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1.0 INTRODUCTION

The problem of natural convection heat and mass transfer within closed
vessels wherein the heat is generated internal to the fluid and removed
through coolant passages surrounding or within the fluid vessel hag assumed
increasing importance of late in connection with homogeneous nuclear reactors.
The problem of natural convection flow without internal heat sources in a
tubular vessel with a single closed end (opposite end connected to an
infinite reservoir) which is also of moderate length to diameter ratio has
been considered in some detail by Lighthi.ll’l for the case with constant

wall temperature. The case of the similarity regime (defined later) ir a
vertical tubular vessel, closed at one end and connected with an infinite
reservoir at the other as in the Lighthill case, but with a linear, axially-

2
varying wall temperature, is examined by Ostrach.

It is the purpose of this paper to present a method of solution for the
cage of a vertical tubular vescel with both ends closed in which heat is
generated in an arbitrary axial distribution of heat source strength and
removed through walls which are ﬁnder arbitrary temperature distribution.
This case has been examined because of the application to homogeneous
nuclear reactors. Since the heat sgource term in a power reactor is of

an order of magnitude higher than conventional sources, it has been
assumed that a modified boundary layer solution may be applied. It

was pointed out by Lighthilll that the internal flow might be expected to
fall within one of the following regimes, depending upon a parameter which
is the product of the Rayleigh Number and radius to length ratio for the

tube:



1. Similarity Regime. If the above parameter is small, i.e., Rayleigh

Nﬁmber small or tube slender so that the temperature and velocity
profiles are fully developed and their shapes (not magnitudes) do
not vary with axial position. In other words, the boundary layer
completely fills the tube.

2. Intermediate Regime. The boundary layer fills a substantial portion

of the tube radius but the "fully developed" regime is not attained.

3. Boundary layer Regime. If the above parameter is very large, i.e.,

large Rayleigh Number or short tube, the boundary layer does not
have sufficient axial extent to grow into the central portion of
the tube and thus occupies only a negligible portion of the radius.
In the extreme case, the flow is completely analogous to a flat
plate in an infinite fiuid. However, the type of solution may

be extended somewhat into the "intermediate regime" by utilizing
partially arbitrary assumptions of temperature and velocity profile

for the boundary layer and the central core.

It is this latter procedure which is extended in this paper to the casge
with both ends closed, internal heat source, arbitrary axial wall tempera-
ture distribution. As stated by Lighthill; the applicability of this
type of solution depends upon the product of Rayleigh Number and radius
to length ratio being large. In terms of the present analysis, some of
the following factors must apply in varying degree if the modified boundary
layer assumptions are to be used.

1. Absolute tube dimensions large, or

2. Heat source strong, or



3. Length to radius ratio of tube small, or

4, Thermal diffusivity and kinematic viscosity of fluid small.
If the application is to be homogeneous nuclear power reactors, the
heat source may be assumed strong, but the passage dimensions and length
to radius ratic may be small. Also, if the fluid is a liquid metal, the
thermal diffusivity may be relatively very large. However, as will be
seen later, the assumptions which are made appear to limit the type of
solution to fluids with a Prandtl Number of the order of unity. It has
been assumed for the purposes of this paper that the heat source term
for aqueous homogeneous power reactors is sufficiently large so that
the modified boundary layer type solution herein described is of
interest. The analysis presented applies only for laminar flow. It
is realized that turbulence may well exist for many applicable cases.
However, the laminar analysis should be of interest in at least in-

dicating the proper trends.

Although the present analysis appears limited to aqueous fluids, the
trends which are indicated should apply also to some extent to liquid

metals.

It is hoped that this paper may be followed by others in the near future
reporting the results of machine calculations for a variety of applicable
boundary conditions using the method of solution herein presented, and

also experimental data to be derived from a program presently underway.



2.0 ANALYSIS OF PROBLEM

2.1 Lighthill Approach

As previously mentioned, the Lighthill analysis considered a vertical
tube, closed at one end and open at the other to an infinite fluid
reservoir. The tube walls were maintained at a constant temperature,
different from the reservoir temperature. According to the analysis,
if the product of Rayleigh Number and radius to length ratio is
sufficiently large, the flow is of the boundary layer type. If it

is somewhat smaller, it is necessary to consider the effect of the
return velocity in the central portion of the tube. Under these
conditions, the return flow in the core will be at constant tempera-
ture since the influence of thermal conduction between the core and

the boundary layer is small.

To analyze this situation, it is assumed that
1. The boundary layer approximations apply.
2. Fluid inertial forces are small compared to bouyancy and
shear. As Lighthill shows, this condition results if the
Prandtl Number is large. (Thus, direct application to liquid
metals appears unlikely.)
3. The radial extent of the temperature and velocity boundary

layers 1s the same.

Further, a velocity and temperature profile as shown in Figure 1 are
assumed. These are caused to satisfy the physical boundary conditions

at the wall, the centerline, and r = B for the quantities and their



first derivatives. Integral equations for the conservation of mass,
momentum, and energy are written for each radial disc (Figure 2);
i.e., these quantities are not satisfied point by point but on an

integrated basis.

The assumed velocity and temperature profiles, in non-dimensional
form are as below. The meanings of the symbols are given in Nomen-
clature. The parameters £, 7y, and © are functions of the axial
position, x. However, the non-dimensional core temperature, tl*,

is constant with x.

-y for O<B<r

T 6y

{1+ 5(r -1)}] for p<r<1 (1)
ty for O <r<s§g

tl[—< 5]fora<r<1 (2)
1-5

Modification for Volumetric Heat Source and Arbitrary Axial Wall

Temperature Distribution

The procedure to include the effect of the volume heat source and

the arbitrary wall temperature distribution is similar to that of
Iighthill except that the energy equation is modified to include the

heat source term, and the assumed velocity and temperature profiles modified
to allow a variation of core temperature in the axial direction. Under

these conditions, the assumed profiles are:

-y for 0O<B<r

-7|:1_<r->{1+6r—l§| for g<r<1 (1)
1L -8

*Non-dimensional temperature, t, is actually the product of the Rayleigh
Number based on radius and the radius to length ratio. See Nomenclature.

-5-




which is unchanged from the Lighthill relation (1) and

(x) for 0<B<r

xl:—< ):Iforfs<r<l (2')
1 -8

The maximum fluid temperature will be attained at the top of the vessel

in the core. In the non-dimensional quantities, this will be té + tw 5
o]

defined in terms of the temperature difference between fluid at center-

line and wall at top plus the temperature difference between the top

and bottom of the wall. (See Figure 2 for illustration.)

As given by Lighthill, the integrated forms of the equations expressing

conservation of mass and momentum are:

1 ,
Jrudr=0 (3)
(6]

1

Jrtadr+1(t) _+ fou =0 (&)
0] § r=0 B_I_‘ r=1

The integrated form of the energy relation, broadened over Lighthill's

case to include the heat source term, is:

J frutdr () —qv (5)
0x o© -

where dy is a non-dimensional heat source term which is proportional
to the product of the local volumetric heat source and a grouping of
the physical fluid quantities. The precise definition is given in

the Nomenclature.

The assumed velocity and temperature profiles, (1') and (2'), are

substituted into (3) and (4) as in the Lighthill analysis. Equation (3)

-6-



yields & as &(B) exactly as in the Lighthill case. Egquation (L),
using the relation for & from (3), yields y as y(t, B). The ex-
pression 1s the same as that of Lighthill except that t,; of Light-

hill becomes t(x). Thus,

7 =t(x) 3+B)3 +28)(1 -B) =t(x)a(p) (6)
36(3 + 4B + 38°)

The relations (1'), (2'), and (6) are substituted into the energy
relation (5), following the Lighthill procedure. The right side of
the resultant relation will differ from Lighthill's case because of
the presence of the heat source term. The left side, however, will
also differ. The term in question is
1

[ rutar

o
In the Lighthill analysis, t was a function of B multiplied by a
constant, tl. Now, however, the multiplier temperature is a func-

tion of x.

As shown in the Appendix
1
O [rutadr=2a[t3x)F(p)] (7)
ox © dx

where F(B) is as evaluated by Lighthill and is given in the Appendix.

Then the whole energy relation, integrated in an axial direction, is:



IXN art2(x)r(p)7 = IXN t(x) ax - &v IXN dx (8)
xy.1 Xy 1B oy
2GR LY = F Y () ax - SO - ) (9
N XN‘lJ Xy, +P N
‘ Y : - ) )
Convection wWall Conduc- Heat Source
tion

Equation (Y) is essentially the energy relation for the radial disc
shown in Figure 2. However, the relations for conservation of mass
and momentum have also been used in the derivation. There are two
independent variables in (9), t and x. Consequently, it is necessary

to formulate an additional relationship in order to allow a solution.

The addition relation which has been used is that between axial posi-
tion and the fluid temperature along the vessel centerline. Consider
the control volume sketched in Figure 3. It is assumed that fluid
transfer from the core to the boundary layer has only negligible
effect on energy conservation for the core. It is also assumed that
thermal conduction to or from the control volume is negligible.

Order of magnitude calculations for those cases to which this type

of modified bowndary layer solution may be applied show that these
assumptions are Justified. Conservation of energy for the control

volume gives:

Q, [axn(BR)?] = Cvon(BR)2AX<E;_>UC (10)
&
so that
T - - 9 (11)
ax pCVUC



2.3

or in the non-dimensional quantities (see Appendix)

at(x) = v (12)
dx 4
Thus,
*N |
SICH N Ev7 (g - %y 1) (13)

The basic set of equations to be solved are then (9) and (13)-

Difference Equations for Arbitrary Wall Temperature and Heat Source

Axial Distribution

Rather than attempting to find analytic solutions for various special-
ized conditions of the boundary value problem it was considered more
useful and practical to utilize an approximate numerical‘procedure
and maintain a completely arbitrary specification of the axial dis-
tribution of wall temperature and heat source. The numerical pro-
cedure was designed for programming into a high-speed digital

computer.

It is evident that the derivation for Equations (9) and (13) has
cansidered a constant wall temperature where the t variable is related
to the temperature difference between the fluid at any axial and
radial position and the tube wall at that axial position. A change

in variables is now made so that t = t' + tys where t' is related

to the temperature difference between wall and fluid at any axial
position as was t, and,tW is related to the temperature difference
between the wall at any axial position and the wall at the bottom.

This latter location represents the minimum temperature in the system.



As previously mentioned, Equations (9) and (13) are written for any
of a series of radial discs (Figure 2) which together comprise the
entire vessel. If a sufficient number of such discs are employed,

it is permissible to consider the wall temperature constant for

each disc. Then, Equation (9), which is basically the energy balance
for a disc, does not involve the axial wall temperature gradient

and is the same whether variable or constant wall temperature is
considered. In other words, the tW portion of t makes no contribu-

tion.

On the other hand, Equation (13), expressing the fluid axial tempera-
ture distribution alaong the centerline, must consider the fluid
temperature as such, including both portions which make up the total,
rather than just the temperature difference between the fluid and
wall at a given axial position. The heat source term may be con-
sidered as & mean value for each disc, qVN' Equation (9) is un-

changed except that t' is used for t, and (13) becomes (15) below.

[t 2(x)F(B) - fo t(x) dx - Yy~ *y-1)

Ix = (
N-1 1h)
o 1P b
Xy -
[t (x) + t,(x)] = lxy - %) (15)
1 =
4
As is shown in detail in the Appendix, these may be reduced to the
approximate difference equations listed below.
2 2
t! - t!-F -t 4+t L+
T o P R S FE TR I (16)

Xy - Ayl 2ByBy  *
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2.4

b (% = Xg_7)
(' + )y = (87 + 1), o 1 - vy § TN-l (17)
(6" + )6 {Gy + Cy_qp)

For a consistent solution, A — 0.

Boundary Conditions

The boundary conditions of zero slip on the walls, walls impervious

to the fluid, wall temperature equal to the fluid temperature ad-
Jacent to the wall, heat flux through the wall equal to the conductive
heat flux normal to the wall within the fluid and insulated end sec-
tions¥* are all implicit in the basic equations used and the assumed
temperature and velocity profiles. The remaining conditions to be
applied are concerned with the end effects. Physically, these may

be stated in various ways. For example, if the tube as an entirety

is considered, then the overall heat convection term in Equation (9)
must vanish, and the total heat source equal the total wall conduction.
From another viewpoint, the mixed mean boundary layer effluent tempera-
ture at the bottom must equal the mixed mean temperature of the ascending
core at that point. Also at the top, the mixed mean temperature of the

core effluent must equal that of the boundary layer.

The latter statement can be satisfied with the assumed temperature
profile only if
1. there is no radial temperature gradient at the tube ends, or
2, the boundary layer thickness at the ends is zero.

In this last case, assuming non-infinite veloeities, the.core and

boundary layer flows at the ends must be zero. (The postulated

*Tt 1is possible to consider heat flow through the tube ends if desired
by simply selecting a suitable qv for each extreme discs.

-11-



over-simplified flow model is not capable of an examination of tle
detailed end conditions.) Since there is a temperature difference
between the fluid at the tube centerline and the wall at the top,
it is necessary that the boundary layer thickness at the top be
zero. This is physically necessary in any case from consideration

of the basic boundary layer flow mechanism.

Examination of Equation (9) and the form of F(B) given in the
Appendix, shows that when B is 1.0 (i.e., zero boundary layer
thickness), F is zero, and hence tgF is zero. Since it is neces-
sary that the overall convective term vanish for the tube, t2F

at the bottom must be also zero. This is accomplished if either

the boundary layer thickness or the radial temperature gradient
becomes zero at the bottom. As the calculations show, the specifica-
tion of either of these conditions carries with it the other. 1In

this manner, all the boundary conditions are satisfied.

Calculating Procedure

The calculating procedure is a double iteration designed to satisfy
the condition of zero boundary layer thickness at either end.
Physically, if the wall temperature distribution and heat source
are specified, the solution to the problem must be unique (assuming
given physical properties of the fluid). Assuming that these quan-
tities are specified, each radial disc, starting at the top, is
considered separately. An initial estimate of té at the top is
made. It 1s then possible to compute, for an estimated B, the value

of t' at the bottom of the first disc fram Equation (17). These values

=12~



for t' and B at either end of the first disc are substituted into
Equation (16). If they are consistent, A = Q0. If not, an improved
estimate for B is made. In this way, the calculation proceeds to
the bottom of the tube. If B # O at the bottom, it is necessary to

repeat with an improved estimate for the initial té.

This procedure has been programmed for an IBM-650 high-speed digital
computer and various preliminary points calculated. These preliminary
results are given in the next section. It is anticipated that more
camprehensive analytical results as well as the results of an experi-
mental program which is presently in progress may be presented in the

future.

~13-



3.0 RESULTS OF ANALYSIS

The generalized characteristic of the flow described by this analysis

is a boundary layer descending along the cooled tube walls and a core of
fluid ascending. To this extent, the flow regime is similar to that
described by Lighthill in Reference 1. The primary difference lies

in the fact that the fluid temperature alaong the tube centerline is not
constant as in the Lighthill case, but even for constant wall temperature
there is a strong temperature gradient* slong the tube centerline, with

the temperature increasing toward the top.

As previously stated, physically, if the wall temperature distribution,
the heat source strength and distribution, and fluid physical properties
are specified, then the entire problem is specified. An examination of
the definitions for q, (i.e., mean q,) and t! + ty, shows that they are
algebraically related through the Nusselt Number based on tube radius and
the maximum internal temperature difference as shown by Equation (18).

The algebraic manipulations are shown in the Appendix.

Nu, = Ty (18)
Zité + tW05

It is possible then to plot the Nusselt Number as a function of either
a& or té + t,; with the wall temperature distribution and/or heat source
distribution as a parameter. Curves of these sorts where the Lighthill

results (Reference 1) are compared with the results for constant wall

*Even so, the radial gradient adjacent to the wall is considerably greater.
However, the centerline gradient extends for the length of the tube while
the radial gradient only extends across the boundary layer. Thus, the
temperature differences associated with the centerline gradient are in
many cases much greater.
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temperature with internal heat generation and uniform heat source distribution
are presented in Figures 4 and 5. Figure 6 is a plot of temperature against
heat source,again comparing the Lighthill results with the results of the
present analysis. It should be mentioned that the Lighthill case cor-
responds physically to the application of all the heat through a radial

disc of differential height at the bottom of the tube, and a& must be
interpreted in this manner. Figure 7 shows the variation of boundary layer
thickness with axial position for various uniformly-distributed heat source

strengths and constant wall temperature.

It is noted that the Nusselt Number for the case of internal heat genera-
tion, constant wall temperature, uniform heat source distribution in a
closed tube in the modified boundary layer regime with laminér Tlow is
considerably smaller than that for a tube under similar conditions but
open at one end to an infinite reservoir. From another viewpoint, this
latter case can be stated as that of a closed tube with internal heat
generation wherein the heat is supplied along the bottom end plate rather
than according to a wniform distribution. From a rather naive viewpoint,
the situation may be explained physically by the fact that in the latter
case the maximum temperature difference (upon which the Nusselt Number
has been based) exists across the boundary layer for the entire length

of the tube, whereas for the case of uniform heat source distribution,
the maximum tempersture difference acrogs the boundary layer is applied

only at the top (it decreases to zero at the bottom).

It is anticipated that as the digital computer calculations proceed

further detailed results for the above cases and for various wall temperatures



and heat source distributions may be presented along with experimental

results from a program presently in progress.
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4.0 NOMENCIATURE

T Temperature

U, u Dimensional and non-dimensional veloclty in axial
direction

X, x Dimensional and non-dimensional coordinate in axial
direction

R, r Dimensional and non-dimensional coordinate in radial
direction

£, a Length and radius of tube

o] Density

Cy Specific heat

k Thermal conductivity

K Thermal diffusivity, k = k/pcy

v Kinematic viscosity

Ag Area of tube wall

t Non~-dimensional temperature = g uAT

VK4
t! Non-dimensional temperature difference between wall

and fluid at any given axial position. Subscript
O applies to top of tube at centerline. Subscript
c applies to centerline (or core) in general.

t Non~dimensional temperature difference between top and
bottom of wall

té + tWo Meximum non-dimensional temperature in the system = Ra -

-17-

o



Ra

Rayleigh Number based on radius and maximum temperature

difference = 088 (Twallpin - Trluidmay)

VK

6

Non-dimensional volumetric heat source = Qva g
pvnzzcv

Nusselt Number based on radius = Eg
k

Acceleration of gravity

Coefficient of volumetric expansion

1 - B is the non-dimensional boundary layer thickness
and PR is the radius at which the boundary layer is

terminated. See Figure 1 and 3.

Non-dimensional functions defined in text

-18-
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1-A Derivation of Energy Equation

Consider a disc as shown in Figure 2 and write an energy balance:

a
ocy| O tf) UT27RAR |Ax = kfOT\ Ax2na + sztagAx
ox OR JR=a

a
d [ 2umRaR = 2k afoT\ +a® %
3x © pc, \ORJR=a

kK = k

SC

or

and

Make the substitutions as below to obtain non-dimensional relations.

X = x4
R =ra
T = -vkf t
wall . ag
U=xtlu
52
1
%%X_J(; g:_é uéwallmln - éﬁ:w: t\(ar)d(ar) = 2:& 5@_ well -a‘;ié' t

8f2utrdr=

%

( ) a2 Olgau' Q
r=1 pcv k% 4
1

aéutrdr‘: ot - 9y
X or/r=1 2

@ ><->}u B

utilizing the assumed temperature profile(2')

27

(1-a)

(2-a)

+ ang
pcy,



1 B 1 p Br
[ rutar-= Blérutdr+frutdr= 5[-7t(x)rdr-7t(x)f -
SE'L X B 5§'£ 1 P

[: _(i - B {} +8(r - 1.}_ r GZ} (7-a)

utilizing the assumed velocity profile (1'), and the assumed temperature pro-

file (2').

Following the procedure of Reference 1, we should get

0 rutdr = [-2t(x) - qv
plrures [k
from (5-a) and
(6-2)
and also
-2 _gEQ(xmsﬂ | (8-2)
&_ix_v__,J
from (7-a)
where

F(B) = (1 - B)3(3 + B)(45 + 1328 + 18182 + 6283)
30240(3 + 4 + 38°)

Integrating both sides of (8-a), and considering the disc of Figure 2,

we get

Derivation of Centerline Temperature Gradient

In dimensional quantities, it was shown in the text (Equation 11):

-28-



Making the non-dimensionalizing substitutions of Section 2-A

d |t Coykst] = - Y (10-a)
5.(-}-{-2-5-[:1~na.115 5§§E':] ooy KE 7
a
6
o - KA % _ oy (11-a)

ox pvn2£cvy 4

3-A Derivation of Difference Equations

Equation (9) may be written in an approximate form as

For a consistent solution,

A -0

Equation (13) combined with (6) gives

G(B)t(x)at(x) = ay Ax

I
where
t =t - At
N-1 7 5
or
AL = vy
G
and
A6(ty o - Ab) Iyl g
2 G
or

where only the negative sign has physical significance.

-29-



SO

- - [1 - 2a
(&) woy = Ty < 1 ﬁ

GtN_l
and
At = tN—l - tN’
¢ =0y * Gy
2
so that
kg
tN = tN"l l - 2 VAX
by [Gy * Gyl
or, as explained in the text,
: .. I -
(t' + tw)N = (b ty)y o |1 - {2y = %) (17)

: 2
(6" + ty)g 1[Gy + Gy 4]

L-A Relations Between Nusselt Number, qy, té + two

3 2
Nu, = ha = Qa - Gmet . G (12-a)
k ASAEman 2ﬂ£aATman 2ATman
where
Q 1is total heat input rate
Q& is mean volumetric heat input rate
By definition:
6
Qva Qg
% = vnecvpz = Q§a2 = Nuy
2085 + by ) gatATg,  2AT .k
VK
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