradeoffs may dictate the solution.

17



The two levels of capacity tightness, two levels of natural cycle spreads, and three
levels of natural delivery cycles give twelve (2x2x3) different combinations of levels.
For each combination, we generated a set of six problems: two problems with three
components, another two with six components, and two with nine components.

For all 72 problems, algorithm Al found an optimal solution. Earlier, we gave a
graphical representation of a case in which Algorithm Al would not find an optimal
solution, but despite numerous attempts, we were unable to generate problem data for

which algorithm A1 would not produce an optimal solution.
6. EXTENSION TO A FIXED-CHARGE-PER-TRUCK TRANSPORTATION COST

In this section, we generalize the results to incorporate a fixed-charge-per-truck
transportation cost. Such transportation costs arise when good are being shipped at full-
truckload rates, or under a contract with point-to-point charages. The truck capacity is
defined as the maximum quantity a truck can deliver at a time. Because we assume
that the composition of each shipment is the same, there is a delivery interval
corresponding to the truck capacity and we define p to be this interval. Therefore, the

delivery cost for each delivery is A(r%-b where[ x |is the smallest integer greater than
or equal to x. The problem becomes:

(P2)

Minimize % +(a+B+2Zy@)T + % Af % D+ 2Z,(q)

subject to T>1

For simplicity, let ¢ = a + B+ Z, (g). Also let

T
TC(T)ESF + ¢T +% m-f;1)+Z1(q)

and TC(T) =% + T +% + Z,(@).

18



Then TC(T)2TC(T)

since

b |
© N
u—|
v

|
o =

TC'(T) achieves its minimum when T = ‘\/ % .

Theorem 2. Let T* be an optimal solution of (P2). Then

’

T1<T*< Ty

where T' = max{ 1, \f § ],
c

T1=maX[r,L%—'Jp}.

Tzzf—g-Wp

and Lx J is the largest integer less than or equal to x.

Proof. See Appendix 5.

A graphical representation of Theorem 2 is illustrated in Figure 4. T is the
minimum productioninterval (1) orL%Jtimes the delivery interval corresponding to

the truck capacity, whichever is larger. Tg isf%“imes the delivery interval

corresponding to the truck capacity. Therefore, we must consider, at most, the values
between durations corresponding to two consecutive integer multiples of the truck
capacity. Then the value of T* is easily calculated because TC(T) is a convex function

of T.
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Figure 4. Total costs of extended model.

Thus far, we have discussed a procedure to find the best value of T when the
production sequence is given. By replacing Step 2 of Algorithm Al with the above

solution procedure, we have an algorithm for this extension.

7. CONCLUSIONS

We have developed an iterative heuristic procedure to determine the frequency of
deliveries from a supplier to an assembly facility when the supplier produces several
components on a single production line. The goal is to minimize the average cost per
unit time of setup costs at the supplier, inventory costs at the supplier and the assembly
facility, and transportation between the two locations. The model also allows positive
production setup costs. An easy-to-determine lower bound is also developed. The
heuristic is shown to perform extremely well in computational experiments.

We mentioned earlier that in practice, the sequence of production may not have a
significant influence on the cost of accumulating inventory prior to delivery. This may
be one reason why the heuristic performs so well. If we believe that the production
sequence is not critical, then it may be adequate to use a "good" production sequence

(e.g., our initial sequence in which components are arranged in non-increasing order
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of their processing time to holding cost ratios). With this simplification, it is relatively
easy to see the influence of accumulation inventory in the specification of the delivery

interval. If the assembly facility were to decide the delivery interval independently, we

We might expect the supplier to adopt a production interval close to its independently

would have:

selected production interval

\[ S
a+2Zy(q0) "’

possibly rounding to the nearest multiple of the delivery interval. On the other hand, in

the simple, integrated heuristic solution, we would have

T—\/ A+S
" N a+ f+Z,(q0)

which might be viewed as a compromise between the two.

A variety of different tradeoff analyses can be performed quickly with these
formulas. We discuss one briefly. Suppose the supplier is considering an improvement
that would reduce setup costs. (There is an analogous argument for setup times.) With
the decoupled decisions, a reduction in the setup cost will not affect the delivery interval,
so there will be no reduction in the supplier's inventories (although total setup costs will
decrease). Consequently, there is limited incentive for the supplier to reduce setup costs.
With the integrated approach, a setup cost reduction will lead to a smaller value of T
than before the reduction. The impact of this change on the total cost (inventory and
transportation) at the assembly facility depends on the parameters. (Inventory costs will

decrease and transportation costs will increase.) The supplier can now reap the benefits
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of a reduction in inventory as well as a reduction in setup costs, and therefore has
greater incentive to make the improvements.

This "quick and dirty" analysis may partly explain why Japanese
manufacturers have made a greater effort to reduce setup costs (and times). There,
travel distances are shorter and hence transportation costs are generally smaller and
deliveries are more frequent. In these circumstances, any reductions in setup costs up to
the point where each component can be produced once in each delivery interval result in
inventory cost savings to the supplier. Many U.S. manufacturers still use weekly
shipments, creating significant disincentives for setup cost reduction. Models such as
the one described in this paper can be useful in understanding these issues more fully.

Further research is needed to incorporate more complex manufacturing
environments. The approach developed here can be applied to problems with multiple
customers with unique components. Within each cycle, each customer would have one
delivery, and the same rules would apply to sequencing that customer's components
prior to the delivery. It might also be possible to incorporate a few common components
if each were produced once during the cycle. A solution procedure would entail selecting
the customer to whom to "assign" the component, and sequencing the customer
deliveries, since the delivery sequence would have an impact on the inventory levels of
the common component.

The procedure could also be generalized to consider a supplier that has several
subassembly lines in parallel. If components are already assigned to production lines,
production sequences on each line and the common production and delivery interval for
all of the lines would need to be decided. However, if some of the components can be
produced on more than one line, the best assignment of components to production lines
might depend on the delivery interval. For example, cost savings may be achieved by

assigning components so that their natural production cycles are similar to one another,
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or so that their collective natural production cycle is close to the natural delivery

interval.
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APPENDIX 1

BEST PRODUCTION SEQUENCE

Let g* be the sequence in which the components are sorted in non-increasing order

1
of T<A(Tp;D;+s;) . Also let
D} PRI S

J { J+1 }
Vo= 2 Db 2TDGpgr+ s J -

Then, V(g*) < V(q) for all ge Q.

Proof:

Suppose there is an optimal sequence ¢’ with j preceding i when ﬁ(ijDjw 8j)
J

< E-lﬁi(TpiDi +5;). Let us interchange j and i and let the resulting sequence be ¢".
Then
V(g)-V(@") = hD{TpiDi+s) - h;D{(Tp;Dj +s))

= hiDjhiD; { ﬁ(TpiDi +5;) - '@(ijDj +5)]20.

Therefore, V(g’) > V(g") and ¢" must be also optimal. Repeating this argument will

result in the conclusion that the sequence in which the components are sorted in non-

increasing order of ﬁ(Tp iDj + sj) is an optimal sequence.
J
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APPENDIX 2

PROOF OF THEOREM 1

Theorem 1: Suppose algorithm Al terminates at the N-th iteration where N>2. Then,

a. T+ < T™  for all n such that 1<n <N.

b. TC(T™, ¢ ) < TC(T, q) for all T, ¢ and n such that T > T™®  qe @,

1<n <N.

Proof : We will prove Theorem 1 by induction.

a.

T(+l) <« T®  for all n such that1<n <N.

A+S
o+ B+ Zy(q¥V)

In algorithm A1, TW= \[

Case 1: n=1.

We want to show T < T,

A+S .
D= —FF"05n Q) ©)
) = —\/ wt Pt Z@®™ The sequence ¢(¥ satisfies Zo(q?) < Zy(q) forallge @

(the proof of this is very similar to that of Best Production Sequence and is omitted
here). Therefore TV is the largest among the T® values for i21. As a result, T® <
T and the equality holds only when ¢ = ¢ . This implies N=1 and contradicts

the assumption that N > 2. Therefore, T® < T1) .
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Case 2: 2<n <N .

We will show that, if T?) <T@ then T+ < T . We will show this by

contradiction. By definition,

A+S A+S
n¢1)= —_— (’l) =
T \/ o+ B+ Zyg™) and T \/ o+ B+ Zy(gh)

Suppose T®+1) >T®  je, Zy(g™)< Zy(gD). The equality holds only when ¢ =

g1, which implies that N=n, thereby contradicting the assumption. Therefore

Zo(g™) < Zé(q(n-l) ).

By the construction of algorithm Al, at T = T¥1,

Zo(qn1)).TD) 4+ Z,(qi+D) < Zy(@™). TV + Z,(g™)

which is equivalent to

2,(q™) - Z,(g")

n-1) <
TOD < @) - Zy@)

because Zo(q™)) < Zy(gn D).

Similarly,

Z,@™) - Zy(g"™ 1)
n) 1 1
™ 2 Z,(@™ ) - Z,(@™)

As a result,

() > T

This result contradict the hypothesis that T®) < T(-1)  As a result, T(+1) > T(*)

cannot be true and we must haveT\#+1) < T») |

By Cases 1 and 2, T <T™ foralll<n <N.e
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b. TC(T™ ,q™ ) < TC(T, q) for all T, g and n such that T>T™ ge @, 1<n <N.

Case 1: n=1.

We want to show TC(T®), ¢1) < TC(T, q) for all T and q such that T>TD, ge Q.

For all given q € @, TC(T, q) is a convex function of T. Also from the proof of part
(a), for all g, the optimal value of T is less than or equal to TV . Therefore TC(T, q)

is an increasing function of T for T > T!) and all ge Q. Moreover,

TC(TM, ¢V) = min { TC(TW, q) ).
qeQ

As a result, TC(TV) , ¢V ) < TC(T, q) for all T and q such that T > T | ge Q.

Case 2: 2<n <N.

We will show that, if TC(T®-D, g1 ) < TC(T, q) for all T, q such that T > T®D  ge
Q, then TC(T™), g™ ) < TC(T, q) for all T and g such that T > T  ge Q. We will

show this by contradiction.

Suppose there exist some T" and g’ such that

TC(T',q") < TC(T™, g™ )and T' > T™ , q'e Q

where T is the optimal value of T for the sequence ¢'. (If T is not the optimal value

of T for the given sequence q’, the proof is trivial and is omitted here).

Then T’ must be less than or equal to 7' by hypothesis. Also, since 7" > T | we

have Z5(q") < Z5(g*D).

At T= T®-1 | by construction, TC(T® 1), ¢i-V) < TC(T® D), q°), i.e.,

Zg(q(""l) ).T(n-l) + Zl(q(n-l) )< ZZ(q').T(n-l) + Zl(q,)- (A2-1)
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Suppose that at T = T®, TC(T™, ¢#1) < TC(T™, ¢°), i.e.,
Zy(@ VD ) T™W 4+ Z1(q™V ) < Zy(q")-T™ + Z,(q"). (A2-2)
By (A2-1) and (A2-2), for all T such that T < T < Tt»D)
Zo(@ V)T + Zy(q"™V) < Zoy(q")T + Z,(q")

which means TC(T, ¢»'V )< TC(T, q’) for all T such that T™ < T < T and this
contradicts the assumption that TC(T’, q') < TC(T™), ¢'») ). Therefore, at T = T,

TC(T™, gi-1) > TC(T™, q°), i.e.,
Zo(@ D) )T + Zy(q V) > Zy(q)-T™ + Z4(q). (A2-3)
Then, by (A2-1) and (A2-3),
Zy(q") > Zy(g™D))
which indicates that 7 > T’ and this contradicts the assumption that T">T),
Consequently, TC(T®™, g™ ) < TC(T, q) for all T and ¢ such that T>T™ , ge Q.
By Cases 1’ and 2,

TC(T™, g™ ) < TC(T, q) for all T, ¢ and n such that T>T® ,qe @, 1<n <N.*
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APPENDIX 3

PROOF OF LEMMA 1

Suppose ¢ is the sequence in which the components are sorted in non-increasing

order of 1—;'{- , and Algorithm Al (without the termination rule, "if T = 1, then stop," in
J

Step 3) terminates at the N-th iteration where N22. Then,

a. %1 > T for all n such that 1<n <N.

b. TC(T™, g™ ) < TC(T, q) for all T, q and n such that T>T® ge @, 1<n < N.
Proof

If ¢©@ is the sequence in which the components are sorted in non-increasing order of
%L_, for all ¢, the optimal value of T is greater than or equal to 71 . If Algorithm Al
J

starts with the new ¢, the algorithm will search the points in the opposite direction

as it would have searched with the original ¢/®. The remainder of the proof is

similar that of Theorem 3 and is omitted here.
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APPENDIX 4

PROOF OF LEMMA 2

Lemma 2:

Let the values of T found by algorithm Al and Lemma 1 be T and T", respectively.

Let ¢’ and ¢" be the sequences found by algorithm Al and Lemma 1, respectively.

Let T* be the optimal value of T, and g* be the optimal sequence. Then

a.T"<T".

b. If T'=T", T’ is an optimal solution for Model 1.

c. If T'#T" and if an optimal solution exists at T* such that T"<T*<T", then

Va+B+2,q")-Na+ B+ 2Zyq)
Va+ B+2Zyq") +Va+ B +2Zyq") '

TC(T', q") - TC(T*, ¢*) < (Z,(q")- Z,(g")-

Proof
a.and b. The proofs are trivial and are omitted here.

c. We know that 7" > 7 and thus, both T* and 7" must be greater than 7. From (5),

A+S A+S
%k — L. PR L. A
T —V:+ﬁ+zz(Q*) andT_\/a+ﬂ+Z2(Q')'

We have that

TC(T*, q*) = 2V(A + S)(a + B + Zy(q*) + Z,(g¥) (A4-1)
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and TC(T',q") = 2V(A + S)a + B+ Z5(q) +Z,(q") . (A4-2)
From the fact that T" < T* < T", we know that

Z5(q") < Z5(g*) < Z5(g"). (A4-3)
Furthermore, Z,q")22Z,g*) 2Z,(q"). (A4-4)

(Suppose Z,(q") < Z,(g*). Then TC(T', q") <TC(T*, q*) because Z5(q") < Zo(g*). This

contradicts the fact that T* and ¢* are optimal solutions. For a similar reason,

Zy(@*) 2 Zy(q") )

Let t be the value of T which satisfies TC(¢, ¢*) = TC(t, ¢"). Then there exists a ¢ such
that

Z,(q") - Z,(g*)

b= Za@M - Zo@) >

0.

by (A4-3) and (A4-4).

Also, it can be easily verified that ¢ <T", i.e.,

2,@)-Z,q*) . \/ A+S
Z5(@*) - 25" 7 N a+B+2y(q)

Since Z5(q") € Z5(q*), the above inequality can be rearranged as follows.

(Zo(g" - Zo@WA + § 2 21(@)- ZilgWa + B+ Zog) . (Ad-5)
Moreover,
(Za(q%) - Zolg WA + S

=((a+B+2Zyq") - (a+ B+ ZogNWNA+S
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=(Va+ B+ Zy(q*) - Na+p+ Zg(q'))(‘/a+ B+ Zyg*) +Na+p+ ZQ(q'))\/A +S

2(Z1(q) - Zy( @V a+ B+ Zxq) by (A4-5).

As a result,

NA+S (Na+ B+ 2(q% -Va+B+2xq"))

5 2Z,(q") - Z,(@*)Na+ B+ Zyq")
o+ B+ Zo(g*) N+ B+ Zo(q)

(A4-6)

From (A4-1) and (A4-2),

TC(T',q") - TC(T*, q*) - Z,(q") + Z,(g%)

=o2VA+S (Na+ B+ 2xq)-Va+ B+ 2Zq*) (A4-7)

From (A4-6) and (A4-7), the next result follows.

2\]0:4— B+ 2Zy(q’)
\/a+ﬁ+Z2(q*) o+ B+ 2Z5q")

TC(T', q') - TC(T*, %) <(Z4(q") - Z4(g*) 1-

Va+ B+ 2Zyq*) Na+ B +2Z,q)
\/a+[3+Z2(q*) +\/a+[3+Zg(q')

= (2,(q") - Z,(g*)

va+ B+2Zyq") ~a+ B+2Z4q’)
Va+ B+ Zy(q") +Va+ B+ 2Zy(q") '

<(Zy(q")-2Z,(@") (A4-8)

The last inequality in (A4-8) follows from the facts that

Zo(q*) < Zy(q") and Z,(g*) 2 Z,(q").

Consequently, Lemma 2c is true. ¢
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APPENDIX 5

PROOF OF THEOREM 2

We provide a result which limits the region in which the optimal value of T lies in

the extension to the fixed-charge-per-truck transportation cost structure.

problem is to:

(P2)
e S 1 T
Minimize Tt oT + T Af ;1) + Zy(q)
subject to T21
S 1 T
Let TCT) =T +¢T +7 A[ ;T) +Zy(q)
and TC(T)= '-Sf + ¢T +A- + Z,(q).
p

Then TC(T)>2TC(T)
since 51: [-%12% .

TC'(T) achieves its minimum at T = ‘\’ % .

Theorem 2: Let T be an optimal solution of (P2). Then,

where T' = max{ 7,

Ty =max{r,L%JP},
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Recall the

(A5-1)

(A5-2)

(A5-3)

(A5-4)

(A5-5)

(A5-6)



TI
To = f;W p (A5-7)
and L x J is the largest integer not greater than x.
Proof.

We want to show that

1) TC(t) 2 TC(Tg) for t 2 T9

and 2) TC(t) 2 TC(Ty) for 1<t <Tq.

Case 1. t2To.
By (A5-3),
TC(t) 2 TC'®)
> TC'(T9) since TC'(¢) is convex in ¢ and ¢ >T"
= TC(T9) since T is an integer multiple of p.

Case 2. 1<t <T.

Subcase 1. 1< T1.

By (A5-3)
TCk) 2 TC'(t)

v

TC'(Ty1) since TC'(t) is convex in ¢t and ¢t <T"

]

TC(Ty) since T'1 is an integer multiple of p.

Subcase 2. 1=T}.

In this case, any ¢t < T is infeasible.

As a result, an optimal value of T exists in the interval [T, T9].®
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