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ABSTRACT

A study is conducted of the bending stresses induced in a thin-walled
tube adjacent to a joint between the tube and a heavier section by an axial
temperature gradient imposed across the assembly. A solution is shown util-
izing basic relations taken from the existing literature for a tube of uni-
form wall thickness attached at either end to a flange of infinite stiffness.
Both long and short tubes are considered.

The possibility of substantial reductions of stress through the use
of a tapered Wall thickness is discussed. Approximate methods are developed
for the calculation of stress and wall thickness under conditions in which
the wéll thickness is varied in each instance to give: (1) constant radius
of curvature (or arbitrary radii of curvature), (2) constant stress, and (3)
arbitrary stress distribution.

The possibility of preventing plastic deformation for such structures
under stringent operating conditions by the utilization of residual stresses is

discussed.
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NOM-NCLATURE

D = Plate stiffness factor, (in.)>(1b).

E = Modulus of elasticity, 1b/in.2

M = Poisson's ratio.

h = Tube wall thickness, in.

Yy = Dimension measured approximately normal to tube centerline

(see Figs. 1 and 3), in.

X = Dimension measured approximately parallel to tube centerline
(see Figs. 1 and 3), in.

R = Radius of curvature of a deflected beam, in.
A)B)C)D}
C2,C3,C4, = Constants of integration.
C5)C6
B = OSee nomenclature of Reference 1. Also constant used to define
desired stress distribution. See equation (33).
! = Tube length, in.
. -
0 = Bending stress, lb/ln.
Q = Heat flow, Btu/hr.
) . (Btu) (in.)

k = Thermal conductivity, ) (3n.2) (or)

A = Area, in.%

AT = Temperature difference between ends of tube, °F or °R.
d = Tube diameter, in.

r = Tube radius, in.

& = Temperature coefficient of expansion, %EEEE%_

, inch-"F

Ci = Constant defined equation (13).

K3 = Constant defined equation (16).

Koz = Constant defined equation (21).

js) = dy/d.X.

e = DBase of natural logarithms.

v = Shear, 1b.

M = Moment, (in.)(1b).
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INTRCDUCTION

A major problem in the design of high-temperature equipment is the
provision for an analysis of thermal stresses. This problem is of especial
importance in heat-exchange equipment, certain types of turbomachinery (as
turbines, compressors, and pumps handling high-temperature fluids), in nu-
clear reactors, furnaces, and numerous other equipment items.

The thermal-stress problems which must be considered involve (1)

a radial temperature gradient across a tube wall as in a heat exchanger or
across the disc of a rotating machine and (2) an axial temperature gradient
which may be encountered in certain types of heat-exchange equipment, in the
support casings of pumps and turbines, and in various other applications.

The present treatment is concerned with stresses due to the exis-
tence of an axial temperature gradient in a tube, which may be either a por-
tion of a heat éxchanger or of the casing or rotor of a turbomachine. 1In
general, stresses of this sort will exist in combination with other types
of stresses, as, for example, the direct stress due to pressure loading of
a pipe. The total stress and deflection at a point are the result of a sum-
mation of their individual componenis. This paper considers only the com-

ponents resulting from the thermal conditions.

GENERAL SITUATION

A thin-walled tube under a uniform axial temperature gradient, with
unrestrained ends, is not thermally stressed, since it is free to assume the
deflection curve dictated by the axial temperature distribution (it is assumed

that the axial gradient is symmetrical about the centerline). Under these
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conditions the deflected tube will become a straight cone. However, if the
tube is joined at the ends to members of increased cross section (i.e.,
flanges), the situation is basically altered. In general, the axial temper-
ature gradient in the flanges will be less than that in the tube, or approxi-
mately zero, considering the larger cross-sectional area available to a con-
stant heat flux. Consequently the angle of deflection assumed by the flange
will be less than that of the tube. Since tube and Tlange are securely joined,
the deflection curve and its slope must be continuous at this point, and the
tube will‘%e forced to accommodate itself approximately to the slope and de-
flection which would be assumed by the flange in the absence of the tube (due
to the presumably much greaﬁer stiffness of the flange). Thus, as shown in
Fig. 1, there will be bending stresses induced in the tube whiéh are at a max-

imum at the joint and extend a considerable axial distance into the tube.

CONSTANT WALL THICKNESS CASE

If a tube of constant wall thickness is joined to a flange of rela-
tively infinite stiffness, the tube being subjected to a uniform axial tempera-
ture gradient and the flange to zero axial gradient (assuming that a constant
heat flux is conducted axially through the flange and tube), an analysis fol-
lowing existing literatureI sﬁows that the local bending of a thin-walled
cylinder (i.e., "inward or outward crimping” of the end for example) may be
compared to the case of a beam on an elastic foundation (i.e., the restoring
force throughout the length of the beam.is proportional to the deflection).
This analogy is based on the fact that a thin longitudinal strip of the cylin-

der may be considered as supported by the neighboring strips (with the proper

1. S. Timoshenko, Strength of Materials (énd ed.; New York: D. Van Nostrand
Co., Inc., 1941) II, pp. 1 ff. and pp. 164 ff.




function of the angle applied)—Fig. 2. The stiffness of the strip is in-
creased by the neighboring strips in the same manner as that of a plate and

Timoshenko's factor

D = E h3 . (1)

12 (L - “25

used in the plate analysis must be used instead of EI.

The deflection curve for a seml-infinite, thin-walled tube, built
into a flanged end, and under axial temperature gradient is shown in Fig. 1.
It is assumed that the axis coincides with the deflected position of the tube
wali for the case of unrestrained ends. Then for restrained ends, the tube-
wall deflection at the end is zero (since the flange and tube are assumed at
equal temperature at the joint), but the slope is equal to tan © where @ is
the angle of deflection of the unrestrained tube wall. This case may be solved
‘by using Timoshenko's semi-infinite beam on an elastic foundation analysis, and
substituting the plate stiffness factor D for EI. The basic differential equa-

tion is as follows:

Xt~ R (2)

The deflection curve (and the bending stress) from this analysis is
aidamped harmonic curve. For most metallic structural materials including
steel, (depending on the values of Poisson's ratio), the stress will be reduced
to about 15% of the maximum value where the distance from the tube end is equal
to about one-third of the square root of the product of tube diameter and wall
thickness. However, the deflection is not reduced to this value until the
square root of this product is equal to the distance from the beam endo Thus,
if the tube is quite short, it will be necessary to consider both ends. This
may be accomplished from Timoshenko's basic analysis, using the principle of

superposition [since the differential equation (2) is linear, this procedure



is justified]. It is possible to superimpose two infinite beams (the case of
the single infinite beam loaded at one point is shown in detail in Timoshenko),
one loaded at the point coinciding with one tube end, the other at the other
tube end, with a moment and a shear (Fig. 3). Consider X positive to the left
and the origin for each beam as shown. Then the region of interest (i.e., the
region which coincides with the tube length) of beam No. 1 lies to the left of
its origin and that of beam Nb; 2 to the right. The general solution for the

differential equation for each beam separately is

y = P (A cos Bx + B sin Px) + e Px (C cos Bx + D sin Bx) . (3)

Since for both beams the deflection at infinity must be zero, only half of
the general solution is applicable for each beam (depending upon whether the
regioﬁ of interest is to the right or left of the origin). It is possible to
transpose the solution for one beam into the coordinate system of the other
and then add the solutions, giving the resultant deflection for the composite
beam.

For beam No. 1,
yi = Pxa (C cos Bxy + D sin Bxy) . (&)
For beam No. 2,
. Px2 - i
Yo = e (A coz Bxp + B sin Bxs) . (5)

Set X = x3 - {, then

y = Y1+ Y2 = Px1 (C cos Bxy + D sin Bx;)

+ eB(Xl-l)[A cos B(x1-4) + B sin B(x1-£)] . (6)

This expressiqn contains four arbitrary constants and is subject to four bound-
ary conditions; i;e., the deflection must be zero and the angle of deflection

that of an unrestrained beam at each tube end. There are then four equations



for the four constants. It is possible to calculate the moment from the second

derivative equation and, hence, the stress at any point.

DESIGN METHODS FOR REDUCING STRESS

Where the axial temperature gradient is severe and the material is
seriously weakened by elevated temperature, it may be found that the bending
stresses, as calculated above, for the case of constant wall thickness, are
too great for a successful design. Several possible approaches have been con-
sidered for the designing and calculating of structures consistent with rea-
sonable stresses under the most stringent conditions. These methods involve

a deviation from the concept of constant tube-wall thickness.

1. CONSTANT RADIUS OF CURVATURE AND POSSIBLE VARTATTONS

The bending stress in any beam of constant thickness is inversely
proportional to the radius of curvature of the beam under deflection. Thus
it would be desirable if this radius could be maximized at all points (if the
resultant benefits were not sacrificed by too large an increase in wall thick-
ness). Consider a tube built into a much heavier section (with consequent re-
duced axial temperature gradient and slope of deflection curve in the heavier
section). The wall of such a tube will exhibit virtually zero slope of deflec-
tion curve at each end. As shown in Fig. 4, a maximum radius of curvature may
be obtained at all points if the deflection curve is caused to follow a con-
stant radius with an inflection point at midspan. To calculate this radius,
it is first necessary to compute the change in tube radius Ar from the known
temperatures at the tube ends and the properties of the material. The radius
of curvature then may be eésily found from geometric considerations (Fig° by,
If it is desired that the stress level be higher at one end of the tube than

at the other, because of a difference in allowable stress due to different
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temperatures, it is possible in the same way to use a shorter radius at the
high-stress end.

It is possible to design the tube-wall thickness in such a way that
the natural deflection curve under temperature will follow the assumed constant
radius curve. A rough estimate shows that substantial deviation from this tem-
Perature-controlled deflection curve is impossible because of the large restor-
ing hoop stresses that must result. The necessary wall thickness may be cal-
culated for each point from the consideration of continuity of heat flow. This
may be accomplished graphically using the standard procedure of a heat-flow net.
It may also be approximated by dividing the tube length into a number of seg-
ments and calculating the required mean thickness of each segment to pass the
total heat flow, considering the temperature drop between segment medians as
approximated from the assumed deflection curve—deflection being directly pro-
portional to temperature. If desired, corrections for radiation and convection
losses from the wall may be included. Remembering that the bending stress for
a given moment is proportional to the thickness, the stress may be computed for
any point. The relation between radius of curvature, wall thickness, and stress

is

= Eh
- e ()

If the wall thicknesses are computed as suggested above, the actual
deflection curve will not follow the assumed curve exactly since the bending
stresses are in a direction to reduce the curvature. Thus the actual stresses
will be less than those calculated from this method. The wall thickness result-
ing from calculations. of this type will form a double taper with the minimum
thickness at the center. Therefore, the stresses will be a maximum at the ends
and minimum at the midpoint (where a weld might be advantageously located).

Although the increased section at the ends is desirable, it may not be useful
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in some cases to utilize as thick s section as the above method would indicate
because of the increase of stress with thickness.

If it is desired to change the stress distribution, the following
procedure might be used. A new deflection curve can be assumed deviating in
the desired direction,: If this curve can be expressed as an equation, the ra-
dius of curvature can be calculated at any point from the second derivative.
Otherwise, the curve can be plotted to enlarged vertical scale and the local
radius of curvature foundlin.any region.frOm,consideration of three points in
the close vicinify and the applioation of fhe relations shown in Fig. 5. Once
the deflection curve is assumed, the wall thicknesses can be computed as sug-
gested for the constant radius case. Then it is possible to calculate the
bending stresses by“equation (7). To achieve the Qesired stress distribution
in this way is a trial-and-error process. It is also possible to assume a
wéll-thickness distribution, compute deflection from temperature, and then

check stresses by the method outlined above.

2. CONSTANT-STRESS DESIGN AND VARTIATIONS

Consider again_the case of a tube under axiél temperature gradient
built into relatively heavy end sections, where the temperature gradient is
controlled by heat conductiéh axially through the wall.

For a given minimum and/or maximum wall thickness, that distribution
of wall thickness which gives a constant stress throughout, or over a reason-
able portion of the length, may be desired. On the other hand, it may be de-
sirable in some cases to allow a higher stress at one end than the other be-
cause of temperature weakening effects on the material. Conéidering the first
alternative, it will be ﬁoted from equation (7) that the stress is constant if -
h/R is constant. This condition leads to the differential equation and solution

given below.



Eh ~ Eh a2y
2R (1-u=) ~ 2 (1-p%) ax=2

(e} =

From the heat-flow equation,

Q = kA dT and A = ndh
dx
Then
ax _ kndh
dT -~ Q
and
ay = O 9 R so that @5 = EL Eﬂi h
aT 2 y ad  Q
or
_ §§ 2kn
T dy aQ
Let
2kx 1  dx
Cl = m s SO h = EI as;

Substitute (13) into (8) to give

2

o]
<

ax E

1
G, @ I Ty - °©
or
a2y 20 Gy (1-p®) dy _ |
ax= T ax
Iet
_ 20 (1-p®) Cy
K = -
so that
2
a7y _ dy _
mE T kg =0

(10)

(17)

The solution to this second-order, linear, homogeneous, constant-coefficient,

differential equation may be written



y = Cgemx-+cs . (18)

Assume, for example, the following boundary conditions:

1/2
Ar/2

0 b) at x
0 y

a) at x
N

I
I

The x-axis is considered to be parallel to the centerline of the
tube and to pass through the tube wall at one end (Fig. 6). The second bound-
ary condition implies that the deflection curve is to be symmetrical about the
midspan point which is then a point of inflection. However, the equation here
considered covers only half the length. For the total solution, a similar equa-
tion with the origin at the opposite end would be considered.

If these boundary conditions are applied, (18) becomes

_ Ar cKix_
y = o(efa 1/2]) (eM®-1) . (19)

The expression Ar = & % AT. Substitute this and equation (16) into equation

(19); substituting also for Cq:

_ ad AT ho(l-u2) kex (20)
o= 20 (1-p2) kig e OQE -1
b (e QQE -1
Let
_ 2(1-p2) kx
K2 - aF. (21)
so that (20) becomes
ad AT 2Ks ox
yo= X, ol {- *‘%j'” . (22)
D = e -1
ke Q -1 ‘
Differentiating (22) we may write

& T Ko & e Q
2 e Q - 1

and then substituting (23) into (13)



ol

|:K2 Q :] -2Ks ox
h = OCQ, 2 e - 1 e Q (2)4-)
2kt 0od AT Ks o

K gl
Q,L 2 E ‘l -2Ko 0%
h = — .
W T Ko ¢ ° (25)

Thus we have a solution showing an exponentially decreasing wall
thiékness up to the midpoint. Considering the other half of the tube length
as a mirror image, the wall thickness will then increase in the same way.

To solve any particular case, consider equations (21) and (25). The
steps in the solution are:

a. Evaluate Ky from (21) from the material characteristics.

b. Select an allowable stress limit, o, and evaluate h from (25) as
a function of Q.

c. From physical conditions related either to the required thickness
at the flange end for bolting, etc., or to the minimum allowable
thickness at midspan governed by fabrication, pressure, etc., se-
lect h. Solve for Q.

d. If h at any point or Q are inacceptable for other reasons, re-examine
o and repeat.

In this way it will become apparent whether or not a constant stress

solution is possible consistent with the other requirements.

VARYING STRESS

Rather than having a‘constant stress, it may be desirable that the
stress vary in a predetermined manner along the tube axis. For example, it
may be required that stress should increase as a function of distance from the
high-temperature end (since allowable stress is an inverse function of the

temperature). In that case, it is necessary to set equation (8) equal to f(x)
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rather than a constant g. This leads to the following derivation:

(8) becomes 2(§§u27 gig = f(x) (26)

and (15) may be written

Py | 2f(x) ¢ (1) dy _ (27)
dx=< E dx
or
2
a7y _ 2Ko QZ _
P &5 T zx =0 (28)

Call dy/dx = p so that

dp 2Kz -
= -2 pf(x) = O (29)
and
dp _ 2Kz
p - Q f(X) dx 2 (50)
SO .
=Ko fx f(x) 4
—_— X X
Cpe & Vo = %}% (31)
or
X
s [* 0 o
vy = C4 e @ Jo (x) dx + Cg . (32)

If the boundary conditions used in the case of constant stress are
assumed again, the condition that for x = 0, y = 0 gives Cs = 0.

C4 must be evaluated after integration. Depending on the assumption
for the desired stress function, f(x), this integration may or may not be
graphical. With C4 evaluated it is possible to substitute (32) into (13) to
give the necessary expressions for h: |

o “E_QKg £(x) ax
= O °
h 2k Cq © (53)

If for example f(x) = o, + BX,
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2K
no o= Qq —Qg (oox + B x2/x) | (3h)

okx Cp ©

(33) or (34) is analogous to (25) in the constant stress case. For a given
solution it is necessary only to consider (21) and (33) and proceed in the

manner previously outlined.

ALTERNATIVE APPROACHES

Whatever design method is used, it is always possible to use "locked-
up" residual stresses to prevent excessive stresses (or plastic deformation) in
the opefating condition. In other words, if the component is prestressed to
near yield in the direction opposite to that expected upon heating, bending
stresses of approximately the sum of the yield stresses in the normal and ele-
vated temperature conditions may be allowed without plastic deformation. This
may be accomplished by proper application of a weld, by mechanical stressing,
or simply by subjecting the component to conditions more severe than the normal
operating condition and relying upon the resultant plastic deformation on this

first cycle.
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Ar 2., f 2 @
(R——z—) + ( > )" =R

OR ‘
R_(Ar)z+ I 2 o Re
T 4Ar 4Ar

Fig. k. Constant radius of curvature case,
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Fig. 5. Local radius of curvature.

Fig. 6. Constant stress solution (schematic representation).,
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