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INTRODUCTION

Elastic wave energy is considered to be at a level which does
not cause noticeable change in the soil structure. A dynamically loaded
footing introduces elastic wave energy into the supporting soil. Part
of this energy is returned to the footing to contribute toward its
oscillatory motion and part is absorbed in the soil, thereby producing a
demping to the -motion of the footing. There have been many attempts in
the past to determine experimentally a "damping constant" for a given
oscillator-soil system. A damping constant determined»from test results
necessarily lumps together the internal damping within the soil and the
dissipation damping associated with the geometry of the foundation-soil
system. It is important to maintain the distinction between these two
types of energy losses,

The dissipation of elastic wave energy from a foundation can be
studied by the use of the theory of elasticity. F;om numerous solutions
avallable in the literature, the problem of a rigid circular footing
vibrating at the surface of a semi-infinite elastic solid was chosen to
illustrate the method of evaluating dispersion damping.

The primary object of this investigation was to establish
numerical values for the internal damping in selected granular materials,.
Laboratory tests were devised whereby the influence on damping of con-
fining pressure, degree of saturation, amplitude of resonant oscillation,

and grain characteristics could be studied for longitudinal and torsional
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oscillations of cylindrical samples. The primary test method utilized
measurements of amplitude decay from the resonant condition after the
driving power was turned off, The initial resonant amplitude at the top
free end of an 11 in. long specimen fixed at the base varied from about

>

1x10 ° in. to ];xlO-3 in. double amplitude in longitudinal oscillation
and from about 1x10™° to 2.5x10 > radians double smplitude in torsional

oscillation.

Notation. - The letter symbols adopted for use in this paper are defined

where they first appear and are arranged alphabetically in the Appendix.



REVIEW OF PREVIOUS WORK ON DAMPING IN SOILS

Dissipation of Wave Energy in Elastic Bodies.

Theoretical treatments of elastic wave energy dissipation in
elastic bodies have developed from the theory given in 1904 by H. Tamb. L
G. F. Miller and H. Pursey2 determined analytically the distribution of
energy between the compression, shear and Rayleigh waves caused by a
single load, or a group of single loads, acting vertically at the surface
of a semi-infinite elastic solid. When the solid has a Poisson's ratio
of 0.25, they found for a single force on the free sﬁrface that 67 per
cent of the energy was dissipated as a Rayleigh (surface)wave, 26 per
cent as the shear wave, and 7 per cent as a compression wave. &. Reissnerd
showed that when purely torsional oscillations were applied at the sur-
face of a semi-infinite, homogeneous, isotropic, elastic body, no surface
waves (Rayleigh waves) were developed, but that all of the wave energy
was directed downward into the body.

The dispersion of energy by the propagation of elastic waves
outward from the source establishes a quantity which may be termed a
geometrical or dispersion type of damping. The theory for oscillators
resting on the surface of an elastic semi-infinite body illustrates the
characteristics of this geometrical type of damping. Such theories were

developed by E. Reissner,h T. Y. Sung,5 and extended by T. K. Hsieh.6
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Damping of Elastic Waves in Soils.

Elastic waves which are developed from a localized source
decrease in amplitude with distance from the source. For the elastic,
isotropic, homogeneous, semi-infinite body, Lambl found that both the
horizontal and vertical components of the Rayleigh wave amplitude
diminish according to the law of annular divergence (i.e. with r—l/z).
This reduction of wave amplitude is due to geometry alone, because the
assumption of an ideal elastic body precludes energy losses by internal
damping within the medium.

In 1911, L. Mintrop7 reported on a comprehensive study of
energy transmitted through a stiff clay to nearby structures. He used a
single impact developed by dropping a 4000 kg. ball through a distance of
14 meters and obtained readings up to 2.5 km., away using a seismograph
which had a magnification of 50,000 times. He alsc used steady state
vibrations generated by horizontal-cylinder type coal-gas engines which
operated at 140-160 rpm. These engines produced unbalanced forces up to
17,000 kg, horizontally and up to 25,000 kg. vertically. Readings were
made 400 m. away. In 1931, G. Bornitz8 made similar observations in the
neighborhood of a large bore, slow speed machine, and took measurements

at different depths on the surface of a convenient vertical mine shaft,

down to a depth of 250 m. He described the amplitude of the propagated

- n=N
XH:XI\/% eOC(r ) (1)

wave as



where Xn is the amplitude at distance r s X is the amplitude at a distance

1
ry and o is defined as an absorption coefficient (in the more recent
literature on acoustics, the quantity o corresponds to the coefficient of
atteruation, which is a measure of the decay in intensity of an elastic
wave with distance). In Eg. (1) it is seen that the wave amplitude varies
both as a function of the annular divergence, as noted by Lambl, and as
a function of the absorption coefficient, . Values of a were determined
by Bornitz as 0,0000l/m for the marshy soil of the Oder river flats,
0.001/m for a deposit of loamy, clayey soil, and 0.003/m for a layer of
fine~-grained, dense dry sand over a lgyer of heavy clay. These are only
representative values, obtained for a particular amplitude of vibration
at particular frequency.

Experimental results of the damping in various solid and granuler
materials have shown that damping occurs even for very small strains,
Often this damping effect, or the deviation from Hooke's law, is not of
practical importance, but it is of considerable interest to evaluate the
quantities which influence its magnitude. The tests on steel spheres
by J. Duffy and R. D. Mindlin9“ indicated that the logaritlmic decrement
was independent of the amplitude of vibration within the range employed.
The energy dissipated per cycle varied with the square of this amplitude

instead of the cube as predicted by theory. L. Knopoff and G. J. F.
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MacDonald'® found that the specific dissipation function (which contains
the coefficient of attenuation, Q) was independent of the frequency over
a range of 1072 to 107 cps for solids other than ferromagnetic material.
Data for Amherst sandstone show that the logarithmic decrement was in-
dependent of frequency in the dry condition, but that it depended on
frequency in the moist state.

Numerous other studies have been made of parts of the problem
of elastic wave damping in solid materials, granular materials, or sus-
pensions. Papers by E. L. Ha.milton,ll W. L. Nyborg, I. Rudnick, and
H. K. Schilling12 and G. Shumway,15 to note a few, have each treated a
part of the problem by studying selected materials. A more detailed
description of previous work on this problem is given by F. E. Richart,

Jr., J. R. Hall, Jr., and J. Lysme:t'.llL

Example of Dispersion Damping in Ideal Elastic Solids .

A dispersion type of damping results from the loss of energy by
radiation of elastic waves from a source. In the example to be considered,
the source of input energy is an oscillator vibrating vertically on the
surface of a semi-infinite ideal elastic solid which has weight. Reiss:rlerlL
developed the theory and considered that the oscillator could be
represented by a uniformly distributed pressure over the circular contact
area. Sung5 extended Reissner's theory to cover the cases for which the

stress distribution was parabolic, uniform, or corresponding to that
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produced by a rigid base. Recently, Hsieh6 has reworked the fundamental
equations in the Reissner-Sung theory in order to place them in a form
comparable to that developed for the conventional one-degree-of-freedom
system with viscous damping. The following equations are & condensation
of Hsieh's study.

In order to evaluate the force transmitted to the elastic body,
we first consider a weightless rigid circular disk which rests on the
surface of the body (Fig. la). The elastic body is homogeneous and
isotropic, has a shear modulus, G, and a mass density of p = 7/g.
vertical periodic force P = Z eiwt acts on the disk. The vertical

displacement w, given by the Reissner-Sung theory is

w=-——-—~[ U(]ew)t (2)

in which fl and f2 are functions of the frequency of oscillation
(w/2n) and i =4/-1 . The time varisble is t and e = 2,71828.....
In order to eliminate the imaginary term, Hsieh took the derivative of

Eq. (2) with respect to time to obtain

g=gglf-hle o

l

and by combining Egs. (2) and (3) he determined

,ww‘)[zddt%ng [{?}{l]etwt Pw E( ]
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(a) Weightless Circular Footing.
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(b) Cylindrical Mass

Fig. 1. Footings Acting on a Semi-Infinite Elastic Body.
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P a [+ G e .

(4) indicates that the force transmitted to the elastic body is a
function not only of the displacement of the disk, but also is a function
of its velocity. For conveniencé in computations, the dimensionless

frequency term, ao from the Reissner-Sung theory,

P Wlo 2T 1.
o (|)r‘° — - 5

may be substituted into Eq. (4). Then by using the notation,

—“F| ,
L CTRT

= ———fé———
fﬁ*‘f:—

(6)

_gjr1
|

Eq. (4) becomes

P R 4 -Crfwr 2

For vertical oscillation, the functions Fi and F2 can be

expressed approximately by the following expressions:
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. . 2
for Poisson's ratio, p = 0 F.=L4.,0~ 1.2 &

" i
F. = 3. ao - 0.12 ao

-
]
=
~~
=
=
Il

- 2
5+33 = 1.35 &
F_=L4.20a - 0.12 alL (8)
O o}

2
p=1/2 F. = 8.0 -2.k40 8

i
l

N
(Egs. 8 include modifications submitted by Richart in a discussion of
Hsieh's paper. )

Eq. (7) can be further simplified by substituting

RV =\/§;€' roZFZ (9a)

and

KV = G Mo l‘_, (o)
to give
P- —Rva{-— K, w~ | (10]

Now, if a cylindrical mass of radius roﬁand weight WO is placed
on the weightless rigid disk and subjected to a vertical exciting force

Q,, (Fig. 1b), the equation of motion is

2
‘r‘no'CLu_}'/= Q2+P (11)



-
or by substituting Eq. (10) into Eq. (11)

m +R, S +Kowr= Q2 (12)

o d tz
Eq. (12) is similar to the equation for the one-degree-of-

freedom system with viscous damping,

m§t7_+c%"—+kx Q, (13)
with the exception that both RV and Kv depend on the frequency factor 8ye
From Egs. (8) it is evident that the effect of frequency on Rv and Kv is
small for small values of 8y e

The magnitude of dispersion damping can be evalusted in terms
comparable to conventional damping criteria if we specify as critical

demping
va= 2JKy M, (£xom Cer = 2Vkm ) (14)

Then the demping retio (ratio of actual to critical damping) can be

evaluated from

Ry __ VGP rlF,
Re 2aVGr.F, m,

(15)
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For a specific condition, for exemple for Poisson's ratio of 0.25,

Eg. (15) becomes

Ry, _ 210(1-0.0286 22 (6
R Vb V5.33-1.35q7

in which

= ———— = the dimensionless mass ratio.

Thus the damping of a particular foundation contributed by
dispersion of elas:tic wave energy into the soil can be estimated directly
by use of the dimensionless mass ratio., The value of a, at maximum
amplitude of vibration can be found from the curves given by Sung5 or by

F. E. Richart, Jr.ls.



THEORIES FOR THE EXPERIMENTAL DETERMINATION CF MATERIAL DAMPING

Determination of Logarithmic Decrement from Free Vibrations with Vicous Damping.

For a one-degree-of-freedom system with viscous damping, the

general solution which corresponds to free vibrations is given by

S 4 £ _ .
O [y PR Za .. g s

in which m is the mass of the system
c is the viscous damping coefficient
Xb is an initial displacement at time t = O
Vo is an initial velocity at time t = 0O

e is the base of the natural logarithms

w is the undamped natural frequency.
On a plot of displacement vs. time (Fig. 2a), Eq. (17) défines a sinusoidal
type curve with decreasing amplitude. If we take advantage of the fact
that the maximum point on the sine curve is very close to the point of

_c

tangency with the e 2n curve, we can approximate the ratio of successive
peaks, Xl and X at the time tl and t2° The interval tg - tl represents
the period, T. Thus,

zm ta —_C—V"n(tL—tn) -
=e = " (18)

3“’ ';o
&

X2
X

(D(D

~13-
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(a) Free Vibrations With Viscous Damping.
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N AT 0.707 Ayax

AfAT 0.5 Amax

AMPLITUDE OF VIBRATION

RESONANT
FREQUENCY

FREQUENCY

- —
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(b) Amplitude-Frequency Curve For a Constant Force Type
of Excitation

Fig. 2. Properties of a One-Degree-Of-Freedom System Used
For the Determination of Damping.
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The period is equal to the reciprocal of the frequency of oscillation, or

.
T-Ll-2% (29)

F -Gy

Then by substituting Eq. (19) into (18) and taking logarithms of both sides,

X,_C 2T ¢ 217

2 = 2mw’
SRV e V- Gme)?

or
X 217 &
Im = —T_Q—;—)&; =4 = LOGARTTHMIC DECREMENT. {20)
Cer

From Eq. (20) it is evident that for small values of C/Ccr’

Jzame, -

Damping Determined from the Amplitude-Frequency Curve.

From computations based on forced vibrations with viscous damping
for the constant force type of excitation the logarithmic decrement can
be defined in terms taken directly from an experimental amplitude-frequency
curve, (Fig. 2b). It depends primarily on the frequency range bounded by

the curve at a specified amplitude. The general expression is

A'F (f.+46) . l
g = M [ 2f, (&) =
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Usually the terms in the brackets are nearly equal to 1.0. For

convenience, Eg. (21) is often used in one of the following forms:

J — |'8(4_ A'Fo,iAMAx

or

oo T A‘Fo.vo7AMAx
fo

Additional Methods for Evaluating Material Damping.

The literature covering internal damping in materials,
particularly for metals, is voluminous. An indication of the type of
work represented in these studies may be found in the references in the
report of J. W, Jensenl6 or in the bibliography prepared by L. J. DemeriT.,
The terminology and definitions used in the following paragraphs will
follow those given by Jensen,

One list of the quantitative expressions used to define the
internal demping of materials includes: viscosity, damping capacity,
constant of internal friction, hysteretic constant, specific damping
capacity, logarithmic decrement, elastic-phase constant, and coefficient
of internal friction. Other terms which may be added to this list are:
damping modulus, resonance-amplification factor, demping factor, specific
damping energy, stress-strain phase angle, specific dissipation function,

and attenuation.
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Of these terms, the logarithmic decrement was described by
Eq. (20) and the resonance-amplification factor and its relation to the
logarithmic decrement was defined by Eq. (21).

The term "specific damping capacity" has been used to indicate
the ratio of the energy absorbed in one cycle to the strain energy at
maximum stress. In terms of the stress-strain diagram the damping
capacity represents the ratio of the area enclosed by the hysteresis loop
to the area under the curve as shown in Fig. 3. For the steady-state

condition as shown in Fig. 3a the damping capacity is given by

L _ A E:O‘
ss E—o— (22)
The condition of decaying vibrations is represented by Fig. 3b.

Point 1 corresponds to the maximum stress of a cycle which starts and ends
at points 1 and 2 respectively. It 1s easily seen from Fig. 3 that the
value of ¥ depends upon whether the steady-state or the decay condition
is considered. TFor conditions of decaying vibrations there is a relation-
ship between logarithmic decrement, &, and specific damping capacity,

¥.. The strain energy for the nth cycle can be expressed by

En=kn X5

where X, is the amplitude and kp is a proportionality constent. Thus

by definition
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% - an: "kn-a-lezH-l
P Kn X3

Rearrangement of terms gives

Ko (1o <4’

+

A

from which

d == —&t(l—%) | (23)

% = |~ Kon %6 (24)

It should be emphasized that there is no relationship between wss
end & but that for small values of 8, ¥ o = ¥y and k+1/k, ~ 1,0,

Often it is desirable to evaluate the decrease in amplitude of
vibration as a function of distance from a source. In addition to the
reduction in amplitude caused by geometricel dispersion of the wave energy
there is a reduction caused by energy losses within the soil. This is
designated by "attenuation,” a measure of energy loss as a function of

distance, and it is measured in terms of the coefficient of attenuation, Q.

The coefficient of attenuation is related to the logarithmic decrement by

2 711U~
cf = —w_oc— (25)



=20 -

in which v is the phase velocity and w/2n is the frequency of the
propagating wave.
A variation of this attenuation constant determines the specific

dissipation function, Q-l. Thus the relation is

A _ 2, (26)

Q w

Theories Used in Connection with the Experimental Determination of Damping

from Laboratory Specimens.,

In order to vibrate a specimen some sort of a driving mechanism
must be attached and another mechanism must be connected for measurement
of the response. The addition of a mass to a matefial in which the
resonant frequency is to be measured results in a slight change in the
resonant frequency. The conditions of the specimen in the present research
may be represented by Fig. ta. The solution governing the natural

frequency of such a system under torsional vibrations is given by
/ _p aye _ I
wlNE s =T (27)
(o]

where I is the mass polar moment of inertia of the specimen and IO is
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(a) Elastic Circular Rod With a Rigid
Mass Attached to the Free End.
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Mo

(b) System With One Degree of Freedom.

Fig. 4. Models Representing Experimental Conditions.
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the mass polar moment of inertia of the mass attached to the free end.
Eq. (27) must either be solved graphically or by trial and error. It

is convenient to put Eq. (27) into the form

x9tmu9=%-- (28)

Thus,

oL

S

(29)

In this investigation the values obtained for damping by measure-
ment of the decay of vibrations were corrected to compensate for the added
mass of the pickup and driver. The effect of the added mass is approximated
by considering a single-degree-of-freedom éystem as shown in Fig. 4b. The
mass of the specimen is represented by M, the mass of the driver and pickup

' 1

by Mo,and the spring constant is k. First consider the case without MO.

We have the relationships

dif
dach%
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Thus,
Or__lr_c__
Vkm
With the addition of M; we have similarly

/ M C
Js‘/k

(m+m:,)

Finally

—g»—r =\ /‘mﬁmg ‘ (30)

In order to use Eq. (30) it is necessary to convert the mass of
the soil specimen into an equivalent concentrated mass. It can be shown
that the equivalent concentrated mass.is 0.405M, This is based on the
condition that both systems have the same undamped natural frequency.

Using the above approximation the corrected value of logarithmic decrement

is given by

6=J\'/ '+or255m : (31)

The same correction may be used for torsion by substituting the analogous

torsional inertias.



LABORATORY TESTS OF DAMPING IN GRANUILAR MATERTALS

Materials.

Four different materials were used in this investigation. Each
is described below and the grain size curve for each is shown in Fig. 5.

Ottawa Sand, Standard Ottawa sand passing the No. 20 sieve and
retained on the No. 30 sieve was used for most of the investigation. This
is the material prepared and used by B. 0. Hardinl8. He reported a
minimum void ratio of 0.50 corresponding to a unit weight of 110.5 lb/ft3
and a maximum void ratio of 0,77 corresponding tc a unit weight of
93.6 1b/£t3.

Glass beads No. 2847. Glass beads, all of which lie between the

No. 16 and No. 20 sieve, were obtained from the Prismo Safety Corporation,
Huntingdon, Pennsylvania. These beads appear to be perfect spheres when
examined under a microscope. They have a specific gravity of 2.50, a
minimum void ratio of 0.57, and a maximum void ratio of 0.75.

Glass beads No, 1725. This material was also obtained from

the Prismo Safety Corporation. Ninety-five per cent pass the No. 200
sieve and 96 per cent are retained on the No. 400 sieve. They have a
high specific gravity of L4.31 resulting from the requirement of a high
index of refraction for their commercial use. The minimum void ratio
for this material is 0.57 and the maximum void ratio is 0.76.

=2k
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Novaculite No. 1250. This is a very fine quartz powder obtained

from the American Graded Sand Co., 189-203 East Seventh Street, Paterson 4,
New Jersey. This material was considered to be a silt as shown by the
grain size curve in Fig. 5.

Summary of Tests.

Three groups of tests were run and are summarized in Table 1
and as follows:

Group I. These tests were run with Ottawa sand to obtain data
on the effects of amplitude, pore fluid (air, water, and dilute glycerin),
and density on damping for both torsionai and compressional vibrations.

Group II, After the tests of Group I were completed, tests were
run with the two sizes of glass beads in the dénse condition, both dry
and saturated.

Group III. A torsional vibration test to determine damping
characteristics on Novaculite No. 1250 was run in the dry condition.,
Equipment.,

Two pieces of equipment were specially designed and built to
vibrate the specimen at relatively large amplitudes in the longitudinal
and torsional modes. Each was constructed so that one end of the specimen
was free and the other end was fixed as shown in Figs. 6 and 7. Both
pieces of equipment are basically the same except for the driver and pickup

as shown in Fig. 6. The frames were made from a piece of 4 in. steel pipe
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Torsion Apparatus

Compression Apparatus

Fixed-Free Vibration Equipment.

Figure 7.
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with lead attached for added mass to give a total weight of about 30
1bs for each apparatus., This is necessary in order to reduce the move-
ment of the "fixed" end to a negligible amount.

Power to the driving coil was supplied through én amplifier
connected to an oscillator in the MB Electronics Type P11l power supply.
Pickups were calibrated with an MB Electronics Model C31 calibrator and
also with an MB Electronics Type 115 vibration pickup. A Tektronix Model
502 dual beam oscilloscope was used for the measurement of output from
the pickups and also for monitoring the iInput to the driver. Decay
curves for damping measurements were recorded with a Dumont Type 450
oscilloscope camera.,

Test Proceduress

Special membranes were prepared for these samples by dipping a
glass mandrel into liquid rubber solutions. About eight to ten dips were
required for each membrane with a minimum drying time of four hours between
dips. The natural rubber latex was found to be affected by absorption
of water and neoprene, while unaffected by water, has poor elastic
qualities. Consequently, a composite membrane made of latex (Type Vultex
1-V-10) and a layer of neoprene (Vu1tex 3-N-10) was prepared, then the
neoprene surface was placed on the inside next to the specimen., Both
liquids may be obtained from the General Latex and Chemical Co., 665 Main

Street, Cambridge 39, Massachusetts.
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The soil specimens were 1.59 in. in diameter and 10.8 in. long.
The top cap was made of Plexiglas and the bottom cap was made of aluminum.
Rubber O-rings were used to hold the membrane against the caps., Dow
Corning silicone stopcock grease was used between the membrane and caps
to provide a good seal,

When dealing with granular materials it 1s necessary to use a
mold in forming the specimen. The mold was made from a piece of PVC tubing
which was cut to form two halves. Tubes were placed on each half of the
mold for vacuum line connections and filter paper strips were placed on the
ingide to allow a good distribution of the applied vacuum.

Several methods were used for placing the soil into the mold,
‘depending upon the type of soil and the density desired, For the Ottawa
sand and the glass beads the dense condition was obtained by pouring in
approximately 50 cc. layers and vibrating each layer with a l/8 in, brass
rod attached to a small vibrator, This resulted in a condition close to
100 per cent relative density. The loose condition for the Ottawa sand
was obtained by pouring the sand through a funnel attached to a 3/16 in,
internal diameter glass rod which extended to the bottom of the mold.

The rod was kept full of sand and slowly retracted from the mold allowing
the sand to be deposited in a loose condition. The specimens prepared
with the Novaculite No. 1250 were compacted. ©Since the material is very

fine, a special procedure had to be followed. A vacuum was applied to the
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bottom pore pressure line during the compaction to prevent the material
rfrom blowing out of the mold and also as an aid to compaction. A teaspoon
of material was added and pressed five time with a No., 7 rubber stopper
attached to the end of a standard Proctor miniature compactor. Prior
to construction of the specimen the Novaculite was dried in the oven at
220°C. for a period of several days.
After the specimen was prepared the pore pressure line was
connected to a vacuum and measurements were taken for the determination
of void ratio. The specimen was then placed in the vibration apparatus which
fits into a triaxial cell, Air pressure in the cell was measured with a
mercury manometer,
Measurements for damping were made by driving the specimen at the
resonant frequency of the first mode of vibration, then cutting off the
- power and recording the decay with an oscilloscope camera. A typical
recording of the decay of vibrations is shown in Fig. 8. The top trace
of the photograph represents the motion of the end of the specimen which
is the output from the pickup and the bottom trace is a measurement of the
input voltage to the driving coil,
After the test was completed, measurements were again made to
determine the void ratio., There was no measureable difference in most

cases,
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Results of Damping.,

Group I. Figures 9 through 12 show the results of logarithmic
decrement for Ottawa sand obtained from the decay curves of Group I. In
general the decay curves were such that the logarithm of amplitude plotted
against the wave number was a straight line. The slope of this line
represents the value of logaritlmic decrement which is computed from the
relationship given by Eq. (31). This value of logarithmic decrement was
taken to be the value correspénding to an amplitude equal to the steady
state amplitude at which the specimen was vibrating before the power was
turned off. In cases of high amplitude and large values of & the plot
of logarithm of amplitude vs. wave number was not a straight line but a
curve of decreasing slope, In this case the value of logarithmic decrement
was taken as the average slope of the first several cycles of the decay
curve,

Tests in Group I were to determine the variation of damping
with confining pressure, amplitude of vibration, pore fluid (air, water,
and dilute glycerin) and density for both torsion and compression.

Figure 9 shows the comparison of logarithmic decrement in the
first mode of vibration for the dry and saturated condition of loose
Ottawa sand in torsion. The same comparison is made for the longitudinal
wave in the loose and dense conditions as shown in Figs. 10 and 11,
respectively. Figure 12 shows the results for Ottawa sand saturated with

glycerin,
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Group II. Figures 13 through 15 show the results for damping
calculated from the test results for glass beads, These were tested in
the dense condition for the dry and saturated case under torsion and
compression. The results are plotted showing the variation with pressure
and amplitude for the first mode of vibration.
Group III. Figures 16 through 18 show the damping results in
torsion for Novaculite No. 1250.
The behavior of this material is quite different than that for
Ottawa sand and glass beads due to the very small grain size. The
properties of this material depend upon time as well as stress history.
During test No. 28, which started at a void ratio of 0.83 under a pressure
of 1k 1b/in2, the specimen consolidated to a void ratio of 0.80 after
having been subjected to a stress cycle with confining pressures as high
as 50 lb/ing. The stress history of test no. 28 was as follows:
l. The specimen was compacted and placed under a vacuum.
Measurements were made for void ratio giving a value of 0,83,

2. The specimen was placed in the triaxial cell and a pressure
of 2030 lb/ft2 was applied, Damping measurements were made
intermittently over a period of 38 hr.

3. The pressure was raised to 4100 lb/ft2° Damping measurements

were made intermittently over a peridd of 140 hr.
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4, The pressure was rebounded to 2050 lb/ft2 and measurements
of damping were made intermittently over a period of 12 hr.

5. The specimen was placed underva vacuum and measurements
were made for void ratio which gave a value of 0.81.

6. The specimen was replaced into the triaxial cell and the
pressure was raised to 7270 lb/ftg. Measurements of damping
were made intermittently over a period of 13 hr.

7. The pressure was reduced to 4130 lb/ft2 and measurements of
damping were made intermittently over a period of 30 hr,

8. TFinal measurements under a vacuum gave a value of void ratio
equal to 0,80,

The Novaculite properties were not only sensitive to time and
stress history but also to vibrations. During the time intervals between
measurements the specimen was not vibrated. The first measurements after
each time interval were made at low amplitudes of vibration. The following
measurements were made at increasing amplitudes until the maximum amplitude
obtainable with the equipment was reached, Since the high amplitude
vibrations affect the low amplitude measurements a second set of measure-
ments were usually taken after the specimen had been vibrating at high
amplitude for a period of approximately five minutes. These two methods

of measurement are indicated in the figures by arrows on each curve.



DISCUSSION OF THE RESULTS
Group 1.

Effect of amplitude. In general, the logarithmic decrement for

the dry Ottawa sand decreases wifh,a decrease of amplitude of vihration.

For the first mode of vibration the average variation of logarithmic
decrement is with the 0,25 power of amplitude in both cases. Individual
values vary from 0.16 to 0.34%, When the Ottawa sand is saturated with water
the variation of logarithmic decrement with amplitude is decreased. For

the torsional motion the logarithmic decrement varies between the 0.0 and
the 0.13 power of amplitude. The longitudinal motion shows practically no
variation of logarithmic decreement with amplitude in the saturated
condition. Figure 12 shows the results when dilute glycerin was used as

the pore fluid. The results are very much the same as those for the water
saturated condition in that there is practically no variation of logarithmic
decrement with amplitude of vibration.

Effect of confining pressure. The curves generally show that

the logarithmic decrement decreases as the confining pressure is increased.
However, in some cases the damping increases when the confining pressure
is increased. Also, since the curves of logarithmic decrement vs.
amplitude are not parallel for the different confining pressures this

indicates that the pressure variation depends upon the amplitude of vibration.

=L6-
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The inconsistency of the results is such that the only definite
observation is that the damping tends to decrease with an increase of
confining pressure.

Effect of density. The effect of the specimen being loose or

dense is rather small, Figures 10 and 11 show the results for the
longitudinal motion in the loose and dense conditions. Any differences

in results between the loose and dense conditions for the dry tests are

too small to be detected. The effect of amplitude is much more significant
than any effects due to differences in density.

Effect of pore fluid. Figures 9, 10 and 11 compare the

differences between dry and water saturated Ottawa sand. The effect of
the water apparently depends upon the amplitude of vibration since the
slopes for the dry condition are greater than the slopes for the saturated
condition. Over the range of amplitudes measured, the water increases

the logarithmic decrement by a factor of 1.5 to 4 times that for the dry
condition. Comparison of Figs. 10 and 12 shows that there is practically
no difference between the tests in which the specimen is saturated with
water and with dilute glycerin. The glycerin solution was composed of 3
parts water to 1 part glycerin. Pure glycerin was not used because of the
fact that its viscosity is so high that an unreasonable length of time is

required to saturage the specimen with it.
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Group II,

Effect of amplitude. The results of damping for the glass beads

are shown in Figs. 13 through 15. For the glass beads No, 2847 the
average variation of logarithmic deérement in the dry condition is with
about the 0.38 power of amplitude. In the saturated condition the damping
varies with about the 0.15 power of amplitude. The glass beads No, 1725
behave somewhat differently than the other beads or Ottawa sand. In

Fig. 15 it can be seen that as the amplitude of vibration is decreased
the damping becomes less dependent upon amplitude. At higher amplitudes
the logarithmic decrement varies with about the 0,54 power of amplitude
in the dry condition and with approximately the 0.47 power of amplitude
in the saturated condition. It seems that the variation of damping with
amplitude for the dry material is affected by the type of grain surface.
The glass beads have a very smooth surface compared to the surface of
Ottawa sand. It would be difficult to determine from the data whether
the difference between the large and small glass beads is due to the size
effect or the difference in density. An increase in density should tend
to cause a decrease in the logarithmic decrement because of the

increased mass. Comparison with the two types of beads shows that a

smaller amount of damping is associated with the higher density beads.
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Effect of confining pressure. As with the Ottawa sand the

variations of démping with confining pressure are such that the only
observation that can be made is that there is generally a decrease in
damping with confining pressure.

Effect of pore fluid. The saturation of the glass beads No. 2847

has the same effect as it did in the Ottawa sand, The values for damping
were increased and the variation of damping with amplitude was reduced,
indicating that the amount of damping contributed by the water increases
at smaller amplitudes, Figure 15 shows that for the glass beads No. 1725
the amount of damping contributed by the water is also greater at smaller
amplitudes but to a much smaller extent. This difference is most likely
due to the higher specific gravity of the beads in comparison to that of
the water.

Group IIT.

Effect of amplitude, The variation of logarithmic decrement with

amplitude for this material does not plot as a straight line on a log-log
scale. At double amplitudes below about 3}(].0"LL rad., the logarithmic decre-
ment does not vary much with amplitude. At higher amplitudes there is a
significant variation of damping with amplitude. As the specimen was
allowed to stand under a given confining pressure the damping decreased.

If values of damping were then measured starting with low amplitudes and

increasing the amplitudes until measurements were finally made at the
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highest attainable with the equipment, a curve corresponding to the
lowest curve in Fig, 16 was obtained. If the specimen was then allowed
to vibrate at a high amplitude over a périod of approximately 5 minutes,
then the curve corresponding to the triangular points was obtained.
Thus, the time effect which resulted in a decrease in damping could be
destroyed by vibrations of high amplitude.

Effect of confining pressure. When the confining pressure

was increased after having been maintained at a steady value over a long
period of time, the damping increased. After a new pressure was reached
the damping started to decrease with time. If high amplitude vibrations
were applied to the specimen, the.decrease of damping that occurred over

a period of time could be destroyed. If the values of damping are compared
at low amplitudes for the different confining pressures, it can be seen
that time is more significant as a variable than confining pressure.

The values of damping for low amplitudes at each confining pressure are

all within the same order of magnitude.



CONCLUSIONS

The conclusions obtained from this study necessarily apply to
granular soils which have been subjected to several load repetitions and
have reached a relatively stable condition. This corresponds to construction
conditions where the soil has been pre-vibrated or pre-compacted to
eliminate the disastrous settlements which may accompany the first
dynamic load application on loose granular soils.,

The tests on the Ottawa sand and glass beads gave results which
should be typical for clean sands with rounded grains. The more important
conclusions are listed below:

1. For dry Ottawa sand the logarithmic decrement varies with
about the 0.25 power of amplitude. Saturated Ottawa sand
shows little variation of logarithmic decrement with
amplitude., Therefore, the proportion of the total damping
contributed by the water apparently increases as the
amplitude decreases, The variation of logarithmic
decrement with amplitude for glass beads No. 2847 is with
the 0.38 power for the dry condition and with the 0.15
power when saturated with water.

2. The damping determined from the decay of steady state
vibrations in samples of rounded granular materials behaved

like viscous damping. The values of logarithmic decrement

-51-
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varied from 0.02 to about 0.20 for the various materials
and test conditions used.

Dynamic tests on the Novaculite No. 1250, a very fine-grained
crushed quartz, produced results which were somewhat different from those
obtained from the larger grained materials. The primary difference is
that the damping values obtained from laboratory tests are dependent upon
the stress history and upon the time the loading has been applied. The
damping decreases slightly as a particular confining pressure continues
to be applied to a specimen. However, it was also found that higher
amplitudes of vibration tend to destroy this time-dependent decrease
in damping. Further investigations are required to evaluate the time-
dependent decrease of damping and the vibrational energy required to
destroy this decrease.

For comparable conditions of confining pressure and amplitude
of vibrations, the Novaculate No. 1250 has a significantly lower value
of logarithmic decrement than that for the Ottawa sand. This is in line
with the test results for the glass beads No. 1725 which are considerably
lower than for the larger diameter glass beads or Ottawa sand. However,
some of the difference between the large and small glass beads is due to
the difference in specific gravity as mentioned previously. Thus the
value of logarithmic decrement seems to decrease as the average grain

size decreases.
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Finally, it should be re-emphasized that the tests described
herein are concerned with the damping in granular materials which are in
a stable condition. Because the deformations are recoverable when the
stresses are below about 20 per cent of the failure stress, the behavior
of the material in this range has been termed "elastic" although damping
is definitely present. The order of magnitude of the logarithmic
decrement is generally below 0.2 for the test conditions used. This
defines a value of C/Ccr¢$ 0;03 if a steady state response is to be
considered., The damping due to dispersion of elastic waves in an ideal
medium can also be estimated by procedures described in the paper. A

value of Rv/va (corresponding to C/Ccr) can be expressed approximately by

Ry
Rue

R Q'Q' (for M =0.25)

Vb

where Db = Mo/prg for the oscillating footing. Thus a comparison can be
made between the material demping and dispersion damping for a given

foundation system.
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APPENDIX. - NOTATION

dimensionless frequency factor defined by Eq. (5);
amplitude of vibration;

amplitude of vibration at resonant frequency;
dimensionless mass ratio defined by Eq. (16);

viscous damping coefficient;

critical viscous damping coefficient defined by Eq. (14);
void ratio;

| “gtrain energy at maximum stress;

strain energy available at the nth cycle of vibration;
energy absorbed in one cycle of vibration;

frequency of vibration;

resonant frequency for forced vibration;

variables in the Reissner-Sung theory which are functions of the
frequency of vibration;

= low and high frequencys of oscillation at equal amplitudes of
oscillation;

frequency functions defined by Egs. (6);
acceleration of gravity;

shear modulus of elasticity;

V¥-1;

mass polar moment of inertia of the specimén;

mass polar moment of inertia of mass at free end of the specimen;
spring é§nstant;

proportionality constant;

coefficient defined by Eq. (9b);
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length of the specimen;

ﬁave length of shear wave;

mass of specimen;

ﬁass‘attached to free end of specimen;
total static mass of footing;

vertical periodic force at the base of the footing;
reciprocal of the specific dissipation function;
periodic exciting force;

radial distance;

radius of circular footing;

coefficient defined by Eq. (98);
coefficient defined by Eq. (lh)§

time;

period of vibration;

phase velocity;

velocity of shear wave;

initial velocity of vibration;

vertical displacement of footing;

weight of footing;

amplitude of vibration;

amplitude of nth vibration;

periodic force amplitude;

coefficient of attenuation;

dimensionless frequency correction factor;

unit weight;



€ x ® 0 O

]

H

logarithmic decrement;
mass density;

specific d&amping capacity;
Poisson's ratio; and

circular frequency.



SUMMARY OF TESTS

_58_

TABLE 1

Groupl Test No. Material Void Ratio Pore Fluid Type
I 10 Ottawa sand 0.52 Ajr Torsion
11 Ottawa sand 0.67 Air Torsion
1k Ottawa sand 0.52 Water Torsion
21 Ottawa sand Ooéh Water Torsion
12 Ottawa sand 0.52 Air Compression
16 Ottawa sand 0.66 Air Compression
13 Ottawa sand 0.51 Water Compression
15 Ottawa sand 0.66 Water Compression
20 Ottawa sand 0.50 Dil. glycerin Compression
19 Ottawa sand 0.6k Dil. glycerin Compression
II 25 Beads #2847 0.59 Air Torsion
Water Torsion
26 Beads #1725 0.58 Air Torsion
Water. Torsion
23 Beads #2847 0.58 Air Compression
Water Compression
2L Beads #1725 0.58 Air Compression
III 28 Novaculite 0.80 0.83 Air Torsion
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