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TRANSIENT INTERNAL NATURAL CONVECTION HEATING AND COOLING
OF CLOSED, VERTICAL, CYLINDRICAL VESSELS

I. INTRODUCTION

The problem of estimating cooling or heating times for closed
vessels containing a fluid which is at a temperature different from the
external ambient temperature is very common. There are many conventional
industrial applications as well as those applying to missiles and rockets
(involving boil-off of liquid oxygen, cooling of nose cones, etc.). If
the problem is extended to include heat generating or absorbing fluids,
various problems involving nuclear reactor systems or chemical processes
are alsc covered.

It is the purpose of this paper to present a method whereby
time estimates of sufficient accuracy for most engineering purposes
may be made for certain cases. A "universal" heating or cooling curve
(Figure 1) for the case of no internal heat generation or absorption
and unifofm wall temperature is presented in terms of non-dimensicn-
alized parameters. It is possible by similar methods to produce similar
curves to cover cases of internal heat sources or sinks and/or non-uni-
form wall temperature distributions. However, such an extension of the
method has not yet been accomplished. For physical cases the restric-
tion of uniform wall temperature is of course particularly restrictive
and could be achieved only if the heat transfer on the outside of the

vessel and through the wall were negligible compared to the fluid
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within, Applicable cases would include liquid tanks cooled by forced
convection or gas-filled tanks cooled by liguid.~

A numerical example, using the curves presented; is included
to 1llustrate the method, and show the order of magnitude of results

which are obtained.
IT. GENERAL APPROACH TCO PROBLEM

The general approach of this paper is to view the transient
heating (or cooling) phenomenon as a succession of quasi-steady-state
flow regimes. In a cooling case (heat flow outward through walls),
steady-state is possible only if an internal heat source is present
in the fluid; in a heating case (heat flow inward through walls), an
internal heat sink. In the cooling case for example, it is assumed in
this analysis that the alternation of the sensible heat of the fluid re-
places the internal heat source. In other words, a quasi-steady-state
is assumed during which the degree of cooling is not sufficient to alter
significantly the flow regime, and the heat which is transferred from
the vessel through the walls is made up by a temperature reduction of
the fluid, in effect replacing an internal heat source. This assump-
tion certainly seems intuitively reasonable for such cases as the cooling
of tanks to equilibrium with the surroundings wherein the rate of temp-
erature decrease i1s small. Conceivably it could lose its validity in
cases involving high-density heat fluxes as might be encountered for ex-

ample in & nuclear reactor power surge. The assumption is reasonable



within the bounds of the analysis since it has already been assumed
that the inertial terms in the natural convection flow equation are
negligible as compared with viscous shear terms. The steady-state an-
alysis upon which this paper is founded, and which involved the above
assumption, has been detailed in Reference 1 by the present authors.
The significant features will be briefly reviewed later in the discus-
sion and in the Appendix.

The steady-state solutions available from Reference 1 for
natural convection with internal heat generation have been reduced to
numerical results for different cases of internal heat source distri-
bution and wall‘temperature distribution (always assuming axial sym-
metry). The present analysis has been limited to the cases for which
tabulated results were available. However, the curves of Figures 1
and 3, appearing virtually as straight lines on a logarithmic plot,
have been extended beyond the bounds of these numerical results. If
desirable, it would be possible to extend the analysis to other con-
ditiond. For example, as non-uniform wall temperature, which exists
in physical cases.

If an internal heat source (or sink) is to be substituted for
the alteration of sensible heat of the fluid in cooling or heating, it
is necessary to define the proper -distribution of the heat source.
(The discussion will be based upon the case of cooling. However, the

application to heating involves no significant difference and the re-

sults are directly applicable).



-

An obvious boundary condition upon the heat source distribution
is that all portions of the vessel approach the external ambient temp-
erature simultaneously. This could be realized, for example, if it
were assumed that the heat source strength were everywhere proportional
to the local tempersture elevation over ambient. However, numerical
steady-state solutions for this case are not presently @vailable al-
though it might be possible to obtain them at a later date.

The approach which has been adopted in this paper is to as-
certain the significance of the heat source distribution, and then, if
this is not too great, use the heat source distributions which are
available. If has been found, as explained in the Appendix, that the
meximum uncertainty due to the specific assumption of heat source dis-
tribution upon cooling time is of the order of 20 percent if the "uni-
versal" curve of Figure 1 is used. As a base of engineering calcula-
tion, even though the uncertainty is significant, this estimation is
still useful. It would be; of course, desirable to make an experimental
check of the solution, but so far, this has not been accomplished.

In principle, this type of approach could be extended to cases
of heating or cooling transients when an actual internal heat source or
sink is present. For example, for the case of cooling in the presence
of an actual internal heat source, the internal heat source hypothesized
as necessary to attain the required quasi-steady-state conditions would
be increased by the amount of the real heat source. The result would

of course be longer cooling times and the eventual attainment of a



steady-state, not in equilibrium with the surroundings, but at a temp-
erature higher by an amount required by the actual heat source strength.
The "universal' curve of Figure 1 thus applies only to the special case
of no actual internal heat source or sink and uniform wall temperature.
A family of similar curves for which the curve parameters would be the
non-dimensionalized heat source or sink strength and wall temperature
distribution would be required to deal with cases involving real heat
sources or sinks.

The existence of "universal' curves, plots of non-dimension-
alized mixed mean temperature differential above ambient versus non-
dimensionalized time, with wall temperature distribution, and heat source
or sink strength as parameters, seems intuitively obvious from the fol-
lowing consideration. The curve merely presents the elapsed time necess-
ary, under given conditions described above, for the fluid to cool or
heat from one mixed mean temperature conditicn to ancther. Under the
assumption of a series of quasi-steady-state conditions forming the
actual transient, it is obvious that the previous history or future be-
havior can have no influence upon this time interval. Hence, for cool-
ing, if we consider the curve to commence with a vessel of very high
mixed mean temperature (higher than that of any condition of interest),
during its cooling cycle it must pass through all intervening conditions
between the initial condition and ambient. For a particular case, it is
possible to enter the curve at whatever point corresponds to the mixed
mean temperature of the vessel considered, and leave when that tempera-
ture has reached a required value above ambient. The elapsed time be-

tween these points is not affected by the previous history of the vessel.



It is of interest to note that infinite time is actually re-
quired to acheive equilibrium with the surroundings. In a particular
case it is then necessary to specify a required degree of approach to

the ambient conditions to achieve a finite and meaningful solution.
ITI. DETAILED SOLUTION

The details of the steady-state solutions upon which the
present work is based were given in Reference 1 and in the several
papers upon which it was based (References 2, 3%, L, 5). Briefly, the
solutions, obtained numerically with the help of a high-speed digital
computer, are based upon the following major assumptions:

1) Conservation of mass, momentum, and energy on an integrated
basis for planes normal to the vessel axis and for overall
vessel.

2) Axial symmetry

%) Assumed temperature and velocity profiles (Figure 4) which
meet known physical boundary condition and their first deriva-
tives at vessel wall, centerline, and inner extent of boundary
layer.

M) Boundary layer flow; i.e.: partial derivatives in axial direc-
tion are small compared to corresponding derivatives in radial
direction.

5) Boundary layer thickness is function of axial position, being

zero at top in cooling case; at bottom in heating case.



6) Laminar flow

7) Physical properties of fluid are uniform for entire vessel
and are evaluated for a mean condition.

8) Prandtl's Number is of the order of unity or greater. As
explained in Reference 1 and 2, this is tantamount to the assump-
tion that inertial terms are small compared to viscous terms.

9) The vessel is fairly large or the heat source is high so that
boundary layer type flow applies. The lower limit of this limit
corresponds to that tp = lO2 in Figure 1. It has been found
that most physical cases of significance fall within this range.
Further details on the analysis are given in the Appendix.

The computer program is so arranged that arbitrary axial dis-
tribution of heat source and wall temperature can be evaluated, and
hence results for various such distributions are available over a very
wide range of heat source strengths.

As detailed in Reference 1 considerable experimental data has
been obtained to verify the analytical predictions. In general the trends
predicted analytically have been verified (including local fluid temp-
eratures, velocities, and Wail heat flux distributions) but the ob-
served overall temperature differential required to motivate a given
rate of heat transfer has been less thapn that predicted by a factor of
approximately 1.4 over the entire range of non-dimensional heat source
strengths investigated (a range of about 106)o It is felt that this
discrepancy is at least partially a result of turbulent mixing which has

been observed in most experimental runs.
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The overall steady-state heat transfer results can be pre-
sented as a plot of non-dimensional temperature differentisl versus
non-dimensional heat source strength with wall temperature distribution
and heat source distribution as parameters. ©Since the results are pre-
sented in terms of non-dimensional parameters, they are theoretically
applicable to vessels of any length to diameter ratic. Their gpplica-
bility has been verified over quite a broad range of such ratios. On
logarithmic coordinates the resulting curves are virtually straight lines
as shown in Figure 5, and hence the relation can be expressed in an
empirical form:

n
Qv = mtgo (l)

where m "™ 1.24, and m depends on the heat source and wall temperature
distribution.

Application of these steady-state solutions to the transient
case involves adding a term, which is proportional to Bt/BT, to the
basic conservation of energy equation for differential discs normal to
the centerline. T is non-dimensional time. The detailed derivations
are given in the Appendix. This term covers the contribution to the
overall energy balance of heat liberation or abscrption due to tempera-
ture transients. The general relation would then include a _g%_ term
as well as a qy (actual internal heat source or sink term) term. In
those cases for which numerical results are given in this paper, it is
assumed that g, = O. However, no great complication would be involved

in handling the more general case.



Assuming that transient cases are a succession of quasi-steady-
state conditions, it is shown by Figure 6 (and obvious on physical
grounds) that, for given distribution of heat source and wall tempera-
ture, there is a unique relation between QEO and qy. Also, for each
such condition, i.e.: each q, or ngﬁ the wall heat flux, local tempera-
tures, and velocities are known from the steady-state results and are
unique (l). Consequently, there is alsc a unique relation between the
mixed-mean temperature differential above a given datum (in non-dimen-
sional coordinates) and the wall heat flux and hence rate of change of
mixed mean temperature. For the analyses of this paper, uniform wall
temperature has been assumed, and this temperature has been used for
the datum. Generalization to conditions of varying wall temperature

(always assuming axial symmetry) presents no over-riding complication.

Evaluation of the mixed-mean temperature differential requires an in-

tegration across the radius of the assumed radial temperature profiles
and then numerical integration in the axial direction (since no analyti-
cal relation is known) using the numerical data from the steady-state
solutions. The time rate of change of the mixed-mean non-dimensional
temperature can be written in terms of the applicable steady-state

overall temperature differential using Fquation (1) by substituting

éEE. for qy. Details are given in the Appendix.

oT
The curves of Figures 1 and 3 are based upon the experimentally

observed heat transfer rates rather than *the analytical predictions, so
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that the heating or cooling times will represent the "best guess"
currently available (i.e.: heat transfer rates for a given overall
temperature differential increased by a factor of 1.4 over the theore-
tical calculation, but internal heat distributions are assumed from
the numerical analyses).

The question of the suitable heat source distribution to be
used has been discussed in a previous section. Calculations were made
for extreme cases for which numerical data was available to determine
the significance of this factor. The resulting curves are shown in
Figure 2 and explained in the Appendix. It is noted that the curves
are essentially parallel on a logarithmic plot. Cases plotted include
linear distributions peaking at top or bottom and going to zero at the
opposite end (triangular and inverse triangular), a sine distribution,
zero at the ends and maximum at the midpoint uniform heat source; and
all heat added at one end. On physical grounds, as previously mentioned,
the "triangular" distribution seems most reasonable and has been used
for the "Universal Curve', Figure 1. Since this is the case, it seems
reasonable, again physically, that the correct soclution should lie be-
tween the "disc" and "inverse triangular' curves. Figure 3 shows the
cooling (or heating) curves for these cases (corrected for experimental
results as mentioned above). It is noted that again they are all essen-
tially parallel on a logarithmic plot, giving some confidence that the
form of the curves is correct. The curve of Figure 1 corresponds to

the "triangular" curve of Figure 3.
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IV. NUMERICAL EXAMPLE

As an illustrative example, a cylindrical tank, filled with
water at a mixed-mean temperature of 15°F s wherein the interior sur-
face of the walls is held at 60°F is selected. It is desired to know
how long it will take for the mixed-mean temperature of the vessel to
decrease to TO°F. The vessel height is four feet and the diameter one
feet. The numerical results are computed in the Appendix from both the
"Universal" Curve (Figure 1) and the "disc" curve (Figure %) which is
believed to cover the range of uncertainty. The required time interval
from the Universal Curve isGA8 hours andQlt? hours. As previously ex-
plained the "Universal" Curve represents the '"best guess". The deri-
vation from this estimate incurred by using the "disc" curvé is about

20 percent.

V. CONCLUSIONS
An approximate method for the estimation of heating or cooling
times of cylindrical vessels, filled with fluid, and exposed to uniform
wall temperature of a value differing from the mixed-mean fluid tempera-~
ture is presented. It is noted that this method can be generalized to
include cases where there is internal heat generatibn or absorption or
where non-uniform (but axially-symmetrical) wall temperature distribu-

tions exist.
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VI. NOMENCLATURE

Temperature.

Vertical Velocity (parallel to x-axis),

Radius vector,

Height of the cylinder .

Radius of the cylinder.

Non-dimensional velocity-

Non-dimensional temperature differential from the fluid
to wall; in the case of constant wall tempergsture.

is the non-dimensional temperature differential from
centerline to wall. Both t and tg are functions of x;

in addtion, t is also a function of r.

Non-dimensional space coordinates in axial and radial
directions.

Volumetric heat generation rate.

Non-dimensional volumetric heat generation rate,
Prandtl's Number,

Time.

Non-dimensional time,

Specific heat at constant volume.

Kinematic viscosity.

Density.

Thermal Conductivity.

Thermgl Diffusivity-

Volumetric thermal expansion coefficient.

Constants defined in the text.

Functions defined in the text.



-13-

VII. APPENDIX

Brief Review of Steady State Solution (1)

Consider a closed circular cylinder filled with fluid of
Prandtl's Number of unity or greater. Within the fluid is a heat source,
not necessarily homogeneous, the cylinderical wall is kept at constant
temperature which is lower than the fluid temperature so that steady-
state heat transfer can be established.

The heat balance equation over a circular thin disc can

be written, in integral form, as:
[a fa2n UTRAR] AX = K (QL) onalX - na° AXQ (2)
Pey xJ g%'R:a v

In Equation 2, the fluid properties are assumed constant throughout.

The following dimensionless variables are substituted:

x = X_
2
R
I‘=g—
L ‘
t = (Tyqp1-T) 088 = agat (AT)
VEY vk
2
u:a_
KLU
2 I
q, = a a%a Qv
pCVK.Vﬂ

One then obtains the heat balance equation in dimensionless form:

1
o} . B ot +qV
ox é utrdr = (5;>r=l 2 (3)
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In a similar fashion, the continuity and momentum equations are

(1,2),

obtained

flurdr =0 (L)

f‘rtdr +1/2 (%)

o}

r=0 ¥ (g%) =0 (5)
Equation (5) has already been simplified in that the terms with the
coefficient (Pr)'l are neglected. Order of magnitude calculations have
indicated that the analysis applies only to fluids with Prandtl's Number
of the order of unity or greater. (1)

An approximate solution of Equations (3), (4), and (5) is ob-
tained by postulating temperature and velocity profiles. These are so
chosen that the physical boundary conditions, and their first deriva-
tives, are satisfied at the wall, centerline, and interface between
boundary layer and core. The assumed profiles (2) for the boundary

layer regime (applying to relatively large vessels or high heat source)

are:
-y 2 0<7y<B)
oy [1-(ZB e
u-{y[l (zl:—-'a') {1+5( 1)}} o<y an (6)
(b)) o 0<y<g
=L - (E2)7 ] (7)
r-B B<y<l1

The parameters 7, B, 0, are functions of x only. In particular, B is
of special interest. Physically, it is one minus the non-dimensional

"boundary layer thickness".
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Equations (%), (4) and (5) coupled with Equations (6) and
(7) have been programmed for a digital computer to determine the numeri-
cal values of B and other quantities of physical interest, such as wall
conduction, center line temperature, etc. (l)’(5>’(5). A thorough study
of the numerical solution reveals that the relation between heat genera-
tion and oversall temperature differential can be expressed approximately
as:

ay = mtg (8)

Where m and n are two constants depending upon the heat source distri-
bution. In most cases, n is about 0.24 which is approximately in agree-
ment with natural convection on a vertical flat plate. In the latter
case, the exponent is 0.25 (2).

Based on these results, transcient natural convection heat

transfer has been studied.

The Equations for Non-Steady State Natural Convection:

Using the same geometry and nomenclature as in the previous
section, one can consider the heat balance relation for non-steady
state natural convection. For simplicity of discussion, assume there
is no heat generation inside the fluid, and the vessel dimensions are
such that boundary-layer type flow exists. This case applies to vessels
of reasonable size and significant temperature differentials. The

counterpart of Equation (1) is now of the form

(9)
d & ) T _d 8
- = ( g 2ricypUTRAR] AX - 2makK( 5 )Rr-a X = ] é 2npe, TRAR] AX
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To non-dimensionalize Equation (9), one makes the same change of variaples

as previously. Thus

l - -
- 9 [/~ enardrey (Tywall - vl t) ﬁé up 40z
a

EBX o aga)-{'
- Keomagpx] - O (T,.qp - B ¢)] _ =¢
r oga’ r=1 3
1 Vi
[£ era rdrpey(Tygll = —F ) AKX
ga

, 2
gx—f rtudr - (§7), 3 -%5 rt E— rtdr (10)
(e}

Q/
=
&

To make this dimensionless, one must substitute for 6 as shown below:
a
6 =T (11)

and the resulting equation is

d 1
)r=l —5;'£ rtdr (12)

ot

fl
! rtudr = (S;

24

T is then the non-dimensional time, which is defined in

Equation (11).

Approximate Equations for Non-Steady State Case:

It is assumed that the rate of cooling is small as compared
with velocities within the fluid so that the flow regime changes only
slowly and can be represented by a series of steady states as given in

the previous section. Then the following arguments can be applied.
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Comparing Equation (2) with Equation (12), it is clear that

the place of heat generation term in Equation (2) has been taken by

the time rate of change of the enthalpy of the fluid in Equation (12).
The physical interpretation has been given in the text. Thus, one may
equate these two terms, since for each small step change of temperature,
they represent the same physical quantity; i.e., for a disc of differ-

ential thickness in the axial direction
1
1/2 gy = - & [ rtdr (13)
oT o

Integrating Equation (13) with respect to x one obtains the total
enthalpy change of the fluid as a function of time. Thus
fll/2 q,dx= -.5__[ fld.x fl rtdr] | (14)
) or © o)
The left side of Equation (lh), in the case of a homogeneous heat
source, equals 1/2 Qy. Call the quantity in the bracket 1/2 tpe

Equation (14) can then be written as

Oty
4y = - S (15)
Recall
4y = mg (8)
S0
thn - - Otm (16)
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Since tp is a function of time only, the partial differential can be
replaced by an ordinary differential, and Equation (16) below can be

solved if the relation between g, tm can be found:

Mixed Mean Temperature and Universal Cooling (or Heating) Curve:

The temperature-position relation was previously mentioned.
It is:

t =

g, 0<r<Bp g

2
tg [1 - (Eng ] B<r<1

s

Therefore, for a given tgs the temperature profile is according to
Equation (7). Consequently, there is a unique mixed mean temperature
of the fluid corresponding to the given condition. This temperature
is obtained by integrating over the entire cylinder, i.e.,

‘éldx fl 2nrtdr 1 1
tmean = v_ ° =2 g dX é rtdr (18)

1
Fax [* enrar
(6] O

This shows that tp in Equation (15) actually represents the mean temp-
erature of the fluid. It is evaluated by substituting Equation (7) in-

to Equation (18) to give

tm = 1/6 [ tg (3+2p+p°)dx ~ (19)

This is the relation required to solve Equation (17).
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In integrating Equation (19), one needs the functional relation
between te and B in terms of x. This is obtained by the known numerical
results of the steady state solution. Since in this solution, the value
of B is calculated as a function of position for each value of tg. To
obtain tm, one merely applies the coventional graphical integration
technique to Equation (19).

Figure 2 is the result of this graphical integration. Five
curves are given. The line labelled "uniform" is obtained based on the
assumption that the heat source (in the steady-state calculations) is
distributed uniformly within the fluid body. This is a hypothetical
case since in the actual cooling (or heating) process, there is no rea-
son to expect the rate of change of the enthalpy of the fluid to remain
uniform throughout the vessel. The line labelled '"Disk" represents one
extreme case. This curve is calculated on the assumption that the total
heat source (in the steady-state case) is concentrated into a thin cir-
cular disk at the bottom for the entire period of the heating (or cooling)
process. The thickness of the disk was taken as 1 percent of the vessel

height for convenience in the machine computation. This represents the
case of a differentially thin heat source at one end and is physically
the same case as a vessel open at that end to an infinite reservior (l).
Another extreme case is obtained by assuming an inverse triangular dis-
tribution with zero heat source at the bottom as labelled. It has

been found that the ratio of tp between these two extreme cases is 3.0.
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The actual distribution of rate of change of fluid enthalpy is beliéved
to be betwéen these and in fact close to the "triangular" case as ex-
plained in the text. Moreover, it is found from Figure 2 that the re-
lation between tg and tp, in general, can be expressed as

tg = Ctp (20)
(45° slope on logarithmic plot) Then, one can easily integrate Equation
(17). This again, gives a family of curves which contains the postulated
rate of enthalpy change distribution as parameter. The integration con-
tant is zero as explained in the text. Figure 3 is the graphical repre-
sentation of the solution of Equation (17). As a summary, the following

table lists the constants involved in the equations obtained.

TABLE I
Heat Distribution m¥ n C Cooling Curve equation

-0.24

Uniform .921 1.24 2.5 T = 1.44 ty
-0.24

Disk 1.96 1.24 1 T = 2.13 ty
Sine 983 1.2k 1,02 T=1.7% £70-24
. -0.24

Triangular 1.565 1.2k 1.33 T = 1.87 tp
. " ] -0.2k

Inverse Triangular .623 1.2 3 T=1.72 tp

* Computed from experimental results rather than machine calculations.
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General Limitations of Solution and a Numerical Example.

In the above sections, a detailed method for obtaining the
cooling (or heating) time for a closed vessel with constant wall temp-
erature is given. As stated in the text, the case of variable wall
temperature should not introduce prohibitive complications, since the
basic idea is the same. Aside from this, the present solution does
not apply to the case where t, is less than about lO2 since the pos-
tulated boundary layer type solution loses its validity. Also, rela-
tively long, thin vessels are required unless end sectlons are insu-
lated, since no heat flow through these has been considered. As pre-
viously stated low Prandtl's Number fluids, as liquid metals, are ex-
cluded.

It is of interest and notice that the general form of the

cooling curve is

_ const.
tm-O.Eu (21)

Thus, if the non-dimensional temperature differential sapproaches zero,
T approaches infinity. Physically, zero non-dimensional temperature
differential implies fluid in equilibrium with the surroundings. To
accomplish this certainly requires infinite time.

Following is an numerical example to illustrate the method.

Consider a circular cylinder 1 foot in diameter and 4 feet in height
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filled with water. At the beginning of the process the mixed mean tempera-
ture is 150°F. It is allowed to cool to TO°F. while the wall temperature

is maintained at 60°F. It is desired to know how long this will take.

Calculation;
Tyall = €0°F
(Tpean)initial = 150°F (AT) initial = 150-60=90
(Tpean)final T0°F (AT) final = 70-60=10
14'(AT). R 8
(tm)initial = aga ipnitial = 7.5 x 10
VKL
(tm)final = 8.33 x 10
From Figure 1
At = 0.0228 - 0.0141 = 0.0087
2 1 100 1
Therefore, cooling time required = At®_ = 0.0087 x = x X
K b 1.640 3600
= 0.3%369 hr.

If uniform heat distribution curve (Figure 3) is used, the answer would
be 0.318 hr. The answer from the "disk distribution" curve is 0.462 hr.
The uncertainty is therefore + 12 percent. It should be mentioned that
above results do not apply to the case where a water tank is cooled by

ambient air, since, in such a case, the controlling effect would be the

heat transfer from vessel to air.
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It will be noted from the previous equations that

C1
Tl = T
1/k4
Kpl(éz_ ATy ) /

where C{ 1s the constant defining the curve to be used on Figure 3 and

and similarly for To (22)

Kpl is a constant involving only the physical properties.
Then
c 1/k
_ 71 /08 l, 1 5

To =T Kiz-( = ) (ATQL/4 ATll/H ) (23)

S0
2 C 1
61,2 = (12 - 7) 8 = L (/M) - —Lo) (2k)

where Kp2 is a second constant involving only physical properties.
Hence it is seen that, for a case involving a given fluid and
given temperatures, the cooling or heating time is proportional to
length l/h and radius to the first power. Ifsteady-state conduction alme as-
sumed under the same conditions, it is shown below that the time is pro-

portional to a.

Q = [AKgrad t] 6 where Q is total enthalpy
of fluid above a given
datum

S0
6 = 4

A K grad t
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For a long, thin cylinder (so axial conduction is negligible)

SO

Q°"a2, A =< g grad t o< 1/a

6 ot 52 oe 82

a’ l/a

A numerical check of the time required to cool a vessel of the

dimensions described in the numerical example by static conduction gives

a time greater by several orders of magnitude.
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