THE UNIVERSITY OF MICHIGAN INDUSTRY PROGRAM OF THE COLLEGE OF ENGINEERING SUMMARIZATION OF STUDIES ON NUCLEAR HEAT ENGINE SYSTEMS Frederick G. Hammitt April 1958 IP - 275

ACKNOWLEDGEMENTS The author would like to acknowledge the assistance of the following Engineering Research Institute personnel in conducting the work described in this report: Wm. Beckman, E. M. Brower, R. K. Fu, Y. T. Hwang, J. L. Summers, and W. J. Yang. In addition Professor H. A. Ohlgren was project supervisor of the Engineering Research Institute Project under which the work was conducted and as such aided in the overall guidance and in the definition of the scope of the effort.

TABLE OF CONTENTS Page LIST OF TABLES iii LIST OF FIGURES iv lo INTRODUCTION 1 2.0 FEAT ENGINE SYSTEMS CONSIDERED 3 3.0 GAS TURBINE CYCLES 5 3o1 General Limitations 3.2 Scope of Optimizations Conducted 6 3~3 Recommendations for Additional Studies 7 30-4 Optimizations Accomplished 8 4.0 FEAT ENGINE SYSTEMS OTHER THAN GAS TURBINE 23 4. 1 Steam Powerplants 24 402 Rankine Cycles for Fluids Other Than Water 27 5o0 CONCLUSIONS FROM STUDIES 32 ii

LIST OF TABLES Number Page IO Assumed Component Efficiencies for the Basic Gas Turbine Cycle 33 II. Performance Data for Typical Optimized Nuclear Powered, ClosedCycle Gas Turbine Power Plants 34 IIIo Boiling Cycle Fluids 35 IV. Tabulated Efficiencies of Binary and Trinary Vapor Cycles at 1500 F Inlet, 70 F Cooling Water (1" Hg condo) 36 iii

LIST OF FIGURES Number Page 1. Schematic flow diagram of the basic gas turbine cycle. 37 2o Thermal efficiency of a gas turbine cycle with various cycle arrangements ("basic" cycle)o 38 3. Thermal efficiency of a gas turbine cycle with various cycle arrangements ("basic" cycle without recuperator)o 39 4o Thermal efficiency of a gas turbine cycle with various cycle arrangements ("basic" cycle without intercooler)o 40 5. Thermal efficiency of a gas turbine cycle with various cycle arrangements ("basic" cycle without recuperator and intercooler)o 41 60 Thermal efficiency of a gas turbine cycle with various cycle arrangements ("basic" cycle with reheater)o 42 7. Thermal efficiency of a "basic" gas turbine cycle with recuperator effectiveness = 0.935 45 8. Thermal efficiency of a "basic" gas turbine cycle with recuperator effectiveness = 0.75. 44 9. Thermal efficiency of a "basic" gas turbine cycle with recuperator effectiveness = 0.50. 45 10o Thermal efficiency of a "basic" gas turbine cycle with frictional pressure losses = 0.07. 46 11o Thermal efficiency of a "basic" gas turbine cycle with frictional pressure losses = 0.12. 47 12. Thermal efficiency of a "basic" gas turbine cycle with frictional pressure losses = 0.20. 48 13. Thermal efficiency of a "basic" gas turbine cycle with turbine efficiency = compressor efficiency = 0o85. 49 14. Thermal efficiency of a "basic" gas turbine cycle with turbine efficiency = compressor efficiency = 0.80, c 50 15. Thermal efficiency of a "basic" gas turbine cycle with'turbine efficiency = compressor efficiency = 0.75. 51 16. Flow rate and flow area vso temperature for air and helium regenerative gas turbine cycle. 52 17. Turbine efficiency for helium power plants of various turbine horsepower (T1 = 15000F)o 53 iv

LIST OF FIGURES (continued) Number Page 18o Turbine efficiency for helium power plants of various turbine horsepower (T1 = 12000F). 54 19o Turbine efficiency for helium power plants of various turbine horsepower (T1 = 900~F). 55 20o Turbine efficiency for air power plants of various turbine horsepower (T1 = 1500F)o 56 21. Turbine efficiency for air power plants of various turbine horsepower (T1 = 1200~F)o 57 22. Turbine efficiency for air power plants of various turbine horsepower (T1 = 900~F)0 58 235 Turbine efficiency for C02 power plants of various turbine horsepower (T1 = 1500~F)o 59 240 Turbine efficiency for C02 power plants of various turbine horsepower (T1 = 12000F)o 60 25. Turbine efficiency for C02 power plants of various turbine horsepower (T1 = 900~F). 61 26. Turbine diameter for helium power plants of various turbine horsepower (T1 = 1500~F), 62 27. Turbine diameter for helium power plants of various turbine horsepower (T1 = 1200~F)o 63 28o Turbine diameter for helium power plants of various turbine horsepower (T1 = 900~F), 64 29. Turbine diameter for air power plants of various turbine horsepower (T1 = 15000F)o 65 30o Turbine diameter for air power plants of various turbine horsepower (T1 = 1200~F)o 66 31. Turbine diameter for air power plants of various turbine horsepower (T1 = 900~F)o 67 32. Turbine diameter for C02 power plants of various turbine hp (T1 = 1500 F). 68 33. Turbine diameter for CO2 power plants of various turbine hp (T1 = 1200~F). 69 34. Turbine diameter for CO2 power plants of various turbine hp (T1 = 900~F)o 70 v

LIST OF FIGURES (continued) Number Page 35~ Schematic diagram for heat exchanger. 71 360 Nuclear-powered regenerative closed-cycle gas turbine plants "basic cycle" air (maximum cycle temperature = 1500~F)o 72 37~ Nuclear-powered regenerative closed-cycle gas turbine plants "basic cycle" air (maximum cycle temperature = 12000F). 73 58. Nuclear-powered regenerative closed-cycle gas turbine plants "basic cycle" air (maximum cycle temperature = 9000F). 74 39, Nuclear-powered regenerative closed-cycle gas turbine plants "basic cycle" helium (maximum cycle temperature = 1500~F). 75 40~ Nuclear-powered regenerative closed-cycle gas turbine plants "basic cycle" helium (maximum cycle temperature = 1200~F)o 76 41 Nuclear-powered regenerative closed-cycle gas turbine plants "basic cycle" helium (maximum cycle temperature = 900~F)o 77 42O Nuclear-powered regenerative closed-cycle gas turbine plants "basic cycle" air (maximum cycle temperature = 1500~F). Regenerator cross-sectional area vs. plant output, 78 415 Nuclear-powered regenerative closed-cycle gas turbine plants "basic cycle" air (maximum cycle temperature = 1200~F)o Regenerator cross-sectional area vso plant output. 79 44. Nuclear-powered regenerative closed-cycle gas turbine plants "basic cycle" air (maximum cycle temperature = 900~F)) Regenerator cross-sectional area vs. plant outputa 80 45. Nuclear-powered regenerative closed-cycle gas turbine plants "basic cycle" helium (maximum cycle temperature = 1500~F). Regenerator cross-sectional area vso plant otutput 81 46o Nuclear-powered regenerative closed-cycle gas turbine plants "basic cycle" helium (maximum cycle temperature = 12000F)o Regenerator cross-sectional area vs. plant output. 82 470 Nuclear-powered regenerative closed-cycle gas turbine plants "basic cycle" helium (maximum cycle temperature = 9000F). Regenerator cross-sectional area vso plant output. 83 48o Nuclear-powered regenerative closed-cycle gas turbine plants "basic cycle" air (maximum cycle temperature = 1500~F). Regenerator film coefficient vs., plant outputo 84 49. Nuclear-powered regenerative closed-cycle gas turbine plants "basic cycle" air (maximum cycle temperature = 12000F)o Regenerator film coefficient vso plant output. 85 vi

LIST OF FIGURES (continued) Number Page 50. Nuclear-powered regenerative closed-cycle gas turbine plants "basic cycle" air (maximum cycle temperature = 900~F)o Regenerator film coefficient vs. plant output. 86 51. Nuclear-powered regenerative closed-cycle gas turbine plants "basic cycle" helium (maximum cycle temperature = 1500~F). Regenerator film coefficient vs. plant output. 87 52. Nuclear-powered regenerative closed-cycle gas turbine plants "basic cycle" helium (maximum cycle temperature = 12000F). Regenerator film coefficient vs. plant outputo 88 53. Nuclear-powered regenerative closed-cycle gas turbine plants "basic cycle" helium (maximum cycle temperature = 900~F)o Regenerator film coefficient vs. plant output. 89 54. Nuclear-powered regenerative closed-cycle gas turbine plants "basic cycle" air (maximum cycle temperature = 1500~F). Regenerator film coefficient (cold side) vs. plant output. 90 55. Nuclear-powered regenerative closed-cycle gas turbine plants "basic cycle" air (maximum cycle temperature = 1200~F). Regenerator film coefficient (cold side) vs. plant output. 91 56. Nuclear-powered regenerative closed-cycle gas turbine plants "basic cycle" air (maximum cycle temperature = 900~F). Regenerator film coefficient (cold side) vso plant output. 92 57. Nuclear-powered regenerative closed-cycle gas turbine plants "basic cycle" helium (maximum cycle temperature = 1500~F). Regenerator film coefficient (cold side) vso plant output. 93 58. Nuclear-powered regenerative closed-cycle gas turbine plants "basic cycle" helium (maximum cycle temperature = 12000F)o Regenerator film coefficient (cold side) vso plant output. 94 59~ Nuclear-powered regenerative closed-cycle gas turbine plants "basic cycle" helium (maximum cycle temperature = 9000F). Regenerator film coefficient (cold side) vs. plant output. 95 60. Nuclear-powered regenerative closed-cycle gas turbine plants "basic cycle" air (maximum cycle temperature = 15000F). Fluid velocity on hot side vs, plant output for air. 96 61o Nuclear-powered regenerative closed-cycle gas turbine plants "basic cycle" air (maximum cycle temperature = 12000F)o Fluid velocity on hot side vs. plant output for airo 97 62. Nuclear-powered regenerative closed-cycle gas turbine plants "basic cycle" air (maximum cycle temperature = 900~F)o Fluid velocity on hot side vs, plant output for airo 98 vii

LIST OF FIGURES (continued) Number Page 63. Nuclear-powered regenerative closed-cycle gas turbine plants "basic cycle" helium (maximum cycle temperature = 1500~F). Regenerator fluid velocity (hot side) vs. plant output. 99 64. Nuclear-powered regenerative closed-cycle gas turbine plants "basic cycle" helium (maximum cycle temperature = 1200~F). Regenerator fluid velocity (hot side) vs. plant output. 100 65. Nuclear-powered regenerative closed-cycle gas turbine plants "basic cycle" helium (maximum cycle temperature = 900~F)o Regenerator fluid velocity (hot side) vs. plant output. 101 66. Nuclear-powered regenerative closed-cycle gas turbine plants "basic cycle" air (maximum cycle temperature = 1500F). Fluid velocity (cold side) vso plant output. 102 67. Nuclear-powered regenerative closed-cycle gas turbine plants "basic cycle" air (maximum cycle temperature = 1500~F). Fluid velocity (cold side) vs. plant output. 103 68. Nuclear-powered regenerative closed-cycle gas turbine plants "basic cycle" air (maximum cycle temperature = 1500~F). Fluid velocity (cold side) vs. plant output. 104 69. Nuclear-powered regenerative closed-cycle gas turbine plants "closed cycle" helium (maximum cycle temperature = 15000F). Regenerator fluid velocity (cold side) vs. plant output. 105 70. Nuclear-powered regenerative closed-cycle gas turbine plants "closed cycle" helium (maximum cycle temperature = 1200~F). Regenerator fluid velocity (cold side) vs. plant output. 106 71. Nuclear-powered regenerative closed-cycle gas turbine plants "closed cycle" helium (maximum cycle temperature = 900~F). Regenerator fluid velocity (cold side) vs. plant output. 107 72. Nuclear-powered regenerative closed-cycle gas turbine plants "basic cycle" helium. Regenerator Reynolds number (hot side) vs. max. cycle pressure (any plant output approx.). 108 73. Nuclear-powered regenerative closed-cycle gas turbine plants "basic cycle" air. Regenerator Reynolds number (hot side) vs. max. cycle pressure (any plant output approx.). 109 74. Nuclear-powered regenerative closed-cycle gas turbine plants "basic cycle." Optimum Reynolds number vs. operating pressure on cold side. 110 75. Nuclear-powered regenerative closed-cycle gas turbine plants "basic cycle" air. Regenerator effectiveness vs. plant output. Maximum cycle temperature = 1500~F. 111 viii

LIST OF FIGURES (continued) Number Page 76. Nuclear-powered regenerative closed-cycle gas turbine plants "basic cycle" airO Regenerator effectiveness vs. plant output. Maximum cycle temperature = 1200F. 112 77. Nuclear-powered regenerative closed-cycle gas turbine plants "basic cycle" air. Regenerator effectiveness vso plant output. Maximum cycle temperature = 900~F. 113 78. Nuclear-powered regenerative closed-cycle gas turbine plants "basic cycle" helium (maximum cycle temperature = 1500~F). Regenerator effectiveness vs. plant output. 114 79~ Nuclear-powered regenerative closed-cycle gas turbine plants "basic cycle" helium (maximum cycle temperature = 1200~F). Regenerator effectiveness vs. plant output. 115 80. Nuclear-powered regenerative closed-cycle gas turbine plants "basic cycle" helium (maximum cycle temperature = 900OF)o Regenerator effectiveness vs. plant output. 116 81. Nuclear-powered regenerative closed-cyclegas turbine plants "basic cycle" air (maximum cycle temperature = 1500~F). Optimized thermal efficiency vs. plant output. 117 82. Nuclear-powered regenerative closed-cycle gas turbine plants "basic cycle" air (maximum cycle temperature = 12000F), Optimized thermal efficiency vs. plant output. 118 83. Nuclear-powered regenerative closed-cycle gas turbine plants "basic cycle" air (maximum cycle temperature = 900~F). Optimized thermal efficiency vs. plant output. 119 84. Nuclear-powered regenerative closed-cycle gas turbine plants "basic cycle" helium (maximum cycle temperature = 15000F)o Optimized thermal efficiency vs. plant output. 120 85. Nuclear-powered regenerative closed-cycle gas turbine plants "basic cycle" helium (maximum cycle temperature = 1200~F). Optimized thermal efficiency vs. plant output. 121 86. Nuclear-powered regenerative closed-cycle gas turbine plants "basic cycle" helium (maximum cycle temperature = 900~F). Optimized thermal efficiency vs. plant output. 122 87. Optimized turbine inlet temperature vs. plant output. Assumed average reactor tempo (coolant tube inner surface temp.) - 17000F. Working fluid - air. 123 880 Optimized log mean temperature difference vs. plant output. Assumed average tempo of coolant tube inner surface - 17000F. Working fluid - air. 124 ix

LIST OF FIGURES (concluded) Number Page 89. Optimized gas side heat transfer coefficients vs. plant output. Assumed average coolant tube surface tempo - 1700~F. Working fluid - air. 125 90. The raise in temp. of gas stream through the reactor (for optimized condition). Assumed average coolant tube surface temp. - 1700~F. Working fluid - airo 126 91. Optimized core diameter vs. plant output. Assumed average tempo of coolant tube surface - 1700~F. Working fluid - air. 127 92. Maximum feasible efficiency vs. temperature,various heat engine cycles, cooling water at 70~F. 128 93. Thermal efficiency vs. maximum cycle temperature for nuclear steam plants. 129 94. Equipment cost vso maximum cycle temperature for nuclear-powered steam plants (reactor excluded). 130 95. Sodium-mercury-steam extraction trinary cycle I; temperatureentropy diagram. 131 96. Sodium-mercury-steam extraction trinary cycle II; temperatureentropy diagram. 132 97. Sodium-mercury-steam ideal extraction trinary cycle; temperatureentropy diagram. 133 98. Sodium-steam binary extraction cycle; temperature-entropy diagram. 134 99. Sodium-air binary extraction-reheat cycle; temperature-entropy diagram. 135 x

1O INTRODUCTION Knowledge of the parameters affecting heat engine systems is required in order to arrive at optimum nuclear powerplant designs for given applications. It is necessary to know the interrelation of these parameters with the nuclear parameters in order to establish realistically optimum designs for the overall planto Work conducted at the University of Michigan under the sponsorship of the Chrysler Corporation relating the heat engine and nuclear parameters into overall systems analyses is summarized in this report o The development of relatively lightweight, compact, mobile nuclear powerplants is a field offering considerable promise for the future, but one which has received proportionately little attention. This report considers primarily plants of this typeo A preliminary investigation has been conducted of the various conceivable heat engine types as components. of nuclear plants, Comparative efficiency data under conditions of similar inlet and outlet temperature have been developed0 Some preliminary evaluations of the probable costs and weights of the various types have been made. In addition, economic optimizations under the special operating conditions of a nuclear powerplant have been made for several of the major components under varying conditions of working fluid, temperatures, pressures, and power outputso To bring the work to a more significant conclusion than is presently possible, it would be necessary that the various optimized components be considered in overall powerplant systems, so that cost and weight analyses of -1

the systems could be computed and comparisons afforded between the various heat engine arrangements, each under its optimized conditionso -2

2.0 HEAT ENGINE SYSTEMS CONSIDERED In a nuclear powerplant, the nuclear reactor represents a heat source, similar as far as the heat engine system is concerned, to a boiler or combustoro To provide a complete powerplant, it is necessary that the reactor be accompanied by a heat engine cycle comprising the prime-mover, components and a heat sink. Commercial practice has indicated the suitability of certain types of heat engine systems for certain specific applications and power ranges. For example, the superheated steam turbine plant has been found advantageous for cases of high power output where weight is not a primary factor. For smaller outputs where weight is of only moderate importance, the diesel engine is indicated because of its high thermal efficiencyo For cases where weight is of prime importance, as in aircraft, the gas turbine cycle or jet engine seems particularly advantageous. It is not necessarily true that under the special conditions of a nuclear plant the same limitations will apply. It is necessary that the various competing types of heat engine systems be considered without prior prejudice along with systems which do not presently show commercial feasibility. Such a basic preliminary evaluation has been made as the initial phase of this investigation. Some of the factors in which the nuclear and conventional fossil-fueled plant differ are: 1. In a nuclear plant it is necessary to prevent the escape of fluids which may have become radioactive through proximity to the fissioning fuel -3

2. In nuclear plants it is necessary to consider the effects on nuclear reactivity and stability of the fluid which extracts the heat of fission from the core. This fluid may be either the heat engine working fluid or an intermediate heat transfer medium, 3. The heat source in a nuclear plant does not impart combustion products to heat exchange or working fluids, thereby eliminating this source of chemical corrosionO In some proposed systems, however, the working fluid might contain fission productso The emphasis of the present investigation is upon the suitability of the various heat engine systems themselves for nuclear powerplants. Hence, no attempt was made to consider in detail the transfer of the fission heat to the heat engine working fuido Under these conditions the various types of nuclear steam plants, for example, are considered similar insofar as their limiting temperatures and required power outputs are similar. The heat engine types which have been investigated are: 1o Steam systems - saturated, superheated, and supercriticalo 2. Rankine cycles using fluids other than water, including combination cycle employing two or more fluidso 3o Gas turbine cycles - open and closed, regenerative, non-regenerative, air and other gases as working fluidsD 4o Combination vapor-gas cycleso After the completion of the initial phases of the investigation, it appeared that the gas turbine cycles, utilizing the closed-cycle arrangement, were of especial importance from the viewpoint of compact, lightweight, high performance plantso For this reason, special emphasis was placed upon the investigation of plants of this typeo -4

3o0 GAS TURBINE CYCLES 31l General Limitations Following a preliminary investigation the gas turbine system appeared especially promising from the viewpoint of an economically feasible nuclear powerplant of moderate output and minimum size and weighto It appears possible to delineate some of the conceivable gas turbine arrangements which are particularly favorable in the nuclear applicationo For minimum size and weight and maximum efficiency, the gaseous working fluid should be used directly as the heat extractant fluid in the reactors This would make an intermediate coolant loop unnecessaryo However, in this case, as well as in some of the cases using an intermediate loop, the gas turbine working fluid would be exposed to high level radiationo Thus, a gas exhibiting minimum induced radioactivity is desirable, and in most applications it is essential that the system be closedo Consequently, the investigation has been concentrated on the closed-cycle systemso With such systems gases other than air are possibleo Three gases exhibiting a wide range of molecular weight and ratio of specific heats have been included: helium, air, and carbon-dioxideo The trends exhibited by these gases can be applied to others if consideration is given to the differences in molecular weight and ratio of specific heatso In general, the possible gas turbine cycles can be divided according to those which utilize regeneration and those which do not. It is possible to obtain a relatively high thermal efficiency with either -5 -

type of cycle, and in fact either is used in certain conventional applicationso The non-regenerative cycle is commonly employed, for example, in jet and turboprop aircraft engines while the regenerative arrangement tends to be favored for moderate power applications where weight is not of such overriding importanceo To achieve high thermal efficiency with the non-regenerative cycle it is necessary that the pressure ratio be higho Hence, turbine and compressor efficiencies must be excellent for satisfactory performanceo For this reason, the range of feasible operation may be limitedo By additions of weight, it is possible to achieve equal or superior efficiency with the regenerative cycle at low pressure ratioo This arrangement is less sensitive to turbine and compressor efficiency so that a broader operating range becomes possibleo The low pressure ratio of the regenerative cycle is particularly advantageous for a closed-cycle in that it allows a high mean fluid density, considering a practical limitation to the maximum pressure and temperatureo Thus, the machinery sizes and weights for a given output are minimizedo The investigations have been concentrated on the regenerative cycleso 3~2 Scope of Optimizations Conducted Preliminary operational optimizations of the various components comprising the complete nuclear gas turbine plant have beer completed, as well. as complete plant optimizations in some caseso It would be most desirable if these various component optimizations could be integrated into complete plant designs so that the overall effects on -6

weight, size, and cost of power from a variation of the different independent parameters could be evaluated. The studies completed to the present time have included the following: lo Effects upon thermal efficiency of variations in system arrangement, temperature limits. pressure limits, working fluid, and component efficiencies and effectivenesses. 2. Approximate determination. of economically attainable turbomachinery component efficiencies as affected by power level, pressure level, working fluid, and temperature limitationso 3. Approximate economic optimization of the regenerator component for specific assumptions regarding type of surface. The cost of heat from a nuclear reactor was compared with the capital cost amortization and costs of pumping work for the regenerator to determine the optimum design point for the regenerator, for various conditions of temperature, pressure, working fluid selection, and power level0 4o Approximate economic optimization for a single type of gas-cooled reactor, the reactor core considered as a heat exchanger. The optimum balance between the cost of heat, the cost of pump work to force the fluid through the reactors. and the amortization of capital cost was considered, as affected by the maximum allowable reactor temperature, the pressure level, the power output, and the selection of working fluido 303 Recommendations for Additional Studies Rather modest additional studies to bring the work accomplished to date to more significant conclusions would include the integration of the -7

various optimized components into overall powerplants so that meaningful statements regarding the effect on power cost and plant size and weight of various changes in the dependent variables of pressure and temperature limitations, power level, and selection of working fluid could be madeo This would not require a major additional effort but has not been accomplished to dateo 3 4 Optimizations Accomplished 1. Thermal Efficiency for Arbitrary Component Efficiencies The thermal efficiency of gas turbine cycles as it is affected by the ratio of specific heats of the working fluid, the cycle temperature limits, the pressure ratio, the system arrangement, the parasitic pressure drops, and the component efficiencies and effectivenesses has been evaluated and is presented in Reference lo Thermal efficiency is plotted against pressure ratio in a series of curve sheets, while the additional parameters listed above are varied separatelyo From these data, it is possible to estimate the thermal efficiency of a gas turbine system for any combination of the independent parameters. The applicable curve sheets (Figures 1 through 14) are reproduced in this report for convenienceo Some additional curves not included in Reference 1 have been addedo The assumed component efficiencies are given in Table Io If the component efficiencies and effectivenesses are considered as arbitrary assumptions, as in this case, the thermal efficiency is not a function of the pressure level or of the molecular weight of the working fluido It is, however, a function of the ratio of -8

specific heatso It is shown in Reference 1 that the thermal efficiency at the optimum pressure ratio decreases slightly for higher values of the ratio of specific heato Since such values are characteristic of monatomic gases, there is a slight disadvantage to helium, for example, with respect to air if equal component efficiencies, temperature limitations, and cycle arrangement are assumedo The disadvantage becomes less for higher temperature ratio cycleso It is also shown in Reference 1 that the optimum pressure ratio, from the viewpoint of thermal efficiency, decreases markedly with an increase in the ratio of specific heatso Thus, for a highly regenerative cycle, it is of the order of 3 for air and 2 for helium0 For this reason, even though the pressure ratio per stage attainable with a low molecular weight gas such as helium is considerably less than it is for air or carbon-dioxide, the discrepancy in required number of stages is reduced by the reduced overall pressure ratio requiremento If, as would be indicated from purely fluid dynamic considerations, it were possible to maintain a constant Mach Number design between air and helium, for instance, then the number of turbomachinery stages for the helium unit would be less than for the air machine because of the reduced overall ratio requiremento Also, as shown in Reference 1, (see also Figure 16of this report) the flow areas would be less and hence the helium machines would be substantially smallero Such a design may be possible for the compressoro However, it is unlikely for the turbine because of the limitation on wheel speed due to centrifugal stresso -9

20 Turbomachinery Component Efficiencies The efficiency levels which may be reasonably anticipated for the turbomachinery components of a gas turbine cycle are a function of the power level, the pressure level and ratio, the temperatures the working fluid, and the degree to which cost and weight may be sacrificed in the interest of higher efficiencyo With regard to the latter consideration, a small change in the turbomachinery component efficiencies is reflected by a rather large change in the overall plant thermal efficiencyo Also, in most cases the turbomachinery units of a closed-cycle nuclear plant comprise only a small portion of the overall plant cost and weighto Hence, very little sacrifice of component efficiency can be justified on this basiso The attainable turbomachinery efficiencies can be estimated by a knowledge of the type of machine involved (axial, centrifugal, or positive displacement), the volume flow rate, and required pressure ratio, the flow Reynold's Numbers within the machine, and the Mach Numbers (or required pressure ratio per stage)> To obtain an approximate estimate of efficiency, it is then necessary to compare with the known efficiency of air-handling machines of comparable size, and consider correction factors based upon the changes in Reynolds' Numbers and Mach Numbers from the conventional air machineo Such a procedure has been carried through over a large range of power outputs, temperature levels, and working fluid selectionso The details of the procedure are given in Reference 1o -10 -

The resulting turbomachinery efficiency estimates for the working fluids helium, air, and carbon-dioxide, over a wide range of turbine power (not plant output) and inlet temperature to the turbine, are included in Figures 17 through 25 of this reporto It is assumed that the given efficiencies are mean values to be applied to compressor and turbine alike in the calculation of the overall plant efficiencyo Since the turbine efficiency is usually slightly greater than that of the compressor for the same plant, it is presumed that the turbine efficiency would be generally in excess of the value given and the compressor efficiency somewhat lesso It is noted that the efficiency decreases for an increase in pressure and/or a decrease in powero These factors are a result of the reduced flow path dimensions which more than overcome the increased Reynoldst' Number at higher pressureo Figures, 26 through 34show the estimated turbine wheel tip diameters for the various caseso 3 Regenerator Optimizations Of the components which together comprise a closed-cycle gas turbine plant those associated with heat transfer include the major portion of the cost and weight for the entire planto The most important of these components in a highly regenerative cycle are the regenerator and the nuclear reactor, or the heat-source exchanger if there is an intermediate coolant loopo Consequently, preliminary attempts have been made to locate under certain specialized assumptions the economically optimum design points for each of these units0 A wholly -11

comprehensive study of this sort would be extremely tediouso However, the preliminary studies reported here do illustrate the interrelations of the various significant parameters and delineate the significant trendso The results of the regenerator optimizations are given in Reference 2 and the controlling asslunptions explained in some detailo A heat exchange surface of a specific type was assumed as a basis for the calculations. This was the "all-prime" surface of the Griscom Russell Company, which has been developed specifically for the closed-cycle gas turbine applicationo Preliminary evaluations have indicated that an extremely compact surface is desirable from the viewpoints of both cost and weighto It is not meant to imply that the cost of the first unit utilizing a special surface of this type would be less than that of a competitive shell-and-tube designo However, the eventual cost, once the developmental cost has been assimilated, seems very favorableo The significant features of the surface arrangement selected for this evaluation are the very small passages accompanied by a sufficient degree of ruggedness to withstand high temperatures high pressure gases, and the suitability to eventual low cost production. With the closed-cycle plant it is possible to use small passages since the gas is clean in that no combustion products are involvedo A schematic representation of the surface arrangement selected for this study is shown in Figure 35. -12

The process of economic optimization of the regenerator of the closed-cycle nuclear gas turbine powerplant is one of delineating that design configuration, considering the assumed surface arrangement which will minimize the operating cost of the unit. The operating cost is considered to include amortization of capital cost (at a rate consistent in this case with utilities' practice), pump work to force the gas through the unit (considering the cost of heat and the thermal efficiency of the nuclear plant), and heat saved as a negative costo The effect of increased compressor size required for increased pump work was also considered as a capital cost item. The thermal efficiency estimations for the optimization were based on the regenerative cycle shown in Figure 1o The turbomachinery component efficiencies used were estimated as previously described, and are shown in Figures 17 through25 ~ The resulting designs for both helium and air over a wide range of plant outputs and temperature limitations are shown in terms of regenerator cross-sectional area and volume in Figure 36 through 47o The areas shown are the total areas, including both hot and cold passages and the separating metalL It should be noted that in some cases the optimization leads to impractical pancake-shaped designs in which the length to diameter ratio of the unit is so small that the inlet manifolding would require considerably greater investment than the heat transfer area itselfo This effect was not considered in the optimizationso It is noted in general that the size of the regenerator decreases markedly for increased pressure level at a given outputo -13 -

Figures 48 through 71 show the film coefficients and fluid velocities for both the hot and cold sideso Some of these are repeated from Reference 2 for convenienceo It is noted that the economically justifiable film coefficients increase considerably with pressure level although the values are relatively modest: up to about 100 BTU/hr-ft2-~F for air and only about 20 for heliumo This somewhat surprising result is because the regenerators are considerably smaller for helium than for air so that the saving in capital cost effected by increasing the film coefficient is relatively not greato The velocities for both helium and air are low-less than 100 feet/second in all caseso Neither optimized film coefficients nor velocities are substantially affected by the power level. Figures 72 through 74 show the Reynold's Numbers for the gas flow in the regeneratoro It is noted that in all cases the Reynolds' Number for the hot side is less than the turbulent-laminar transition valueo However, air for the cold side shows Reynold's Numbers in the transition region and beyondo The regenerator effectivenesses for air and helium over a large range of output power, pressure level., and turbine inlet temperature are plotted in Figures 75 through 80. These curves were also shown in Reference 2 but are presented here for convenience It is shown that the highest effectivenesses are economically justified for the higher pressure levels and power outputs0 The variation with power output is not greato Effectiveness variation with pressure level -14

is considerably more substantial, varying from a maximum of near 0o90 for either air or helium at 1000 psia maximum pressure to approximately 055 for air at a pressure corresponding to an open regenerative cycle. The variation with pressure for helium is not so great but is still significanto 4. Overall Plant Thermal Efficiencies It is possible to evaluate the overall plant thermal efficiency based upon the turbomachinery component efficiency estimations and the regenerator optimizationso Such estimates can be made for either air or helium from the available data over a wide range of power outputs, cycle temperature limitations, and pressure levels. Since the regenerator optimizations did not include carbon-dioxide, it is not possible to consider this gas in the overall efficiency estimateso Preliminary evaluations have shown, however, that the results would be quite close to those for airo For the thermal efficiency estimations for air and helium, it is necessary to include an arbitrary assumption regarding the parasitic pressure losses in those cycle components which have not been investigated in detail, i eo^ ducting, intercooler, precooler, and, most important, the reactoro Preliminary evaluations of all these have shown that the assumed pressure ratio of lo07 times the turbine expansion ratio was probably conservative0 Since this ratio is a fixed assumption for all the cases investigated, the results do not reflect adequately the relative advantages of some of the gases with respect to low frictional pressure losseso -15 -

The calculations were all based on a single overall cycle pressure ratio (3o0) which was selected as a reasonable compromise between the optima for the various caseso Corrections for the individual cases have been madeo Thus, the plotted thermal efficiencies apply to that overall cycle pressure ratio which is optimum for the particular caseo The resulting curves are shown in Figures 81 through 860 As is well recognized, the efficiecy increases very strongly with an increase in the overall cycle temperature ratioo Also, it increases with the power output, principally because of the improved turbomachinery component efficiencies at greater outputso The effect of pressure level is not great. For air, the maximum efficiencies occur for intermediate pressure levels, with the lowest and also the highest maximum cycle pressures investigated (45 and 100 psia respectively) showing a decreaseo For helium, the efficiency decreases continuously for an increase in pressure level. These facts are the results of conflicting trends~ the turbomachinery component efficiencies are adversely affected by high pressure because of the reduced flow path dimensions, and the economically optimized regenerator effectiveness increases with increased pressure because of the reduced size and capital investment necessary to achieve a given effectiveness0 In general, the overall effect of pressure on the thermal efficiency is only a matter of a few percentage points -l6

In general, the helium thermal efficiencies are slightly less than those for air. Again, it is only a question of a few percentage points Even though these results show sane variation in thermal efficiency between pressure levels and gases, it is not possible to state that there is any positive advantage of one case over anothero In order to make such a statement, it would be necessary to make preliminary cost estimates of the overall plants and then optimize, balancing the amortization of capital cost against the fissile material burnup costo On such a basis, it is quite likely that the highest thermal efficiency would not prove to be the economic optimum. Table II presents a summarization of the applicable data for 20,000 horsepower plants for both air and helium as working fluid. 5~ Gas-Cooled Reactor Optimization It is to be expected that the economic optimization of a reactor core as a heat exchanger will show optimum heat transfer coefficients differing considerably from those of the regenerator, for example, because of the large capital cost variations associated with changes in the fissile material inventory as well as in the other significant reactor parameterso For instance, there is a substantial feed-back into the critical mass requirement inherent in a change of core dimensions. In general, it would be expected that the effective cost of heat transfer surface within the reactor would be much greater than that in a conventional heat exchanger so thatlarger film coefficients and pumping losses would be justified for the -17

reactor than for the regeneratoro This would be the case only if heat transfer area rather than criticality requirements were controlling. A general investigation of the situation would be extremely difficult because of the many types of reactor cores to be considered and the unknown magnitude of many of the most important cost factorso A preliminary investigation has been completed for a specific configuration to attempt to delineate to some extent the significant trends. The reactor investigated is of the liquid-metal-fuel type employing solutions or slurries of highly enriched uranium in bismuth. No attempt to investigate the mechanical feasibility of the system has been made or to determine its relative advantages or disadvantages as compared with other systems. The system has merely been assumed to provide a basis for the optimization of the core from the viewpoint of heat transfero A cylindrical graphite core of height equal to diameter has been assumed. It is fitted with vertical wells for the liquid metal fuel and holes for the passage of the coolant gas, which is also the gas turbine working fluid. Steel liners were assumed for the gas tubes and provision was taken in the nuclear calculations for the presence of the steel. The very approximate criticality estimates were based on the work of Jo Chernick) Reference 3. The procedure and results are related in some detail in Reference 2. The significant features are repeated here for c onvenience. -18

It has been assumed that the temperature limitation for the overall plant is in the reactor rather than the gas turbine equipment. Thus, a maximum reactor temperature (1700~F) was assumedo This value would seem to be within the realm of possibility within the next few years and would provide gases to the turbine at a temperature level not too excessiveo The question is one of the economically optimum degree of approach of the gas temperature leaving the reactor to the maximum assumed reactor temperatureo If the approach is close, the required heat transfer area will be large and the capital cost increasedo On the other hand, due to the large dimensions, the uranium inventory may be decreased because of a smaller critical mass, Also, the thermal efficiency of the plant will be maximized, so that the uranium burn-up cost will be minimum. If the degree of temperature approach to the reactor maximum is not close, the reverse is the case. On this general basis it is possible to optimize the core As with the regenerator, the optimization attempted to delineate the minimum operating costo This cost is a function of the following factors: io Uranium Burn-up (assumed cost of $20/gram of U-235)o This is affected by the plant thermal efficiency which is in turn a function of degree of approach of maximum gas temperature to reactor temperature, pumping loss in the reactor, and the remaining cycle components. These were evaluated according to the optimizations already described. iio Uranium Inventoryo This is affected by criticality considerations which are a function of the core dimensionsu For larger cores, up to -19

a point, the critical mass is decreased so that the inventory costs are reducedo iiio Capital Cost Amortizationo Very rough estimates of the reactor capital cost were made It seemed reasonable that the cost should increase both with an increase in core volume and power levelo An increase in core size at a given power level would increase the required shielding as would an increase in power level for a given volume of coreo It was assumed for estimating that the reactor cost was proportional to the square root of the product of power level and volume of coreo In addition, it was assumed that the cost for a given power and core volume would be greater for higher gas pressureso An increase of the order of 20% was assumed between 400 and 1000 psiao In addition to the above, an instrumentation cost was assumed proportional to the power levelo All reactor costs were based upon rough estimates for the Brookhaven National Laboratory's LMFR designs (Reference 4). The reactor core optimization calculations to the present time have considered only air as the working fluid. The results of the calculations are shown in Figures 87 through 91, showing turbine inlet temperature, reactor core log mean temperature difference, reactor core heat transfer gas film coefficient, gas temperature increase in the reactor, and reactor core diametero -20

It is noted from an examination of any of the curves that for small outputs the reactor criticality and uranium inventory considerations are controlling and prevent a reduction of the core dimensions to the point indicated from a pure heat exchange viewpointo For this reason, the approach between gas and reactor temperature is very close and the film coefficient small. For large outputs, the heat transport and transfer problems along with thermal efficiency become controlling so that it is necessary to increase the reactor size considerably (more so for low pressure than high)o Even so, the velocities and film coefficients become large (up to the order of 500 BTU/hroft2o~F)o As expected, these are much larger than the optimized coefficients for the regenerator because the capital cost penalty of increased flow and heat transfer area is much greatero The frictional pressure ratios through the reactor are listed in Table IIIo It is noted that even for 60,000 horsepower plant output, the ratio ranges only between 1 and 3% as the pressure is decreased from 1000 to 400 psiao For large outputs of this range, the use of the open cycle pressures would be prohibitive from this viewpoint. However, for a high-pressure, closed -cycle it is noted that outputs of this order are feasible for a direct-cooled coreo The plant thermal efficiencies are not giveno However, they would be in excess of 40% since the turbine inlet temperatures are in all cases greater than 1600~F and the parasitic pressure drops within the thermal efficiency range estimations previously given in this -21

report. For these maximum power cases, the core diameter is only of the order of 6 feeto In the intermediate power range the heat transfer and transport capabilities of the reactor are not limitingo Since the capital cost was assumed to increase with increases of both power and size, the economic optimum shows a decreased core size to alleviate the effect of increased powero The increased inventory cost is not sufficient to overcome this trendo -22 -

4~0 HEAT ENGINE SYSTEMS OTHER THAN GAS TURBINE In order to make a realistic appraisal of the suitability of various heat engine systems for a given nuclear application it is necessary that the optimum arrangements for each cycle be compared on a common basiso If the final optimization of the various cycles is to be upon a basis of power cos, then the inim poer osts possible for each of the various heat engine systems must be comparedo A similar procedure must be followed if it is desired to optimize instead with respect to weight or sizeo The results will differ, of course, depending upon the objectives of the opti mizat ion. After a preliminary evaluation of the various possibilities, it appeared that a directly-cooled reactor with a closed-cycle gas turbine system offered low power costs as well as compactness and light weight, particularly in the power output range up to about 30 megawattso The possibility of lowcost power appears to exist with this combination once the developmental costs have been assimilated since the required machinery is of small size and does not appear excessively complexo A very preliminary cost estimate, bearing out this conclusion, is presented in Reference 1. To arrive at these preliminary conclusions regarding the suitability of the closed-cycle gas turbine systems in the small to moderate power range, it was necessary to evaluate in an approximate manner the alternative systems0 It is not meant to imply as a result of bhese preliminary evaluations that the gas turbine systems are necessarily superior in all respects to the alternatives even in the low power rangeo An attempt has been made, however, to delineate -23 -

some of the applicable parameters necessary to form a preliminary judgmento A further comparison between the overall optimum systems of the various types w uld be necessaryo 4ol Steam Powerplants lo General Limitations The steam plant, for given temperature limitationss is restricted in its pressure levels by the saturation properties of watero In the case of the closed-cycle gas turbine there is no such restriction since the working fluid is restricted to the gaseous phaseo Thus, the working fluid density at any point of the cycle is a dependent variable with a steam plant so that the volumetric flow rates, for small outputs, may become inconveniently smallo For this reason, it does not appear possible to design efficient steam plants for small output and high temperature (which automatically implies high pressure). With the closed-cycle gas turbine the design pressure level can be reduced if desired so that a reasonable flow path design can be achieved for any outputo It appears, however, that the steam system definitely is competitive for outputs in excess of 5000 to 10,000 horsepowero The steam cycle, at least for saturated conditions and conditions of moderate superheat, approaches the ideal Carnot cycle quite closelyo Hence, the thermal efficiencies attainable, if the flow rates are large enough to allow reasonable component efficiencies, are high even at low inlet temperatures. The anticipated thermal efficiencies for large nuclear steam plants as a function of maximum cycle -24-)

temperature, based upon oe rating performance of existing fossilfueled plants, is shown in Figure 92 o This figure is repeated from Reference 1 for c mvenienceo Also included is the anticipated thermal efficiency for gas turbine plants of similar size. extrapolated from the previously discussed gas turbine cycle optimizationso At any temperature up to 1500~F the steam cycle appears superior in thermal efficiency although the proportionate difference becomes relatively slight for larger temperatureso It is usually considered in commercial practice that gas turbine plants become economically competitive with steam plants if the temperature available to the gas turbine is at least 1200~Fo Commercially, steam plants to the present time have been limited to about 1150~Fo As the maximum design steam temperature is increased, the pressure level must also be increased to allow an efficient cycleo As temperatures greatly in excess of the critical water temperature of 705~F are considered, the degree of similarity between the steam cycle and the Carnot cycle decreases, so that the proportionate gain in efficiency is lesso For this reason, it would appear that if temperatures on the order of 1500~F could be made available from a nuclear heat source, the commercially feasible efficiency of a gas turbine plant would exceed that of a steam plant, particularly for moderate to low outputs It is obvious from an examination of Figure 92 however, that a gas turbine temperature of about 1500~F is necessary to equal the thermal efficiencies for large steam plants at about 900~Fo However, since the capital cost amortization -25

represents a very large portion of the cost of power from nuclear plants, it is necessary to compare the capital costs of optimum gas turbine and steam plants to determine their relative economic suitabilities in a given application, This has not been done in detail, although a preliminary estimate as reported in Reference 1 did show a probable future advantage to the closed-cycle gas turbine in this respecto The present economic advantage appears to be with the steam plant, although there is substantial cost and weight disadvantage 20 Cost, Weight, and Efficiency Estimates As in the case of gas turbines, it would be expected that the efficiency of steam plants would decrease with reduced temperature ratio across the cycle and also with lower power output because of the adverse effect of reduced flow path dimensions on component efficiencyo An approximate estimate of these effects is given in Figure 93o The sources of the data are previous estimates and studies by manufacturers as stated on the curveso Figure 94 shows estimated costs of equipment for steam powerplants in the 5000 to 200,000 horsepower range as a function of maximum cycle steam temperature- Each power level shows a temperature corresponding to minimum equipment costo This temperature represents a balance between two opposing trends: on one hand, increased costs of material and other refinements required by higher temperature and pressure, and on the other hand, increased costs resulting from greater size required to handle a low density fluid at very low -26 -

temperature and pressureo The temperature which represents the minimum cost of equipment increases as the power output is increased. Thus, a higher temperature could presumably be utilized economically for large output plantso The sources of the data are stated on the curve sheet. If power production cost is considered, the optimum temperature will be higher. Higher temperatures mean higher thermal efficiencies, which would reduce uranium burn-up costs, 4~2 Rankine Cycles for Fluids Other Than Water o1 Thermodynamic Characteristics A pure Rankine cycle represents a very close approach to the ideal Carnot cycleo However, because of the physical properties of water it is not possible to consider a steam Rankine cycle except for maximum temperature considerably below 705~F, the critical temperature of watero Hence, the use of fluids with critical temperature higher than that of water is suggested in order to take full advantage of -the thermal efficiency capabilities of the Rankine cycle when a source of high temperature is available. The thermodynamically ideal fluid in this respect would be one possessing a high critical temperature, not inconveniently high pressure in the range of maximum cycle temperature, and still substantial pressure in the range of the heat sink temperature where condensation would occur. No single fluid possessing these capabilities is available. -27

Various of the liquid metals possess suitable high temperature propertieso Mercury has a convenient saturation pressure in the range of 1200-1300~F although it rises precipitously for higher temperature. Sodium has a saturation pressure of the order of 15 to 30 psia in the range between 1500 and 2000~F and might thus be desirable if a temperature source in excess of 1500~F were availableo Intermediate between mercury and sodium with respect to the pressuretemperature relation are potassium and rubidiumo Zinc is quite similar to sodium with a slightly reduced vapor pressure at a given temperatureo Sodium, potassium, and zinc appear desirable in their large latent heat of vaporization which, exceeds that of water. A list of some of the significant physical properties is included in Table IVo If these fluids were to be used as reactor coolant fluids in a liquid metal boiling reactor, the thermal neutron absorption crosssection would be of importanceo It is noted from an examination of the table that the cross-sections are fairly reasonable with the exception of mercury which has a thermal cross-section of 380 barnso Hence, a mercury-cooled reactor would necessarily be of the fast rather than thermal typeo None of the fluids discussed exhibits sufficient vapor density at heat sinktemperatur t to allow a feasible turbine design for large power outputo For this reason, it is necessary to consider a binary cycle wherein the liquid metal would be condensed at a relatively -28

high temperature so that a reasonable turbine design would be possibleo The condensation heat from the liquid metal would be used as the heat source for a steam plant operating between the liquid metal condensing temperature, which would be suitable to a steam Rankine cycle, and the steam condensero Such binary plants using water and mercury as working fluids have been in operation as fossil-fueled central station units for some years and have exhibited extremely high thermal efficiencyo If the high temperature working fluid were to be sodium, it might be necessary to consider a trinary cycle of perhaps sodium-mercurywatero This arrangement is necessitated by the fact that a minimum feasible condensing temperature for the sodium appears to be in the range of 1000-1100~Fo Such a temperature is inconveniently high for a Rankine-type steam cycle and would necessitate large thermodynamic irreversibilitieso A further possibility would be a sodium-air cycle wherein the condensing sodium would be used to power a gas turbine cycleo Figures 95 through 99 are the approximate temperature-entropy diagrams for cycles of these typeso The pertinent characteristics are summarized in Table V o Calculations with ideal and also realistic component efficiencies are included in the tableo For comparison, estimated efficiencies for a gas turbine plant and a supercritical steam plant operating with the same maximum (1500~F) and minimum temperatures are showno It is noted that the binary and trinary cycle efficiencies show an improvement of about 10 percentage -29

points (about 20%) over the steam cycle and 15 percentage points over the gas turbine There is some doubt regarding the thermodynamic performance of sodium because of dimerizationo It seems possible that equilibrium conditions will not be attained on the passage through the turbineo Estimates have shown that the likely variation of thermodynamic properties on- this account are not sufficient to change greatly the expected thermal efficiencyo Preliminary investigations have also been conducted to determine the feasibility of a sodium turbine It was found that the fluid properties were not particularly unfavorable. 2o Economic Feasibility of Binary Cycles The economic feasibility of nuclear binary or trinary cycle plants is a question not only of thermal efficiency, in which they excel, but also of operating expenses and capital cost amortization. It should be mentioned that little development of this type of cycle for fossil-fueled plants has been evident in recent years. Apparently the operational difficulties and the high capital cost more than overcome the thermal efficiency advantage, at least for conventional-fueled plant s With respect to nuclear plants at the present time and in the future, the situation may be changed in the following particulars: io If the temperatures in excess of 1500~F become possible the steam cycle, which is of necessity supercritical becomes especially -30

unattractive, particularly in the range of low to moderate outputo This is because of the very small volumetric flows and excessive pressures. The high temperature liquid metal cycle could be designed for such a temperature to require only moderate pressure and reasonable flow rateso ii. There have been great improvements in the technology associated with the handling of liquid metals in recent years due to the research and development efforts in connection with their use as reactor coolant s For these reasons, it appears that a further examination of the possibilities of such plants is warrantedo A very approximate investigation for a plant of about 30,000 horsepower outpu has been conductedo It was indicated that the likely capital equipment cost for a sodium-boiler reactor combined with a sodium-mercury-steam plant would be too large to be overcome by the thermal efficiency advantage of such a cycle. This is due to the requirements for special materials and the fact that the density of the working fluid in the sodium portion of the cycle is very lowo Thus, the equipment is similar in size to the low pressure stages of a steam turbine unito These results are reported in Reference, 1o -31

5o0 CONCLUSIONS FROM STUDIES An investigation has been made on a very broad front covering various conceivable heat engine systems, working fluids, temperature and pressure ranges, and power outputs from a few hundred to approximately 60o,000oo horsepowerO Much detailed information regarding the various systems has resulted. However, it has not been possible as yet to carry the investigation far enough to compare the various systems on a basis of overall cost, overall size, or overall weighto A comparison between the anticipated thermal efficiencies of the various systems for relatively large output plants is presented in Figure 92 It is shown that the binary liquid-metal-water Rankine cycles allow the greatest thermal efficiency values for a fixed temperatureo They are followed by steam and gas turbine systems in that ordero Cost estimates for steam plants for various temperature and power levels are included in the report although no comparable data for gas turbine or binary plant systems are giveno Considerable detailed information is included regarding the optimum design points for the components which together comprise a nuclear gas turbine systemo The effects of the selection of working fluid, pressure level, temperature level, pressure ratio, and power output are showno However, no final conclusions are possible regarding the most suitable overall selectionso It is still necessary to integrate the optimized components for various fluids and temperature and pressure levels into overall plants, and then to determine the relative power costs, weights, and sizeso -32

TABLE Lo ASSUMED COMPONENT EFFICIENCIES FOR THE BASIC GAS TURBINE CYCLE Turbine Efficiency 85% Compressor Efficiency85% <^ Regenerator Effectiveness95% Ratio of Compressor Pressure Ratio to Turbine Expansion Ratio 1.07 Cooling Medium Temperature 70 F Minimum Fluid Temperature90 F

TABLE II PERFORMANCE DATA FOR TYPICAL OPTIMIZED NUCLEAR POWERED, CLOSED-CYCLE GAS TURBINE POWER PLANTS AIR PLANT HELIUM PLANT Max. Pressure, psia 1000 400 45 1000 400 45 Max Temperature,0F 1200 1200 1200 1200 1200 1200 Output Power, HP 20,000 20,000 20,000 20,000 20,000 20,000 Thermal Efficiency 0.3348 0o5417 O2954 0o2734 0.2897 0.3130 Regenerative Effectiveness 0.90 0o87 0 66 0o85 0.83 0.78 Regenerator Volume, cu ft 328553 385 25 674.68 3528.24 354.04 448.77 Regenerator Cross-Sectional Area, sq ft 59.69 105o25 1008,8 176032 2335541 466.88 Regenerator Length, ft 5.504 3662 6 0.669 1,862 1517 Oo957 No. of Tubes in Regenerator 7.5324x105 16291x10 1.238x10 2864x Regenerator Reynold's No. 7,000 4,000 400 400 300 150 Regenerator film Coefficient, Btu per ft2-hr-OF 135.44 84o53 4.828 18.26 17.71 l6o06 Adiabatic Turbine and Compressor Efficiency 0.862 0o876 0o900 0.876 0.885 Oc892 L ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~~~09

TABLE III BOILING CYCLE FLUIDS Latent Thermal Neutron M.Po B.Po Heat of Abs. Cross-Section Fluid ~F ~F SpoG. Vaporization barns..Btu/lb Mercury -36 675 13.5 125 380 ~ 20 Sodium 208 1621 0o8 1810 0o5 Zinc 787 16653 7.14 1645 1.06 Rubidium 102 1270 lo53 880 0o7 Potassium 144 1400 0o87 1790 2o0 Bismuth* 509 2842 9o8 --.032 Lead* 620 2952 11o35 365 0o17 *Included only for comparative purposes. 35

TABLE IVo TABULATED EFFICIENCIES OF BINARY AND TRINARY VAPOR CYCLES AT 1500 F INLET, 70 F COOLING WATER (1" Hg cond.) Cycle Description T-S Diagram Efficiency 1) Mercury-Steam, Extraction.588 Mercury Turbine Eff. -.80 Steam Turbine Eff. -.85 Steam Superheated 2) Mercury-Steam, Non-Extraction.550 Mercury Turbine Eff. - e80 Steam Turbine Effo -.85 Steam Superheated 3) Sodium-Mercury-Steam, Extraction Fig. 95.600 Sodium Turbine Effo -.80 Mercury Turbine Eff. -.83 Steam Turbine Eff. - 085 Mercury and Steam Superheated 4) Sodium-Mercury-Steam, Extraction Fig. 96 o588 Sodium Turbine Eff. -.75 Mercury Trubine Eff -.80 Steam Turbine Eff. - o85 Mercury and Steam Superheated 5) Sodium-Mercury-Steam, Extraction Fig. 97.671 Sodium Turbine Effo - lo00 Mercury Turbine Eff. - lo00 Steam Turbine Eff. - lo00 No Superheat 6) Sodium-Steam, Extraction Fig. 98.518 Sodium Turbine Eff. -.80 Steam Turbine Effo -.85 Steam Superheated 7) Sodium-Air, Extraction Fig. 99 o486 Sodium Turbine Eff. -.80 Air Turbine Eff. -.89 Air Compressor Eff. -.89 Regenerator Effectiveness -.93 Precooler Terminal At - 20 F Compression to Expansion Ratio - 107 8) Supercritical Steam Cycle.485 7000 psig - 1500 F Reference 4 9) Gas Turbine Cycle - 1500 F o448 Regenerator, Reheat, Intercooler 56

HEAT EXINTERCOOLER CHANGER FROM NUCLEAR i — T7 -I IREACTOR T TI? HEAT SINK Figure 1. SCHEMATIC FLOW DIAGRAM OF THE BASIC GAS TURBINE CYCLE - 37 -

0.4 0.3 -- 0.2 I_ ___ z -',-= ",a, == -- - ILo 0.1.... =LI I 0 3 4 5 6 7:7Z9 10. PRESSURE RAT 10 Figure 2. THERMAL EFFICIENCY OF A GAS TURBINE CYCLE WITH VARIOUS'C A8 -. zr I! I.... Figure 2. THERMAL EFFICIENCY OF A GAS TURBINE CYCLE WITH - 38 -

0.4 - — =m= —--- 0.3... n.... - - -- T-=-12 =1.6. z0._ o2== __!_I _ I cI i_ o m m mm mIm m 0 1 3 4 5 6 7 8 9 10 PRESSURE RATIO Figure 3. THERMAL EFFICIENCY OF A GAS TURBINE CYCLE WITH VARIOUS CYCLE ARRANGEMENTS "BASIC" CYCLE WITHOUT RECUPERATOR - 39 -

0.4 0.3 /y \'-, - -_ F 4. THRM =oF. A. -~-Q 1 I ~-I'I-I'"\-, I I-I II-I-I 0.2 BASIC CYCLE WITHOUT INTERCOOLER - - - - - i —o\ \-.'' I -- o0 1 4 5 6 7 8 9 10 PRESSURE RATIO Figure 4. THERMAL EFFICIENCY OF A GAS TURBINE CYCLE WITH VARIOUS CYCLE ARRANGEMENTS "BASIC" CYCLE WITHOUT INTERCOOLER

0.4 -- ---- 0.3 - -- === _7 - -- N —-_ rt m 0.2 _r i - -r -= ^1 i I L- -: ==='= Z /. /= \ =!=~= =o Figure 5. THERMAL EFFICIENCY OF A GAS TURBINE CYCLE WITH VAR I OUS CYCLE ARRANGEMENTS "BASIC" CYCLE WITHOUT RECUPERATOR AND INTERCOOLER - 41 -

T=150C K=I: 0.4 - - m IHET If L ~0.3 i - ^Z- l l, ~.H -" —-- - - 0 0.2 0 A 1 1 E 1 EII PRESSURE RATIO Figure 6. THERMAL EFFICIENCY OF A GAS TURBINE CYCLE WITH VARIOUS CYCLE ARRANGEMENTS. z ---- -- -- -- 42 - 0.1..... - - - - - - - - - - - - PRESSURE RATIO Figure 6. THERMAL EFFICIENCY OF A GAS TURBINE CYCLE WITH VARIOUS CYCLE ARRANGEMENTS. "BASIC" CYCLE WITH REHEATER - 42 -

_ _ _ =_r r15~)0 =I)35 0.4 / / / =' 1 0.2/ / =====1;I =RE I TIO== — FZ /,,"-'5 —."-. —5 ===l_=IT R O E=====N = ==0 o o. - -- 3 -4 5 6 7 8 9 - PRESSURE RAT — O IWITH RECUPERATOR EFFECTIIV' -'0.9 UJ -- -- -— I- -- -//.,- -- -- -- -- -- -- -

o= EEEE +Ez I I IEI IEEEI 0.4. - - 0.3 [ /_ /...,,._,,.,,,, _ _===-s,.'= I -_ E=0.2 03 ~I1111 13 "cEo _ E I= I= ===E 0 0.03 4 6 7 8 9 10\ Figure 8. THERMAL EFFICIENCY OF A"BASId' GAS TURBINE CYCLE --- ECUPERATOR EFECIVENESS = 75 t, = Z = I\I= == == = —PRESSURE RATIO Figure 8. THERMAL EFFICIENCY OF A"BASIC" GAS TURBINE CYCLE WITH RECUPERATOR EFFECTIVENESS- 0.75 - 44 -

0.4 ------ - 0.3 -.. _===============I — I1 —-. —.===2#-! /./.._n/- — ^ -^z-rs-zQ -- _ _ __ —_ _ __=______T S._ -0.= = LZ / = _ __ -_ _ _ —,T7 i/Z _ __________ O 3 4 5 6 7 8 9 1 0:d- 45.... PEl,'ATIO F 9 T!! EAT 11SS R'~.', ~ Fir. uEMLEFCEC FABSC A UBN YL <~~~Wt /EUEAO EFE<~_NSS 05 - 4t~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -~~~~~~~~~~~~~~~~~~.

-I I --- ---- -ll>l -k I - - -1 — - 04,- -- -—. - -- - - 0.4___ - / ==_ ___ -— / /_Ts ==== ===_=_= m 0 -' - --- ------ 0. == ==== = O.I - 0.2 =1 =-=ri3 4 5 6 7 8 9 =-_ PRESSURE RATIO Figure 10. THERMAL EFFICIENCY OF A "BASIC0 GAS TURBINE CYCLE WITH FRICIONA PRESU.- 46 -, I I I I - + +- +- - -- - -- - L1 WITH FRICTIONAL PRESSURE LOSSESs0.07 - 46 -

-- - - — = - - - - - - - --- = 0.4 0.3 s k 0aJ - / I /, _ _, =='' _ = _... 0o - -. = - v - - - - - - - - - - I I IE +<E Ii'%"'E I! a.._ _ _ _ " _ 0 1 3 4 5 6 7 8 9 10 PRESSURE RAT IO Figure 11. THERMAL EFFICIENCY OF A "BASIC" GAS TURBINE CYCLE WITH FRICTIONAL PRESSURE LOSSES=0.12 - 47 -

0.4 -- --- 0.3 0.3 - __ I=I= ="= ~,===== I = I I I /=/f! I Ii i. I I 11 /J I! I_ ___ 069 0 ]5 6 7 8 10 PRESSURE RAT IQ Figure 12. THERMAL EFFICIENCY OF A "BASIC" GAS TURBINE CYCLE WITH FRICTIONAL PRESSURE LOSSES= 0.20

T=IX: kl. 35 ^0. ===Q= v - ==4 - - =- _ - — ==== =-== 0.3 - ----- - 0.2 0 _ __ 4_s _ = __ _ o O. - PRESSURE RATIO Figure. THERMAL EFFICIENCY OF A BASIC" GAS TURBINE CYCLE WH RE FIY M SR FE- 49 - Figure 13. THERMAL EFFICIENCY OF A\"BASIC GAS TURBINE CYCLE -,9 -

0.4 --------- -- T== 00 = = K= 1. 3 _7-0.2 - - I 0 "o Figure 34. THERMA=L ==EFFICIENCY OF A "BASIC GAS TURBINE CYCLE WITH TURBINE EFFICIENCY=COMPRESSOR EFFICIENCY= 0.80 0. -=2!!=! - _.-_'.". —--- === IG-= === I T 1 TI 0 === G=========== 1 -== [_^== E=- \= =!T1= " = 1= [....1 —1/__1 =__1__1 i PR ES SUR E RATO l Figure 14. THERMAL EFFICIENCY OF A " GAS TURBINE CYCLE - 50 -

0.4 - - 0.3 -- 0.- - 0.:'_ —---- 4 —-~ ~-___ m +<+ I I!! i l'1 ~/ LL —--- L. w:H m/ m m - m - m -- 0 3 _ 3 4 5 6 7 8 9 10 PRESSURE RATIO Figure 15. THERMAL EFFICIENCY OF A "BASIC" GAS TURBINE CYCLE WITH TURBINE EFFICIENCY COMPRESSOR EFFICIENCYO0.75 - 51 - - %1 -

:.:: 2222 110 FLOW RATE AND FLOW AREA VS. TEMPERATURE FOR AIR -i.22: 22 I10'I I AND HELIUM REGENERATIVE GAS TURBINE CYCLE O.20 1000 20 100 \ HELIUM (VOL_ FLOW) c ccr \ Xr\ t 18| n | 18 |90 | \ \S / REGENERATOR EFFECTIVENESS =.93 I uI \' a. TURBINE - COMPRESSOR ADIABATIC EFFICIENCY.86 cu\ W I: Hsz h I r AIR (VOL. \ \ SINK TEMPERATURE = 90~ F.16 800 16 o FLOW) Q: w CL 601`` ^N. ^S —- -FLOW AREA H - 1 MASS FLOW RATE.914 o14: 70 i Z m ZI< ^ VOLUME FLOW RATE Z- ~ I AIR (AREA) -.,2 6oo00 12 60,D I~ | W l " -^ AIR (MASS' ~.~10 3 10 50 \ \ FLOW) -1 |' | o HELIUM.08 1400 " 8 - 40 (MASS FLOW) |a: O H0 -J _ o cr < ii Lu < ^ r.06 x 6 30 | HELIUM (AREA).04 200 4 20 < - II L cr <.02 w 2 10 0J 0 I 0 > 0 0 - _____ 900 1000 1100 1200 1300 1400 1500 1600 MAXIMUM CYCLE TEMPERATURE - F Figure 16.

901 d'H — d3NIB;B n J. g9 g 01 0 Ie1 1 I IIIIIHIII I I I ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~~ 1T I I I I 111iim11 Ill, ilHIIII l lII ~lildlml Il II I III I 7 IT[ ii I I I 1Hilll Imr I 71I I Ill rrrrnirriMirrll 17 II L gL' III +41 A M I. g111 Hill iFT FIT F I I ill I H ill] 1111111111 I I1 0 9 -I —~~~~~~~~~~~~~~~~~~~~~~~~lZ 18' GL' I II I W M I Hi i I ll I1 i l I 1 1I1 1 - IH'11411 11111111 A " 11,11A J 1. III'HIII Ili 11111111 II I I ~~~~~~~~~OF' tr~~ i f I II L ~ I I.-4 II gS' 98' L8' 88' 6, a, ~ ~ H i I IH o il.ci6i 1 il 1 Ill I II HH I 1 1a 11 r, L I I I i c. o,*TI 111 F l It l o 6 8 ~ l

g'9.fl.STj dH-3NIg'ni 901 cTI I010 ~01 C01 HillA~ INI il IIII Hill IIII I I~~~~~~~~~~~~~~~~~~~~~~~I I2I I IIII.ll III. II. II I- I08 4-ol"7 10 418 Ii~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -~ ~~~~~~~~~~~~~~~~01I LCN 9 8* -8' 988 68' )iiii Hi ll IIIIII I I iiIiIiI IiI I IiI I)II III I l i ll I l l....... ~ ~~ ~ ~~~ ~ I..... - - - - _ _ _ H ill... II..... - - - _ _ _ _ - -- I^ ^... I.II II I I. I< It I I I I 11 1h i i i ^........ I I I.. - -. - - - - - — I_ Io p. -. - - - -...... - - - - - - - - _ _ _ - _ _ _ - _ ~ ~ ~ ~ I I M I. 1.- - - - I....... _.. _ _ _ _ _ _ _ i1 1-+. i H i l l. I II I - -II I I I I I I. - _.... - -.. - - _ - _ - _ _ _ _ _ _ Mr 111111i11 i:il I it;0 1 Z'i' I - ^1 I 7. 1 H H I I I Ilil1 l i I v, ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 1 00 _ _ _ _ _ _ I' __1 / _ _ _ll_ _ - - _ - _ _ I i_ - _ _ I0 I i il I I I J 1 I 1 111 l.IIIIIII.i I..... —-— ___ ___ II N.III l. I..../. 111,,,.0 PI..... __ _ __ I,illl..... ________ I__ _______ IIil I l il I III11III c o ai t~~~~~~~~io ii) ^~~~~~~ ~ IB111 I - o a I~Io I n~ 1~ 0 1 11 41-1ir' i i l I IiI I Hll) B ^D n II (M I -''1oHIIII

dH —-- 3NIBHn. 901 L0 01 601 201 IW~ ffl | flfII 0l~ t r~~~~~~~~~~~~II rW _ 0 B8 iliii i LiiLiili L r 3F-3 i I i I I I I I I A I M W11 1 I IE~~~~~~~~~~~~~~~~~~~~~ AI0FW W3 F0: 3 fflF-y- T i ~ INEI III I I I I I I L.00 el l tiliiiil Ii i I i I 3 F i - i 0 1 Ill l t00fi 1 1l I i I I 1 i i | l II' I:;, I i' II 14 I I88' II II L 1 1 L III IIII L I l! I I I 1 L I I! I I ll l { tiI! I I I I i i'I _ HiLL 1:111111 I III IIIII III } I 11111111111 II I I I I I II Il!I I i l i 1: i 1 1 I i. i 1 l-lil I T i! i I I l. i i 1 l!! I I Si i i HiLL L IIIII i I I 11 IN II:LI I 1.1 1 1 1 1 1!I l 1 l1 TI 1 1ll l il I M 0 tt ]it t I 11 I lllllllklt Ill tt f I I I I I I IllllllIllllIlllllllllllll lllllIIIli I 11 Ill1 1 H1I 1 I-I A Iil l 7lklli l I t iTUT:0 M'[ l ll'll ll l l' g I I i llil lll ll ll lilllll41111'1 l 1 1 1 1 1 1 1 1 1 1 1 68 l. L u L ] L L 1 Il 1 11111!1111 11111 11 L! I I!! 1!!! 1!1!111!1!111!!!! I!I I I I'11 I g 11! Ll 1!!1 i! Ti!iti!l!ii! [i Willi 11!! I! I i i Ii 1!!!!!!1!11!1!! 1! 11111 I IIII I I I I I I I I H l I I I II 01 1 H I M H i ll 1 L T IX I 1 110 I, I I i He T I: i I i i N

) C) cn N s, cP UI O D. OD C Q a) CaC D (1 4 W CD O.90.89.88.87.86,.85.84 L~.83.82.81.80.79.78.76; to' ~~103~~ 1Figure 20. 105HI TURBINE- HP

dH —'3NIBdn.,0,' 01 01 01 9 901~~~~~~~~~~~~~~K9 LL' 8L' I Il il i l 11! I K I i> 1+1 1,1.~ ~~~~~~~~~~~~~~~~~~~~~~ il 11 1 Hl l 08' I I III H I I I I I I I III IIII II I I I I I.I I I I I I I I I I t1 8' i — H I IIIIII~~~~~illIIII IIIIIIIIIL I 1 1111 1 1 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ I K HIM 4 I I I I I tLI~ ~ ~ ~~~~~- 1111 n n i II 11111~~~~~~~~~~~~~~~~~~~~~~~~~~~~__ ~8' - -I t,8' b98' L8' 88' 68' 0 ~ h ~ m U N N -(o0 h) ~ ) N 0) (- N C U m ) N M -' oo h N m ) N 0) IIIIIIII I IIIIII I I I H IM IIII I il l I I I III I I I ll I I IIIIIIH I I I u OK II I III 111 111 1_0I l

dH — 3NIGEtn. 9,01 901 z O I 01 9Z.' L Z' 8 L' 6 L' OS'~ HI~~~~~~~~~~~~~~~~~~~~~~~~~~~~~t78' c~8' 98'~ Z. 8' 88' 68' I I H i l III I I 11 1 1 1 1

-s *%O O D CcD C CD 0 00 CD (0 4_ o> i^ aD O o - rD o OD On OD - o bo o -~llD (0 0 - 14N LOi LA ( 0)- 4 C (0 0w I i L - 1 r I IIld ilN 1 1 b il +1 I + f I l t l Ur —t t - -LC-IIK 4!- - -1-Xi i I 1 +H @ -- ) — W4: LW -W - W144 - - -44 F <-t I LI'FI 1 Fk - iI - - - -.i.- - - 4 - - - - - - - - -. - - - - - - - - - -.- -J' —-- -- - - -s - - - - - - - - - - - - - - - - - - -. - - - - -- - - - --. - -l- - - I F I THF IIA ok~1 NJ Xir rri - XX i T X -1!-l-ll ~iL TW1 1 T I -U - F- FI4-Nj l I-F +"t "1 t-["!'44+ t - 6 IL igXWi EI llI W il I I J I-i4iii ~ 11H I -C 1 r-t so E E E gm1 a~q0co. - -.-. - - 1 — 4.- H- — 6i —i- 4 —iI IIIt I I-Fl-F-F- -i F I4 F- FilT F l-IH Vi i4~ 4411-Frij N'~~l lt ~'I-I-F- -1 —F- -41 T-:i

901 GtaZ aca-a;01 d H 3NISJnl o 101 9!-: 4 F T X 4 i~:; i ^:1L: X 0|; — W —--- ~i/ ~1.; |lgif: 0 f[ |t L -0|1i| _ —' 1f|2==|0l-iX < I+ 4 i T ~ ~ ~ ~!?-:7l r;t ii: if i 1- i it i r Ti=tT8 -1 iH; —0if-1-i ~. izli-rt —- - ii —r i i i iriti — i<01r ft; 1- 1-1 -It --- — i- 10=Lf~ 1 lf-1 i ~rH-1i- i (: t H 6 } t ~ rtf: W W W W in - - | 10 Ll0 A L 1 u:ii-| - | i - i0- - - _T7~ ~ ~ ~ ~ ~~~~~~~~8 l- X m XT X r Lj 104 T tX 4 0ni|i' - - -i — i|-ii /0 0: - 1 <E < > 6 08 1 f FFT 1X X < w EF0= ==1# f-t I 1 0 |, —i —- 1- S2X | L C|f -i 0 | I i-_i -!-| i - -l [|-I I 1 S -T-~~~~~~~~~8 -I-i-;-i- W ~~~~ =, it —. jT 11N~~~~~~~~~~~~T I lM3 lE= r =3t;-tl~li-tr: Ji X S> W~~~~ -: it jr i-it > 4 H 1.~ i-+i-1.. -1-~ — t- iitL0 fk z X $1OWW t.i —i gX — i~;~ 8' o L' 01'4-t 1' ~: 1 i I i iL-L ii i i-i-i~~~~~~~~~~~~~~-1 ii t Wi Fi! — il ti r i mr i~t <ii I- X:!-~ ti i (eI' I -tL tSTW ilj i~t- _i. _1_.! irr L-'' I__ I —il'-' —I —-11 - -i — L4 _I_ _ _._: _X: —f- =W:i tXX i i | t sIs |0r-t- itlt-t -0 - XX0<xi T+1F +7 Tj1_ AF6 —' - t — i -. r- _ — t -J: Oi'- i' —z~6-I L 1 F IL -" - i-!T 1I!1-1.. ~_.~__ ~_~ ii JJ_.i -~!.... i L; L -i - I t- i, III- I r-i-i 1 I H #LI-I4 I,.4~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~d -t -i ti - ---- I i~~~~~~~~~~~~~~~~~~~~~tfiiJ - - ~ IFII II ~1 - I I jI 1 I I F I(-l_ It(i-treili itr tt i 1 -i 28~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~Fi F 4- -r II~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~- - -~8 t-t I'0'i d + TFT~i 1 1- i-i i-ii-i r~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~1o ii jill~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~J, -r dl i ji ii t- 1__.'i; ii -1~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~T_ I T! A I I I I I i -iti i -t._i~~~~~~~~~~i r ~r~t# fi h4 4-i#- -i- t~l:i;L IL Iii i' T`;-T T ~ ~ ~ ~~~~~;-i-iIi —— T~ jl/i -1 i ti fii~i —::t-~~~Li -- t: ED F!- t it: Fi.. /_ II1 L6 ITE H~~r J-. i-1 i- 4-' F t I i — -i;-i —l r-r? i~~~~~~~~~~~~~~Tf i.: -I-I —1-i —: —~~~~~~~~r- 7_ LL. i..:_L~~~~Cy G t I", C C I 1i-1 (n _I 0i —! —:i -i i IIi --. to U), MI i —i-;-; —i —- - i- 1 —;- 1 i" ii- 4ii 4;:I' i~ —

i- 9 - 119~~~ TT79~~ I ~ i~ e I T b D * * a __ __4_ - O D v en OD bD 00 0 |||A J A t| J[ i 1 l L: I Til~~~~~~i^.^^ ^gg~gi~i^ t"=: SF~F+,L_ <0 -:'_-i_^'' - A + E J - IT ItLSS S0Lg^^ II ffi!!iSl1li^^ Sl~ ILII,, - -, -t —i-t;:-: i L < m ^ i i _ i t I I I I i* H X L 1^ - | | || || || |||| |||| |||| | | I | il _I~L~. ]-ltr H.XM1il J - t:.... 1-_ k,. rl - 1 i 17 -l1L -L- j - cni i: i i ^ I i i' ^'' ^T T^ OT Lt-~~l~~- i-i i i I~ ~

U:) -L+- _-o I F i lf j I I T I7,L~ ~~~6~~~~~~~~~ 5~~~~~~~~~~~~~~~~~ z IIr 9 -tt tt tm ttttttttttttI - 7 0 I I I I 0 4 -T-I Tl~i~iI 4 I~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 3 3 I~~~~~~~~~~~ I I A I I MI ~ ~ _II ~I I - _ o~ oo r,- ~ ~ v~ T_ 1 re)~~ 62hwIhU~j~lh 0HN-I10 ~313A0C - - -628 - Nr[-1 S33N-d. dO IIT L3 I V - 62 - S3H3HI —dll JO t~~~~~~~~~~~~~~~~~~~~~~~~~~~~~313W ~ ~ ~ ~ ~ ~~ — a

7o 6~ S3HONI —-dll JO ~3J.~31NlC] 2 r-4 HIM IIe iI I ^:^ _E;;:^ ^:^^^;^^;n^^=; nl-^^^;^^:^^^^ltll~nllulltTf IIlll 6 — X t: llt^r 1::11;W:::::r::::::E:E^ ^ 6 -—:5: IIII I::: 111:::!11:: I:: 111111!111::::::::::EI::III:::II:::::::::::::1111 11 4:::-:::-:: -—: —: -:. —:-::r -::: —:.-::::::::::r:::::-::: -—:::::_:::::-::::::::::::::::::::::: -:::::::::::::ii:::::::::::-::::::::: T::::::::::T::: (I - - -- T- ITT T —I ---— __ _ 5. - _ - _ _ _ - _ _ _ - -. _... _ _ L. _. S!2cr' _cn 0s (0 lfl qrj- -. - 6 S3HONI-dli JO dIL334ia

DIAMETER OF TIP-INCHES' 9 0 0 - 0 _ r 0 u0 0 a0 0 O = R c0 0 I I o o O O o o O O o o o o o o o 4 I I l~ ~~~~~~~~~~~~ ~~~~~ T IIjTT;l02 l l l 11__ i 11 1 N C) -t I -4 M M S X I 1!111111 11111111IINI111111 611111111 i -i ~~~~~~~iT'~~~~~~~~~~~~~~~~~~~~~ Co F):::::::::: 1 I r:::::::::LI I:.:1: 111: 11111 I:: 111111::: 1 111111111:::: 111111111 111111111::: IIIIIIILI::I..:-T_ Te::::::I:::IU I I:-::::::::::1^::Id:::::::::::::::::::::::::::::::-:: ^ —::: —:: —-:.:-: 0 II: I::::::! I::1:::::::::: I:::: 11:1.1:: I Ii:::: IiI:: 11::::::::::::::::::l ll —-----------------— I — --- *_ _ -- - - I I 1 - I - 1 1 1 _ I - I - 11 I I1111^t I!^I iIi _' ~' _' ll'l - L1 1 1' 1_ 1I1 1.. --- FM-. - - - - - -.. - -- -. - -. -. —-. — tF.lilllilllllll - - --::::::: I:::::::i::::::::::: 1:::::::::::::::::::::::: z 11II 3 11W 1!11'sv - li1lt11 ll 1{4Ti~ liIlllllllllliii~illll

120 19I00 w 60 80 0i 1-70 60 120c~ I I l ii IIIH^~ iTURBINE-HP 10Figure 29. 10 110 ^ H m H E -: " — "-*:-:::*:: i-: —: -***-* = = E:E =E ------— * —**** —------— "*-:***: *=E: E:E EEE -" -: —-" E:" -: —-- — A: cy\ = = === =======::::::::::::::::::==:::::::::::::::::::::::: =:=:=:=:=====::::::::::::::::::::::::::::::::::::::::::::::::: = =:= =::======:=:::::::::::::::::::::::::::::::::::::::::::~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~I r~~z====:r =rz m m: I::::::::::I:IIIH: I=: I::::::::::: Im: I= m =:::::::::I::: I:::::::::=: r = = zz m i:::::::: n::::::::::: IU = = === =r==:::-": —- -— * —:- - --—.-..-... ==:==r======: —--- -, —— " -- ------. —........^ ^^^-^^ ^ ^ -.- ---.-...^ --- —.till-.I X = - =:= =-:;::: - - -:- *-:* —;::-:::".......... - -^^ ^^ ^^-^^ - -.-^'..... - - ~:-::;::-..... - -^ _ __- -^.-:-: -::::::::: -:-:-::;:....:::::: o = = == == EE E::::==::::E EE:==:=:::::::::; = == == =E EE: ^:;:;;;::EE E::::::::;::;::,= = == =E:AL:: z 8 ^^^EEEEEEE:::::::::^EE=::::::::::^:i ^^^^EEEEE^::::^::::E=E:::^^^:-^;^l~il^EEE^!^!!!^ E^E^!^^I A I iiiiiiE-Ei~~iEE^^^^^^iEEE^^^i^^^E^^EE~~~ii~iiiiiiE^ ii~~i~iii~i^:^::'Al 0- = =: = = == ==:::::::::- =:::::::::::::::: =: = = = ==':::::::::::: =;:::-:-: -- * = = = = == - -- -- —.I. - -- -;;^;;. ^?= 70 - E E -- - -- -- - -- -—:" — - -- - -- -":-: -"* — -- - -E -- - -- -: —**** -- - — **-*"E: - ** -- - -- - E- -- - -*-::*: Il- -- * —l:=:^:r ~ r z::;::::::::::m::::::::::::::: ^ ^ ^z ~ z:::::::::::l;;:::::::::::::::r r::r ^: ^r =:::::::::::::::::::::::::::: IjL = = _ _ _ --.: -.; --::-::::: =_:::::::::::::::;: _ = _ _ ^ = _;_::::::::.^: -_ -:::::::::::::::: ==- = = = = _ _-:;::::::;:::::I:-:I::::::::::: 40~~~~~~~~~~~~~~~~ ~~~~~~~~~ EEE -EE-^::^iEi^!::: 411 1 p E-"E:=:-^:iii~;ai:::^::I"40= = = = =:::::::::::;':::::::::,^ ^ = = =::::::::::=?::::::::,.':= = = = =:::::::::::::::::::::: rm~ nrrrzr m i::^?1::::::=: ===:, ^?':E:::: = = === ^*^^ -;<!'*:':::::.: ~13' ^I'i~nSS~ ii'1 === ===: == ===:==:~ —--------— P, I

130 120 10I 100 90 Cr) I I'-70 10! — 40 30 20 0 5 TURBNE- HP Figure 30. 9 -'FiOL^ e 30. ^ ^ ^ ^ E EEEEEEE^ ^ ^EEE:::::::::;:::::: ^ ^^^ E EE^^:::::::::::::: E^ E:::::::::::::::: E EEEE:EEE:E::::::::::::::EEE::::::::::::::::I ^^ ^^ r ^EEE^ ^ ^^EEEE^ ^ ^^;;;:^^ ^r ^ ^EEEE E^E^^ EEE^E^ ^::::::= ^== ==::::::::::::: =:::::::::;::: 1 o80 dF~i:i::i::ii i:::::;i::; - - = = - - *- - " - * **-:** = = EE= -: *:-: - =:: *-:* 7 0 I U I I::::::::::::::::::::::: =:: == =:::::;:::: 1::::::::::::::= _ _ _ _ _: -::::::::: - -:::::::::: CT\ ^ _r~z - —: -::::-::::;:::::- -—::-:::::;::::;:.^ _^ ^^ -- ^:-: —::-::::!:-^ -: —: —:::::::::.: ^ -- - - -^ — —::::::::::::^ -::::::-::::;.orq: E E E EEEEEr60 AEV: I I^;: EE ~ ^ r E - EE:1:;^:^ ^ ^1:::^:;::=== = = =:E: E:^E iEE EE:::::::: Z8 = =w=- - ":*" - ---: * = = - = - - --: - -- *- -***= = ^ -= -::::* — -:" - -

Co).r1: I7 |-[I W 9 ^I I EEl j E t 0 iiE0ii^E ii I ^ ^ 1 INI r4 9::"<:"::": ":: -::: ------------ 1 —---- - -- - 0- I —- ---- - -1 — c ~6~~I -::: ~i::::::::: Ill:::: HIH:::::I INI1 Xl~ 1 I I I I I A I I I I O IEEE:::::: E:::^:::::^;:::: I11F1 1 1 1 4 ^ S 1111Nk1 ^ ^ 11^\ 11: 11: * W^ ^ E E::EEEEEEEEEE I 4 [8 lilt 6 S;;li3H3N;.:.;..li- idU.. Ii FillN I.67 6Y-4l _ Sl~3H3NI —dll JO d3i31ViaI

t-C 200 2180 LI. O ~ ~~~~~~~~~~~~~~~~~~~ 4-t L T ll ilr 280 |. 14.-tX1X,1xi lF lirl<WJ 4tl 17 T t-t- 0 H i0g =lr 4 0 3:~~~~~~~~~~~~~~~i 1260 i a. o, -140 Co LL 240 JilT 1 S~~ ~ ~~~~~ ~ ~~~~~~~~~~~~~~~~ ~ I I I 1 1 1 w120 220 4 ITI It ITT1~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~I I I~~~~~~~~~~~~~~~~~ — z m IT r 1 E 0 i11 Jil~l I m1 LI.I~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - 1oo 8O <nl80 E H0 likil tC~tjTRB HP W 1t 12 05 z 1X1 LIII I I lt~;-f-'c- l W3|;;+WLu-4 IN: I 1 311 i110 L-tE;tl 11111111 l w 12 ~~~j-Ktt~~~~~~~~~~itt~~~~~~~til —ii"- Ittt;~~~~~~~~~~~~~~~~~~~~~~~~~f~~~~ll~~~~~~yL~~~~~til!~~~~II 40 CC~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~0I V ) IL 1 0 1 T l l M l rl Tm 3110S}L 0I t t~~~~lli Al l fff L;L I I I WW IlilllIIFb z L'l I 10t1XX 1!~~~~~~~~~~~~I 30t1-4 M4L ttI 11 tt 1 2 X I IIII,4w Xf tX ltt~~~~~~~~~~~~~~~ml Zg t r~~~~~~~t T~~~~r~~lXT~~~t~~~kW 111 1! 11~~011I 60 W a i I iiil 601 M! X1 4 14$1 X (O (O 3O 1 iur -I 10 MFS> 40W i I tF t I IL,L 20 3S tt W E tt > 1 g ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~T -I g o L E 2t~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~l L ffi L~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 103 104 ~~~~~~~~~ ~ ~ ~~~ ~ ~~~~~~~~~ ~ ~~~~~~~~~~~~~TURBINE HP 15Figure32 6

01 01 dH 3NW98ni'L 1 01 9 7~~~~~~~~~~~~~~ 1;; i~ ~ ~ - -4ij j-.L -~ |til;00 l/ r It-rt t iFE-L]; 11i ffL- i- Igii- d1 it I -7 I- - 4 F- 3NI - l.I. 01 40t 1 < 4 -+ - L. - F, i -- 4 Io i. j-l; i -i t r ii i 1 -1- i-'- [ X t i-r i i 17~ -14 tll g f; ~F OZ H= 1 iI _ T. Ji Fi... —.; t 1TXX m- j /1 X 1 1 i:: -i 1i —; - iH-ig ~il1- | = 1 i. -> <X X W XE X -UaI +lrtW~w m m:1 Hi:':': 0 0.1 X t -i >tif -'- 1:F1t Itl E tXl:!~fi - X ig, —t, = j~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Ip 1 S <[:i' m -0X - X rl 1ei t~lt~tX ~ < T XtIt tt Xi iT 17 W 1' _ 1 — 1-' i 1 7 - Ti -'~ ~ ~ ~ ~~~~t- ~ —r-.- ~ l'~~1~I:,~-'~t'- ~ -";q~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~T 1_!014 1!ri,: -- t- - 4A. 4O iX i 1i tf0Wt13-t --!I -~ go vz tt Ii-i- J —-i-t -1 LL ITi i r if:.;iiit m,, Wlf00| 1- -~t~t~l!-I- |1i; t |__ +tt~tittil i=iTXX 5 + i~~~~~r- i- ~~~~~~~~~~~~08; i 1.,f0 ltlll' j. |r'i~ |-EC I= y Iii r-X 10 t, - 10- L0 |4if-i |1Drr0 i t:: =| S Cm I I II f J o i 4_ + t o U t CN q it -i Ti I-i: —,-;i u~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~I IT 7!__ L i CC i — I~~~~~~~~~~~~~~~~~~~~~~~ —~ ~:T+R-7Fii Ft #FF: i ~ i-?~~~~~~~~~~~~~~~~ —i~~~~~~ —- - o1LJ1T;i -i- L~~~~~~~~~~~~~lt/ ~ ~ ~ ~~~ftwt i-~~~~~~~- ii~~~L == F I:if _77 1 7 T; H- ~t1 _H_ Lri W, Ill I I L _ - 1-[ A _8lf r,,_ T i if -il Ti i - i-i ~ ii~ FF -IL T 4 40-4 i- -i- i -f -i —i-t-;i~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ihi-iiii i-.~~~~~~~~~~~~~~~~~~~~iiici~~~~~~T IL A-L~~~~~~~_-i i~iiili 1 r ~~~~~t~~~~~~~~~rl~~~~~~~~-i t""t~ -i- J -i-it — i-i —;,- f- -:-~ — ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~~CD00f-' L I t`r;-r i-i ii I- -r~~~~~~~~~~~~~~~~~~~~~~I, I- CD m 00 mj. ii

- OL - DIAMETER OF TIP-INCHES n O O D o N - O) o o N N N N ~ o O O o o o o o o o o o o o -4~~~~~~~~~~~~~~~~14 w~~~~~~~~~~~~~~~~~ oU MaW SVT W41 T 4 I~~~~~~~~~~ 2.'HH- I' -1 *~~~~~~~~~~~~~~~~~~~~ i - HI'H~~~~~~~~~~~~~~~~~~~~~~ IIFT_1'' -li I -I114 I II It 1' 11 Izj I HI XX~4 j IIII IH iti -'- 441.1tl~~~Tftfr~~r~fff~F I Hll HI ii I I H i't-l - - TAV T i~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~; -IllW Hi L HLI IIE A Xtrt X e W1UX1W~L i~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~li I?tt I MI ~ A F-i iT i~ ~t~-X1XMX<X<XxigC q09 1 1 X tL, - — H Hxxwm- ---- I 2F IJ I II 1_ ti'! i 1 + rn g L~mX X M W< t~t —;ti -080014 1-n L I t tLXXL0 L t t|-l i I00: —\i m X tlB4X 1- i -9 LXLI 1: ILt --— I T_ HW L' i EW!-i cl- XX LS4tn;Wz=2il r -042L -~~ _ <<t i. t X < X < < < @ > - -1 T —1 144,+ I-E~~~~~~~ —- IO~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Rt 41 14+tt -4XR X ~~~ H7~~~~~9 q ~ ~ P iUi I i I If ii i i S _LL ~ ~ L -:t li _1i_ L ~ ~~!. 10 1 i I i I r~r I X- hi i fi-ii1 T iI I I j i I I -I i I I i i j i (4 - 4 I i ljf L IjR rl l i 0oi 01-1i1 W 1 41 $ - a)i -LLL! ill Iti-r t -i- i i-~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~i-~~~~~~~~~~~~~~~~~II50 ~~~~~~~~~~~~~~~~~~FT i+II Il_ 71 1- - T +tT~~~tt~~ttr~~~l~i44 Nn _TVI PI Ti I -r,.C/I i.ilL TI I I I I ii L1 rTi I -+9 LLL I I I I I H 4-11 ~=ijl-1i-,-c-t r " -~- 1~~~i~~ I~l-.tl~I~t~-L 4H~

D33 D i2FORMED SHEET METAL FORMED SHEET METAL -~^<A ^^^^^^^X^^^^ ^^^ DIMENSIONS OF TYPE USED D2 0.067" DI = 0.055" SEAM WELD OR BRAZE SCHEMATIC REPRESENTATION OF GRISCOM-RUSSELL "ALL- PRIME SURFACE BRAZED LATTICE" FOR CLOSED-CYCLE GAS TURBINE REGENERATOR. 2 COLD GAS INLET HOT GAS 5 1 6 HOT GAS INLET DISCHARGE 3 COLD GAS DISCHARGE Figure 35. SCHEMATIC DIAGRAM FOR HEAT EXCHANGER - 71 -

4 3, I - I I I TE I I I i I 1 I I A I - F T E14 1 I W lw< 1' I - - m — I-, - I - _ —I - o ].:: 7 -- -- - - - 72 - -I I Z ^^^"""^"^^""^^^Ei-^^-i- T LAJ - 6 52 3 4 6 6 7 9 0 2 4 5 7 8 — 4 10 xI - 72 - - I I IT t4I I —i- - - - A -4- + - IL I I 401 Figure36 PLANT OUTPUT, HP

REGENERATOR VOLUME - Cu. Ft Co o r c, b cr O - co coO o O ~ t; L jt o AA1 I F I PIW H- MmX M 0,^~~~~~~~~~~~~~~~~~~~~~~t' i!t lit X XS tt P: ii i~~~~~~~~i -T__.. I lT I I I I I I r 4 t E - 4 KMl -*1Mm w- IfWW co (DstA4t00 t 11 IX T —4 S CqIl rFTI i~~~~~~~~~~~JIN i -- I -rq -3 I0 11 Iq O + F I t C: _0 V I T - - 1 I I 1 W i I i I I I I' I I: I i j I O t - ~~~~~~~~~1 I I4 I P~I Xi 1-'o ~~~~~~~~~~~~4-r -4 E - -r I+ -it- T-TH H —-- 1- i- -11 oo ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~~~~N 0[ 44 AJ +I — 4 or, I ~~~if- rl-n ITc I I -YXI[IFII J i TTIi IT TI -FMr-I'''' I ~' ~ -''" to 1! 4 I!- -i- 4 4 o~ - kI

I I I iifl ii:E:E~ a::::::E::::EE: I::-l;E |^-:- -;|- | -' —' -'-l' --—:;::: - — 5; t t 4 l - 1 I _- rt-i I i i | i:E| |?0 I E I ^ i||||:|-^ _7 — LI T i7 T _ 3 f l F 1 I r_;7r; i iR.4 r I _ ^ ^, L < ^S O c o J c W t - n0 0 31~IOA y1Vd3393d- — L — L 7 _ "F CI+X 1 f WSF t i- F T1 co N. S —'o-3-]O O L333I —':T I' + SX th::gX J0XM0WE1( _ L sJ nD _ cI- LO LOCl N00 r-~. O o M c - L c 1.1, no 3vymOA 80IV83N3938~~~~~~~~~~~~~

dH' Jndino INV-d'6~ arSTJ 01 6 98 9 9 8 Z L 6 9 L 9 9 6 8 L 9 9 6 Z 9; l H ~ll I I~11 I I 1 I W hI I -_l I0 I L AII A III Il M I 1 ______ L^^l^^-_ -- ^-mil 1 __ I______ 111t-______ ^1^1-1,- 1 1^1^_11 — 11__' 1- 11_ 1 11111 1______ __ — T —z- m 111XiT m g | | - c 1 — — l 1l; —iz z z z zn 1.i -z^-zz i;;1 zn;i;; - z z ^EEEFr::::::::::^;:^::^::::EE EEE^=^E:E:E rrrEEE mIEE1EE kil: E::E1EEEiFt._____-..-. —_-.-___ —_. ——. —_ — zz^ --- E[ —-----—; —--—. —--------- --—! —---- ------- ^ —----- -- T I ":::-:-t::;?F l::ili:-l::::::^ - 1t+ Iilill-lthiX lililililillfilil | t | 11111111 ll"-""*:"""":"""i"*""T:-:r^-fc -" _:: -: r -^;;^ *^ - -; z z " "::: -::: - -: " ^ ^:: - " ^ ^ -: " - ": ^ *-: - -: - - ^ ^ ^ -: = - - = = - -: - -: -: - ":: - ^ - ^ -E 1 8 3 " " " "M,M~tllL ^ ";::: "I"1': " ": ": ":: "::^: "'LI"I "I " "::::::: - 111 111111 11111 11111 _a-~C[XE:L J:::::lLM:rii:[:I:C ^::3 11:3sins:::11:::::::::::::::^ x^

1 0 I i ( i! H I _ | 1 1 1 |1 I I I I I I I I I I ff I I I I I I I I I I I! 11 \\ I-o L&J 8 _ f lllff. l..- - — 1t- T-.-_ —-I — - - - - — 4l-...il H I, I -Lt 7 ~ ~ T 1-:::11 1 1 -:;FrSH;::::::::::::;:::::-:: T:::::- I -- 1:::I::lT: ^:: I-l 1 ll:: I: T i 11111111:::r::< 05 292 3 4 5 67891 2 3 4 5 6 78910 rTI Figure 14lIITIT I10. PLANT OUTPUT1 If1 11 TIl I IllI LIIHPlTl T l i- 76 I I H|l ll il |Ii|| - T I II l l; I 34 ^r EE - - lEF^El^^EEEEEEE^ liEE #111E EEIE1 11Eh S ~ ~ ~ ~ ~ ~ ~ ~ ~~ -7 ^ ^ —:::f ^^ -:-3:'t:-::::=:::::=::= =::::::::::::::::

-~~~_ -- REGENERATOR VOLUME - Cu.Ft -(D ~ ~ ~ ~ ~ I L T L~~~~~~~~~~~~~~~~~~~~~~~D~~~~~~ITF~~~~~~~~~~I O'@, P~~~~ — 44

6r I X t I7 X;. o L - "4 1 ~ ~ l.Fi e 2 IP1L1AiNT O U -if TPU:lT-:! —T-IT H P -I —-T H Li S ^!11"78e11111 1 i A: I9III l fr I I;- l:: I I I I? f::^ 2 L IE I --- I - 78 - - I y Figu rel~CN;- aFnc-s ~ t I IT I I OUTPUTA HP 7

REGENERATOR CROSS-SECTIONAL AREA - SQ. FT. o 0 4 01 1 1 oo o _ o b o1 o D o io0 o 0'to a c M D 0 OM ~~~~~~~~~~~~~-4 o -I1 i I'' _ Io "O O L -I -o2I _s___ +4 ~.,ln -o c:~~~~~~~~~~~~~~~~~~~~ ~~~~~I ~ ~ _

3 -.I 8o 1 1 1 1 I 11 111111111 1 |I | l | | |11111 I 1 111111 II I I I I I 111111111111171 1! 111111111 1 1i 1V LL OC) 2 o 101 J 9 U 77' z I5 612 -- 2 3 4 5 6 78 9 103 2 3 4 5 67 8 9 104 2 3 4 5 6 1t 8 9 1% IITa ~PLANT OUTPUT, HPI Figure 44. - 8o - 5n -- - - - — *- X 11iI IITI!IIIIilLI t w,, tIitIIt,*,,,,, *,- -- -—,-, *, — -— *, —-,- =-, —:-:: - -:*,,::: ^- - --- X- - ^ r: —-—::,,- -— *:::::::., -- U _!; i gI i |r T r I ( }I T i| 11 r | | s iTIEtT! It | rr I I| I II f-I I I I IT I I 1 1 1 1 11 1 11 1 11 1 Irv i I 7rl1 < ll l ll l iI I rl f T TTr III rHIr IU EV =;;= 1:::::;:::::: llm-l;;:ll::=====i==:;:::::::11 1 -1;;lllllll:ll-::::::;===IWI =;: 1 11'111:::=,:::::-11 1?:::;111 IITI: OT'II1 1 111111r IllErEEE ElElEEEE lEEE I I I EEEEEEE 1 1 lrEEEEE^rll EEEEE::I:I:1::11:::1 F g r m l 11:::::;::I;. 1:;1111:111 1 1= 1=111 J+T+I 1 1117ll:lt TT-dITITIIT 1 7 T-fT71 I T I rlTTT171=tililELII-dlTL^f| 12 e: 3 1H MIITlil _ T7111ll-l=lT I I l:l3)i r -=llll::::::::;::: I::::::::=;:::=1=:1::-::::::: -:::::::= I=:: ==:::::::::m: I::::IlTT::::-*==::::::ll II 1111X X -o _T =:==: I:I:::1+:::::::::::1::1 1:::::=l=lT^=:;:I:::- 1:::::::1=:::1= ^ ^:: = 1::::: 1:: 2 F X=:E:::::::::::::::::^:^::::::I::::;::::::^=:Z:::;E:::;::=::: I I TlT TI-: l:: III:I: IIIII:l:IIII II 11111 1 1_1:l:l:l:iL^lil ll:IL:I:l::::;:::-:::: TI:I: I:l:lLIII:III II LIL^ t0! lQ:iiTI~ LI T —----— ": l l dS —t l L0T r l] llfflarkfeI Tl Ililil-::-:-hl-l I T-H' I T1 011"*:1-[1 ^<~~~~~~~~~~~~~W 3 ^^ ^. ^,.i,;III Ik111... ^...,:,.-11 | W| f E i -......t 0| 1.;1| 9 u 7 -|i 111| l |- -r- - - -- -r — -*-v- " — - -"- - r1X flm rrr rr11 1X1 11t1 -- - -^'" " Z:: " "" ":: " " " z. ~~ 2 1 Z:.: * —---— *r-" —--— * —* — ------ rr,- - T — 1171111 ll - T1- TlLI- iiLT- - 1 —^ - ^ I IT ------— IIT ------------------------ 17ir L TTr11I rlliil r 71 IlllTI --- I- T^ 1T — -—.- _ - _ - -. 1___ -I 8 b J 6 ^11111lI2l^ ^I l iili 2IV lI^^Il l^iiLlilllllulll|S11111141Iizilllllliiiiiill|l:lllll iiii 1 1 1 1 111111111!1 i:^::::*^ ^::: ^-E^ 6 5 W ll^!lLLX: —-: —- l-l: ElI11d1l —IIIIIIIL ISI~i L*E —~ -* L —-l —lL —-— l —--— I l:-l —-*-* ^ -- I —I- I-I — — 1I3 - - - - - - -- I -- *I I -! --- ** ** I* - - -* I- I I I *-* - *11 1*- 1 1 1 1 - - -^ - **? - - - - - - 12 - - -- - - - - - ** -* - - 1 - -- - 1 *1***:1 -11 -II III- - - - - — ~n 1GEeUWI11111 2 1 ~ 1 1 11 ~I' IlT E ~11"11:~ 1- " * * 11 —----— lll~lrllllq~l I- - * I- I- I — - I- n - — EE":'m' * ~E * ~:'"""1111" "" " ** *" ~* 1 1 1 8 - - - - - - -... - - - -.. - I7;. - T Z - -^;.;:..., — -..:.-... _ - - -..- - - - - --;;;......- ---;..;; 1;_ _ - - _ 80 -

3' ^ ^J iT t -F t fF3X0-~-{^ -— H LIli3 ~-('TiI - — r —ii-t T-_-( - 4 42: _ hE5^M mL t O UT EEE:t........ F 8 - - - i 1 1 - i i4 1i' - i - i - i t' + _ i7 H-|(^i:-fFLi |-i- s -rPJi^ r | i < - tr3 - J'0I i''I " L WX'I — | Kt _t-t'-L -! —- t i i i | Si:-1 - E S iE Z I i-i ~I'I T 4. 4. 5 7 8 9 3iii! ~ 7 89 6 2 37 1 I0 I LAIN T OUT — PUT, HP - 81 - W T1 10 I -- 81 TL. 2 ~~~~T~~Jd-A r _ /t; I_ t C-jii~~~~~~~~ _I ril ir~t ~-i-f- I; r7 2 3 5 7 9 1 2 4 6 I 0 2 8 9 10 4 3 4 5 6 7 8 9 10

REGENERATOR CROSS-SECTIONAL AREA -Sq. Ft. - co -PI (7 m ~< oo o co r 01 j O o o M 4 rv ^ — ^ -i r ^;1"''!!l "rriv-1. i r^ -i" r- - - -- - T nr tu ii"+ i3 W T i T' 1"1 -Tr~ T r ETt~ T. ir + r ( —^ - -; * 11;i *n ~ T iT'^ 4-= T:;* th ~'h' ili,00'1' ti1^:^: t:l'N'13''* "X rU ^ Z 1414 ^ ttt "i~ il T +: T AO.1.,,r,_, __ I_ |||:k1g lS WT FT=-1<E| = - ) 1-i,$'SllulM I F-FIT 1 — 1 - 1 T - I FT I I I A i.- T - 2-+ - M I, L T -- r W[10 L W~~~~~~~~~~~~~~~~I ff-T-'-4~ ~~~~~~~~~~~~~T | ~ 1' - l -- k 1:llgjs~7 4 -4-1 -L - ~~~~~~~~~~U 17 t I +at1et1-t -H | —t EC I~~~~~~~~~~~~~~~F -,b 0 X ~~~~~~Mit L0 ~~ X t H S 0 X A -H III- t-4 L,'I-rel'LI~~~~~~1-j-'! T zt O ~~~ ~~ ~ ~ ~ ~~~ ~ ~ ~ ~~~ ~ ~ ~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~I i. I i I I "HO n" -+ —-+ - +- 1'' 1F4T^:FT^T ^+T-l-J^^^ —— I-^:-* —4^ W+ —T+' __41 F +. SI +++ I H F=+E II tqit0-'-~4l- - +- -m++lllf~fi t''ll -H + O~~~~~~~~- - q44 T;-WWW't 4 -:F t V7[ C'-4-4 cOD -L _1444-1"TS~~'5^ =-^T''^~~s^"::t"I^""^'tH^"^-E^^*;~~~~~~~~~~~~~~~~~~~~~~~~~~~~~I -T4-H- I llg^J I::^^^ 1~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~V 1 1_~a^t=j+~nTI I L^ 4~~~~~~~~~~~~~~~~L4 o~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ - ~~~~~~~~~~~~A-4 i "i^^^ll^^^ilii^^^itit~~~pi-i L ili -4g11 co~~~~~~~~~~~~~F c) m ^ ^ ^ T]T^ T ^ ^ ^ ^ TT^ ~: H M ^: "''ff N ^ ^ ^ ^:S+A'=^M"^Ir^^~te+-:TT31^r^:^'":::ff^"S^T~"TS;F T m"*+l+4t^-'T^'t^1'TT~~~~~~~~~~~~j^^ T^TT'TI^VLI 00 T-7__ l -T*- ^ ^ +^F~^T ^^F~ei'fi'ir^^"^""^"j! "~~~~~~~~~~H -r ^ ij - I - I.-!-, T-7 ^ -^:^^^:^"4^^+-:::^^r:^:"":-::i:^^F~~~~~~~~~~~~~~~~~~_4 TT! T^:- -^-^^+c^:

7 i LL 04 0 - 83 -I — W 2 6 E I^II IIiI^ 13 i-ltli liln I I E i ll-f lili IEUll't+L+tlilL LL lilIlIl -I-^lwl ItMXAN! < 44X _ - - r-t r| rn EEEEtEEE^ #^ -EE^^1^^EE::T w - -, 5 _ —F —t- 43 + i —-—:t4 -1 1::1E::-t- -F~ d:+H+ —'+-:+':-:-t:- -:-tt-::::7 —-' l -- lill 4 1:- 1 4 rI 4 -: - - - E U) 4 U 4 I 1,l0t;0.tpil - Li-1 2 3 4 6 8 10 2 3iLP 47 1 tl 2,-, 1l~l~l~lll [ll! l-Xtlttittl iO' o X: 12' I; 4 1- F l ~ 2z ~3 4 5 6 7 8 9 10 2 3 4 5 6 7 8 9 10 2 3 4 5 6 7 8 9 10 @10 103 104 Figure 47. PLANT OUTPUT, HP - 83 -

3::~ C M F.i1: IIoi 4 -* m h 1 — ^ — iljt -1 t 4 L - 5 F -T- i. 5 -- rC HII I~ e4 3- - J:_ U-107 842 1 I - *E L! L 0Elit illllllllliilllll 8-i'-iL: --- -_ lWt1 il#7 tt-ijt. + T 1- i I H!^ftlII11i 1j1ti 11^ ^ 1111'111111!1W1!~!.!!y Figr r8 PIAN O — i T iP t 6 F- 84 - i? - -1 --- t T. mX02 itI I-Jt- -4 -L -L - 8 4 - Figre48 PAN OTPTH

Film Coefficient on Hot Side BTU/(hr)(sq.ft)(deg F ) ^ j: "' *':' *- i f,: 4, _ __ __ 1W ----- -- -------- _ - - - - - - - - - - - -' -- — _ _ _ _ - _- on, - - - - - -- - - ----- -- r_. _____ _ |!:;'* | I | *. ~ _ -'_ __: | —, __. H | I — _-_ —_ _ _ ___ 1 -l- I 1-S1 —4- FIZ _________j -Mia-^ ^-I e - i- -_ — f-i-a< _4t_- ___ I: i i I L |D -,9 -I -,-,-r,!-|H "- 1...... I I I IL I ti l. t - -- -- 4 l i i { — - 1_- -- -T - - - - 1. -.... -' A I4 iiTi I,,............ to j~~~II1 4T~~~~il'I'-::.i, 1 HtlI..... i r rI j I II I,t+ i..'.-.. "I e I -1H-5+i -t rrT l;.' -I: 1 ---, I I' - I 1;. I' i —'1I I-T I.! — 1.' --- -- I. { 1 _ _ t l - -t-i -- i i i' -- --- -.... -- I i'-' - *- 1 t I 1 1 1 - - - - —:. I I I.: i I I i I 1- 1- 1 1 ^ I^T-'in^SIij I'ii ii...i1 — I''^ l-n.^irliir^ [-** I 1 I Iit I- r m "'i!.i; i~ i I iiI:ii,',1;''.i i:' i:, r!f1 Uli i i i: i:: I /iili -;! ii;:t l t i: F~- IF'Fii!,!..l-1-l-l!'-i - -;-..:F- m;ir -~T-Tli~i!.... — FT-,:i;.:r?-i! -i.. o&~~~~~~~~~~~~~~~~~~~~~~~~

rn) oI ttI~I~ i: - ~ 1 -44 44f r:- i - + + i- i t-I -r.....: o I I I I 1 i i I I E EEI._~~ ~ ~li~~~~~~l ~ ~ ~ T -;i IT 4'iL ^^iB- illiall l+ all) FI -II IlI111 Ih^ ^ErEEE EE EE EzE^ LL 1. -T - -I - 10 W ff rc Lo in t c C ( Q n t C C t c o ~ E l i p O u Ij3l i.1 J+ 0) 00 r- w "D co C-4 0 co'D W) co 0 a) aD~ I,. w La c JNI tj 0p (41b ) -4 /ni a OIS 0HUO 9.3.1193 W 1

- L8 - Film Coefficient on Hot Side, BTU/(hr) (sq.ft.)(deg. F) I Xs IliMX~'HX~-II 1' H9 -r- iL_,- i1-, iX i, — 4-l-i1....i-~ _.''1,-I- f l -[l~t'-ji< -9 t iL "-1 - 1_; 17TI-m -jy1A 1,> 1,-I XIx l F - S-1 -K >..... i -! 1_, ~ i-. —-E — -— 1v- L 2 2 v - + - - _ k _ - 04 < t t6'i!'i'.i ^ ^ l g m MI, lilqiiiM iIIt SlJ r L * ri: )20[ 1; —:;n0rtl- -X$ttll t4i.p ^ ^ -i-l-l- IT8 i; 4 ^'i''-t!^4i ti $ Fi4 -.3- —.UI- - i-:-L | ___|__| L 4 | LLL'.| -I l!.=_L-LLL i f..;^ | Lr |!X0 |jl —-Lj lj-Mt}-~;: —-— if400 —l t4. I- i::i:! [ — T y.... -- I ~_ [ I I~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ __ ^~~~~~~~~~~~~~~~~~~~~~~~~~~~ _ ^ ^ ^ ^ ^ ^ —-. iu1^H~ - ih-i —1- -H!^ HT1-i T i4 i - - 7~~~~~~~~~~~~- - L~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Iy i.:1t! i i-'i t71-1 ___[-~1 ~i:~!-'~l i i Li I i~!_ ~[i: ^T^^ ^ ^ i-s?te l'rIi:-it'i!:-L]: ig tt!: i g ll':^M^IS^^Ili~~~~~~~~~~~~~~~~~~~~~~~~~~~llii-I~~~~~~~~~~~~L II li^ SIL l~i ^ jlii~llS~ji~jillllilii^ TS'^lllg^Silil^^lliill. —-. —. ~'!;-14: ~ ~ A14 1 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~' —I' -- -A o~~~~~~~~~~~~~~~4-1414 m~~~~~~~~~~~~~~~~~~~~-_-

Film Coefficient on Hot Side BTU/(hr) (sq.ft.)(deg F) -- - - _ ro c IoSX l.., I I j'i 4 L T iF~~i Li IW H-'i — ilili!!^ J^i -,i4'14+ -L: in! li1'mtgM~i~i~i~sl^^^^-s~i^I. + Z^~ ~~ 4 lij^ ^n! i: 9 _3 ~, ~ t. - 1 — L i * -"';V- — t1F _i- H -* — -i- -t-' -- 1 M^|i^|,|-i;^|lWii^:t I qJIS^BE]~L 6iI' j4'ii H'. -I -l.,4 ^^^g^^l~llt~g^^i I - -6EI^gg~: -^|l^^^^l^^ll^^j^^|^llt~~~~i^^lg^^^^~!tls$^^^ _~0LL C 7~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~- -T — 4.~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~'"4~~~~~~~~~~ — __rFF~~~~~~~~~~~~~~~~~~~~~~~~~~~~~'""'- 64

so~ ~~' I,,r0.,. dH in. d.Lno. NV'lId 0 gOI tx bdHtl dOI ~01 zO I S W G i:.:-1 I- t f- m I — j tl tW t;-L —-= tl Ie; = L 7j I -IJI0 < f - <tt: L 0 m m W I +f J -T — — T-t~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ —-; U~~~~~~~~~~~~~~. c1, TIIrE H X t~ -- 1rX-1- Xtt T-~~~~~~~~~~~~~~~~-::irl:: __i_~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~L_ T- T~~~~~ W X S -I;10 — | T X 11 I- i;Sl A ~:t-if- |i | —! T4-tW -- X H S~~~~~~~~~ F I t F1 S~!+k S 4 W 0 |:~!.'n0T- >' - 0:;,9Tt i F44F L -P W WtH= HC -4~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ L;-I "A [ES HX X S W X W X M~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ttE jls %~~~~~~~~~~~~~~~t fit, I ~ im ~ f tiT ~1i f j ~ —- +. -'D:I_~~~~~~-i~ ~ ~..ii' c-.- IFtt~ ~~~ ti 1- i 1 iif 1X I:W B i t 1tX I I It I; p~~~~~i - g;j: i — 1L ~ --- fit — f —i=:~ —1: 3i[L2L:~ ii rlF~ FT r0-;~sll X t-W I l: F1!I0;E jrii g g ME sW m AtW — t lW-itT -ttltft-Wt-.- JE H E E E e +tT H H, - t t!: FT LftY l.l L I AIJ I I_ I I -4 J J o -- A M R LL j jI IT Ti t —I~ i —-t jr~~~~i i.-il~~~~~~~~~~ ~~~.LI I i-i?; o~~~~~~~~~~~_ i ri~~~~~ii tt:~~~~~~i-;i- I i t-; i i il~~~~~~~~~~~~~~~tl'-'' ~ ~ -,I-l: iI: i -i --- Till tttif~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~i~~~S1 I: —,J_ 1 I-t —!-:II~~~~tU::i i II i~ ~~~ 1-I ZI;i~~~~~i:-itf: —i ——:- - I i 1 r-~ 1~~~~~~~~~~~~~~~~~~~~~~~~~~~~4 1-' 4Ti —I —' i CT TEl-t —-- — ~i- i~ii- r- i ~ — i~-i ii i- - 1 -~-: -'' "t!-::l ii!:i~~~~~~~~~~~~~~i ii r~~~~t T-f -L~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ —-~i I -- - I!ir t rr II i I t —l —~~~~~~~~~~~~~~~~~~~~~~~~~J. TIT _~ T L~~~~~~~tl~~~~~ 4TT i - 7T.-L T; V I A ITT I fill I- c Li L iii ii-tl: 1i ~~:~ i -; -r I —l-ft~~~~~~~~~~~~~~~~~~~~~~~~~ — l t- iili~~~~~~~~~~~o c' t vC IC4 104 1 10, us, I4 a; c6 r-,;;o LnF~F 2 1

- 06 - dH'lndinO.lNV1d't amSln I 01 01,01 01 o0 L6 8 L 9 9 O e z;O 6 9 L 9 9 ~ Z~o6 9 L 9 9 ~ ZZ t F Le- I _ I T i:1lliill^^^F~~ilill~~^Ii i I. C) 1~~~ —r ~ ~ ~ ~ ~ ~ ~ ~ ~ -4+ 444r 4gt~l~ll1 t01t tE ~t — iji W;0'00t1M — tre - - -—, t — I1r. R' TH- +H+. -II HI -1 - "11 IIII-4 H14+- I I I i!III! I I I I I I II4T I I i - I I1 I I I Ti I1 TR: t 0 J9 Iii IFEitZ+FHT~iI10!I 3PEH1EM'dRVFA I WIlF II T

IFilm Coefficient on Cold Side- BTU/Ahr )sq.ft ) (deg F) _*~~~~~~~~~~~~~~~~b Cr Cn ^ ( C -^IO4 co. 0~ M0<> ~ 0 (04 ^ w0 to- ~ ~ ~~ 0 < M O P 1 ~Ob(OO p u a FcDcbN P, TO a ~ i r -r- 1~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~arI ". -1 -44-131 I I~; U F- ^ g A-4-niHi (D -t-,,- t -4~~~~~-i- t V1 I UiE ii inli. Y i. I jij!~: L!'.I j~~~~~~~~~~~~~L: -1-).~~~~~~~~~~~~ql —4 LI I_~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~1 I Ilii |ili|:| +1-1 -k W co - --- -.-F t -"""; I:1 ^ ~~~~~~~~D 4~~~~~~~~~I41 +1 4k I- - l- r: ^: -_^, =. i 11. 41:::.. rr:: —:-! "" ll" ffii l ^^^^^s^^i^^^l^ lti ^ \n A I I: ^rt ^l ~gi| I I I" ~ ~ 1-fi'i i Si- -i-T^S"":" En i3'f: T ^'" ~CJ U, -I 1 —- II~~T4 -r -t _, 71_ TiT, IFF1 il _.I -- SILIj 7::-7tl~l'~~r~ lT~9~~-TT -4rt~i 1-1 7T1 r -t~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 44 h3 I~~~~~~~~~~~~~~~~~~~~~~~I Z _7 t~~~~~~~~~~~~~~i 7'-: -1:7-:. -i- ~~~~~~1 IA-4\O O w II -1-~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~- 11 iI- 1r 1-I-~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~Ii.I ~~~~~~~~~~~~~~~~~~~~~~lz4 k 4;F coI1 t~~~~~~~~~~~~~~ti ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 4

Film Coefficient on Cold Side B&TU/(hr) (sq.ft)(deg F) _ _ N t0. a, of ^sB * 0 CD eD O M ff - -.- -.. ~o I b* o, m D -.' O= ~o~ ~o co,, a ~ -a, coD='.~o OO co o, -. oo.4 00 M qS97 i~ I |1: Fk:' I: g~+ 1 1 rr4;1: -I_' O WLL~i., 1 X: f i; t L: -I i i i i A i-J. f 2-[-1 1 m FE tEX +4 + 10 +6-X F i1 < 0 E:s S T T 1 l. H_ It+WF Xtt X,9 ilil9 I t'ID _ -4.__<EE - ~1 _,+ T. _T1. 4 - T ~~~~~~~~~~~~~~~~~~~-ITM:- 1 7 7.. t77 ru 1X — t1 Tm 1X15;:;r II ggSXES:.D -i- F I.,, I II...... U14i T1 I~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ll co — I4I r - t ~ ~ i I?;_;!:.i. t T.. 1D ~ ~ ~ ~ ~ -- _ tt- ttr W] ++4; t X l tl1;| -.+ I#- >L L ^~~~~~~~~~~~~~~~~~~~ — i-t-t~~1i iii -i1 2l rltt I HI -4 1 L| I _L m; | r W41| 1t lLm -r t 11 e.^~~~~~~~~~~~~~~~~~~~~~~~~~~J4 it —'-T FIT, I i~~~~~~~~I~lI-LIILILiiII L. _!_!_ III,ii $- lllL~~~~~~~~~~~~~- I- - — 4- T WU I I fli — I I W r -i7 i! i r I i II~~~~~~~~~-iri' I I I~I - -!- 71-.1 U.111 I1i t p II~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~I Z t~~~~~~~~~~~ Oj -T C c I I ti i I;IT -F r0 -r;; I if r I ii~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~-I ~ l:i t~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~,tJ OD'';I tf _I:'' 1' lt i 71 7, +ttft._ tT 777IT

dH'Jnfdllo J.NVlId L aam2n J 01 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~01 0O1 r~~~~~~~~~~~~ ~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~ >i t-~ 1! Vzi *;' H I' Li 4 i i K i~~ ~~~~~~~~~~~~~~TH It I t L- -4-~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~Iit i ~ 4 -iI-I - - -- I i -, I I —- -I- I_ T H- Ti-i Tl i V I-l-i 4 —I —-T IT- 1i — 4 t- JiII i:11j ~ T-IIL I 2, Lrrj__~ ~ ~ ~ ~ ~ ~ ~~~~f TIII I LL il F I -T - j:T' i I j 4 U~~~~~~~~~~~~~~~~U ti~ ~ ~ ~ ~ ~~~~ ~~~ ~~~~~~~~ t Ltia'~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~.

- t6 - Film Coefficient on Cold Side BTU/(hr)(sq.ft) (deg F) ON~, I lllllllllllllllllillLll miti||i~l|' I-[' T'T \- I- |l~li|N~lNPI- [M l — - ||IH|HJI|- np~ j —L _i4~~~~~~~~~~~~~~~~~~~~ f K J1 _9+ I 9 9 9 S - -: j j j 1 j _-_ rKL 1 2T22' —9 cI I LT It Kyili4I I 1i.-Q -" | -4~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~_:f-I_~li',~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~i z~~~~~~ -9 4 — 0.. I~~~~~~~~~~~~~PL L 1LiI~l1 C -------- jS 2r +PK LI 19 hr fl ESI'^ ^^p^ n ^T In TI ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ I 0:~~~~~~~~~~~~~~~~~~~~~~~~~~0? aj~-Ias~lt~llf^@^|B~ffl C ~l'4: S ~ - -. - -- -- - -- - -H! f N j _ -Jj^_L

U' f~~ ~ ~~~~ ~~~~,3 CO) ~ Ul 03 "'q (3 ~D 0: 2 5 hi. o,7::3~~~~~~~~~ 0 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~10 0~' -^ <-~ -t ~ i n o ~ ^ -o < ~'o..,__._...:. ID 15^ -^ —-- - ---- ----- - 0 7:^ -;' ______ __:~ -:_ _ - - I.i..icTF on _0~ - - - - _- _~~- ~~- - -- -i~ -ro o -sV -j' - - - L.__... _-M.. —; E 3. 4,':^:':_, _ _.-i" -;-:'-:''4:1....._ _ _ _ _ _ - _ _ E — ~ ~ ~ ~ ~ ~~~~~~~~~~~~~~~~~Q) -- ~~.... -- --- --' - - -- -- -..... -'^'"' — _ ^ __ ^ _ L __ _ i, -~- - __ __ _ _ _ _ __ _ ^ _ 5^ -- - ------ -- - -....:".... -: i:'-l:::! —" —. —.!.'i;- - -!,;,:.:_L:_' _ _'_. ~ 10 1ize 5 10 Figure 59. PLANT OUTPUT HP 1;.......~....:....... ~..........:,:.:!~....... ii! -'~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

01 01 dH.ldJnflO NLNV-1d 01 *09 ^aaI2TfI 01 9~~~~~~~~~~~~~~oor<m o CM -( HL fillOO ~ s- t ~ in -tf LO <M 1-4 1111 I --- I I a~~jr~~~ju~~ I ~~~! J i l l''~ A IWII I III

- L6 - Fluid Velocity on Hot Side Ft. per Sec. -N Q F W - - I I J-'T Tf I I z-I I T[ T t I FMIT ITEII I II H I I _ i II I 1 T]T I - + T t r z L _ * C t XX - X WX t t t: 1 S~~~~~~~~~~~~~~~~ I;X l 2t

~0 ~~~~~~~~~O~~~~~~~ I - ~ ~ ~ ~ ~ ~ ~~~~~~~~~..-........ 9 —8,..1~~...... i ~ i r ~ ~' - - ~,.:.''~,' ~'' ",.''.'"' ~-+!- -:!....... I - -d 7~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~7 ji~l ": --.:;.:-: -L:':I':: -.-.-'l~':il -: -::'. --- - - - - - 7-t —... 0....:r.-~ ~-. ---— ~~..-....*.. I. Lt-si,-~~~. —- ) l~ —-~- -~~ —~1 - ~ — -- I- -C i ~: ~i-i~.i ~:- i. i'.i~:. ~_~ —.~.:::::.::::-.:::,::.:-.-:::.::~.-:.:._:..::::.::.. I......... 44. L-!~~;;':t ~I3.~...~..... 1 —,-,:. - --— ~- - c I - ~:; K:-:, bt ~ —~ f ~- -- ~' i. t.-...'...... -!i tT1 1 4T - --— 4 Z- iJ — i/'ii-!i -i ~~~~~tf~ ~ ~ ~ ~ ~~'_: f-i-l t r-~ —'1- -'~''-!I'!_I r-i~ ii-!!_.!. ~ — _ -'~*i!_!f ii'~ ~:t-~ — rt:-I ~' —:.~i._~ ii..# I I - T - -...........'..... - -'- ~{ —, —.-...7i-.:'..."" —'-?..... 4-' —l —.- -. —.-...-...-.~...i.- - -... 6~~.~ -.-~~ - - - - -- ii - - -~ -- " N~~,, ~ T-!-1 - ~ ~ ~~~~~~~~~~~~~~'14 *r-1 i'i III~'! lili i lI f, tz_.:-:,.,,,~,;, h-'~ -r4 4- -' ".-'-I, r-'T:'- -I "FF:..'tH:-" ".'' i~',i —~ r~' -,-:... -— I~~~~~~~~~~~~~~;(1-L -.....1'-tf ~ i -,-: -,4- -,. c,~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ f4-c. 1~ —-''f-' —.-' n r-,. —-— ~-........... t 5~~~~~~~~~~~~~~~~~~~~~~~~-/*'! - ~I''.... *':~ )' i' —: -T.- r,..II f' "-,~" ~'...! —;'T,-r*- -;'.J-: i:..1' i l...'' "....i'-r,'- —'-T C,;7-"r'-''"-..... i.,,,.,. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~-t-._,..II:.;~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~1,.......... ~-,::,.::,::-,e 4-;;S.'-S:,H UO,:.,,.AP:,..:,1 98..... -....:;:;':...;.., 3 ~ ~~... -L... i.; 1_ - ~~L -.t.. ~~~-C t',;.'i " - I'!' 1.....:;,:-.' ~ - L.'!..'::.1,':; L:l. ~11,..ic:-::: i,:.;' I i iii,;a i-i i"`' i~i,:,:'i',;:;:':;;i~..... i:! i,,',::: _ c,~~~~~ 98t -— L -

3 oF-:, i I I I' -- i Ii-: - -.: I - I -- 1 — - 5 ___':................. I - -: r —--- 7 t -- --- -- I -- r -- —: —- - L - -- -) — i — - L-i3 _! —n REEifERtTOR -FLIJ1 --;L EZ i ( -;^V FT;t E- X- i;,&<I-F-S;.;! _;?. dL:-~4 - -. |. 1,'-:'t i-: 1 -:: I I 4___ -_-_ -i- 4- ___ A-... - -'...: -.-........- -tI...l.T —-" —~ —i i -[:l- t: 1-1i - r-,........ I | I: i..... I I I'. r rt l I I, fiib 1: - I >1~~~ ~..:~;- -.. 2 ^]Tif1' -' —d-;;~! i:,^' 2: - T q.2, -.......... I....._,,,.-. 41 1 i | 17i____ _.::~!'i'-::_!,::::::__'_ _'. _:.....:__._C::: ^':.......::':::L- - - 3 - =4 F —7-: — -'-_ -E, i __ — _-_i-E;__- _ —:_-.L-;. * -— 1 —--..-__;i._L_ Z~a:_ L"__ _-,^^ _ - - -i —-_ 1' p7 3 5 10 - - _'' - -i'i;'- -iT 1'0w 4"-~F —! 2 --- 3 45678 15-.. _t —. _~._~;~~'~:_0 - --- 10-~-_ t - ~.,o "' I i Figu'-:PLANT OUTPUT:, HP!:~o 99" -9 - _ O) i~ i i ~: I- ~ i ~'! I 1)I _ I_! I:_ _,1 i_ I': I!;.:.''':: -',':.' -:' -:.....:. t....... i_ -' _ _ _ _ _ _ 1': -.... =::'"...........'....::=::=F-:=' —':' ~: ~ F-:=- -:- -1: =.... _..:. -.-.: -- --, -.......... _ _ _ _ I - *rLv-T[ -',' _.; —'-::-; -;-' -... L 3i~T~ - -- ~ Th,2 -': -'''._ —-- - -.::.: i..i 2.... LL1 -' —'hT2 +:' ":' - I I:-;:'1, I~ -tKi, <, I,, E.1. -- I 1 0 10 10 9 99 - Figure 63. PLANT OUTPUTc H P - — i-i t It:-i-l i t f I i I- i-1-f~t: i If I

Fluid *Velocity on Hot Si e Ft.per Sec. r3 co a -4, _ 4 o' ro w -, E' -4 co 13 -D Cr L-t I i i Ii Aj~~~~~~~~~~~~~~~~~~~~~~~~j I' -1T I0' II.. — I S-. KH I i i - ii, -I~~~~~~~~~~~~~~~~~~~~Yjii: i r; IC1 i:' i i I ~ ji!- L-L-1 i - I It III4 H~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~H1 I - iI2 r'; I C' 44- 7'I }:: I1F T fj.f_-4ti P:: ~-;- ~ ~~~~~~~~j ii ~~~~_ 1 _~' C ti M.- I i _ I 1f _IL 1_I I:W -1- i i i ii; I —; - i I:: I- ~~~~~~~~ ~ ~~~~~~ ~ ~ ~~i,.:,:f a -~~-L1. jtf~~~tl IF I I I F Il., —-- - - ~-~Ti ~ - t-i- tii-i: I t~~~~~~~~~~~T it?-~~~~~~-~~~ I j i ~~~~~~~~I;-1 _I iiri I II~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~I.1 I- _01 —-~~~-i+- I I II!!;-t I~~~~~~i ii~~ti -i i -I-I Til 4 l1 l 1 I t i i r i4 I ~ _1 __.c-!. -;Li-L / j i- i f -I i _i_ I! j-i ii f jtl-i _i~~~~~~~~~~~~~~~~LI -H-r -,, IE d 4 1, 11 _I_, _1_!-r T 4t, jj r 1 r f i~~~~~~~~~~~~~~~~~~~~~~~~t! ~~~~~~~~~~ I-I~~~~~~1j C I -- I - t~~~~~ — I I I 1; L~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ t~~~~1Jl. I -1.: -—'-(~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~-IJ I o, l.!j f -f -f +-+t~~ttt-t~~ff t ~ttttf-%; ttS- Ittt~~t~- l t tt t-i 1 co 7-r

~LFLTL L I-L Y I Ili ii i I I i i~~~~~~~~~~~~~~~~~~~~~~~~~~7I'' ~~~~~~~~~~~~~~~~~-71,_ T:I..~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ L~~~~~~~~~~~~~~~~~~~~~~~~~~~~~L I:1L1,;~~-4 ~'s t,T-.I ii ill~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~!i L! L a.~~~~il - ~~Li 1i HI+-: it r. -r~~~~~~~~~~~~~~~~~~~~~~~~~~~I:' i~~~~~~~~~~i: i i, ii-i I(~~~~~~~~~~~~~~~~~~~~~~~ i-~~~4 -,,,, rt~~~~~~~~~~ I L ~~~~~~~~~~~~~~~~~~~L ~~~tr-i~~~~~4 T''f I I 1 I-If I KIL.J, I i i;"! rit-i- I i L 1 fi 1-(~~~~~~~~~~~~~~~~~~~~~Fi:?L -L! L'I' Li -1_~~~-I 7 1 — T T; LI I _'Fr ~ ~ ~ r 1H TTl- L- I It EEC L 1 -J,~~~~~~~~~~~~~~r -T- 7 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ - 00 1-'P.0 0) C14 0 OD f- MD.0 40 t- W.0 go~~~~~~~~~+ ad j _q *pi p! nij~~~~~~~~~~~~-,,~l~~i~ mt?-t~'~tl i'i OH UO A4!001t9AlI

1~ i,.-.' -. _,,( ^|^(^ ^ | ^ ^1^1 ->i;,|_-t4:.-.:' | _ +.1_.\....|.|.....,|...... 87......_ ________-.... t;- _ r... -..._.. —..... -....ij....._...__ i-I. + -;4X.- = i l~i!I~-~,...; ~,~. T...F t l i" ~i g: -i'j g 3' ^ p " ~:; - c *- i[i-. 1t - i:~,-t = r i f f ~ 7 I _~:_ i "" WF F W -';:*_ -- I - - - -L_. _g r. | ^ H - t l-I i-:f t< -(-~XW~ -Cl Z -- 7.. CJ 3 ~ | n- t4 i-C r ~.- t- *.-, -.t — C t X, 4i s - 10 2 -T 3L' LIi4 - t I t -,L, XX r 1 1 I: T -:X i7 ) I | |I —- - 1f 4 T T 2 2 -cA —. t0 -TI Ttq -: i r 7 7 4+~r -:: t~~~iLI — 11~~~~~~~~ TT I1; - CI:T i,-aS jed -4.j ap!S plo:) u o ApooleA pjnj ji

~ ~ ~ ~ ~ ~~~~~ ~- M co vt en a~ s- oo u o z~~zn~i^^______^^ai, -I —: —__-F —iT.............. F! | | - i | | | | - |! |I IF | t =i I.....: - *:- | i |::,. i. 0 0 24 530 t i r; 0 10 101 SSXX, t A~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~m00"..... I'='................' --:........................... < ='s' L Lt; 1 * I ~ 25 —:.. - - -.'-.T - - -r ~ - -.....' T TL^ T"^;..... — i - "' 1'':: I,':i;' 1::'::;:::: *ZA Ld; iS'f1 i Si i - 1i' t10i:f1:ifE::004tT ffl 7 I —' rt i: T lli'' i; @ | - -:|:: | i 9'1- |_ ^^ ^ ^ ^ - i X1|s 1L|- t|40- | l 110I l. | -::: —:.: |:::::::: i.~:;:;-; -| -1-:::-';:!::j-;,' -.;; r;,::::,: r:~-l 1:- -. 1 t _ I 1~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~._....I I..iiS| ~ o tN - 11= 1n;1 -iI N H CI ui -i —-;-8 L!11t-ilttl....:-:^::: ^:: ^ i:::::.;.:,_::~-;::::: 14; ~ i; ^J i~ + ~F: i;::jtiji44| x;ji:::::T:::'jl;-4-4 _jj:.~ll...i...:::::~. i::i.!!;;:i!:4; ii:;i:.::!:;!::: lo2 10: 10 icr1-s- 10 141X: —4- g ++++J,e F - Fi r eI 6 |................ T T0Vl=0 — IX MX I-J IJJ4 I* ~~~~~4 4 t im wgTr SIS f 0;'I 3tI'- I' I -HT-i-rl,,, ILLL~~~tt~mLAL-1-L-'l-Is, —rlL —'ls'I'' 1''1 *1' I 1 w10 144 L 1T_ 7' 7 4, i.... t...... ~........,.............,......., ~...~ ~,......... 10' 1. 10 IC) PLANT OUTPUT, HP Figure 67.

_10 |::_ _44-' _:|...i. 0i.. —.. I - 111- iii''1- 11''' ] i'''''' i i! ) I I \' i','',-,- -.r-..-...., ~I i - -',-:r _,Ii-.,.: r ~.~~~"~~~~~~~~~~~~~~~~~t _..-7..T..Z-. Z|:FT _.^.^i, _~ s_ n W...g, -' -- - +..._..H... -._ — - 1 -- - - i -.- -. ii- - t- -— 4 - - - —; 7- 1 -rt;r-:: t- -f -t- — S ~ t-1'^ wig~t ^ Hft-ef^;l*^r~ l~ lr4^ *fri-Si& -iwF L *-.':, ------ -.' —-- ff-fi — - - —,-^-~ ---- < ——'-' -... _::- T —-.-......_:_. _' _-H 9Sa Jad sJ' ap!S Pl~D uo ^(^OO|9A P'nl_ - 104 -...~...:~.. ~-~-,-'-....*if —t+~xq -'''~,f,~, --— ~ -~.. ---..~,~~:,,, i~i i LL~ij I~ii]_l ii!!:i:! i iiij: i',',~4Li! i JiiiiJ ~l JL~_'.L~I_..~ ~',i' ~~;:'::',

Fluid Velocity on Cold Side, Ft per Sec __- - --— 1 1 0: 1 X W " -- - I-^ g W = w-l -W, 4i; - I -.N s I f —:- -^t —-021:S — l'i I -D I,l r I I 41W1 Il0,lkF F~ji F I1 0-0 H IFT W_ W t^^ ^TiJIE'^ F ZE' W= T'_lLz LV- ],,~~r W- _> L —ITILILP - - itL l — -oI = -1:1Di'.-1 "o.... |i;ii]|||g^g *" V ""-'-*:i: -^ — *:': —-^ T - r n S - [i*^ ^4^ J^I' r3!-'*Ti z S ^^ ^ ^ E..-";-:::;:aS:^iL~]E^-i~~~i ^^:^:iE3 EM~~~s~i;^i^~E:S~~ii~ifl~~s~in~i:I ~-:ii_,44:p; _^:4iE~;~::!:'' l^ S.S~ I- ^ d -iJ.~li'lE~iTj^~ ^ W ^ n~~l'ti lll~l~ h *:ti; l.-l- l-i-t-trl- - \-'-\ 4 -I+- I *!l~ l^ ^ ^ l~l * —^ *-^ *l~ l; I I I- i I lfi

Fluid Velocity on Cold Side,Ft.er Sec. "_ r:3 --....(D ~s * I C. I pr S..' I-i. I IXIIXT0T LItrE - -1il~ril01l~lI LW0Tl I 1 0 1 1:1 (30-Q- X~T (D ILM~ Atg; jAXLo 0'0 -I PO 3' m It S 1 1 0 %j1 - i''|- lt 1f -f-tlH iigl i:| |-1 L ~4P — 4 -.iTS^^^I'^^^^I^^^^ — 4.. _tJ-ID; —E T -- I 1 —... —-I,.Hx- -I -t Ii...~ - z I -,_ _. -1- 4 1 4': I. - I -- I - fi T^t^|^.i;^t ^ t^ii~;||;i^ ^ nznT ~ i: "c:Tnr " i ^:::::-::::::T —ini- -t~r "TT*-T:~:" ""'":**Tp"T"S44- Hi^.T.+ ^r~~~~~~~~~T.' II L " " - - - - - - ^ -- -, - ^i: f - - I-* - - - - - - -- ir ih T ^-P^F ^^ "?i-::: ^ ^'F' ^'^^TO ^T^ "'^"^ "^^A" T^: ^J I [t|: E^|:iI g^j~^E::^:^^ J~~glll J LI| ||| |||^ |||~ |[[i _

Fluid Ve Iocity on Cold Side Ft. Pe Sec. h3'O P VI b, ~ OD (D O ro o Pr~a~~aa hJ co 4 L" CTI -U OD W ~I ~~~~~~~~~~~ I'!~~~~~~~~~~~' -H i r 71 2, -II -' C J -4i 1 _- t i. - _1!i i - I LI-4i 1-~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~I-t - r i-i I -t-IA- 1~~~~~: t ii -r _rt; r~~~~~~~~~~~~~~~~~~~~~~~ I I I T ITT~~~~~~~~~I.1Sfi_jI-: C! I:1ii - —,-r:i_ I~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ —. 0 C 4~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~ 6- L-l iC it -11Li~: __.! it 4 1 ill', i 44t- 4-1 I- 4' I I I I f~ll r! I J lt - i all H-r I T ~ ~ ~ I 1. ii 1-1 ~ ~ ~ i~i -i T I -.r ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ T i W l.. - I i 1 ~ r I ~ ~ ~ ~ 1 i _ iI4 -~!-~-iTTTTT~T~;T-~:.T-TCTT;;-T~~-T~- 1 — t-ti +cc If-C-T

REYNQJDS NUMBER (HOT SI DE) C) co 1. mL* tf! oi itooo: Jc H. i11 M M P ^ ^l^^l Wg~ sl^Fl"^ ^mN^: ^lhti ^gi|^i3SXli~||!!-|Ma7 4m'13 _( 0It)^ - 4 0- (I) - _t~ 9

"I~~~~~ ~ ~ ~ I! I 7 X _ 7 4iv L~gitAS4M X Xt' —- 11-T LL 5-U1a~7 2 3 t l l~tti~hikX~ts!XS t t t R H X fS R 4 j ~j~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~j_ 2,5~~~~~~~~~~~~~~~~~~~~~~~~~~,_..5..~.., —:Li~:......~: ~.~-'~ -:~.'_:_i~:~_:~ -~_:~1.~ _~=: ~~-~_~-L:5F1 igurSH~ e MAXI 147t; M 5=m~~7. Figure 73 MAXIMUMCYCLE PRESSURE, PSIA - 109 -

** po ~~ ~ ~~~~co -fO. 71 cm ~^ oo0 Dt c o -0. en 0 -'1 0o to~. o Co *~ 0 CnI -io s~ ~ o" _ [^ i~~~i4|'14 - "ar m? ~rr T ^-r^ ^ }_ ^^Tff*T^.u^^;~~I-;! Ill~l,.J.jI^ ~ ^1111111^^ jp ^ ^ Ili~~~~~~~~~~~~~~~~~~~~~ili~~~~iill^ | |.?i | ||| i~~~~~~J I-4. _ -^ ^ii~~~~i-^^^ ^ ^i ^^E=^i:^-EE^ ^ ^EE| || ^-|EEEES-^E^|| |^^ ^~~~~~~~~~~~~~~~~~~~~~~L; n- ^:-: - T:T *-:n —*:^ *-::":::t~r m j' -T'' j -t f-+' " ^""i"~ ===r=:::::::::: ~ ~ t 44=::::T==::1===:: 4: f-1 4 F.T:^ = = ==-f - 4 3+; ~ r iii~~ii-^i; liii ^: ^^l-'i-^^-~~L -1 1 4|-3. 4 "==ii -=EEE -; ^ i -- ilP i| =Ei~~~~~~~~~~~~t|-I ^ =:i ffi^K WflE-~ tEi S E ^ ^:: | ^j:EE::F: F-:E I E::: ~^:E: E;:E:E T EE-| T.^ | I II||: IIfE OD ^ EE: IE::;:|EE::^ E E::;:n E:^:~: l E ~ E::l; [:^;! ^ 1: ^^^r~f. ^ ^^:^^^^ ^.^^^. ^ — ^ -............^^^,, ^.+.^-.. - I- ^. ^, z^ -::^:-::-:::^~~~~~~~~~~~~~~~~~~~~~F ~:: —T -::"fx^ ^:^ +:t: I=qT p ^::^ L: r:;^*::, E~~b^E~t::!! ^g^| Efc^:::::^ ^4 ^' ^:^^^^ 3:t E. O(t:D~i I =5i~= ^ ^ ^i^:^^ =:7i E|I F~~~~~~~j~o _t: -_ —p; ~ id-:.~ 2 F -+- i- -- F1-f 4 ---: — ^ t ~IF _= S: ~ ^ a:;:: -:. ^=^=^11^11^^^~J;| Ti| ^.|:| ^|^E^^=^+~^- S^. 4` ^ " E''"I " - T: "" " ~' E ^ ^ " " S j~ f ": EEEE:S^^::~t I E:::;;^^ \:; I E2 T HE E~:I+ m EE'_- -.^ t. - ^^,I IT-p — rp __ VO -4 ij;TTpf t^ ^ —-t-. L-rn ~ ~ r -j4 EES3; N IS ITT^1 I nLK f ^ - T-T~- I ^-6 I I F

M~-*~~ tS) 0) 0*f U C 1 00 U00( 100 T Ai _ -O 9~ — - - - ^ = = " ^= = ~ ~ - ---. —,!:~ -— 3 —--.-~~1 li -...2. m m mm m 90 -.. - - ----— ~i- _ _ -- -- - - -- - _..........,....:;.. _ R I.-... 170 -- - I -- -m. — on ~~ -- --- -- - "- -- **** ** ***** ** ---—...........';:L'... cc 60 ^: hu~n ~F.8 as_____ __ __ _ftll~lL~ffl:-efflffLUED ^W^W^ __UVG~g 3^ TRN....T;_. _ __" 40 4 IA_..... 4.:. < _ - -—.... _............ - - - - - - -- - - - - - - - - - - - - - - - - - - - - - - - - __ ___BASI ETClE^t —- — I',, 0 (J - *...... -.. -. ^ -j -. -..' -.. _____ igue____ ___ PLANT OUT_ PPUT HP _ 40L --— U^"3r -4.0. IA — - --- ----.." F g e 75'm' N I4m'1 10 I0 Figure 75. PLANT OUTPUT, HP

N0 W 0 J 00(00 _ _ - - _ _ _ c. 00 t, o_ -, o s. soo 2:-. — 2';.... ~- -* 4c7~...... r - s - r~i uo ^ 01o01 *^ o. U_ )r' _ _-_ —-'_-..__ i -....., ~- - - 0 -.......... — _ _ -- - - -....-"...-.. -7':......... I.- -- - ^ _. _ - - _ - _, - -':::;::::'......-_ - "- - - w I I 0 - ~: —-:-...'''.........:i':,!,;r.,'-'-'I':'::: LU — -- ^ - -_ - - - - -- - -- - --' - - - ----- -* - - - I~ " -' ~-' LU _XMUL L T X_ MUM YCLE PIES U _ - - - -- -__ _ _ ------'- ---'- "" -'- - ~~" - ~'~~'' - - ~ - - - - 7..... --; -.\.. 1.'....... - -...... - - - - - _ _:'W.................__.. 01...:...... WFigure 76. 0 P O T U H'. ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ - 10~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ "0'0''""'"....':: QLANT~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~,11'.:'.. Figure~.... ~

~-r0 N W (o 00 01J 00 00 W 100 ____0 I *- -: - ~~ — - -:!..:-'!!::.,.......':: ".....- -- - 9C ___ -...- -~. ----- 90 — l - z:-': — T: wo —-— ii —-— |-i:- --- - -.............. —:"'''-7''..." "' [ a -':! i':':''.-.r'': _: —-::._ —-_-.' -'.; U.;.'::' i:'.' i..'-. — _.. H o~~~ ~ ~ ~ -........0.. P~A...... Fi g ure —~.. 1.77.. ~1. 1 T - 4~-z-.... LiiI I -.-I — 4 0 - 4 - "....-. - - -:.:_...S.A............'~ — -. -' - - -. ___ __ 40LL. i-SIA.......... _-i- PLAN!''':'OUTPUT, HP 1 10..... w........... ~'-'...........:~: i!::i:::"'-':~:-::": —-t::~ - ~..~:.','' -,... ~. ~ ~-..........:..-.:::::.......;-, —-':.'..-..'.:..

CA I ( P OI Q, 0 O,~~~~U OU, ~ 1 IIIIII 80 bIo P VI M i lji: i ~ li if: I- A 1 I — 0~f lj i],~ i~ 1:r-,.i~ i z6O~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~_ 40 I I F~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ I I I i -fi:A - 4-'-;i1"" - I'F ]i;~)lO2 103 104 > 1-4 I / j 1= FV a" miff I 1 ^9 I ~~~~~ige 78.LAN 105 _ OP 111P4j. I~~~~~~~~~~~~~~~~~~~~~~~~~~~~jjI-~i i;r i r_ j~~~j I i i i i j i: 1 1 i; j t- I — _1 _1- -L- L 4i~~~~~~~~~~l f - i I - - -. - i - 7 - cc if J? I1_ --— "l —:'-i I!:li~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~-i _ ii ii. I i i i:li~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ llI- I-i: i i ii Iir -J- J_ J ii I r i __1_._. I~~~~~~~~~~~~~~~~~~~~~~~~i' i i.~~i ITTJ ___ ii. i7_: ~~~~~~~~~~~~~~~LJ. 1-I j~~~~~~~~~~~~~~~i ii ~ ~ ~ A1 30 21 i- -ii-iiit, 101 I —-:c' ti-:; i-~i-i Figure 78. PLANT OUTPUT HP 10i ll 1i~ i::,: -ii

l~~~~~~~~~~i~~~0 N..- C> lsl 00 ^ l00 (O O NI —. o 4, o o 00 tD 10 - - - - _ - -- — o _______ F~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~_. I ^IIE~~~~~gii~~j^'^II^Jiiili~~~~~-l [t I ^ __ ^ _ ~__ _^ ~a^^'jl ^ 1 +^' 122^ -: i^ i~'_._~~~ w-. I~ co ~~~.I 2zI trtI-,4 oo to I1 _.A __ __ _ __ _ -I-' I^1 I ~ I i III i'^ ^7':' ^ ^ ^: ^. ^ M I wI i p s > ft " "t I J I T;' ^ ^:T I —-! I'._" " "' ~ 1 ^ ^'^ 4^ ^ j -::^!^ 1I 1 774__: II * IT __________lad~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~F t~~~~~~~~~TiIL7 __^ _i_^^ _____________I ~ iiM K 7~12-J_-__- -_ 90 4't +'I - W II ~~~~~~T;- - L-A~~~~~~~~~~~~~~~~~~ 4~ LK ___- _ ___ -\' - 4 _______ I- III It''i I'~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 80~~~~~ 1 1 I I J e 1 -j -1 ),I "X~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~T A J- I -— I~~- I 10 Figure 79. 13 PLANT 0UTPUT, HP 104 105 1,1 4O~~~~~~~~~~~~~~~~~~~~~~~-4~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~IO2 F ~ /e- IO LNTOTUT P104iO

10 1. -:t -1 - -1_,_,_ I.I -'T —,= _t: —---- - -, ——. -- -- - -_ -- —,-;I. 1! I'll -,: ErN - 4 —, _-1 —l,_, 1-1- -- 9 11:: _- ---,.. - III__iIII-I, -_ - Ii..- _..1_p - II - _._ 77 — r__ - ___E - - ---— I;. —— ___ __ 11- -,, —I —-. -_ t -1 -1 - - I- I;Ii. -I I..- -. - -_ _ -L7 - _, __ -__ — 4- _._-,7 —- _ -— r._, -,,,- _-II T -__I - __.- -__ - __ ----. I:;, I -,-_-:__ —-I —-— L: ___ _: ___ —I —_-___,, —,._-48 I i __ __ i- __ _____._ L;I I-,__.__ -. - _4 -_;___ __-I, — i 4- ____-H..; —.- -! — -,-I.4 I,.1 —I. I.II I''''',-; - _. -,_ — _,_-__ I j; — — - -____ -1_1 ___.____,_,_-i_-_,-_-.-4-,__ - __t - -4- - —.-. — __ ____,__,, __,- ,__: —--- — L- _..L-!._;_ _.-IIi-#_- - 14'r- -L,-,-__-,-,, —_T:4L:,_,_=` —- --- --- -, __ __ - - _____ -, -. -, —-:- I-;- 11'-r-_ - —;":F` J-L- - -I.I__I_ j,.__ - -- -,-:-4 — ___- : _ -i-I -,T4 - =-, —____..- -r7_ ---— I —---- __-I- --- - -i - -. I._._. ------- = — -l I-I-,..-T — 4- +_+-L-f-_. — I —I-.I77-1,- — 1_p —--- -: —-_t-__ —--. 4 __ ___-, —: — _ - -- I- __ -_- =L _:t- -,- _:_,:i -IF . ._ - -A __. -:- - _ - I-.,___ -1-:1- -, - _4 _4_,__,_ —I —T- T-;- -,,. — ,- t -- _; _ -7._j, — i7 I -,:. 1, —,-,. -1 - -.. iI. i- 11...1. 1.;- 111 —!''I. Iq.II -1.1-i — --—: —. — ___7 -1- -- ,_ — -. —-i- —; -1 -1 -I-,-; — _. -—,- — _ J-._1-. _.__ -- - I- -_T_. _. II: ___j.,,, __ -=-;-:- - -.-I.-4 —! I.4,,_,_,,_:IFr- ---- - 1 - t —- -_- —-, 1-4i- irI-1-,, —-_.7 —. ——.-_- — --- _-____ - _1+ -1-I- —- -__-,- 1, ___, j 1E, 1- 4. 3 -t —i -II. —r -1 - - I -j- -, - __, —.I- __ - --- - L_ 4- — -F-7- -_ —, —-— I-'-11,. __ _LfLI —- -_.-I-_:_ -1 4___ -1 + - -f — _ 4 -:4 _ -i~._____ -; ;, -T I I__ -_ -- I _., I-1-i. - —T-;..._-7___'_1I- -T-:-,- Wi, — --- __I ____; i-I -—, —, —-._ - ___,i-L-4- -- -- -- - —, --_ — l-4-_II71I —: — -- -, _i --- -i - i-:J_:__- - i —"- 4- -H - 4 -I — -I —- - _j-j-4 -—.t.-II-: __,, - ILI —L1, .;.II-, II:I;I!I.Ii..I..III.II; -1 —-,-IF-1-1-.-,-. — F, - I_ —_ - - -_,_1 -II-I I I I --,;__1,._1_;_ -_ i-I!.- -1:II-,tt -, -1ii_:- I -—,_ —-. — F, -- -__ __ - - _!_:_: i —— 7-,.;II I,,I.II....;:, -. I_. -_ — -1 --- —,- -; —- ____ ___ -, —T-.- — _ —_ ___i -1 -L I.-I tI —-— r-,- 1.,I-_::! - -— 7t__I IiI! I;I- - -, I -F-,-i-,,I:;iI:! —7-1 -1 —-.-T. Fi --—;- _. _: -- _L — --—: —-- -- - -- ----- ___I-T:o-.I..;14-_,. IIi-,..., -1fii;_:_I-:__ _i 5 I Ii, I.! I -,''4 ,. 1_ i II.,2,i: 1,IIi I ii -, -,,_!1.!I-rlII-IIIII.i F; —-,- 7 — I -11!-;-L-I -L -1;T!;:iI:!:_Li -_, -4 -,!;. -iI -_ —I. —- -_._, I-I —__ -,: -, —-, —11-1.;-'i — -FjiI,-4 l- , , -1 I- - II,;II-1 -L.,!,i:I,-,-, - -.Ii-L1,j.1I1 —ti-r IIF — - -__ —— _:'I itiI-IIi -I-, —Ii,-4-I _E1I- E-) 1 __ __ — J_+IeI,:,11ii. —- _-1_; iIIII-1 i."_F-, —,J-1I-1. j-4-4 1 -.-,1-.iI II I IIi I..II`_7:;F] - I- —,,-1 I.T-4Ij::_I__ --— F, I .I IIIII, T,.JT_ p p.; — I _,____1.- -, —I-.I-I II- r,-L,- -- I - _. __ ___ - ------ __ I .L — i-,-, - -I — -, 11i-1 - T-, _,_-1 —i —I —---- -_ — I.- - -- ___II-I_. I -__ __1`___-7 - - __!-;, -,.I _= - -. —:-; - __-__- _ —-I-,-, —-.-:. —+-,-,-____, -4-4- -— I ____-F-. I., _. F, I-,_+,. -. - - —t __ - - - - - r-_ --- -- -11, !- II -.III I.-4-j - - -.- f_- - -I, III.-T,i!II!- !,o-__,,___ _!, II-t- -7- -1-7 —-.41- 4-t- -T —+-+- -—,-,- -__I- -__ __ — tL ~-,-,. —L-, — -1-1 —.- ___.__:_ __ __ -, ___ __ __ -- - -. - - __ -I!i__I___ __ -7-L-I p4 —!- L-I-. —_ — -,, — 1- -,-. _iL-_ -1 I_ - -4 — -I — ir- - -— i —4,'- -- -- -- ---- -— - —:__.- _ -1 _ __ - I= _t_,,i _1 -;_j'IF___L - - __j_ : 4- -__q ---— b —-; - +, __ -- ---- __-_ -- -__ - I-6- I__ - -- 1, - — I -__ I —;,_ - --— __t__ - -,T- —+-,--i- 4-, -_- -HIIi_#, -— I- I - -- - __ - --,;-1 —I I,T, 1I - .-I. — _ — i-_ -- -—. — — _ - - - -—. — -_ -- ___. — +I T,-I. I!_ —-____ -, -- -1- I-, —- - I -_ —, —-,:,___ -,.,-L-J__! - i F-,, ~_ -F 3 - I! I1'5 1 1 11 f- - -I — 4EF lt ;I1,I. J!II;.I,,- I-,-,-t- - -L-, _I__ __,_ - - __ - ___ —4- - _1_LI.II)II__ __,, - ii! - - --IIII i.__; i;- __, - _tt,I__ __ -T —f-f-, __ __L __ __ - ___ —-, I - .I!.I, I-__;.-i —T-!- I;I, —,I I::II-!14-7IF 7- __ _i_ -1 —I qI.,I 7t,.,,i__L -- _____I!, J — -7— _.___ -1 —__ j-f!I17rII —I..F_:_I!,j -,-I- -,-,i;iI-i-,,II - 7 7 ,,. "__, I- -7- - __;_!+ -.- __-, -_ —-1 —-— I -__I —-.II LE,I1,,,14-1I_-I -- - - -1 -t-!i iI!I;- -i -i-. __1 T —-, _!I-_I- -II —-,__ -1; iI:II -II.I,._7 7'-__ __ +L — H -i _L__! — _4__ __ -— II;:-I — _, -,, ____ - - I,-l,I4_ - — __ _1 II:i.:;i!!__ I,-T l-TTI r,IdII-:__I.:__.__ — T —-.., -II,.ilpI..!.I;. —-.II..-;II__ __tL_ - i-L —1..;,-II!7--.- L. J —-:_-.IIII — 7,-7 — —, - --- -— I___ -7 -,- - 7 —Ii-T- 1,II — -=I- —,T-.,_.. - — _, —I-,.I!!,jIIIii III I-+- -t.-IIL - -- --- -1I I: -__,-_I.., -i -. _L__ —-----;,I. — - —-— I-,;_ _:. -1 T-,!:i.!1 1i,I 1,-, -T — —-; —,-It;-iI__+I.I I --,I___)__iL+1 -1-I;_44-1 — ___-- -F-4 —I,__-I___, - I__DiItl_ T-.I__-F-,,-L- _L-1 —71 — -! I;,11., _.-_ -, __,__ =:U — L — I i- __! _FI,,_ - —,_- ,:I-:. 17 I1, i,-2-,- _ —, —,- _11Iii-411- __ — I — ____, . -- ______ __ —-_14 __.I-, — _11 _i I;I 7,.1 II ,-I.+_ 4-FT'I-1I;-I — eJIILI'4I:,,I.1I;Ij4-J41-1-,III, —- i- f - 2 I. I II:,,: II1 I,# 11 1!::!:II.IiII1.I..!IIjili. I..,,IIr!I1!IIIW1,i11:1 II! iJii -7__ - IF —- - - ___._. -. -1 -__,- - I-,- - -7 -, — I II:i- Ii —-I__ - - _LLTL _ — T-! __ --— 14L- p.. I ;: I,,II __ __. — _7 1;!IIIiIF1:I;.II!I!1,II!I IIII:,I.II1i;I1_1441 4 -,- -1 _L__ --—!- _; -1 -—,,- -+, -- --4- — __-1!.!,j__ - _____ ____ .;Ii:i:I11! -:'- --— 7 -1-7,__ i;IiIiI_!II__-t _L-Im-iI iI+1i.III.pp-r —,II 11!I- ____-I I,__.I- __, I,'_ -T —I_III, —F III - i - ': i;.. —, -41- #I__ -I, —-, - L- - --------- I I! _ 1 1- __ - __:_iII_4 Ii,! — i II III -1i - -.II.p.I-j ii:L! _,'I11I —I —---,-J-L;;.:,,ij-,-7-1- - -1,_1I -. I- L.- — __ __ _- __-__,____wI -- _____ _____ - -—, Ik- I Ii:.__ __ j 1!i I. -1-1 IIt.- -. - —TII11i___1,iI.II —7,,.,,Ti,, ,II#,I. iII11:,i1itiIII —`Jfi -.I ii-, 1;IPtliWi..i11 11III .I.7p:)IIII:,II.1 + 14 ii1;11.I,!;J:!i4. III-1II1IIm..II;::;I111,i;.,11,1II - --- - T I -I-i - I -- __ - _ t - I- -11111ii,ip.-_ --- -1+- -1 -IJ-I-I- -IIII;;Ii;I; I II-, f I- --- ----- —, —; - - -!- -,- -1 - - t__iI. ii -T J-L, _,, _, __ __L_ - — k.., IIIIi iI-, — - __fF-I i!;;:i-Ii!J,"1i -_ — I. -F I-I ITL L j.1 -I::;i1 I1;,iIIL - — i —_ -_ —,F_-_ - - - --- -T — __ 7i,L,+I1,,:II. —..-. ____ - - -_;11IIIiI1;,III..-__I.-t- f-IT__ --- -r,___-'-I- f —,- FI .,:II:IT!IItF.M- I-T-1 - I:1; I1,I I,! I: I1_TI II]IL1.i!111.II!II.II;I I —;I IIIIIIIi,,4Ii!r: __ _._:_LI-IT-I —+ —1I — H- 1,iIiI I-r-. — I I I,_. L, 1 11 _ ,,, —I IIIIIII _,- 1 —iI. —.- - -- -,141; — r. -I-.- I —I11, — 71- __ - -— _____ __-_ __1 T- # -,III I! iLI ----— __ f_, i —— i I.I;__ ——,, —q;,.iF,-I — __+[ -- -,-,- - 1;!IIi jI;- --- -I I-1II.__,:_:_,I I,!;I;, 1;I;i-,II'T. -7- __ I,', - iII,- -;iI:..i -, ——, -- __ -__._ — __ — t- -- - -I —-- -,,__ -1 -'LITII:ill,1!Ili:I-11, ii:11IiiT 111I;ITII1 W,1!;I __ --- - — 1 ----—.!i!;IiIiI!11 - __ — I-.1-1 —i -F7-,- - -, T "-Ii.II;I- -I —:-,Ir.-__ -- ___,;;;1 iI!;:,:iI-.,1,ii —. —I-T -. -- :III!!!!Ip iIiiiii,.Iill 1iii:!;;!,1ii:..:i;I I!IiI:.i.I;I.!i,F I j IiIIrI IIII I I!I I i,II,!r!I m..j 1;.1I1: I,;I.-I q,.I-1. - __ _.I;I... —-,-. -- --- - - -,-. -.-. —. -____ -, _.,I -__ —--—, —__-,_.,.- ___,-,.-._.-,L: -_-__:-, ___:_==. —-I --, — I.__ - __ __ __ - -- - --.-. - - -- ---- --- __ _ - -__ - -, - -T. -, - - -1 -- —. - - - - --.:._...,,-__ —- __.-__ —,- -= — - - -_:_- -,-,-.... .. — - -- -. t_ _ -_.__ - -- - __ - - - -—. - —. --- _.- - -: I- — =I -,-: —-. __-1. 1.-___-.__ _. —- - _-:...., ---. —------ -. - __ __ ______._ ------- --—,-.- ----- -. —--- -, —-..-.-. __ 0 9- - ____._. __,____ _ __ __._._ __ -.- - ___ - - --. - -- — _ -- _ __. I. 771: II I..-:, -__ w_:. —_ -. .. —.. -.- ---.- - __._._ _ —-_ __ _., -—., --- ______ -..-I- __ _____ - --- —..-. - _1 _... __ I 11 -, —-- ____.- _, —__,___ __ -, I I. , 11-.1 _- _.__ - __..- _...___ -1 —------- - _L, - -- —.-.-.- —.___.,-,:. -, -_____,__ -,,-__ ____. =: —- _., — - -:-.. __ __ I - _____: - -__ -,, - --- - _.__ - _.___ __ - -:__ — I —-- - - -,-' —'-. - -'-4 -.- —, -, 7 -- __-_:__:,__,_,___ - — I-,- ____ _. —- ____ I - -.-. __ - -____. — -___._ - - __,. - ___ __ __ - ____ __ __ -_I-.-. -, -- Z: _i , — -—'- — T- __ __ r —, _.__4 - -. —-- -I.. —__..- __ —. —. —, _...,_-___ -.-. _., -- _____ _____ __I- - __%- - -_.___ —-- - __._ ..-___._._ - --. —----- -__ -____1__ -.-, -.-,-. -. —- _-.- - - - 4-..__:__,...- -,_ i- -. -:__ -I —--- --- - - -- - -- -- - - - -I -- __: -., w _p - -.. —,___ —.__ -I.-.__ ___,__, _. __ - - -.. - - - - __. ___ - ___.- - __ -. —-- -.-. 7i-I -.- -__._ ----— r -- --- ----- --- -. _.-,_ - — ___. -_. ___ -,-,- -, _._ __ _,_ - ____,- - —, ___- __ -- -_-___ __, —, — __,_._,_ - -1 - - - - - - - -:., - I..-__. —--. _-___ -- ----- _7_- ---- -- - - -— 7- -— I- - -' —- —. —-.I.- _____ - ____-_ - I- - --—..-,'-'- ___ - —' - __ ------- __..__ __.__ _- _ -. - - —. -___ - __ - -- - - -______ -- -, _- - —.. ——... —- ____ --------- -- -_____ ____ I - ____, _1 - -_ -_ ____ - - - - - __ - —..-.... __ _____ - -. ___. - -. —, —--- __.- - __ - -----—.-._._ _.,_-____ --—. — _- _._. —-- -, - -., — I. __ -- __ - -.. — -__,_.,____1... — __.:I_-_____A___-_ ------- 1__i___-._ __ __ -_____ - ----—'-7 —- -_1-=1 —L_ - _ —1. - - 7- - f II — I — - . -,-' —. - I.- - —. —,,,I -- ---- -- _ - —.,-. - I _.__ - - ______.___ -___ __._ ___ ____ - ----------- __,.I -,.1II _t__ __.__-. ---— 7 —- ---- -_- --—,I, —-—,!- -— I —-- __ — _ —---- ____ - -. — ---- ------— I. I.II- T i7 — — _ ——,-I —-,-, __ __ -i ---— I- __ - __ . —- - ___I-. _.______,___ -1 -:_ 7 — —, —. ---- -- -—. —-- ---- —, —-T — - -I —I -.-7 —.__ —.-, _-__-___. -T=t-,-, I -__ —____ I,i -- -- r__ ___._.-_ —_-_ __- -r - __ -__ _:7 .__ __-_-,7; —- -— I — ______ — I —- -1 — ____ -- --- __ - --_- __- ____ -- -, _ -. __ _ -7 -___II.-,-__ — i__ I-__ —_I-__-__f,____ -, - 6- 11 - -f —---- - - _+,,_ - --- -- —, -_____ 7 -- ------- ___.-I.i I-I —- —- - -- —.-t-L — ____; __ ____ __, ___ ______._ —-41-1 __ -7 I I I _4 1!;-!:!. i-_ —, — 7 -— 1- ---- -, —.I I I --- -, __ __ I,, --- — ___I,I;! I, _______-_ —--, = —-. —----—.--, I-— r-,I._,= _:1_. - - -— 4- -_ __.__ _ -1-1 -:- -. — 1 I__, - tI —` —T - _____ — III.-i 11_I- -, -I- -; ,-.- -- ---` __,__ -_r__-.- - __ --- - - - — _, —-.-.-. ——.-.- __ - -,- __ _L-_4-I-__ __ —,,-L- 7_.__ 5-.I7-. ____I r T — __ I I —— I.I1 .II i I:I1.I I. .:1 , - . pI44i.II - - - ___-_ - - -,, — ------—. —-— _ —. o,-4 __ - __ _ ---,I- -__- -____ - __,.__ — I- --— 7- +_ _ __, i- -,-,-,-I-. -__ _ ____.,.7. I____. —.Ii!,i,I T-- --- __! rL -_-77 !1 —- -;,,i.i _._ -_,__ ___ ___ __- ----, — __ --- 1; -_,.__. _____ -_., 1T.:I::. —,-F-: —__ I I —— I —- __-_1 -1 7- -1 II 7! -1 -- --- -7-77 —- - -- -- -- -- 0..I-.III-II-, i:I ------— i —- _ - - - - -— +-, — ____ -— I__II I.- -1 I _1 l _LL _i_ Ip, -— l-.:!,Ii,::.-,. —-, —- I- ____`-T - ---— I- __i — —- -71 -Tl __1:! -1 -- - I.-4- __ -.II,! I, iI i71II I,:,tI!, = --- ____-_ --- -- j- - f: ——,-.- ____._-1. - -, _ -i __ —H IT 7_ __-__: 7-,, -,_L_4__ 4- - - r !:;! r;- - I I I I __ ! -, I; —,r-i; ItiIII. _ — -._._____ -— I —. I j 1 I I,; = 1!, I.... I LH II... _,_ -- -, —__.___ -I.- ___ —, - -__,. —---- - - -.,-, —--- _.__ ____7 .W _,-::- - -— r —, — - —,-: _: - -,- ---—,-: —-: —, --— ___-_-L-_ __ - T.:-,,-..-__ - __ -, - _____ - -, Ii,__ __7:F'4_1,, — ___, __ __ ___ __,1;i —-._,:- — z:::::- ---—. ----— _.-,-:- -- __I_____ ____1 —1-:Z=ZT7_ __ - __ — __.. — - -- -—, —-,- —,I — __ —;__ - __. 1- __-_=I=77- _ 1-7 — -.. -__ _._ -- ---- -i'-L:7- l F______ ___I_ -_= —I ___ _. - __.., ____ ____L, -i —,- - ---- - -_ ____ -------— f. ----- — — - -.. —1., __ -.1.._+ —-r —--- - 4- -,i..:: —LI —=__ 17__,_ -! —-.-___:. I.I. III. I._ I —-— q=-_____,_ _ —___ ----- ___ .__ __.- -,IIII. __ __,.-1 -—.. -"___ - __, _______F_ --- ____ —,-, --—,-I — --- - -T-, +- -- L;- -— _.__ -..I —---- — I —----—, ---—'-I —- -::-417 —ii., __ ;-. -_.,.,ik,m;I: II4 —-- __ __,__ __ __ __ -, ., -__1__1 - -__ ti I I-1 Ii.- -,I I__I_._ -7 -,-.__._ --- -- --- --- P- -1 -,- —__ __ __ __-_.- __:__. -.-,T, —_ _-_-., ----- -- -, —-- - - - -- - - ---- - _- -- ___. ___:_7 -E -1I- ____ ___ --- -- -____4"__ _IKm,- _ ______- =-!:_, -_)- _ _".I. p,II,,,,,.,. I, -__ =_ --- --- -T — - -,, I.-,.-i-,I, -- t —_- I —- r — t — - - - -- — 7-: —- !__ __ _t__..- H ,P__.Al __, -.,I, , — I;I,!..-IiIa. -] __ - - --—. —_- -, —--- -- 1-, —-, ----- - - --- ____. - _____ - _. - _ __ -,-; ___ -T — — I- +-;Ii__',,:,,,,..iI-I- -, _ -I —---- — I —t- = —__ -TT-;- - -L L-1 - - __ -- F- — 1, —- --- -. -. -,.-,,-I-_-: -,,,_,-. —---- -.-T-, i-7 -77,,.. —-- -- —.__ -1-___ —-___ __ ___-_I___._ ____:.-, i._1 ____i, - --— __ -__I, Ii I-,P_ --- _7i, — -—'-'- --1, I ,- ____ -__:_,_1 __ - __ I - - - ____ —-_ --—; —-. —-tt -ii --- ii:L,_F —-— I,,,i-1. II -.7__ ____ ___ i i -: - -__ _____ ____ -__ - __ T - - -_ _ - -_,- ___1_ - - - —; -1= -I. -., 4- --- 7,. __ —0 F:I.,I IIII, —---- --— 7 -.!II IIIIIIi,, _,,__,,__1__L_-I-44-I-, I i-____ -I__; _._ -1 __1_____-__. - - — 7 __ - __ _. ___ ___. -__._!! ,II-7 I 1IIiI0 — I — - -1,___-T- -I ____ __ __ __ -I —,- -- FTT i;!, I,,I:II t- - --- -, 7 — F- _-1 I i- — _1____ 4-+! —.I - _._ -- -__ __ — - -.-.- - - __I.;II14 7_7_ 1 1)___._ _,___i_ ----—. __.,I; II I --:1.1.iII..__ -__ I ____ __ __i_.-:I _L I_ __ -1 —-i -: — __;I. - - - -, — - -4- - -1 ___I-. -_ __ - - -.____ - - -L- _r__ _____ - __ __ III.__ __ __ —-- I..ILI;1.,-1 7-`__ -,,____ -.___. - -I -F —-,'I _t_!IIIII,Lti-_,,1 — -__ — I — -- —, I =, — t- T,-.--+ -_--+-Ii,,,II-7 ii_ ,_ -, II-,,,;,-+L,`__ -L-__ -, -— 1 IIiII1-I. —iiI:.III;::, I.! rF-III,_LZ7,IiIIII -.!!iiIIi 1!I.;j_!i!17.IiI.:I - —:II-II;:.- ---;I__`I..II - -- -i- -— I —-F - - I i!!--1-i III__1_r _' F;_7 ---- -7.-., L FI ) -I, 1! I.;:j Iii -I.; II!...,1 I-. -, ____ -, —__LI______: _:_ __. - -!_ - _.-I., -_._.I- -.I!:,I T-I __ -F T7; T' — - -,I-L —- ____ -, ]I I 1 -F-!!::;:ill;.."I -ILI-14 —, - - -IIT - [DIF __Ir- F-1- - -I —'- - ---—,7 —- _.I,-!I-1:II-77 -i-,,_: _-__.4 __I,_,__L__I_-I I i;,7.;11!1;II,!i]'I!II-H-1-1II:. -1.-II 1 1 1-+I-II,I.III II —I[f I-I, - 11;IiI:! __ —-__ —-, -f- -,-_ —, — — I-,-.-1, —,-. _,__.___ F, —+_ --7-A — -_ - - __ __1-T4-11-: I;.,[ ;-i; I:j;j:;!__7_ 11"-; -4-,.-J III1I.I-- -1II,7-I L1!1JffI!I1i I I,I;I I,, 1!! I II 1 I:I-I Ii 1111 R -;II-171 a.:.. I.iI!:,lIP:1!I:%Ffi, I i;1;.: I 1; , I.!, !II —!- ___ — P- _____ —F —1I,,I!iI i1. 11 IFi_1II-__-L 717iI-__ -1! - I!I.I:I I-I ILI!.II-:i,7: —-I,- -. —- __ — A _i__ L_ — I —, -__ 1-1- __ 1-. --— :iI:II!IIF;;iI;i! I! I.I!,:,.I,.Ij!-11,i!I;i-1-,Iri_._. ____ -__ ______ IjI!,.IIIIII -, _._ -I___ —. —i:.__III:I I i -i _;_ -,w - - ---- - - - -- -- -I- - -_-, —-7 —_ —, —-,-,-F,- -_____ —1 —II-__I____ -I -- 1 T 1IiII!iIL.IIi!IIIL IiI.I.!.I;!,;II!!:III..IIIi:!;; 1,,,,,,, i, IT'!i!:11- - — . -. --— _. -,___ __ _ - -IIIiiI I7 — -7 i__ - -,-IIi- I_. ---, I-,- - - —: I - -, -,-, — -_,_T__ _____ --—,- -__ ____ ___,_ -, ---.I1;!IIiI —--i __ I' _1__,__1F__,____ ___,_L.___ - - --- -T I...IIIIi1 1: 1!I 1 iIi....II.J 1! 1! i.; II!tI IiII1:. —— __w-___-I —--—. - -.- -__. 1.. —-— I — 4 __ __ — I —--- ____ -_.4 -, — _I: . — -, -- -- T!- -,,I II-_ __F ____-i,___ -,_ i —-- ---—, —-— I-_;,;j ;I-T -7-7 pi, i- jF! I 1I JI!!, ;;.!.;1;!! 1:i,I i ,I L;-iii,!III..f% I-:;1!ITInoI.;!IIII:;,I:.L. -..I .-I-I- I.I;;-., —. I -...IIII-.I-. -I- I I I. -,I.-..I-.,-_,-. -— __ —..-. -,-__.: ---- -:::V -::-,__ I ___ _,iII -,, -,-I —,- — I:,-_. -- —:=, --- -_I —:-, —-,I; — --I — -- -- -1, -. - -1 _: Z.,_I-., -_: _f_ -- _:- 7 -.'-I- -__ I _1,-, —,, -, -_: —,. —.-I-i I. I - -.1 .. -.. — -1... -—...-.._..I ---.,_- ,,-,_.. 1 __ -—.-I.- - _.__ I -,.:, -::, - I-.:._::) -, - -,-, _...,,.,.I-'t III t__ -..IIII,:N\.,..-...:__ —-.. — " -..-. — -, -_- 7,.-.- - -- -II - - -..-.-_- -: _.__, .: .I: -._-,: -I.-.-,:.,._,, —. __ - _ - _ — _,__ —,-I-, —- ___:1 - -,-, — t - -.-,,-, -, - -, - _. _ _,_ -:,._1.-.- I- t.I_____L _... I _.__ -. —---: -,I-L - __,_ -.: _: - - -I - -.- --- -.. —----- -, -,. I,-,.. - _. i _., -.____.. _.;_ _,___,,-,, -.-: -,:_,,-,, _.. I:- _ __ - - --._-7-, _:,__.-. -,. -,. -....,.. -...I.._..:_ I —- ---- - -I_. - — 1, - ------— -...8_.. _ % , L ------- - -. —-.-... —.. —,.: [! — ,...-.I —.-.. I —- - -; —-- —.- -_..1 —-....... __ -,-..-.,,. -- —,- - - _. — P. -_1 - I —-...... _.. -I. I. .ajw __, -.-:.-7- -1 ___ __ -.,-.- -..-.. —, --— _ -7 - I- - __,__J I. -. -1 - i . —. —- _.-,__. -1. -., -- - - -__t — - -. 1..b..,........ - - -1 -E -1 I —-I- _,- - - ------ -I-,-,- -7-.-.. —-- -1..I-,-._-_,_., -—,-. _: 11 -. —,. -1-4 -_1-.:- -" —-T — -- -- - - --- - -.-, - 1- 4- - —- -! ___ —.: —.-, —,-. -1-I-.-. -1-1,-,- - — 71- 1-i —. - -..-,__ 7, -, - I __ -AD -, - 7-.....- I -i 1._.,__1"1_L -.1,A.-.I-.14w..II..... —-- -- - -.- — _.1 -.- I _..-__._ ----—.-..__ _. —I- 7- _.. —— i. I-.- ._..

- ~ -- --- I4. - - 1 —i-i - -- 1: -- - _F -h I -i - T — m7.-. 1 -~ --- - ---- -- -,_ 7-, I -I - - - -4 —-.- -[ — I* -- ----- 2 — -I- 7 - 7 - K; - - -. ~F i - 7 -IiT- T i ~-, -- - -.- ~ ~ ~ I.~ ~. ~,- — I — ~ —. — - — I ------ -.- -,,-.~ -- 9 ~ ~ ~ ~ ~ ~ ~~~ 4 --- - - - - -1- - 1, -L - F 1 -- 7-, I -- -- -- -1. -- —, hi 7-11i A -- - -- - 3 - - - -- - I- - - -- -, -- -1 — ~~ — -, - - - -- -1 —- H - " -7 - -- -- -- -,~-.. -, I - — l -— 1 —-17 -- 7-, —- - - - - - I - - —, — - - I~ - ~-,-i - - - - -r I - I i - - - I - - -- - I - - - - - - - - - - - - - - - - - - - - - - -._ - - - — 7 - 7 - I I -[ - i- I, - - -.I I I ~ II;. I I I I- III + - I - - 1 - - - ~~I- -1. i. - - - i ll.: - - - I - -.. - - - 1 ~ - ~ i ~, - - I —- - - - - -. —- -- 7-, - -- ---— in -H - --- -.- - 7 - -, - - - t — -, - - - -. V _ _ _ - 1 - — t L -- + 4........Fil. 7...-.+-4 -I-!. - -- __ -._j ~ ~,I — H — H- — I.. ~,.I -4 +~~-_- - 0. -— I. -I _;_- - -.-.-~L;. -..I-. — ~- -- _ -in t,- - -h -t h - H —7 - - 2.7 - ---- I I: - - ~ - T - - -, T -. - 7 - - ~ I - -:- I- - 7 - - 7 7 1 - _ - - - - - -t If - I- ~-, ~~~z- ~ 1, - ~-, -,- _ —;- r —-I- — _I —— 7 - - — I —-- 0. 2 - _ I- - -,- 1 —-- - —.- --- -I — -.- - —'- - 1'&7 - - -I 771 ii Ii - T1I I7 7 Ti- - -~ - - - -;- - 4 - r:I II - - - + - - - - - -- - - - - - - --. - - - 1-, - - I -. - 9.... ~ ~ i - -~-.~;I-,- -, -- -. -- ~ ~ ~ -, — 8-1 -' -~ -- - - Ii-n 7 ---- --—; --—, - - -, ~ - _ 1 7 H-.-i < - ~ - - I - - - - - I I.1 - - - - 7: —- -H_- 471- - —. -. 6 I I - ~ - - - - - -- 7 " --— t ~ ~ ~ ~ ~ ~ ~ ~ ~ -F- 74~I I i —-L7~ -L -, - i I4 ~ - - if_ I;K fj-, - -: —f 71-1 - T7< -1 -- -1 I..,, —,! It 7j:~~~~ - 1- - —. —-.-p- ---- -—. -'rI 1 -...- —; -- -%-AON3IOIdd 1V~~3 1! G3Z iV I I.LdO- - - ~ i~ -, I — I,! TF- I~-~ ~, - " 7. I~

dH.L ndi.NO INVId'Z I'TO TJ it —; —~' —- / iii-i ii~~~, i, i,-,, ~i::,) f-1! r,, ~:. ~T-: tf........., - ~ 170,~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~1 01 a I9 1 0I ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~.-.i - V VT I - -t - I -T - I - - 0IL I-A ~- - - — il- T- t -;7-~~~ ~~~~~ KtF. -A. I-ttt ~ i-t f ~ -L-i L iCil'' F-i FF12- Fil ~ -r - __ -f WI-iir +r ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ F K F-ti t~L-~ F-j II a~i ________-;-i.~ -t i1- I~-i t-i i I'ii~~~i —;-I- -~ 44-1 1E;:# l 1I ir~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~r'''':r L1 O~~~~~~~~~~~~~~~~~~~~~~~~~~~~~___- - 4It Vi tF11 VW K -_ — 4:1 it-t q{~ i;F -r{K 4- F- - -, — Ttk_.: ct —-,-i:, —1 tiIF:j -?.-2~222i-t- Vt~L -- L - 1 4 t > vH-:-~t~r- at 4 -ttitt -— I~i K ->Lttj I 4 1 > fI > >t iA 4.11 ______ _ K -t 1-; i-fi 41 t' 41 -r i F- 42 9f I 1- t:I-4 -_ HIEiF- - I~~~~hV~~~~ "v:- 7 1 _171 T K I Vt I T <1 i -I- 2< i 2- p+ Ai4u' V HF 4ii i t-i I _i -TF -1" ----- -!' L I- FfI 4 vF IItI4 F I 211.i..-i 4 1 1K tt 4414i iffL t I I' -. __ HI Ij 4- I1 -4 ~ ~ ~ ~ ~ ~ I -— ift I'~ It 1j1 __ - -- m J I ~.1 2- t'T 21 I I t tI lt 44 ii:~~:i -— 44 —i — tiF-b-iij; Ij jI tI VF mi u'!i 1_1 JI _ U F y -:- I 2~ -1192-171; 1 ~ _ I< -, 4TI ft -- -./_i - <t -~ —4 92 L J 4i~~~~~~~~yI t4I1 fh~X~I1~ FK LI~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~' 1<'' — i i rr x~: -T f if-'-r: rq-i~-T' -i I —'i_ —- I fj~~~~~~~~~~~~~~~~~-F -7i I — i~i: I i- i rtitli: ~ C ~ t~f -c~- --- I -- i~ii i~i I i- I-IT~7 -, —, _I.__r I i i -I-lii 1- i i-c- I- -C — 1 —-: —- --- —' —LI i.- il_ ~~~~~~~~~~~~LT-_:~ 82 cO~~~~~~~~ — i~~~~~~~~~i_ II ii —? -i - I I jj llI i i~~~~~t~~~i..;1;: -~~~~~~~~~~-~~~- r — 4 tt/- I i~i U-il- i j ~I i i i i: - i- f i:=~-~-~-~ tr~cc f t -— r] T + 1 -T- 7I I I T-r —— i I ~iiI ~ I r I-4 —j- -1- LIFE ~l ii i Ii 1 I- ~ i _ i iiii i i:ii- - E T1A _j - i-t_-r- r; ~~~~~~~~,: iI,!~''~~~~~~~~~~~1 L;:i I-it ~~~~~~~~~~~~~~~~~~~~~-i-i I i~~~~~~~~~~~~~~~i I ~~~~~~~~~ —iiti-ci —i- i-1 i i- I t~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~j-_i-:_i_ Fj Ifi i i I:~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ i — i-i i - i~~~~~~~./_;_.i —-tili/ Iti, i:-_, —r _-_;~~~~~~~~C3 00 r- ( Cf (ui ti C4 ~ iIi- liJTt 1i — -/ —r - t f (n co w Ln Miii -# if ~ -ii —, I~

00 co ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ O~~ 0~ H -"- Trizi 4-~~~~~~~~~~~~~~~~~~~~~~4+ 4-~~~~~~~~~~~~~~~~~~~~~~' l I- 4V- < I 0.52 47 I 7 H~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ H - Ll-ii i.] ~ ~ -Fi-_4 ii -I -A 4 K Ti _i-ij.48 -~~Z~ L I 1 7 7 F i-illMY.44 _____ Ti- I~~~~~~~~~l I I 14i — >_ _ _ _ _ _ __ II4-.36 z w - - ---- ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~~~~~~~~~~~~~- o I IWA LL K- A-i _ — >-"-u-i I Ii~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ---- - 2.32 LL ------- _____- i I 71-j — 1 14 i I 7 iF i K j -i- -i, l —t.~~~~~164.127 i-,____,0 -0, o -7 4 ~'i t ___L.Le ___ PLANTOUTPUT, HP 02 10 10~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~L 1 Fignj~~~~~~~~~~~~~~e 83. PLANT OUTPUT HP~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

I- -H - j 1 1 1 - Lf 00 J 0 ______-i-: 1 __'jHj4i it I ~ T ______:I iiI —-i —— i I- i i J t~~~ - ~i - _ _t -t I __I i _ _ _ I u.5 r~~~~~~~~~~~~~~~~~~~~~~L ~ ~ ~ ~ ~ ~ ~ ~~~~~~~~~~~~~~~~~~R N R 1 J L A Ll j 1 i -j 44 ___~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~_ __ _ iLi ~fLrrri * - ~ HI 4 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ _ _ _ _ _-: l_ l~_ t; 1b w 0 - -I- oo LL.3 -P~~~~~~~~~~~~~~~~~~~L Z Lj - t_ I~ r —-.. I —uM c)J:: E P _ SSURE w - _ _ _ I-l.,~li _ _ - N.2 ~ ~ ~ ~ ~. __- ~ — ri - __ _j _LLr:-~.2 2 -m- 44 I —-t' I I: i / j4 1 T 2 2___ IA E1 J 45.06l:f I _ 1O-F ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~1..12 ~~~~~~0' ~ ~ ~ ~ ~ ~ ~ ~~I - - Figure 84. I 0 PLANT OU T IiO 1 1- i -- -~ ~ ~~~~11-l 10~:- 10i 105 Lc~ ~ igr 8i PLANTri OUTPU HP Iii~ l _. _ l j I' 1... Q': — Z.~~~~~~~~~~~~~~~~Tili ILL~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~l L......~~~~~~~~~~~~~~~~..... ~~~L i-i —l-i igre84 1 P AN OTPT ~~~_:T~~~~~~~i~~~~~; i i i ~:I i~~~~~~~~~~~~~~~~~~~~~~~

I. 4 -. —- - - I- - I -I ~ _ I --- - -. —, —- - - - - - - - --- -- - - - _ U)0 7- _..~~ —1- -.. —': -I i _ _ - - 4 - I. - 4 - 5 -.4- -4-4~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~__ ~.' I I -- =_' f ~ " -. 4.- I.. k..F 4- -.! ~;- ~ I - I - —;-~.-.. 7 I I t - - ~ 4-.4 -~~~~~~~~~~~~~~~~~~~~~~~~~~~.__: - ~ ~ L T — - - ----—,- F + ~~~~~~~~~~~~~~ ~ ~ ~ ~ ~ - — 4 -.:'. ~'' ~ - 1.' I-, 1 —F - - 4'-I7, I' --. --. -- -— 4 -~~~~~~~~~~ ~~4 - — ~_ -i _. ~ -t -.I:. - 1 I_~': ~ - I. - - I'.' 4 w r - ~ ~.-:.-; a-.-. -. — 4-.-, _: - ~ -' 7 ~: 7 ---- - - 7~~~~~~~~~~~~~~~~~~~~~~~~~- -- -- -.-1_ _-, ~... ~ ~ ~ -____l'~~~~~ - 4_ ~ _ -" —'. — ~. —-.- F F 4-.-, I. - I. — I I-. ~.. -1, - I I —.~'- - 4 -.1-. -- -. —~ —, _: I-' t- — 11 ~.I 4 ~ - I-I' _ 4 F T F. - -__ ~~I.: --,- -_. - I -F.-. -- I I -!'~- - - - 0- ~' ~ - -7 — - - -:. ~ 7 - i. I ~. - -.- I- -.- q J'__ -2 Y F_ ~... F -.- - - - - -1 -o I-.I.. - ~ -._ -. — -- h'.. I I ~ -, - - 7 4 F 7 F' —,. - - _ - - --- ~.. T. - - - - - I - - 4- - i - ~ _ _ - - - _ _: ~' -1. - -.' -,- ~ -: Z _ ii'ii -TI7 - i II4I F-t - 4 - -- 7 I -- -I._ - _.~: - _- -. ~ _ ~_ -I L 7 h 7 F. I I N-:~ -. - --- -, __If)N -. --. - - --- I I r yI__' - I - - -. -: _ ~. I _ _ _- - -- _ - - - t 9- - - - - - -- I- - - -4- -~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~.1- - — ~ -I —' -- —. _ _ —- - - I~ _ _ 4. — _ _ - _ _l- -- - -, _, 4 - l4 -'_' i —? H - - ~ - - - - -.. -- - - _' _ - -:- _ _ _ _ _ - - _. _:: —; -'F " 4 -. I p~ -- - - ~~~~~~, ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~I.,4 — 7 - 7 4 ~ I ~ ~; -F.4 -.- —.K -.,~- _ - ~ - w I -_- - ~-_ _ —,- -— __': 7 - 2 - F-I I 2-_ __- - 1 _ _ _;.:- __ 4-4-L -I I - - - - -! - _II I 2..... 1-4'42 _'_, T _I;I _____.T 7 I-' ___ 1~__tdTh~~~, A3NI~I I1VV3H G3i-dI.Ld -7- I-IIII- 21

.52 M-1 IL 1 7 J 1 L ~i t' J:' 1:, i I 8~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ S.4k k k i$9X Ht., i t ] |- i 4 | 00Fr CY L f;t4 | 1 tk ~~~~~~~~~4+| _J- ao 1l1W|X 1|j{X|;- 0 00lT i 1 | -'| r U,|l — 101[ I~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~IX X —0 | 0 |-f | — 2!it. Lv1 s1 I 01111 I I A W0 itx |tx 1 100 | XC -tit - 40' Xt. X h k0 2 01 X A X X~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 7, i= _ 121 | fHX10< gx — 0 3 | | 1 400-t -4Xe~x gS e< War9+- -t F X!410! | 1! I I |I T, +A,., El~~~~~~~~~~~~~~~~~~~~~~~~i' +XX2~~~~~~~~~~~~4 — t 1-10F1L01]!1X0 11:~~~~~~~~~~~~~~~~~~~~~~~ * iT!t ft XiX tl-+t~~l <E iLa | V -f| 1 l iX4X 1j t L| t -|T-| | | ||;| *04 1 | S $ 1! 1I,4+ IC, I... Figure~86. PLANT 1F.08~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~y -!~~~~~~~~~~~~~~~~~~~-1 Ix~~~~~~~~~~~~~~o o PLANT OUTPUT,~ ~ ~ ~ ~~~~~~==4 HP' Fi~~~~~~~~~~~~~~~~~~~~~~~~~~~e 86.~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~-1I

1700 -____________ -- 169 01 _..j o1680 o/ f _ PS IA -1670 -- -1 t i I6i0 ___ — -_ _ _ _o_ _ _ _ __, 1660 Uz 650 -- - i 1640 w ----- Optimized Turbine Inlet Tempera- \ - - - - f - z 1630 4t 1 ture vs. Plant Output \ / Assumed Average Reactor Temp. --- -|- --- | | —1 6C) H _ (Coolant Tube Inner Surface ____ -62D Temp.) - 1700 F 110, Working Fluid - Air 1600 2X102 3 4 5 6 7 8 9 103 2 3 4 5 6 7 89 104 2 3 4 5 6 7 8 9105 PLANT output HP Figure 87.

240 230 Optimized Log Mean Temperature - Difference vs. Plant Output \_Ioo__ _sl_ 220 Assumed Average Temp. of Coolant --- Tube Inner Surface - 1700 F // I _ 210 -------- Working Fluid - Air Z 200 w w'I- 190 ---- H — X-/ —,0 /7''4 w F 180 z 3 150 a X 12C I160 I PLANT OUTPUT, HP Figure 88.

LL o 00 goo ____._ Optimized Gas Side Heat Transfer 60 uu Coefficients' vs. Plant Output w Assumed Average Coolant Tube tOS I Surface Temp. - 1700 F 500 Working Fluid - Air a. D 40C m -- - -— _ 70C P IA R) Z - - - - - ____ 0 300 --- -- LL- __ w U- -00:: 200 - - C, I 100_ 2X 102 103 OUTPU 104 105 Figure 89.

590 __ ___ _ 580 - 570 o 560 __.._- - - 0 70C P IA 550 UJ w 540 __ ___.____ ___ w Ir 530 -- 0 520 w c) 9o The Raise in Temp. of Gas Stream z - -........- Through the Reactor (for Optimized 490 -- - - _ —------ //Condition) C,, w - ----- Assumed Average Coolant Tube Surface O 480 __ _ _ ^ -------- Temp. - 1700 F u 480 z o - ---- - Working Fluid - Air w N 470 o 460 450 FI og I a4 4 Figure 90. PLANT OUTPUT, HP

.....- - - - - _ ~Optimized Core Diameter vs. Plant Output 7.0 - -- - - - - --- - --— Assumed Average Temp. of Coolant Tube Surface - 1700 F -- -- —' _ __ _T —- __ ___ ____-_ IokWorking Fluid - Air 40 P IA 5.0 _ _ _;_____ / w -— i -^ _|______ _!1000 S0 50 4.0 - __ 0 N -4 —-— ~", - 3.0 i i a. 0 0 _____________________ _ - - - /1'P 2x10 3 4 5 6 7 8910 2 3 4 5 6 7 9104 2 3 4 5 67 89105 PLANT output HP Figure 91.

.8.7.6 oO,,( O.5 4X / X 1) 0 CALCULATED REGENERATIVE, REHEAT 0.3 X / MAXIMUM EFFICIENCY POINTS 2) X CALCULATED STEAM CYCLE POINTS,REFERENCE 3 (VARIATION FROM DIFFERENT PRESSURE LEVEL AT SAME TEMPERATURE) 3) 0 CALCULATED STEAM CYCLE POINTS, REFER~~.21 / ~ENCE 5, VARIATION PER NOTE 2'"~/ ~4) * APDA STEAM PLANT, REFERENCE 9 5) 0 BNL STEAM PLANT, REFERENCE 10 6) y PHILO SUPERCRITICAL STEAM PLANT, REFERENCE 2.1 7) V CALCULATED HG-H20 OR NA-HG-H20 POINTS REFERENCE 3 AND APPENDIX 3 8) 2 KEARNY HG-H20 PLANT 500 600 700 800 900 1000 1100 1200 1300 1400 1500 TEMPERATURE - OF Figure 92. MAXIMUM FEASIBLE EFFICIENCY VS TEMPERATURE VARIOUS HEAT ENGINE CYCLES COOLING WATER AT 70~ F - 128 -

~ i- ~i.:.t ii ~ 1-i.:_:- i:'? i1!.i ~~~ —- -1~ ~~~ - t L f. -T: I, I T' t'.'I -! I t t S <<<gt < > w t~~~~~;' — MERCHANT sH IP'..::l;: r ~-1-~~~~~~~~~~~~~~~~~~~~~~-?. i;~ — g i W; S;;i-X~~~~~~" PLANT DATA g~~~~~~~~~ i'@ X m' t 7~.. 1~- 19 1-'-1 -... _ — -Wkg- S i. 71.,..m. t. 1, --- H -I~~~- t IL~~~g g ~ ~- ~- 1e1-0+ sm iI -1 I T I 4 4i 4 T r i ~ ~ ~ ~ ~ ~ 1iI44,t- +'i t ~ --- 41~~~~~~~~~~~~1 1: j,, ii t~lrt~r t.I- -!-I-. 4 T.- T4. 4 _11 4- Ot^ t- t.;;.;1-~- ~ 7-r —— ~ 7!l I g W m W~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~0 4,X S~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ MECHN SHIP +44'~ 1 --— 4. - t~~~Ca L ii~ ii T + t 1+1~;TI * —- I —Y-'~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~I f + t r~~~~~~~~~~~~~~~ ~- 11~~~~~~44- _Ht IL V L It IE IL~-~~~~yL ~ TTY: TI~T7 711L~ ~T11 ~ ~ I___ I-.,.I 1~~~ I r''~~~~~~~~~~~~~~~~iN.4i-u - ii -_ RCAN SIP r:-ffa I- I..~ I I I.T I..._#+4 - _ tftl# 1 4

r~~~~~~~~~~~~~~~~~ I._1.~~~~~~~~~~~~~~~~~~~~~~~~~~~~~I.Cr —~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~4t-J 44~i —:H44 ++~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~tttt- ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ fU-t'iil +-4+H — I I'l, "iA 4444 — - ----— ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~-1~t-i~ —~TtCi~~~ fill~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~~~~~~~~~~~~~~~~~i 1+ ~ ~ ~ - - - - - - - I I T I~~~~~~~~~~~~~~~~~~~~~~~~~~~I~ + -~~~~~i r I~~~~~~~~ WHH# ##WAAM: — 4444-H44444

PUMP'7 =.50 FLOW RATES BASED ON UNITY WATER FLOW. ENTHALPY PER BTU/LB OF FLUID. /.808 \ p9.3 1500 h= 398 / 223 h' 2230 SODIUM SATURATION CURVE 8 /7 08 / OOB ^^u\ SODIUM TURBINE =.80.013 1340 h /=350 -h 2120 040 h:220 1240 h=320.2040 w 8040 ------- h=320 A —------------— * —-----— h: 2040 3 //53 D1 h4 — t R 1220 OF./013 9\1945 1140 h —----— h 290 --— 945 0/ /.740 \ \.25 1040 T —-74 10260 h 31.7 ------ — L —.- -- --. p=207 \ h=1850 MERCURY SATURATION- - 9MU.20 h = 156 U. CURVE /20 = / 9.20 E /M0 ER.U230 p- E =95 MERCURY TURBINE =.83 9g0o0 - -- h -- 2 77.9 /- -- -- -- -- \h:-'cc h = 151.3 s. /.8.98 800 h- 24. 1.73 \ 143 i /\ ts =780 OF s //7.25 h = 1362.20 7.05 7.05 p.6 600 -h=18.5 - - - -/ — _ *-_ _ ih-127 575 -- h=582 " h1180 \ WATER SATURATION 1.000 - -f-\ CURVE/ X\.146 p=36o 434 h —---— 413 -----— 6 —- -h= 1249 STEAM TURBINE-=.85 300 h-270.090 \ p - 67 300' —--- hx 61 A — 11. /' 094 ^ \_ __p=11.5 200 s —- h-168 _......... _.094\. h-1028 //70 \ \.670 p I" Hg 79 -hr47,/ —--------- -- - - -- \ h-884 ENTROPY-S OVERALL EFFICIENCY =.600 Figure 95. SODIUM-MERCURY-STEAM EXTRACTION TRINARY CYCLE I TEMPERATURE-ENTROPY DIAGRAM - 151 -

PUMPr -.50 FLOW RATES BASED ON UNITY WATER FLOW. ENTHALPY PER BTU/LB OF FLUID. /50 h=39_8.788 p = 9.3 1500 -h=398 h=2230 SODIUM SATURATION CURVE788 SODIUM TURBINEn =.75 ~1340 //775\.013 1340 It= 350 h=2125 775 1240 h. 320 -. 24040 1240 p:2 —----- h3h =320 h h2045 //~~~,,~~~~~~~ (\~\~~~~-t=1220 OF 1140 _ —0 — h201 =1956 22 _700 L1_ h=:_ -h1362 MERCURY SATURATION 9115 156 LL CURVE V \,434, | h:413 _ ___ 6 __.224 124=95 MERAURY TURBINE:.80 // I 1.718 p=45 300 — ~ 1 800 h 24.8 h=1244 a. / / r — r-t,- ----- - =780 OF U /.17 h=1362 DMTER C URY-STA MTRATION A —-----— A C LCURVE \ E - \5 - =4 TEMPERATURE-ENTROPY DIAGRAMNE=.8.982 - =6.6 300 h —----— 175h=2701.2.764 h=6 / / -.094 \ \ Pz=11.5 w 2800 h=1028 ~79 -h=47 - - - - - - - -- - - — i.67- ^t0 - F-" H - 152 -

PUMP =.50 FLOW RATES BASED ON UNITY WATER FLOW. ALL TURBINES 100% EFFICIENT. ENTHALPY PER BTU/LB OF FLUID. /W.756 \ p= 9.3 1500 h 398 /-2230 1340 - h: =350 /\ h h=2090 /.,743 \ 1240 h: h=320 1 * \ h=1990 SMERCURY SATURATION TI833NA h 155.8 o //MCURVE-.33.R _ \.730 4 900 --— h=Z7.9- ___-___ —-—.0145 U /4 /t 7.090 \ 7040 =260 h 1.7 t — -- | \ h -12745 1020 1.01 —--- --------------- \6 WATERCUR SATURATION 8.33 h -155.8 UL. CURVE / \ W 900 - hz 270 A -.9101 / \.95 rrh =145.5 0 4 /.101 \ ps w 800 h18\ h 136.8 a. 700 h21 —- 7h =___68/-s8 7 9600- e _ _8 _ h -1; 5 575Figure 97. SODIUM-MERCURY-STEAM IDEAL EXTRACTION TRINARY CYCLE.000 h- 17955 -.8 WATER SATURATION CURVE 300 h=270 -- - -4. 10 p x67 h = 149.5 200 h=871h = 2.... /9 h = =731 70O~~~~~~~~~~~~~~VCIl~r Ch=1.

SODIUM SATURATION CURVE.683 p\ =93 1500 h=398h2230 /.683 \\ ODIUM TURBINE =.80.011 1340 -- h=350 h=2120 /672.012 1240 h3 —--- h2320 - 2035,660.012 / /.648 \ \.648 p=.25 1040 h=260 10202g h26p ^ P154 h=1850 0 501ii FLOW RATES BASED ON |I /I UNITY WATER FLOW. i | -~ xWWATER SATURATION CURVE ENTHALPY-BTU PER LB a: X \ | OF FLUID. p=593 2 0hl —I — h:^ ll2/- h= 1333.5 /600/.653 10 I u600 9 h8 617 - - M -- B\ ESTEAM TURBINER I.85 - 134 I 4 85 rh=470 - PUMP? =.50 /.866\.113:p = 145.5 3 5 6 h —--- =328 h=1219.754.100 \ p=17.2 22 0 h:188.1 ----- - =1123 /.653.653 p=" 1Hg 7 9 h = - -.... h.-957 ENTROPY —S OVERALL EFFICIENCY =.516 Figure 98. SODIUM —STEAM BINARY EXTRACTION CYCLE TEMPERATURE-ENTROPY DIAGRAM - 134 -

SODIUM SATURATION CURVE.0878 \ p-9.3 1500 h=398'X -W h =2230 / 0878 SODIUM TURBINE =.80.0014 1340 --- h =350 h =2120 /.0864.0015 1240 h-=320' \- h:2035 |//.0849 \ \ PUMP?:50.0849.0015 1140 -- h290 i\ h-1943 /0834 \ \.0834 p\ \ 25 1040 h=260 1020; \ h=1850 875 1 / \ ~ 1.0/ \ / \/ J 875 - __ - AIR TURBINE =:.89 827 a 827 Xt77 / / / AIR COMPRESSOR:.89 COMPRESSION RATIO:107 FOR AIR RE GENERATOR s 107 FOR AIR EXPANSION RATIO REGENERATOR EFF.:.93 FOR AIR AIR EXPANSION RATIO =4.0 ENTHALPY PER BTU/LB. OF FLUID. 233 3 FLOW RATES BASED ON UNITY 1 l85 _ / AIR FLOW. 185 -7 ----- 90 v ENTROPY -S OVERALL EFFICIENCY,.486 Figure 99. SODIUM-AIR BINARY EXTRACTION-REHEAT CYCLE TEMPERATURE -ENTROPY DIAGRAM - 1355 -

BIBLIOGRAPHY 1. Hammitt, F. G. and Ohlgren, H. A., "Nuclear Powered Gas Turbines for Light Weight Power Plants." Paper No, 57-NESC-79, Second Nuclear Engineering and Science Conference, March 11-14, 1957, Philadelphia, Pa. 2, Ohlgren, H. A, and Hammitt, F. G., "Component Optimizations for Nuclear-Powered Closed-Cycle Gas Turbine Power Plants." ASME Paper No. 57-A-259. December, 1957. 35 Chernick, J., "Small Liquid Metal Fueled Reactor Systems," Nuclear Science and Engineering, Vol. I, (1956), pp. 135-155. 4. Sheehan, T. V., "Proposed Design for 500 MW LMFR Power Plant," Outline of talk given at BNL Industry Conference, Nov., 1955. 5. Cost estimates received from industrial sources. 6. Mabuce, E. M. and Hub, K. A., "A Study of Favorable Design Values for a Reactor Operated for Power Generation Only," AEP 99, Atomic Electric Project, St. Louis, Mo., Sept. 30, 1953. 7. Butcher, R. 0., "Engine Room Study - Secondary Steam System for Nuclear Propelled Merchant Ships," MS-75 Aviation and Defense Industries, Sales Dept., General Electric Co., Schenectady, N.Y. 1955o -136