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FOREWORD

The detection problem considered here is within the framework of the general
class of fixed-observation-interval detection problems in which the input to a receiver is
either signal-plus-noise or noise alone. The receiver is to decide whether or not the signal
is present. The primary aim of many detection studies is to both design and evaluate the re-
ceiver which makes this decision in an optimum manner. It has been shown that the likeli-
hood ratio is the quantity which the receiver should compute (Ref. 4). The receiver design
as well as its performance will differ depending upon the particular lack of knowledge that
exists in regard to the signal waveform.

Many detection problems assume that the amplitude of the signal is constant, and
known. In many transmission media the path, path attenuation, or other factors may vary
rapidly. Such physical situations were the motivation for this report. The specific situation
considered was a polarity-preserving rapid fluctuation.

One conclusion reached is that when signal amplitude is known and constant,
maximum detection efficiency occurs when the signal energy available is concentrated in one
component. However, when signal amplitude is unknown and not constant, maximum detection
efficiency occurs when the available signal energy is spread equally among all of its compon-

ents.



ABSTRACT

The problem considered is that of designing a likelihood
ratio receiver for detection of a signal that has been distorted
by a randomly varying transmission loss and subsequently
masked by an additive Gaussian noise. A general likelihood
ratio receiver design was found whose form was the same for a
wide class of random multipliers which includes the Pearson
Type III, Rayleigh, and truncated Gaussian distribution.

The optimum receiver was evaluated for the two-input-
samples case using a digital computer. The results reinforced
theoretical work which indicated that the effect of the multiplica-
tive noise could be minimized by spreading the signal energy
equally among the samples. Various facets of the performance
of two nonoptimum receivers, the crosscorrelator and the

clipper crosscorrelator, were also evaluated using the computer.
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1. INTRODUCTION

The design of a receiver for detection of a signal subject to random interference
or distortion, where the only purpose of the receiver is to indicate the presence or absence of
this particular signal, can be appropriately regarded as the design of a test for a statistical
hypothesis and the corresponding theory applied to obtain an analytical expression which de-
scribes the functional behavior of an "optimum' receiver. A receiver design arrived at using
this approach may be considered optimum only in a well-qualified sense, since in applying the
theory it is usually necessary to make many simplifying assumptions, some of which very
likely will not hold under the actual conditions in which the receiver is to operate. Because of
the necessity of making these assumptions, it is desirable to vary them a little and note how
the optimum receiver design varies. In this way it is possible to identify critical assumptions
and to see how the assumptions enter into or affect the receiver design.

The problem considered here is a basic one. A receiver is to be designed to de-
tect the presence of a signal which is distorted by a nonphase reversal type of transmission
loss, rapidly varying in a random manner, and subsequently masked by added noise. Kailath
(Ref. 6) has considered this problem and has aptly termed the medium with randomly varying
transmission loss a random channel. This investigation differs from Kailath's in that he con-
sidered random channels with a memory and Gaussian coefficients or multipliers, whereas
here the random channel is considered to be a nonnegative random multiplier, with various
assumptions being made regarding its distribution. Figure 1 is a diagram illustrating the

problem.

RANDOMLY YES-NO
Sséﬁ';é'g |_o«—] TIME -VARYING RECEIVER f—— —»
o | awmpLIFiER DECISION

Fig. 1. Sketch of the problem.



The intent here has been to represent the receiver inputs, under both signal-
plus-noise and noise-alone conditions, as points in a finite-dimensional vector space and to
make various assumptions regarding the distributions of the random multiplier and added
noise. By this method optimum receiver designs may be determined and compared with the
crosscorrelator. The crosscorrelator is used as a reference because it is basically the type
of receiver design to be used to detect a signal in added noise when the signal is completely
specified (except perhaps in total energy) and it is not distorted by a random multiplier. The
comparisons serve to give the receiver designer some feeling for the problem and to suggest
ways in which a crosscorrelator might be modified where necessary to cope with this "multi-

plicative noise' as well as with the additive kind.



2. THE MATHEMATICAL MODEL

A receiver used to detect the presence of a signal in noise can be viewed as a
computer. It is designed to operate upon certain input data, called the receiver input, so as
to compute the most meaningful statistics possible upon which a decision can be based, as to
whether or not the signal is present.

The receiver input here is assumed to be a scalar-valued function of time of the

form

z(t) = m(t) £(t) + alt) (1)

where t lies in a fixed time interval (0, T), a(t) is Gaussian noise, and m(t) is a nonnegative-
valued random function. Under the noise-alone condition £(t) = 0, while under the signal-plus-
noise condition £ (t) = s(t), a signal known exactly. The input z(t) could be a voltage, a force,
a displacement, or any other measurable entity. It is assumed that the random functions m(t)
and a(t) are stationary and that a(t) has a mean value of zero.

To simplify the analysis we assume that we can choose a set of n orthogonal func-
tions {g{/i(t)} defined over the interval (0, T), and a set of n sampling times ts tz, ceey by in

this interval, so that almost certainly

T n 2
Jojet) - 2 oat) wm| d < e (2)
o} i=1

for a given € > 0. Then we can represent the receiver input as the point

z = (24, Zg, -+ -, 2) (3)

in an n-dimensional vector space where



This representation is good in the sense that (2) holds.

The actual analysis and determination of optimum receiver design then is based
on taking the receiver input to be a random vector such as (3) and on being able to relate the
results obtained to the processing of functions such as (1). What we have in mind in the way of

a set of orthogonal functions {xpi(t)} is either the (set of) step functions

1 EUT G T i=1,2,...,n
yi(t) =
0 otherwise (5)

or the continuous bandlimited-functions having no frequency components outside the band (0, W).

sin [(2WT)n (7}— - 2\)&/;’1‘)]
L

: i-1,2,...,n=2WT  (6)
T 3T

yi(t) =
(2WT) sin [77(

With either of these sets of orthogonal functions we take the sampling times as

t, = L %)

and it is fairly easy to translate the results of analysis into receiver design.

We shall therefore speak of both (1) and (3) as the receiver input, leaving it to
the reader to remember that the vector (3) is part of an approximation of (1). Similarly, we
shall not distinguish between the functions s(t), m(t), and a(t) and their vector representations.

The equation n = 2WT defines an "equivalent' bandwidth W and

=

o -1
E =T/n s.i~2 = (2W)
i=1 i

(8)

™
n
n

is referred to as the energy of the signal. These identifications are made to relate the pre-
sent investigation and results to a previous study of the detectability of a signal specified ex-
actly in white Gaussian noise (Ref. 1).

Then the problem is to observe the vector z having coordinates



where the m, are identically distributed nonnegative random variables and the a, are Gaussian
random variables with a mean value of zero and a common variance, and to decide whether
51 =0 or (& 1 52, C e, En) = (Sl’ Sgs +re s Sn)’ the signal known exactly.

Sketches of the variables in (9) for 2-dimensional vectors are shown in Fig. 2.

(b) Multiplicatively (c¢) Additive
perturbed signal noise alone

(d) Signal-plus-added (e) Multiplicative perturbed
noise signal-plus-added noise

Fig. 2. Sketch of vectors in two dimensions.



3. OPTIMUM RECEIVER DESIGNS

The procedure in determining an optimum receiver design is a simple one. It
consists of assuming a pair of probability distributions for the n-dimensional receiver input
and then forming the likelihood ratio. The likelihood ratio is simply the ratio of the two
corresponding probability densities, and the optimum receiver is one that computes this likeli-
hood ratio or a monotonic function of it. The realization of such a receiver may however be
very difficult.

In the present case the receiver input under the signal-plus-noise condition is a
random vector which we have assumed to be the sum of two random vectors, the first consist-
ing of the receiver input under the noise-alone conditions, the other due to the signal being
present. The probability density under the signal-plus-noise condition is then the convolution
of the densities of the random vector due to the signal and that due to the added noise. In
general, it will not be possible to write this in other than integral form. An optimum receiver
must therefore perform an integration over n-space or compute some monotonic function of
this integral, if one can be found.

It is understandable then that the most easily realized receiver designs are ob-
tained when it is assumed that the receiver input has independent coordinates. The integral
over n-space becomes the product of n integrals over 1-space, and the receiver can instead
compute the logarithm of the likelihood ratio, the difficulty of computing (a good approximation
of) the logarithm of an integral over 1-space being a relatively mild one. We consider here
some cases where the receiver input has independent coordinates and then, briefly, the more
general case where it does not.

Suppose that the 2, and m, are independent random variables, so that the receiver
input has independent coordinates. Let the 2 have common variance ¢ and the m, have the
density f(m). Then the probability densities for the ith coordinate z; of the input are

—212/202

— e —
hN(Zi) = when z; = a, (10)

o 27 !



and

1 o z,-m s, 2
hSN(Zi): r f f(m) exp | - o dm (11a)

or

when z.l = mis.1 + ai. The function

©
ﬁ(z.l) = f f(m) exp {- {i (m? 812 - 2mz, si):‘} dm (12)
0

202

is the general expression for the likelihood ratio of the ith coordinate of the receiver input.

In assuming various distributions for the multiplier m, the log-normal distribu-
tion received first consideration. The reason for this was that such a multiplier in practice
might arise as the product of many independent identically~distributed multipliers. For ex-
antple, m might be the overall gain of a group of identical amplifiers in cascade where the
gain of each varied randomly about some nominal value. Then the log of m would be the sum
of a number of independent identically-distributed random variables and we might expect the
Central Limit theorem to apply.

Choosing loglom to be Gaussian with mean %i , variance b®, where c is the
natural logarithm of 10, the expected value of m is 1 and the density of m is

(log m + 92—2)2/%2

f(m) = exp |- (13)
bm 271

Substituting this expression in (12) we obtain

2 2

1 © (log m + =) (m? si2 - 2m Zisi)
Uz,) = [ exp |- T oz
o

exp |- —————5—————|dm. (14)
v bion

20°

The principal difficulty in realizing a receiver to compute the log of the complete likelihood

ratio
n
% log £(z.) (15)
. i
i=1



for this case is that the integral in (14) is a function of the two variables si2 and z.s, .
The above difficulty does not appear, however, if we assume the multiplier m to

have the Pearson Type III density

¥l kK S(keD)m

‘m— m e ’ k>_1, (16)

f(m) =

T denoting the Gamma function. Here the mean value of m is 1 and the variance is &T . The

likelihood ratio ﬁ(zi) then becomes

k+l < m?s.? ms,z,
ﬂ(zi) = (k—;&{% f mk exp {— { 21 1t (k+1)m}} dm (17)
0

20 o?

which, by means of a change of the variable of integration, can be written as

. \k+1 k+1
_(R+1) o k Bx; -p2%/2
0z) = Sy <_|_él‘l> {) gt el e dg (18)
where
Z.8.
R ! (k+1) o
S O"S.' - s.l (19)
i i
In this case the integral
o ﬁX. _n2
Qk(xi) _ f Bk e Lo B°/2 dp (20)
o)

in the likelihood ratio is a function only of the random variable X; - This is a function that is
monotonically increasing (in the variable Xi) and has a derivative of every order that is also
monotonically increasingl. It may be seen that for this distribution of the multiplier m, a re-

ceiver that computes

n
>z L (x.)
(-1 ki
where: Lk(xi) = 4n Qk(xi)j (21)

1See Appendix for a discussion of the Q-functions.



would be an optimum receiver. Studying expressions (19), (20), and (21) we note that the re-
ceiver input is first normalized relative to the variance of the added Gaussian noise, and mul-
tiplied by the infinitely clipped version2 of the signal to obtain a quantity that is positive when
input and signal agree in sign and negative when they do not. A variable negative bias, which
is large when signal amplitude is small and small when signal amplitude is large, is then
added to form the random variable X, Next Lk(Xi)’ which emphasizes or weights the more

positive X; more heavily than those less positive, is computed and fed into an adder to form

(21).

The optimum receiver described by (21) is of particular interest since the
Pearson Type III distribution approaches the log-normal as the parameter k becomes large.
Therefore (21) will approach a monotonic function of the log of the complete likelihood ratio
[expression (15)] for large k when the multiplier has a log-normal distribution. Hence it
might be taken as a reasonable approximation of the optimum receiver for that case.

Figures 3(a) and 3(b), respectively, indicate the shape of the Pearson Type III
distribution for k=1, 3, and 8 and show how well the Pearson Type III distribution for k =1
and k = 8 approximates the log-normal. The latter is illustrated by showing that when m has
a Pearson Type III distribution, y = loglom has essentially a skewed-Gaussian-distribution
and the skewness diminishes as k increases. It can also easily be seen that y is very nearly

Gaussian for large k by considering the density function for y,

k+1

k+1
gy) = Ll exficrn) oy - &) (22)
Using Stirling's approximation for I'(k+1)
k -k
T'(k+1) = 427k k e (23)

which is good when k is large, and the approximation

e =~ 1+cy+%c2y'2 (24)

2The "infinitely clipped" signal is
{+1whensi>0 i=1,2,...,n.
s, =

! -1 when 85 <0



.25

75

f(m,k)

.25

v o

PROBABILITY DENSITY OF y

_log m -u(log m)

o {log m)}

(b)

Fig. 3. Pearson III density function for k =1, 3, 8, and normal.

which is good when |cy| is small, it is evident that for large k and“at least for values of y
near zero, g(y) has the form of a Gaussian density function where the mean is zero and the
variance is E-é(_lk:f) We note, then, that for large values of k the variance of y is small; thus
y will tend to be close to its mean value and therefore will be essentially Gaussian.

The receiver design described by (21) is of a rather general nature, where the

receiver input has independent coordinates. That is, if we take the multiplier m to have a

10



distribution of the form

k> -1 (25)

where A is a constant and k, p, and v are known parameters, then (12) will describe an opti-

mum receiver. For this more general case however we have

Zi 8 po vig? —%
X, = - B 1+ —5 (26)
! <"|Si| isil> < 5§ >

The fact that three parameters enter into (25) means that not only the mean and variance of m,

but also, to a certain extent, the shape of the distribution, can be varied, and this can be done
without changing the general form of the receiver. It may be seen that this family of distribu-
tions contains the truncated Gaussian and the Rayleigh distributions, as well as the Pearson
Type III. We have called the distribution an H-type distribution. To compare it with the

Pearson system we note that

2 2
fi(m) = SZPM VMo (27a)
m
if the distribution of m is of the H-type and
£'(m) atm £(m) (27b)

) bo + b1 m + bg m?

if m is from the Pearson system (Ref. 7).
Figure 4 shows a block diagram of the optimum receiver, or rather, of an ana-

log of the optimum receiver, for the above general case. The functional behavior of the re-

INPUT__Z NORMALIZING | . i . . NONLINEAR AMP
GAIN = l/g T T L ( )

s po sl
L INTEGRATE THRESHOLD DECISION
(0,7T) COMPARATOR QUTPUT

Fig. 4. Receiver block diagram for type H multiplicative
noise and Gaussian additive noise.
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ceiver is essentially as described for the case where m has a Pearson Type III distribution,
differing mainly in the addition of the variable gain amplifier having gain

1

+ (28)
s*(t)

is the natural log of Qk'

The nonlinear function Lk

When the receiver input does not have independent coordinates it is difficult to
do more than write the general expression for the likelihood ratio which, using vector and

matrix notation, is

«z) = [ f(m) exp [— %(ms) b -l(msil exp ‘:z z _l(ms)} dm (29)

Here Z -1 is the inverse of the covariance matrix, ¥, of the added Gaussian noise, z is the

row vector (Zl’ Zgy +nes zn), (ms) is the transpose of the row vector (mlsl, MySy, «o

mnsn), etc., and the integral is over the n-dimensional space of the multiplier m. The
principal difficulty in considering specific cases lies in determining suitable joint density func-

tions

f(m) = f(ml, mg, -, mn). (30)

However we do not have to consider specific cases in order to interpret (20) in terms of a re-

ceiver design. Since Z is symmetric and positive definite, (29) can be rewritten as

1
2(z) = f exp [log f(m) - 5 (ms)' W'W(ms) + z' W'W(rns)] dm (31)
where W is a triangular matrix such that
-1 ,
= = W W (32)

The matrix W is a ""whitening filter.' Then it may be seen that a receiver computing (31)
would operate as follows: the receiver input is first whitened, and the whitened input is cross-
correlated with each of the infinitely many whitened perturbed versions of the signal. The

variable bias

12



log f(m) - % (ms)' W' W(ms) (33)

is then added to the corresponding crosscorrelator output, and the biased output of each of the

infinitely many crosscorrelators is then weighted by computing
exp [log + (m) - % (ms)' W' W(ms) + z' W' W(ms)] (34)

The weighted biased crosscorrelator outputs are then ""summed'" to form the receiver output.
This interpretation of (29) serves to point out the basic features of an optimum
receiver for detection of a randomly distorted signal in Gaussian noise, and to emphasize the

greater complexity of such a receiver when the receiver input does not have independent co-

ordinates.

13



4, RECEIVER EVALUATION, SMALL SIGNAL ANALYSIS

The proper way of evaluating a likelihood ratio receiver is to determine its ROC
curve. 3 This is the graph of the probability of detection as a function of the false alarm prob-
ability. In order to determine the ROC curve it is necessary to know the probability distribu-
tion of the receiver output under both the noise-alone condition and the signal-plus-noise
condition, and these must be derived from the distributions of the random variables entering
into the receiver input.

In the problem considered here, we have been able to obtain specific likelihood
ratios only where the receiver input is assumed to have independent coordinates. The deter-
mination of these likelihood ratios was a relatively simple task. The derivation of the prob-
ability distributions of these likelihood ratios, however, is not so simple.

Consider the case where the multiplier has a Pearson Type III distribution and
the receiver has independent coordinates. A receiver that computed

Z.S.
(k+1)
" <o|‘s;, ' +S-|O> (%9

1

IR

1

was found to be optimum. To find the ROC, the probability distributions of

Z.S,
(k+1)
L (28 o) -

olsil - s.l
i

must be found and then those of the sum (35). The difficulties in doing this are obvious.

The reasonable thing to do in order to evaluate the small-signal performance of
the receiver seems to be to compute (good approximations of) the mean and variance of the re-
ceiver output under the noise condition and under the signal-plus-noise condition, and to use

these as measures of the discrimination that the receiver provides between noise and signal-

plus-noise. ~Where it is known that the sum in (35) is very nearly Gaussian in both noise and

3 . . N
Receiver Operating Characteristic curve.

14



signal-plus-noise, these calculated means and variances are also sufficient to enable plotting
an approximate ROC.

By suitably restricting the values of the ]sil and the value of k in (35) we can
approximate the expression and its first and second moments. We consider the case where k

is large and where lsil is uniformly small with respect to the variance of the added noise,

e.g., k> 8and ’s.1| < .20 for i=1, 2, ..., n. Observe that
2
s _ _ _ 1_ z .2
Variance (Zi) = Var(zi) = Var(msi) + Var(ai) TS o (37)

since

Siz 02 2

-
BT S 25D = O /22% (38)

so that we could consider the variance of ms; (and thus the effect of the multiplicative noise)
to be negligible. This case is interesting, however, in that it enables us to see how the func-
tional behavior of the optimum receiver differs from that of the crosscorrelator when a small
amount of multiplicative noise is introduced. We see also that the distribution of the optimum
receiver output under the signal-plus-noise condition depends on the form of the signal as well
as its energy, and that therefore the detectability of the signal in this case is dependent upon
both signal form and signal energy.

Note that under the noise-alone condition

Z.S,
% = ifi (k+1) o (19)
i o s.l ls‘
i i
. ) . -(k+1) o ) . G .
is Gaussian with mean value —Ts | and unit variance, while in signal-plus-noise X, has
i s:2
mean value ’si'/o - (_k‘_irs_l_)r(l and variance 1 + T , and is very nearly Gaussian. Thus
i +1)o
in either case the mean value of X, is about (_?sil)g standard deviations from the origin. Using
i
the approximation
N k! 0
Qk(xi) = x )kﬁ’ X, << (39)

15



we obtain

Lk(xi) = log Qk(xi) log k! - (k+1) log ( Xi) (40)
But
%) = k+l) o %5
log( Xi) = log { Is[ als.l
i i
Z.S,
= log (k+1) 0 + log <1 - 11 > (41)
|54 (k+1) 0
and
z.S. -z.s. i -z.s, ) °?2 1 -z.8, 8
log {1-—-t &L - tbt 2 o1l A o0 11 L (42
(k+1) 0'2 (k+1) (72 2 (k+1) 0_2 3 (k+1) O_2
for
z;s,
PSTTY 1 43
(k+1) o® < (43)

and the probability of that latter is very nearly one. Then

i% 1 28\ ° 1 2\
Lk(xl) = Ci + 02 + m 02 + 3(k+1)2 ?— tT oo (44)

where Ci depends on only the index i. It is easy to see, for this particular case, not only that
the optimum receiver is essentially a crosscorrelator but also how it differs from a cross-

correlator.

To approximate the first and second moments of the receiver output (35) for this
case, we expand the right side of (40) about the mean value Hy of X and consider the first five

terms

2

(1) Kj B

k+1
log k! - (k+1) log(-ui)+§_zi§ (x; - “1)+(-ui) 21
L 20k+D) (5 - my)° (45)
(-py)® 3!

The moments (xi - ui)p, p=1, 2, ..., 6 are easily computed, and the most significant terms of

16



the mean and variance of (45) are taken as approximations of the mean and variance respec-
tively of (35). These approximations serve to indicate roughly the effect of signal form upon
detectability. The detectability is inferred from the difference of the means, the variance in

noise [of (35)] , and the variance in signal-plus-noise. For the case being considered, we

find the difference of the means is (approximately)
2 2
k+4 2E 2k® +k+3 2E
2E/No{1+p2 2D <N—O> " Py TR <N;)} (46)

The variance in noise alone is

5 (2E 5 [2E
2E/N, {1”’2 Sk1)2 <N—> v Py 3k <N;> } (47)

)

and the variance in signal-plus-noise is

2
6k + 11 [/ 2E 198k? + 359k + 263 [ 2E
2E/N, {1 Py D)2 <“N;> * Pg 18k 1) <N-O> } (48)
where:4
-1 B
E = (2W) ) siz is the signal energy
i=1
N = o?(a) is the additive noise power
NO = N/W is the additive noise power density
W = nT/2 is the equivalent bandwidth
n n 2
py = st/ = 82
. i\ .7N i
i=1 i=1 are signal form factors where

0<p2,p3§1.
n 6/<n Z>3
P, = Z S, 2 s,
5 P \im d

These expressions indicate that the detectability is essentially that of a signal specified ex-
actly in white Gaussian noise when 2E/No is small, k is large (the variance of the multiplica-
tive noise is small) and the signal parameters Py and pgare small. The parameters Py and
pg are less than one, so they apparently do not affect the detectability much, unless k is small

and 2E/NO is large.

4This notation is employed to facilitate comparison with the detectability of a signal specified
exactly in white Gaussian noise (see Ref. 1)

17



Since the above analysis is based on k being large and the signal amplitude being
uniformly small with respect to the variance of the added noise, it does not really indicate
how much the detectability of a signal depends upon its form or energy distribution. To obtain
a better understanding of this dependency, a 2-dimensional case has been studied using a digi-

tal computer to compute approximations to the ROC. This study is described in Section 5.

18



5. RECEIVER EVALUATION USING THE IBM 704

This section describes several short computer programs used to evaluate variou
facets of the performance of the optimum and two nonoptimum receivers. The program for
evaluating the optimum receiver was restricted to the 2-dimensional (2 input samples) case.

In order to evaluate the receiver whose design was described in Section 3, it is
necessary to find the distribution of the logarithm of the likelihood ratio under conditions of
noise and of signal-plus-noise. This involves the mathematical manipulation of continuous
probability density functions. To solve this problem, the computer program uses discrete
approximations of the multiplicative and additive noise. The program simulated the optimum
receiver (Fig. 4) for the 2-dimensional problem. The output of the computer program pro-
vided an ROC curve.

Several techniques involved in this method of solving the problem are worth
pointing out. One is the way in which the discrete approximations were made. The other is

the computation of the nonlinear Lk functions.

5.1 Method for Obtaining Discrete Probability-Density Functions

The general method that was used in approximating a continuous density function
by a discrete density was as follows:

oo}
Given a probability density-function, p(x), the integral, f p(x) dx, is parti-

-0
tioned into N equal integrals such that
y y y ©
1 2 3 1
f p(x)dx = f p(x)dx = f p(x)dx = ... = f p(x)dx = N (49)
" Y1 Yo YN-1

Each integral represents a probability element of value —I% . FEach of the N probability ele-

ments must now be associated with a point X One correspondence would be to define X
implicitly by the integral
X

f lrlp(x)dx = 2 where n=1, 2, ..., N (50)
-0
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In this particular problem, an N of 50 was chosen. The two continuous density
functions that were replaced by discrete density functions were the density function for the
added white Gaussian noise, and the density function for the Pearson Type III multiplicative
noise, f(m).

5.1.1 Representation of Additive Noise. The 50 points of the discrete density

function for the additive noise were denoted by a;, where i=1, 2, ..., 50, and where each 2y
has a probability of . 02. In accordance with the general method outlined above, the ai’s were
read from Table 1 of Ref. 2. These tables give the distribution, for various values of skew-
ness, of the Pearson Type III density function. For a skewness of 0, the Pearson Type III
function reduces to the normal distribution. Therefore, the 50 3y values were obtained by
entering Table 1 at values of the integral of 0. 01, 0.03, 0.05, ..., 0.99, and reading the
values of t for a skewness of 0.

5. 1.2 Representation of Multiplicative Noise. The representation of the multi-

plicative noise used was a 50-point discrete density function, denoted by m,, where i=1, 2,
., 50. These values were obtained from the Pearson Type III density function. The func-

tional form used for this distribution was

k+1
f(m) = % m® e-(k+1)m , k> -1 (16)

where I' denotes the Gamma function. The range of this function is nonzero for m > 0; it has
a mean value of 1 and a variance of 1/(k+1). In the tables of Ref. 2, the range of the function
is nonzero for t > -2/a3, where a4 is the skewness. This function has a mean of 0 and a
standard deviation of 1. Therefore, to use these tables, it is necessary to make a linear
transformation on t. This transformation is

a,t. 9

m, = +1, where ag = (51)

Jk+1

In order to obtain the ti values, the tables are entered for the desired skewness, g, at values
of the integral of 0.01, 0.03, ..., 0.99.
For k=1, or ag = wf2_, the method of computation of the mi's is modified, since

Carver's tables do not include an entry for a skewness this large. Substituting k=1 into (16)

20



for i{m), one gets

f(m) = 4me 2™, k=1 (52)

Integrating with respect to m gives the distribution function

-2m 2m

Fm) = 1-¢ - 2me’ (53)

The 50 m values for k=1 were then obtained numerically, to four-place accuracy.

5.2 Determination of Lk Functions

Referring to the block diagram of the receiver, Fig. 4, one can see that it is
necessary for the signal and noise to be weighted by the nonlinear function Lk’ where Lk =

In Qk(x). Qk(x) was defined in integral form in Section 3.

w0 BX.
Qo = [ e TPV 2q (20)

o

Qk(x) is also related to the parabolic cylinder or Weber-Hermite functions, Dr(x), (see

Appendix) with negative index in the manner

Q0 = ke /4D (x) (54)
TR e ~(k+1)

Neither of these forms appears satisfactory, however, for the calculation of values of the

Qk(x) function with the computer. It would be desirable to have Qk(x) expressed in terms of

elementary or tabulated functions, preferably involving a finite number of terms. One such

expression is

(x) (55)

where Pk(x) and Hk(x) are polynomials in x of degree k-1 and k, respectively. QO(X) =
@ (x)/¢(x) is the ratio of the Gaussian distribution function to the Gaussian density function. In

particular, the Lk function for the three integer values of k run on the computer are
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L1 = ﬂ_an = {n {1+x§)gﬂ (56)

} (57)

L, = (nQ, = (n {XG + 20x% + 87x2 4 48 +(x" + 21x° + 105x° + 105x) CEEX;} (58)

&(x
(x

N

|
I

3 ﬁnQ3 {n [:xé + 2 +(x3 + 3%)

A=Y

Several computational difficulties arise with these expressions. One is the difficulty of ob-

taining ® (x)/¢(x) accurately from tables for the entire range of interest. For -4 < x < +4,

these expressions were calculated using values of 3&; obtained from the 15-place tables of

the National Bureau of Standards, Table of Normal Probability Functions (Ref. 8). For

4 <x <10 &(x) was calculated from an asymptotic expansion similar to the one on p. VIII of

¢ (x)
the NBS Table 23,

&(x) x%/2 1 1 1.3 1.3.5 1.3.5.7
WX) ~Me —m I:l-x—2+—4- 3 + g +...jl (59)

X X X

This is an alternating semi-convergent series. In regard to straightforward use of this
series for computations, this means that there is a finite number of terms, depending upon x,
that give optimum accuracy. This optimum number, for an x of 4, is nine. Since this is an
alternating series, the ninth term was modified by dividing it by two to further improve the
accuracy of the computation.

For the range in x of -20 < x < -4, the use of the closed form equations, (56),
(57), and (58), gives difficulty in that the small difference of two large factors is calculated.

In order to circumvent this problem, an asymptotic series was obtained for large negative x.

It is
0 n
L =4¢nQ = fnk!-(k+t])fnx+ ¢n< = (1) @nei)l 1 (60)
k k ‘ n 2n
n=0 2 nlk! X

This series also turns out to be an alternating semi-convergent series, requiring a finite num-
ber of terms for optimum computational accuracy. For k=1, k=3, and x = -4, the number of
terms is seven. For k=7 and -10 < x < -35, the number of terms included was five. Again,

the last term in each of these cases was divided by 2 to further improve the accuracy. For
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-10 < x < -4, k=7, neither the asymptotic expansion nor the closed form expression gives

sufficient accuracy, so a parabolic approximation was made to the three points, x = -15, -10,

~4. The approximation used for this region was

L (x) = .0372x% + 1.543x + 1. 486

o

A plot of Ll’ L3, L7, computed at 0. 5 intervals, is shown in Fig. 5.

L7(x)\' i
., L4(x)
Lo—d d
i .
/i
/il
-/
/ 7/
14 /Y
V7 r
o —. o
./
— --15

Fig. 5. Plotof L., L,, L

1> Lgs L computed at 0. 5 intervals.
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5.3 Computer Results

It is of interest not only to consider the performance of the optimum receiver
described in Section 3, but also to consider the performance of several nonoptimum receivers.
A nonoptimum receiver whose performance is ""close' to that of the optimum receiver may be
more practical to use, either because of greater simplicity or because it is already available.
This section presents the results of computer studies aimed at evaluating the optimum re-
ceiver under several conditions as well as evaluating two nonoptimum receivers, the cross-
correlator and the clipper-crosscorrelator. The relative performance of these receivers was
investigated for a number of situations.

There are four points of interest for which computer results were obtained.

First, what is the effect on detectability of the distribution of signal energy?
Second, if there is a best way of distributing the signal energy from an optimum detectability
viewpoint, how does the detectability for this case compare with the detectability of a signal
known exactly in additive white Gaussian noise with no multiplicative noise? Third, how well
does a crosscorrelator perform as compared to the optimum receiver ? Finally, how does
the performance of a clipper crosscorrelator compare to the performance of the optimum re-

ceiver?

5. 3.1 Distribution of Signal Energy. If one has the freedom of distributing the

signal energy, it is of interest to know in what manner this should be done in order to get
maximum detectability of the signal. Consider the signal to be composed of N independent

samples, S1s Sgs +-+y SN~ In addition, a meaningful restriction is to consider the problem

N
under the condition of constant total signal energy, i.e., siz = E. Now what distribution
1=

of the si's gives optimum detection of the N samples? A specific case worked on the computer

was an N of 2, and values of total energy, 12\1—1(5): of 1, 2, and 4. Four combinations of energy
distributions were worked. They were:

1L s = JE, Sy = 0

2. sy = Ji—g cos 15° , 8y = ﬁ% sin 15°

3. s, = % cos 30° , S = IZ\I_E sin 30°

4. 8 = J%% cos 45° , Sy = JE—?: sin 45°
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In the first case all the energy is concentrated in one of the two samples. The fourth case is
the situation where the energy is spread evenly between the two samples. The second and
third cases represent intermediate situations. The performance of the optimum receiver was
evaluated for each of these four cases for each of the three total energy levels, giving a total
of twelve situations. The distribution of log likelihood ratio was obtained under signal-plus-
noise and noise-alone conditions in order to make an ROC plot. These results are presented
in Fig. 6 for the Pearson Type III index of k=1. Similar plots for k=3 and k=7 are shown in
Fig. 7 and Fig. 8. From these figures, one can see that if one has the freedom of distribu-
ting the energy between the two samples, one should distribute the energy equally for optimum
detectability.

5. 3.2 Comparison of Detectability With and Without Multiplicative Noise. If the

energy is distributed equally between the two samples, it is of interest to compare the detect-
ability of the signal with various amounts of multiplicative noise. In Fig. 9 the ROC is plotted

for the two-sample problem, for 81 = 8y, JgNE =1, 2, and 4, and for k=1, 3, and 7. Also
0

99 -

.

PsntA)

© CASE! , ENERGY IN ONE COMPONENT

acasE2, 8 =15%

o CASE3, § =30%

s CASE 4, ENERGY EQUAL IN BOTH
COMPONENTS

1 L 1 ! L 1 1 1 L L
3 45 10 20 30 40 50 60 70 80 80 95

Py (A)

Fig. 6. Effect on ROC of distribution of signal energy for two-
sample case (Pearson III index of k = 1).
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Pey (A}

o CASE | , ENERGY IN ONE COMPONENT
4 CASE2, 8 =15%
o CASE3, 8 =30%

s CASE 4, ENERGY EQUAL IN BOTH
COMPONENTS

L I I | 1

30 40 50 €0 70 80 90
Py (A)

Fig. 7. Effect on ROC of distribution of signal energy for two-
sample case (Pearson III index of k = 3).

95

® CASE | , ENERGY IN ONE COMPONENT
4« CASE2, § :15%
o CASE3, 8 =30%

a CASE 4, ENERGY EQUAL IN BOTH
COMPONENTS

30 40 50 60 70 80

Fig. 8. Effect on ROC of distribution of signal energy for two-

sample case (Pearson III index of k = 7).
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Fig. 9. Effect of multiplicative noise on detectability for two-sample
case with energy distributed equally between samples.
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Fig. 10. Effect of Pearson Type III multiplicative
noise on performance of crosscorrelator.
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shown in this figure are the ROC curves for a d' of 1, 2, and 4 that would result if there had
been no multiplicative noise. The comparison of these curves gives one some measure of the
loss in ability to detect a signal due to the multiplicative noise factor. In general, the detect-
ability is greater with no multiplicative noise. This is reversed at low detection probabilities,
where the probability of detection is actually larger than it would have been with no multiplica-
tive noise. This is a general rule with amplitude fluctuations, because the signal ensemble
(including the multiplier) contains some signals with very large energies. When very low de-
tection probabilities are examined, one observes that a detection normally involves some of
these larger-than-average signals. This does not occur at detection probabilities greater than
. 50.

5.3.3 Crosscorrelator. 5 Since a crosscorrelator is a relatively simple as well

as common receiver, it is of interest to compare its performance with that of the receiver
that is optimum for the conditon of Pearson Type III multiplicative noise. The evaluation of
the crosscorrelator follows immediately from data already presented in the previous section
for certain sample sizes, M, and values of the Pearson Type III index, k, if one considers
the case where the signal samples are independent and have their energy equally distributed.
Table I lists the correspondence between the crosscorrelator problem and the data already

computed. The relevant curves are replotted in Fig. 10.

M Equal-Energy, Independent Samples Read ROC
To Evaluate Crosscorrelator for: (Figs. 6, 7, and 8) for:
k=1, M=1 k=1, M=1
k=1, M=2 k=3, M=1
k=1, M=4 k=17, M=1
k =3, M=1 k =3, M=1
k=3  M=2 k=17, M=1
k=17 M-=1 k=1, M-=1

Table I. Correspondence between crosscorrelator.

Two cases of special interest are the two 2-sample cases (M=2) for k=1 and k=3.
For these cases the performance of the optimum receiver and the crosscorrelator are, within

computational error, practically the same. Therefore, the crosscorrelator is quite a satis-

5
The type of crosscorrelator used here crosscorrelates the input with a locally generated
(stored) signal.
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factory receiver under these conditions.

The relationships illustrated in Table I will now be derived. Consider the case

of M equal signal components. Then for a crosscorrelator

2 _ 2E _ 2E
Ms® = N or S = A/MN (62)

Let X be an input to the receiver. Then in signal-plus-noise,

M M °F 1 M M
X ox, = (m.s+ai) = [= Z m,+ 2 a, (63)

j=1 b g No yM g1 1 4 B

and in noise-alone
M M
> x, = X a (64)
i=1 i=

Now, the sum for the noise-alone input is normally distributed with mean of 0 and variance

of M.

T a, = N(u=0,0%=M) (65)

Or, in terms of a variance of one, let A be a normalized variable,

M
Z a. = N(0,1) (66)

1
A = — .
JM j=1 P

Since a characteristic feature of Pearson Type III density functions is that the sum of

Pearson Type III density functions is a Pearson Type III density function with a different

index, k', then

- - 2 _ M
m; = Ty (“ =M, 0 ‘k+1> (67)

or

1

M
= - 2 - S —
z m = Ty (“ =1, 0% = M(k+1)> (68)

i=1

where TIII denotes the Pearson Type III distribution. Now the new index, k', is one less than

the reciprocal of the variance. In signal-plus-noise

_ [2E (69)
- N I+ A,

[0)

I
>

g~
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And in noise-alone

— I X, = A (70)

So the performance of a crosscorrelator with energy equally spread among M
input samples and multiplicative noise with index k, is equivalent to the performance with
one sample containing the same total energy, and a new Pearson Type III index k' of
M(k+1) - 1.

5.3.4 Clipper Crosscorrelator, A clipper crosscorrelator is a practical re-

ceiving device which is often used when amplitude fluctuations are a serious problem. Al-
though one of the prime reasons for its use is amplitude fluctuations in the noise level, in
this report the amplitude of the noise is assumed stable. A simple diagram of a clipper

crosscorrelator is shown in Fig. 11. Although the clipping level need not be at zero, we have

I
INPUT X P ( ]
NPUT cLip_ | INTEGRATE (Sum) |
Ix1

|

S

A s
I§?GCN11§L——* CLIP *"SL"

sit)

Fig. 11. Clipper crosscorrelator.

assumed in this report that the level is at zero, as it is commonly in most practical clippers
used for detection purposes. The clipping circuit output is the polarity of the input signal.
This operation is sometimes referred to as ""hard clipping' or "infinite clipping" to differen-
tiate it from the saturation type of peak clipping that occurs in many amplifying devices. The
polarity of the input is then compared with the polarity of the expected signal. If the polari-
ties of the two are the same, the input to the adder is +1; if the polarities are different, the
input to the adder is not +1 (either 0 or -1 is commonly used). The analysis contained here
follows the assumptions of the rest of the report: that the inputs are statistically independent
samples. If the integrator is operated for a fixed number of samples, that is, over a fixed
time, then the output has a binomial amplitude distribution which is a function only of the

number of samples considered and the probability of having a +1 at the integrator input on
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each of the identical independent samples. Because the input signal clipper is at the median

of the noise, this probability is exactly .5 when noise alone is present at the input. When the
input is due to signal-plus-noise the probability of a one has been determined as a function of
the 2E/N0 ratio for the individual samples and the variance of the multiplicative noise.

Although ROC curves could have been determined for this specific case a much
briefer analysis which isolated the effect of the multiplicative noise from the total receiver
performance was used. A more thorough analysis of the general clipper crosscorrelator
performance, the ROC curves and the efficiency is treated in Ref. 4, and a brief analysis of
the efficiency in the absence of multiplicative noise is given in Ref. 5. The analysis here is
based on the observation that the performance of the clipper crosscorrelator can be broken
into two parts: first, the effect of the physical parameters, signal strength, additive noise
strength and multiplicative noise variance on the probability of having a positive input to the
adder, and second, the general effect of using a clipper crosscorrelator. This latter is a
function solely of the probability p, the binomial distribution, and the operating point desired
on the ROC. The first effect, that of obtaining a certain probability at the input to the adder,
can be easily studied by numerical methods.

Let us denote the energy of a single sample as Ec. When there is no multiplica-
tive noise, but purely added white Gaussian noise of power density NO watts per cycle per
second, then the probability of the input polarity corresponding to the expected signal polar-
ity, that is, the probability of a +1 to the adder, is given by the normal probability distribu-

tion function
N
2E 0 2
c 1 ~t%/2
= & - = ——— e dt 71
b < N > J 7z ()

This is the straight line, the uppermost curve, in Fig. 12. Using the digital computer,
graphs of the probability of a correct polarity were determined for a wide range of Pearson
Type III multiplicative noise variance values. These are shown in Fig. 12, They indicate
that there is very little effect for small input signal-to-noise ratios (that is, ZEC/NO), and
that there is also very little effect unless the variance of the multiplicative noise is more
than about -10 db (of course each reader must use his own criterionfor "very little").

A somewhat more meaningful interpretation of these results is shown in Fig. 13,
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Fig. 13. Efficiency, np,,, due to multiplicative noise, for clipper
crosscorrelator for various variances of multiplicative noise.
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where the efficiency loss is considered as a function of the amount of multiplicative noise

and of the individual sample signal-to-noise ratios. The efficiency Mn is defined as the
ratio of signal energy required when there is multiplicative noise to that amount required to
give an equivalent performance without multiplicative noise using the clipper crosscorrelator.
This efficiency was determined by using the plots of Fig. 12 in the following manner: for a
given 2Ec/No ratio the graph is entered and the ordinate read for the appropriate amount of
multiplicative noise. At this ordinate value one also reads the 2Ec/No ratio had there been
no multiplicative noise; that is, one determines the input strength necessary to get the same
p value. The efficiency is simply a direct comparison of these two energy ratios.

One concludes from this efficiency plot that the multiplicative noise causes a
progressively larger loss in efficiency as the individual component signal strength increases.
Therefore, as was shown for both the clipper crosscorrelator and the optimum receiver, if
one can spread signal energy over many components of the signal there will be better per-
formance than if the energy is concentrated in a few components. This is the same effect
as the clipper crosscorrelator efficiency with no multiplicative noise displays; hence, when
both are taken into account to get the over-all efficiency of such a device, one has a serious

decrease in total efficiency unless the individual component strengths are very low.
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6. CONCLUSIONS

We have considered the problem of designing a likelihood ratio receiver for de-
tection of a signal that has been distorted by a randomly varying transmission loss and sub-
sequently masked by an additive Gaussian noise. To simplify the analysis it was assumed
that we could approximate the receiver input by a function from a finite dimensional vector
space of functions, and that this approximation was almost certainly a good approximation
in the mean.

A general likelihood ratio receiver design was found where the receiver input
was assumed to have independent coordinates. The form of the receiver is the same whether
the random multiplier or multiplicative noise has a Pearson Type III, a Rayleigh, or a
truncated Gaussian distribution. When the variance of the multiplicative noise approaches
zero this receiver becomes essentially a crosscorrelator. The likelihood ratio receiver
where the receiver input does not have independent coordinates may also be seen to be a
generalization of the crosscorrelator.

The detectability of a signal distorted by multiplicative noise depends somewhat
on its form. Since that part of the variance of each coordinate of the receiver input that is
due to the multiplicative noise is proportional to the square of the corresponding signal co-
ordinate, the effect of the multiplicative noise can be made negligible by choosing a signal of
low amplitude and long duration (for a fixed 2E/NO). Where a crosscorrelator receiver is
used, and where only the form of the signal is variable (all the signal and noise parameters

are fixed), it was seen that the variance of the receiver output was a minimum when the

signal energy was uniformly distributed among its coordinates [or over the interval (0, T)] .
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APPENDIX

Qk AND THE PARABOLIC CYLINDER FUNCTIONS DV

The authors wish to thank Prof. James A. MacFadden of Purdue University for
pointing out that the Qk functions are directly related to the parabolic cylinder function.

From Bateman (Ref. 3), page 119, Section 8.3, Eq. 3,

-z8/4  « 2
Dy(z) = £ f t_(wl) e-Zt e_t /2 dt Re v< 0 (72)

and therefore

8-22/4
DV(Z) = Ty Q_(V+1)("Z) (73)
Thus
2
Q(x) = T(k+l) X /4 D_(p1)(7®) for k> -1 (74)

Bateman points out that Du can be related to the error function for negative integer values of
v (thus positive integers for k) and to Bessel functions for v = 1/2 (thus k = -1/2). No rela-

tion to available tables is mentioned for other parameter values.
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