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ABSTRACT

The post buckling behavior of a tee shaped column of aluminum
alloy is the subject under study in this thesis. Attention is focused on
the cases where the buckling is initiated in the plane of symmetry.
The effects of initial curvature and eccentric loading in the plane of
symmetry and in the directions towards or away from the flange
receive consideration. In the case where the buckling starts in the
direction away from the flange, the flange of the tee section would be
subjected to increasing compressive stress and there would be
corresponding decreases in the value of the tangent modulus while
increasing areas of the web would bé subjected to strain regression
at the elastic rate. Thus, progressively the ratio of the bending
stiffness about the axis of symmetry to that of the bending in the plane
of symmetry will decrease and ih some cases, depending on the ratio
of the bending stiffness about the principal axes in the unloaded stage,
before the load reaches the potential maximum, biaxial bending
accompanied with torsion would commence. On the contrary, if
buckling commences in the plane of symmetry and towards the flange,
theoretically, the column will not buckle out of its plane of symmetry
and planar bending will govern the behavior of the column.

A complete evaluation of tee-section column behavior is
needed to provide an accurate estimate of the effects of initial column

imperfections, eccentricity of loading, the preferred modes of
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buckling and to afford a confirmation of the qualitative predictions
made in the preceding paragraph. To achieve the foregoing aims an
algorithm has been developed for use on a digital computer to provide
by an incremental process a complete simulation of tee-section column
behavior.

Bounds of behavior of a column, specifically a tee column, have
been discussed and the differing inelastic buckling gradients and the
reduced moduli in buckling towards or away from the flange have been
explained and illustrated graphically. The problem of torsion of a
cross section subjected to a varying strain in the inelastic range with
possible presence of strain regression region has been treated.

A series of tests has been conducted to confirm the theoretical
predictions. To carry out the experiments, a procedure of measuring
the lateral displacements and the twist of the hinged-end columns in
combined bending and torsion has been developed.

The results of the incremental analyses are presented in the
form of tables and graphs. These results include the ultimate load
carrying capacity of tee columns of various slenderness ratio with
various amounts of initial crookedness in buckling towards or away
from the flange, comparison of initial crookedness and the eccentric
loading, comparison of the assumed half-sine curve deflection shape
and the more exact deflection shape, some selected graphs of the
load-deflection history and finally the results of the experiments in

the form of a table and some graphs.
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A thorough survey of literature covering all aspects of the
related studies was made and a complete bibliography of 107 refer-

ences is provided.
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CHAPTER I

INTRODUCTION

1.1. STATEMENT OF THE PROBLEM

The behavior of a centrally loaded column of mono-symmetric
cross section, specifically a "T'" section, of aluminum alloy, which is
stronger about the axis of symmetry and which has no eccentricity of
loading, imperfections or residual stress, is the subject under study
in this thesis. The effects of initial curvature will receive consid-
eration.

The critical or buckling load in the inelastic range for a
concentrically loaded metal column with no initial curvature and hinged

(1)

at both ends is predicted by the tangent modulus theory. In the limit
as the increment above the tangent modulus load approaches zero,
Shanley showed that bending would commence with no regression in
compressive strain, but that for any finite amount of load above the
tangent modulus load a strain regression would be initiated on the
convex side and the strain at the concave side would start to increase.
By an incremental analysis, deflection of the column at a
certain point, i.e., mid-length, and corresponding load values at
different stages of deflection up to and beyond the maximum value of

the load can be calculated and graphed. The slope of the load vs.

deflection curve at the point of initiation of lateral deflection is called

-1-
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(2)

the "Inelastic Buckling Gradient'. If torsional buckling is absent at

(3)

this point the value of Inelastic Buckling Gradient is given by

P
L (1.1)

2
IA&—»O T °

where Pt is the tangent modulus load, r is the radius of gyration with
respect to axis of bending and X is the distance between the centroid
and the outer fiber of the convex side of the cross section measured on
a line perpendicular to the buckling axis.

If buckling is to occur about the yfaxis, the moment of inertia
of the cross section about y-axis being less than that about x-axis, one
may calculate two different values of Inelastic Buckling Gradient,
depending on whether the column

would buckle to the left or to the -

right (Fig. 1.1). In the case of no

Centroid
initial imperfection or eccentric / |
B 0 w *x
loading, the most probable b T

direction of buckling would

la—, ——L— —
X Xor

perhaps be to the left, corre- ‘y

- 1+ d
sponding to the smaller I. B. G.
(inelastic buckling gradient). Fig. 1.1. T-Section

If initial imperfection in the "T" section were such that it would
initiate buckling in one or the other direction or if it would be prevented
from deflecting in one direction, the column would presumably buckle
in the unsupported or initially curved direction. If buckling were

.initiated in the direction with the larger I.B,G., i.e., to the right,



the behavior of the column would be quite different from the first case.
In the latter case the flange of the "T'" section would be subjected to
increasing compressive stress corresponding to decreasing value of
tangent modulus and larger parts of the web would be subjected to strain
regression at the elastic rate. Thus, progressively, the ratio of
bending stiffness about the y-axis to that of the x-axis would increase
and in some cases, depending on the ratio of the bending stiffness with
respect to the x- and the y-axes in the unloaded stage before the load
reaches the potential maximum, biaxial bending accompanied with
torsion would commence. In other cases this happens in the unloading
stage as the elastically behaving portion of the web increases.

The internal torsional resistance of the section could be
presumed to be only due to St. Venant torsion (with the inelastic modi-
fication) and the warping torsional resistance can be neglected. If
buckling originates in the direction of the smaller I.B.G., i.e., to the
left, strain regression would start in the flange area and the web will
be under increasing compressive strain with corresponding decrease
in tangent modulus. In this case the ratio of bending stiffness about
the x-axis relative to the y-axis will increase and more resistance to
buckling out of the plane of the web will be introduced. Bending will
then continue in the plane of the web as it originated.

In this thesis the inelastic buckling behavior of "T'" sections of
aluminum alloys will be studied quantitatively and compared with the
quaﬁitative predictions made in the preceding paragraphs. Also,

quantitative study will be made on the effects of existence of initial



crookedness in the positive or negative directions of the x-axis in the
plane of the web. The effects of eccentric loading in the plane of the
web have also been studied and compared with the effect of initial
imperfection. The study has been done for sections with different
ratios of bending stiffness relative to the x- and the y-axes and with
different material properties. Finally, a series of tests has been
conducted to confirm the theoretically predicted behavior.

In order to evaluate the above buckling problem quantitatively,
an algorithm has been developed for use on a high speed digital
computer, that makes the manipulation of the incremental process
possible. To carry out the experiment, a procedure of measuring
the lateral displacements and the twist of the hinged-end columns

in combined bending and torsion has been developed.

2.2. REVIEW OF THE PRIOR WORK

(4)

Musschenbroek built the first testing machine and proposed
the first empirical column formula for the ultimate load carrying

capacity of the columns of rectangular cross section which states

that ultimate load per unit area is proportional to

—IE— ) 2, where
D is the depth and L is the length of the column. This happened
almost twenty-five years before Euler started to develop his column
theory in 1744.

Euler's equation for critical load of a column is one of the
most famous equations in strength of materials and was published in

1759. The translation of essential portions of this publication by



J. A. Vanden Broek (Am. J. Phys., Vol. 15, No. 4, July-August
1947, pp. 309-318) reveals Euler's ability to apply advanced mathe-
matics to a practical problem. Euler's formula was in effect a
generalization of Musschenbroek's special case for rectangular
sections.

For many years Euler's formula was not generally applied to
actual design, since tests of structures indicated that columns
frequently failed below the Euler load. Euler's formula gives the
average stress at which a slender (elastic) concentrically loaded and
initially straight prismatic and homogeneous column will develop
bifurcation of equilibrium.

Euler's formula gives a very high value for buckling load of
short columns. In a period of over two hundred years between the
introduction of Euler's formula and the presentation of Shanley's
concept of column buckling, there have been a great many developments
and modifications of the column theory.r In 1889 Considére(5) con-
ducted a series of 32 column tests and verified that for short columns
the Euler formula gave too high a value for the buckling load. He
suggested that if buckling occurs above the proportional limit the
elastic modulus should be replaced in the Euler formula by an “Eeff”
in order to evaluate the ultimate strength of the column. He also
stated that the value of ”Eeff” is between the modulus of elasticity (E)
(6)

and the tangent modulus (Et ). During the same year Engesser,

independently of Consideére, suggested that the column strength in the
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inelastic range can be obtained by the substitution of the tangent modulus
in place of elastic modulus in the Euler formula.

In 1895 Jasinski(7) criticized the tangent modulus theory on the
grounds that it did not account for the non-reversible characteristic
of the stress-strain relation in the inelastic range. In 1910

(8)

Von Kidrman' ' evaluated the effective or ''reduced modulus" for the
rectangular and the idealized H-section columns. The reduced modulus
is also called the ''double modulus' as it is a function of both the

elastic and the tangent modulus. The formula for the double modulus

as derived by Von Kirman for the rectangular section is

4E E

U VEES

(1.2)

The double modulus theory was considered to be the correct theory of

inelastic column behavior until 1946 when Shanley showed that it

(9)

presented a paradox. In order to exceed the tangent modulus

(Euler-Engesser formula), it is necessary that the effective modulus
be greater than Et’ i.e., some portion of the cross section must be
subjected to a strain regression. This indicates that the column

begins to bend before reaching the double modulus load. Shanley

(1) (11)

mathematically verified his conclusions' ' which are as follows:

1. The Engesser load (tangent modulus load) represents
the maximum load for which the column has only one
equilibrium configuration. Up to this load the idealized
column must remain straight; beyond this load it may

bend.



2. The double-modulus load represents the upper limit for
the load that can theoretically be reached as the column
continues to bend with increasing load. To develop the
double-modulus load would require infinite lateral
deflection at a constant value of the tangent modulus
which is impossible.,

3. For a given material, the maximum load that can be
developed will generally be only slightly greater than
the Engesser load because of the rapid decrease in
Et with increasing stress. Therefore, the Engesser
load is considered as the practical upper limit for

column strength.
. (12) . . .
Duberg and Wilder, III applied Shanley's approach to an idealized
H-section column with two point concentrations of area and with zero
web area and they confirmed Shanley's concept of initiation of
buckling at the tangent modulus load.
. (13) . .

In 1950 Lin studied slightly curved columns of rectangular

cross section, including effects of strain reversal. In 1961

(14)

Johnston analyzed the inelastic behavior of a concentrically loaded
"model" consisting of two rigid end segments continuous with a short

deformable central rectangular segment of aluminum alloy (Fig. 1.2).

J,H
P Rigid

Rigid P

——— M

Fig. 1. 2. Johnston's Strut Model



In 1964 Augusti(ls) P

constructed a strut model made -1- B

of two rigid limbs connected by

Rigid Limb

L/2

. entral Cell

a "central cell'" and studied the
™ ®
buckling and collapse of structural o N oV I
elements in the inelastic range.
— Unbuckled

The cell consisted of two straight L/2 -—Buckled
filaments of vanishing thickness L A

b— U —
in the plane of the paper (Fig. 1. 3).

Fig. 1.3. Augusti's Inelastic
Strut Model

In 1966 Batterman and Johnston(lé)

presented the results of
their study on column behavior. This study had a broad scope and
included effects of the initial crookedness and residual stress on the
ultimate load carrying capacity of H-shaped columns of steel and
aluminum in bending about the weak and strong axes. Maximum load
was determined for different values of the slenderness ratio, yield
strength, residual stress and imperfection. In the above studies the
effect of torsion was not considered. The study of combined torsion
and flexure commenced in 1929 when Wagner(”) presented the first
theory of flexural-torsional buckling and also studied the effect of
eccentric loading. He assumed that the center of the twist coincides
(18)

with the shear center. Kappus

assumption was valid.

later stated that in general Wagner's
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(19)

Ostenfeld presented a correct theory for flexural-torsional

buckling of tee, angle and channel sections accompanied by experi-

(20)

mental results. In 1934 Wagner and Pretschner presented some

test results on angles and revised Wagner's earlier theory. In 1936

F. Bleich and H. Bleich derived the flexural-torsional buckling from

(21)

energy considerations using variational principles;

(22)

later they
(24)

revised their theory. Lundquist and Fligg(23) and Niles also

studied and presented theories about torsional-flexural buckling.

25)

Goodier( simplified Wagner's theory and extended it to the case of

a column subjected to bending about both principal axes, but he

neglected the effect of the moment amplification caused by the deflection

(26, 27)

of the column. Timoshenko treated the torsional-flexural

buckling of columns in the elastic region in 1945 and he also neglected
the increase of the bending moment due to deflection of the column.

. (28) . . C i . .
Zickel considered the influence of initial deflections and twist on
biaxial bending of wide flange shapes. He assumed the initial twist to

be finite in magnitude. The resulting equations were nonlinear and

(29)

no general solutions were given for these equations. Hill and Clark

.(30 . . .
and Salvadorl( ) made extensive studies of eccentrically loaded

(31)

columns. Thurlimann obtained an approximate solution for the

case of small initial twist by modifying Zickel's equations. In 1966

(32)

Culver developed a mathematical model for the biaxially loaded

column with initial imperfection.
(33) ‘ . . . .
In 1950 B. G. Neal presented the first solution for inelastic

lateral torsional buckling of a rectangular beam. Galambos(34’ 35)
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presented a solution for inelastic lateral torsional buckling of wide
flange columns subjected to bending about the major principal axis

. . . . . . . .(36)
as a PhD dissertation at the Lehigh University. In 1962 Birnstiel
treated H-columns loaded into the inelastic range in biaxial bending by
an incremental process and used a digital computer to evaluate the
ultimate load carrying capacity of these columns under eccentric
loading. He also recently completed a report on some experiments

(37)

of such nature,

3
In 1964 Ringo( 8) in his PhD dissertation developed an equi-
librium approach to the ultimate load on a biaxially loaded beam

(39)

column., In 1966 Rossow, Barney and Lee introduced the effect

of initial curvature into the moment-curvature relationship and solved
the differential equation by double integration and then, using buckling
criterion, found interaction curves and suggested semiempirical
equations to approximate the interaction curves. In 1966 Lee, Fine

3
(40) examined the problem of ir;elastic torsional

and Hastreiter
buckling strength of axially loaded H-columns.

References (41) through (45) give a comprehensive review of
the developments of the torsional, flexural or torsional-flexural
buckling behavior of the columns.

Inelastic range studies have always been carried out with the
assumption that the material yields at the proportionality limit, or

the inelastic range of the behavior has been approximated by straight

lines of stress-strain curve, except studies of column behavior by
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16 -
Batterman and Johnston( ) where they assume a close mathematical
fit for the actual stress-strain relation. However, they neglect the

effect of the torsion.

1.3. INITIATION OF THE RESEARCH

In 1961 the author assisted Dr. Johnston(l4) in his study of
"Buckling Behavior above the Tangent Modulus Load' where, with the
aid of a digital computer, he studied the behavior of structural
aluminum alloy struts of various lengths. The buckling model used
by Johnston in his study is shown on Fig. 1. 2.

In Johnston's study of the '"Inelastic Buckling Gradient', (3)
with which the author was closely associated, the most attention was
given to the definition and the evaluation of the I.B. G. with particular
reference to a tee section example. This study suggested an obvious
need for a more thorough evaluation of the actual column behavior
and obtaining a quantitative relation between column initial imper-
fection or eccentricity of loading and the preferred mode of buckling.

Later, the author assisted Batterman and Johnston(lé) in their
study of ""Behavior and Maximum Strength of Metal Columns''. The
experience gained in this task helped considerably in completion of

this thesis.



CHAPTER II

BOUNDS OF BEHAVIOR OF A COLUMN
IN THE INELASTIC RANGE

GENERAL

The bounds of behavior of an ideal column in the inelastic

range will be discussed in this chapter. Included in these bounds is

(2)

the "inelastic buckling gradient'. Duberg and Wilder ' introduced

the I.B. G. for the symmetrical cross section and also determined

the complete load-deflection curve for an idealized H section column

(46)

using the Ramberg-Osgood stress-strain relations. Later

(3)

Johnston'~ ' modified the I. B. G. for a monosymmetric section and

also considered the presence of the residual stress. In particular,
he noted the difference in the values of the I. B. G. for a T shaped

aluminum column when it buckles in the plane of symmetry towards

(47)

or away from the flange. Augusti in his discussion of Johnston's

paper pointed out that the relation given for I. B. G. does not hold for
the case where buckling takes place in the elastic range and the

(15, 48)

residual stress is not present. Augusti also introduced another
bound - the full yield line using his buckling model (Fig. 1.3). This
is useful when the yielding stress can be explicitly defined. However,
for a material which is continuously strain hardened the choice of a

(49)

yield point is not easy. Earlier in 1920, Osgood noted the

-12-
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difference in the reduced modulus loads for the different directions
of buckling of a ""T'"" section and presented a graphical representation
of the variation of the reduced modulus in buckling towards or away
from the flange relative to the tangent modulus. In his study, Osgood
assumed that the area was concentrated along the center lines of the
web and the flange. When buckling is in the plane of symmetry, the

assumption of a line area for the flange would cause a considerable

error. In this study a detailed solution has been presented.

2.1. THE INELASTIC BUCKLING GRADIENT

i. Definition

The inelastic buckling gradient (I. B. G. )(3)

is defined as the
initial slope at the tangent modulus buckling load of the curve obtained
by plotting column load as ordinate and maximum lateral column
deflection as abscissa. Derivation of I. B.G. for a material with a
continuously strain hardening characteristic in the neighborhood of
the stress corresponding to the tangent modulus load is a very simple
process. The value of 1. B. G. depends on the shape of the cross
section as well as the elastic and inelastic properties of the column.
In all the following discussions and computations, the
Ramberg-OsgoodMé)_ stress-strain curves can readily be adapted to
the procedure used in this study. However, it was desired to use
the actual stress-strain characteristic of the material and also

study the transition from elastic into inelastic region of behavior,

as Ramberg-Osgood curves do not have a truly straight line
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representing the elastic range. The material properties used here

are obtained by deriving a close mathematical fit for the stress-

strain curves obtained from the experimental work (Chapter VI).

ii. Ewvaluation

The average critical stress of an initially straight and

prismatic column of a homogeneous, isotropic and monotonically

strain hardening material is given by

where Et

slope of the stress-strain curve at the critical stress

r = radius of gyration of the cross section with respect to

axis about which buckling is to occur

K = the equivalent length factor, such that to make KL

equal to the distance between two inflection points of

the column deflection curve

o, = tangent modulus stress

The tangent modulus load, Pt’ is

where A is the area of the cross section.

(2.2)

If buckling occurs in the

elastic range the average critical stress is obtained by substituting

the tangent modulus in equation (2. 1) by the elastic modulus

B nZE
Gc 0-e KL 2
(j;-)

where o, is the Euler's critical buckling stress.
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For a perfect hinged end condition, the equivalent length
factor K =1 and the shape of the deflection curve at the pending of
buckling, when the resistance to bending along the column and across
the cross section is uniform, is that of a half sine curve. An incre-
ment of deflected shape can be written in the following form

TaZ

A8 = A Sin — (2. 4)

where Ad is the increment of the lateral deflection at a point having
a distance z from the end of the column, and A6O is the magnitude
of the increment of the deflection at the mid-length.
Let us assume that the section of the column has only one axis
of symmetry and the bending is to be initiated in the plane of symmetry

of the column, i.e., the column is stronger in the direction of the

other principal axis at this T

stage. Then, for an infini-

/—Cenfmd
tesimal increase in the N— _&
B —
axial load above the buckling b \ T
dA
load, assuming deflection
starts in the negative x- L T
po——ee ——J . .
direction, the distribution Ad "Ax — Uniform strain
?g__"'l —7— across the cross
of the stress at the mid- | section at the
ef tangent modulus
length section would be as t load

d —
shown in Fig. 2.1. The

Fig. 2.1. Strain Distribution at
curvature of the column Initiation of Buckling
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at a cross section which has a distance z from the end of the column

will be
m 2 T2
A = -Ad —5 Sin — (2.5)
2 L
L
. . L .
At the mid-height, z = > the curvature will be
- 2
A<1>O = A¢d L= -Ab — (2.6)
Z:'—z L

The strain increment of an element with a coordinate (x,y) will be

2
Ad = AS(x + d) — (2.7)
2
L
For a small increment of strain, the following relation exists
between change of strain and stress
A = A€ E, (2.8}
Substituting for A€ from (2.7) we get
Ar = AS(x-d) E — (2.9)
t _2
L
Now the increment of the axial load can be obtained by integrating
Ao over the area of the cross section
AP = S‘ Ao dA (2.10)
A
or
AP = g A6 (x + d) Et - dA
A L
or (2.11)

t

2
AP = A§ E I‘ZS (x + d) dA
L YA

If the centroid of the cross section is chosen as the origin and
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X,y are the principal axes, then

S (x+d) dA = d A (2.12)

A

where d is the distance of the y-axis from the farthest left fiber.

Replacing for the value of the integral in the equation (2.11) from

(2.12)
1'r2Et _
AP = AS 5 Ad (2.13)
L
TTZ Et Pt
according to (2. 1) and (2. 2), A = —, so that
2 2
L r
P
AP t —
- - .14
NG > d (2.14)

r

As A$ tends to zero the left hand side of the equation (2.14) becomes

the slope of the load vs. deflection curve at the point of initiation of

bending
P
AP -
lim lF - —-2?- (@ (2.15)
L AS—0
Had we assumed that the deflection was initiated in the positive
direction of the x-axis in the above equation, d would havebeen
(d - '&) and the I. B. G. would have been
P
lim ;%-gi - -% (d - @) (2.16)
A&—O0 r

This is the Johnston's modification of Duberg and Wilder's( )

derivation of inelastic buckling gradient for a symmetrical cross

section.
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In the equations (2. 15) and (2. 16), the value in parentheses
is the distance of the centroid from the outer fiber of the convex
side measured along a line parallel to the plane of bending.

It should be mentioned that if buckling begins in the elastic
range the deflection U will have the form of a half sine curve with

an indeterminate amplitude "Uo" such that
U =U Sin — (2.17)

As there is strain regression on the convex side, relation (2. 7)
will not be true. Consequently, the equations (2.15) and (2.16) will
not hold for the initiation of lateral buckling in the elastic range.

It is important to note that in the elastic range the slope of the load
vs. deflection curve at the point of incipient buckling is equal to

zero, i.e.,

1]
o

lim |§-§ (2.18)

AS—0
Buckling then takes place with no increase in the axial load. The
actual behavior of the column in this case can also be determined
by the incremental procedure.
As the curvature of the load-deflection curve of the column
is negative, the line tangent to the load-deflection curve at the
tangent-modulus load will provide an upper bound for the inelastic

column behavior.
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2.2. TANGENT MODULUS

The tangent modulus stress and load can be obtained from
equations (2.1) and (2. 2) respectively. In the equation (2.1), T,
(the tangent modulus stress) is expressed implicitly as Et (tangent
modulus) itself is a function of o, Usually, as in the case of this
problem, stress and the tangent modulus are expressed as functions
of strain, Therefore, in order to evaluate the tangent modulus

s . . KL
stress, for a specific equivalent slenderness ratio (—), one must
r
follow some iterative process to pick up the right value for strain
whose corresponding values of the stress and the tangent modulus
would satisfy the equation (2.1).
KL . .
Formula (2.1) can be solved for (-r—) and written in the

following form

(2.19)

N
-
o I r-rbq

If it is desired to have a graphical representation between the
effective slenderness ratic and the tangent modulus stress, one may
for numerous values of strain evaluate the corresponding stress and
tangent modulus, and then by means of equation (2.19) determine

the effective slenderness ratio, and thus avoid the iteration and
reduce the length of the manipulation. Graphical representation of
(2.19) along with other plots can be seen in Figures 2.6 through 2,10,
A thorough explanation of these graphs will be given in the following
pages. As the tangent modulus stress is the stress at which an

ideal column with only infinitesimal imperfections from perfect
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concentric loading starts to bend, the line (P = o, A) parallel to the
deflection axis is a lower bound for the ultimate load carrying

capacity of the column. Shanley states, '"For a given material, the
maximum load that can be developed will generally be only slightly

(11)

greater than the Engesser (tangent modulus) load". The incre-

mental procedure here will provide a comparison between the tangent

modulus load and the ultimate load for some chosen '""T' columns.

2.3. REDUCED MODULUS (DOUBLE MODULUS)

i. Introduction and Definition

The reduced or double modulus load can be defined as the
load at which the inelastic buckling gradient becomes zero, if a
column is prevented from buckling above the tangent modulus load.
Therefore, it is an upper bound for the ultimate load carrying
capacity of the column; in fact, the double modulus load can never
be attained in a real column. In derivation of the reduced modulus
Er or reduced modulus load Pr’ the following assumptions are
made:
i, On the convex side of the bent column where the
strain regression is to occur, stress and strain
are related by the elastic modulus "E", i.e.,
unloading is elastic (Ao = E Ae€); this is proven
experimentally.
ii., On the concave side of the bent column, the incre-

ments of the stress and the strain are related by
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the tangent modulus (Ac¢ = Et A€) associated with
the compressive strain at which buckling starts.

One may make a gross mistake by using the tangent modulus
obtained at the tangent modulus load in the evaluation of the reduced
modulus. This means that the tangent modulus has been assumed to
remain constant beyond the tangent-modulus stress. The reduced
modulus stress, evaluated on such basis, is shown on Fig. 2.9
and may be termed 'false reduced modulus" or "false reduced
modulus load'. As it is seen in the graph, the error of such
assumption becomes larger and larger as one departs from the

linear portion of the stress-strain relation.

ii. Ewvaluation

The double modulus varies with the shape of the cross section.
Von Karmén'®) derived the formula (1.2) for the reduced modulus of
a rectangular cross section. In the case of the "T'" section, the
double modulus depends not only on the dimensions of the section
but also on the buckling direction. (3)

Let us assume that buckling occurs in the positive x
direction and the curvature of the bending (in the plane of symmetry)
is (-¢). During bending, since there is no change in the column
load, the algebraic sum of the change in the load of the unloading
segment (APr) and the loading segment (API ) should be equal to

zero (Fig. 2. 2)

S Ag dA = AP + AP_= 0 (2. 20)

or
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§ (xr-a—x)¢EtdAz+S‘A (xr-E-x)cpEdAr:o (2.21)

AZ r

During bending, the internal resisting moment (Mr ) is equal to the
integral of the moment of the elements of the load change (AP = Ag dA)
about the bending axis. As bending takes place about the '"zero strain
change axis (Z.S.C. A.)", X the moment should be taken about this

axis, i.e.,

or (2. 22)

A A
T
' 4
W__ oy
b P TN i
: ICentroid
{
|
L
:——-—31 ! Strain distribution line after buckling
yl
X — g /
f———— -Xy >
3 ';#E : ' (d-xr)¢ Uniform strain across the cross section
¢Et Xpi Mt f EV | / of a column held straight prior to
Al TT"——{ ? bucklin
. ¢ /g;;—
| r .
i {
|
I

Uniform stress across the cross section
_¢E1 :4>E' 4’“1"")/ of a column held straight prior to
T buckling

e

b Stress distribution line after buckling

Fig. 2.2. Stress and Strain Distribution at
the Reduced Modulus Load
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According to (2.20), the second integral is equal to zero, then

Mr = SlA Ag(x - Xr) dA (2.23)

The right hand side of the equation (2.23) is the moment with respect
to the y principal axis. Thus, it is shown that the internal resisting
moment with respect to the Z.S.C. A. and the y principal axis are

equal. Equation (2.22) can be written in the following form

-2 A
Mr:SVA [x—(xr-d)] ¢EtdA£+S‘ [x-(xr-d)] q)EdAr

. Ar
(2. 24)
Now consider the equation relating the moment to the curvature
M =E 1 (2.25)
r r yy

by solving equation (2. 21) for X and evaluating Mr from (2. 24)

one can obtain Er from (2. 25) in which Iyy is the moment of inertia
with respect to the principal axis y. The reduced modulus obtained
in this case, where buckling is to the right, will be named Err’

and otherwise Erz . In order to evaluate Erﬂ , E and Et should

be interchanged in the equations (2. 21) and (2. 24).

Now consider the evaluation of Err" Let

Et
n == (2.26)
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We will have three cases:

1. The Z.S.C.A. is in the web (Fig. 2.3a)

AO’l = (XI' ¢)Et APl = (chl))Etb%
T
t
AP, = (x_-t)¢ED >
n Ao, = (x -0eE, (x -t)
b w APZZ = (xr-t)q)Etw >
i T (d-X )
! A0'3 = —(d-xr)q)E AP3 = —(d—xr)c[>EtW 5
[t
5~ Doyl Ap

|
|
Ao _izi 3 ————— Line of uniform stress across the
TL : A0‘3 cross section of the column held
ARy i T

.] straight prior to buckling

Fig. 2.3a. Stress Distribution - Z.S.C. A. in the web

then

APl + APZ + AP22 + AP3 =0

or

2

E¢ {(n[(2x_ - t)b % P -0 3] - @-x)3) =0 (2.27)

Equation (2. 27) is a quadratic equation in terms of x and can be
r

simplified and solved for X

1
b 2 2

) 1
= {[a-n2 - D]+ [(@-a2-n0® - @@+ 2 -nefna-m)t Y-

T

(2. 28)
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Mr will be
2(x -t)
t 2t r 2
Mr = APl(xr—g) + APZ (Xr_?) + APZZ_?;_ + AP3 (d-xr) 3
or
t
M_ = E¢ { n[x_bt (Xr—§)+bt( ) (x - 2ty 4 6> ¥
r ¥y 2 *r 73 (Xr_)—.;;]
3w
+ (d - xr) —3} (2.29)
2. The Z.S.C.A. is in the flange (Fig. 2. 3b)
]
] | Ao = E AP = E b
i { c’-ﬂxrq)t l~x¢txr2
: (t'Xr)
: Acrz = (t-xr)¢E APZ1 = -(t—xr)¢E >
| ¥
b| ! * = - (t- )=
= AP22 = -(t xr)q)E(d t) >
|
|
! . . (d-t)
! : A0'3 = (d-xr)q)E AP3 = -(d—xr)d>Ew >
P
Stress distribution line
after buckling
Fig. 2.3b. Stress Distribution - Z.S.C. A.
in the flange
AP = 0 will give
(d-t) (d-t),2 2 (dz-tz) %
Xr:{[t-l-w—g—]—f-[(t-l'w B ) - (t +W'——b—-—)(1—1’])] }/(I—T])
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M = E¢{n x3 1t—)-+(1:-xr)3 -t-;-+(t-xr)(d—t) [(—q;—t) +(t-xr)] 22,-

r 3
‘W:} (2.31)

3. The Z.S.C. A. coincides with inner surface of the flange (Fig. 2.3c).

2(d - t)
(d—xr)(d-t)[—-g—— +(t-xr)]

|

This is the limiting point between cases (1) and (2).

E
t
I = = —_—
| Ag =t ¢ E, AP, =t"bo
2 E
AO’Z—(d-t)CI)E APZ:—(d—t) W(I)—Z
4
b w AP = 0 gives:
1 2
n = 1’]1 :id_.—?t_z._.\_}v_ (2.32)
t b

T A
AP
™~ ¢ 2 Line of stress distribution

after buckling

]
2

(d-1)
3

Fig. 2.3c. Stress Distribution - Z.S.C. A, at
the inner edge of the flange

For values of n > n The Z.S.C. A. will be at the flange

and

for values of 71 < n The Z.S.C.A. will be at the web
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Considering equations (2. 24) or (2.29) or (2.31) we can write

M =EI_¢ (2. 34)

where Irr is the weighted moment of inertia of the cross section with
respect to the Z.S.C. A. with the area on the elastic and inelastic
portions each having a weight equal to 1 and ''n' respectively, where
""n'' is defined in (2.26). Then using equation (2. 25)

EIrr
Err - I

yy

(2.35)

The preceding equations and discussion of Err will hold for
Erﬁ by interchanging X and %, (distance of the Z.S.C. A. from
the left face of the flange, in buckling to the left) and also E and Et
(because the elastic and inelastic regions will interchange) in the

equations (2.24) through (2. 33).

The reduced modulus stress is given by the following relation
0 = —— (2.36)

which is the same as the expression for the tangent modulus stress
in which o, and Et are replaced by T and Er' As for every value
of tangent modulus we have two different reduced moduli, Err and
Erf . We will have two distinct values for double modulus stress,
one in buckling to the right, O and the other in buckling to the
left, Ty Each is an upper bound for the ultimate load carrying

capacity of the column in buckling towards the direction associated

with its derivation. Equation (2.36) is an implicit function, as both
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v and Er are functions of strain. (Both stress and the tangent
modulus are expressed as functions of strain.) In order to evaluate
. KL . .
the . for a given (-r--) » one has to apply some iterative process.
For a chosen value of strain, stress and the tangent modulus
and thereby the reduced modulus can be calculated. Having the
reduced modulus, one can obtain the corresponding effective slender-

ness ratio from

(2.37)

) vs. ¢ and E (or Er are shown in
rr

g)
E E

Figures 2.7 and 2.8. Also the variation of —]5- Vs, & in buckling

towards or away from the flange is shown in Fig. 2.9.

2.4. CRITICAL TORSIONAL BUCKLING

In order to have lateral buckling in the column, the dimensions
of the column should be such that the torsional buckling will not occur
prior to the lateral buckling.

(50) . .

In 1929 Wagner explained the phenomenon of the elastic
torsional buckling in the following manner: Let the member be
subjected to a twist and z be the axis of rotation passing through
the center of twist of the cross section (Fig. 2.4). If rotation at z

is B andat z + dz itis (B + % dz), then the rotation of a fiber
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which has a distance p from the
. ) dp
center of twist will be p o
Wagner suggested that the com-
P
ponent of the normal stress (K)’
when displaced due to rotation,
on the plane perpendicular to the

rotation axis, will induce a torque,

i.e.,

Fig. 2.4. Torsional Buckling
dp
P (2.38)

where Ip = polar moment of inertia with respect to the center of twist.
L . dp . e .
If the torsion is uniform, 3 0, and the warping rigidity C is
W

negligible, then at the equilibrium position

LAZ = C®H (2.39)
where

C = torsional stiffness (G J)

G = shear modulus

and for a T section

1
J = gb’c3 + %w(d - t)3 - 0.21’c4 - 0,105\/\/'4 + a/lDl4

(For explanation refer to Fig. 4. 21.) Combining equations (2.38) and

(2.39), one may find the critical torsional buckling stress

G = — (2.40)
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If the lateral buckling is to occur prior to the torsional buckling in

the inelastic range, the above explanation and the derivation of critical
torsional buckling stress will hold with one modification. Since in

the inelastic range the shear stress and strain are related to one
another by Gs (secant shear modulus - equation (4. 68)) instead of

G for the elastic range, then the torsional stiffness coefficient in the

equation (2. 40) will be
C=G 7 (2.41)

2.5. LOCAL BUCKLING

The local buckling phenomenon should be studied prior to the
choice of the dimensions of the cross section. The web of some of the
tee shape specimens chosen for the test buckled locally. In order to
study the local buckling in the flange or the web of the tee column,
one may treat it as a flat plate being compressed from opposite edges.
At a critical stress the plate may buckle out of its plane prior to the
commencement of the overally column buckling. Such buckling may
occur either in the elastic or the inelastic range.

(51) . : :

In 1891 Bryan presented a solution for the elastic buckling
strength of a long rectangular plate simply supported along all edges

. Co s . . . (22)
and subjected to a longitudinal compressive load. Bleich
suggested the following equation for the approximate local buckling
stress (in the elastic or inelastic range) of a flat plate segment of a

5
long column under uniform compressive load. (55, 56)
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- -k szﬁ

), 12(1 - v2)(2)?

t—)
E
t
where n =g
v = Poisson's ratio

]-5- = width-thickness ratio

and k depends on the longitudinal boundary conditions. For one edge

fixed and the other free k = 1, 277

b —
. i
(Fig. 2.5). IK
-
In recent years Stowell, (52)
(53) (54) Fig. 2.5. Coefficient k
Haaijer and Thurlimann have and the Edge Condition

studied the inelastic local buckling of steel plates in the strain-hardening
range. However, the problem of this thesis is more complex than for

a uniform compressive stress distribution, as the column cross

section will be subjected to a varying strain. This condition results

in a varying stress and differing tangent moduli for different elements.
The presence of strain regression will make the problem still more
complicated. For the practical purpose of this thesis equation (2.42)
will be used together with the assumption that one edge of the plate is
fixed and the other is free and that the maximum stress acting on the
cross section of the flange or the web is acting uniformly across and

along that segment of the column. The graph of uniform compressive
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stress vs. the critical local buckling stress, based on equation (2. 42),

" " 1"

for the different widths of the web (d=1.5, 2.5, 3) and the flange

(b = 4") with the line ¢ = ¢ (drawn to scale) is shown on Fig. 2. 10.
. g
.
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Buckling to the Rig
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CRITICAL LOCAL BUCKLING STRESS, o, ,IN KSI
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CHAPTER III

THE EQUATIONS OF FLEXURAL-TORSIONAL BUCKLING

3.1. SELECTION OF THE COORDINATES

In order to best write the equations of flexural-torsional
buckling of a column, it is essential to choose and define a proper
coordinate system. In the case of a '""T'", the cross section is
composed of two rectangular segments with a rather large width to
thickness ratio. The following assumptions can be made which will
result in considerable simplification of the method of solution of the
problem with a negligible deviation from the exact solution:

i. Only St. Venant torsion is present and the contribution
of warping restraint to the torsional resistance is
negligible.

ii, At all stages of the deformation of the column, the
center of twist remains at the point of intersection
of the center lines of the web and the flange. At any
cross section under consideration the movement of
the twist center is determined by the manner of
distribution of the normal stress, and also by the
ratio of the width of the flange to the width of the
web. However, the smallness of this movement

justifies the above assumption.

-38-
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In cases where it is desired to take the effect of the warping

or the effect of change of location of the center of twist into consid-

eration, one may adapt the pro-
cedures of this chapter with
modifications which will be
explained. For simplicity, the
origin of the xyz coordinate
system is chosen to coincide
with the center of twist of the
top face of the column. The
stationargy xyz Cartesian
coordinate system is oriented
with respect to the unloaded
shape of the ideal column

(Fig. 3.1la), such that x- and
y-axes lie along the center

line of the web and the flange
respectively, and the positive
direction of the z-axis is
chosen from top to the bottom

of the column.

/Z

/// P Bottom Face

y

|
\'
1
|
|
|

- ——— e . . . s

Fig. 3.1la. '"Ideal" Column and the
Fixed Coordinates.

The £, n and {, mutually orthogonal coordinate axes, are

so chosen that £ and 1 axes coincide with the center-line axes of the

flange and the web of the displaced cross section, respectively.
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Thus, the £n plane is taken to
n - u v
Ideal” Position

be fixed to the cross section

y 4
under consideration. There-
]
fore, its lateral motion and ,"',“7 //C
) / [ 7
. / / |/
twist is the same as that of / YV X
o117 J
7
the column at that cross ~L L\};\ :B VY,
section. This makes the { I/ I, r‘\\\j\if
/
Y
axis remain tangential to the / I/ / Displaced Position
/ /
e s . yp ot
deflected longitudinal axis /
F
passing through the center
= UtUg

of twist of the cross
Fig. 3.1b. Cross Section I-I
section of the column

(Figs. 3.1b,c).

N\
. Deflected Position of the Locus
of the Centroid of the Flange

Top Face

y

Fig. 3.lc. xyz and the £n{ Coordinates
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3.2. TRANSFORMATION OF COORDINATES

The x-, y- and z-axes are taken to be the initial reference
axes and §, n and { are the moving axes. In general, £€n{ has a
translation and a rotational motion

relative to the xyz-axes. Neglecting

the component of the translation
of the £n{ axes in tlte z direction
(due to shortening of the column)
we can designate the components

of the displacement of the center

of twist (the origin of the £n{ axes) v

from its initial position in the
Fig. 3.2a. Transformation in the
x and y directions by U and V Cross Section Parallel to

the xy Plane
respectively (Figs. 3. 2a,b,c).

y =X
P pd(U+Uo)
[\P dz
7 3 &
—
\Mx d(U+U,)
dz
My dz —=1y+
]
z i
s z
Fig. 3.2b. Transformation in the Fig. 3.2c. Transformation in the
Cross Section Parallel to Cross Section Parallel to

the yz Plane the zx Plane



42

The rotational part of the motion can be designated by the angle of
rotation 3, taken positive clockwise. The angle of rotation B is
small (B << 1 radian) so we may approximate Sin[3 by B and

CosB by 1. Also we assume that (U + Uo)K and (V + VO)" are small.

Then we express the matrix [b] in the following form

[ 8 -U+u) ]

[b] = -B 1 -(V+ V) (3. 1)

—

U+U) V+vV) 1
(U+U) (VY ]
where U and V are lateral deflections from the unloaded position in
the x and y directions respectively and UO and Vo are the initial

crookedness. U, V, Uo and VO all are functions of (z), the

longitudinal axis.

€, m, ¢ and x, y, z are related by [b] in the following form

{ﬁ,n,§>={x,y,Z}[b]T (3. 2)

3.3. BOUNDARY AND INITIAL CONDITIONS

i. Boundary Conditions

In the case of the concentric loading the boundary conditions

at the ends of the column z = 0 and z = L, are

U = V =0 No lateral displacement.
u' =v' =0 No restraints against rotation about the
x- and y-axes are imposed.

B = 0 No restraint against twisting about the

longitudinal axis is imposed, so it will
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twist from its original position due to
torque resulting from the component of
the moment about the y-axis along the
{ axis; but the position of the end
section at z = 0 is assumed to be the
reference position and therefore B is
taken to be equal to zero. In the case
of the symmetrical behavior with
respect to the mid-height section of
the column, i.e., symmetrical initial

crookedness, the twist at the other end

i

(z

L) will also be zero.
. . . L
At the mid-height section, z = >

U =V =20 Slope of the lateral deflection curve is
zero - symmetrical case.
B =0 Twist is maximum; torque is zero.
In the case of eccentric loading the above conditions hold except
when they are contrary to the following:

U' #0 at z = 0, L, Wken end eccentricity exists in

the x direction.

v'£ 0 at z = 0, L When end eccentricity exists in
the y direction.
B # 0 at z = L When eccentricity at two ends
1 o L . . . .
U,V,B #0 at z = > and/or initial imperfection

are unsymmetrical.
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The clockwise twist is assumed to be positive. The twist of the
columns results from a positive torque in the upper portion (from
z = 0 to where B' = 0) of the column and a negative torque in the

lower portion (where B' = 0 to z = L).

ii. End Eccentricity

In the case of eccentric loading the curvature of the deflected
shape at any end section in the plane parallel to the line of eccen-
tricity will be different from zero and its value will be determined
by the magnitude of the eccentricity, the axial load and also by the
moment-curvature properties of the cross section. In a general
case, eccentricity with respect to both x- and y-axes and at both
ends of the column can be considered. If eccentricity of loading
exists with respect to the y-axis, then the biplanar bending accom-
panied by torsion will commence with the start of loading. The
moments about the x- and y-axes resulting from the eccentric
loading alone at a cross section which has a distance z from the

top can be written as (Figs. 3. 3a,b, c)

M =P[E +
Xe

ye
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! /—Centrold

S Y Wy B
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L Point of application
X of the axial load

<

Fig. 3.3a. Eccentric Loading
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Fig. 3.3b,c. Eccentricity of Loading
at the Top and the Bottom Faces

where Etx and Ety are the eccentricity in the x and y directions at

the top of the column and be and Eby are the same values at the

bottom section of the column. Let us assume
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tx

[¢)
1

tx

b
|

ty
and (3. 4)

trJItfj

ex
tx

=

;= DY
T E
ey tY

<

Then the moment due to eccentricity will be

1

M

Z
ce PetyL[l + (rey - 1) 1]

M
ye

1l

Z
-Pe L[l +(r_ -1 =]

iii. Initial Crookedness of the Column

Initial imperfection in the direction of one or both principal
axes can be taken into consideration in this analysis. Initial imper-
fection can be either expressed in the form of a function or a vector
which gives the value of the initial crookedness at the nodal points
along the length of the column. These values can be obtained by
measuring the actual initial crookedness at the required sections,

A sinusoidal or parabolic shape of crookedness can be
expressed in the following forms:

sinusoidal shape:

3
N
=
N

U (z)

Aix Sin (—) u (z) = 6ix Sin

or (3.6)

) v (z) = 6iy Sin T

|
(@]
|

|
N
=
N

V (z) = A,  Sin(

%
|
o]



parabolic shape:

z(L - 2) z

z
Uo(z) - Aix 4L2 uo(z) - 6ix 4L, (1- TJ)
or (3.7)
_ z(L - z) _ Z_ z
Vo (2) = Ay 12 volz) = 8,0 71 (1- 1)

Aix and AiY are the magnitude of initial crookedness at the

mid-height section and

Aix
6iX - L
Aiy
61y - L
i _E_o_ (3.8)
o L
v
-0
Vo T L

The moment due to initial crookedness alone at a section which has

a distance z from the top section will be

M_,(z) = -Pv (z) L

Myi(z) P uo(z) L

H

3.4. THE EQUATIONS OF FLEXURAL-TORSIONAL BUCKLING

i. Moment Curvature Relation

Positive moment or torque is represented by a vector pointing
in the positive direction of the xyz or £n{ coordinate systems with
directions expressed in accordance with the right-hand rule at the

top face. In the elastic range of the behavior of the column, the
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following relations hold between the moment and the flexure at all

the sections along the length of the column(5'7')
M_ = -EI_V'(z)
(3.10)
M = EI U'(z)
y y

Beyond the proportionality limit equations (3.10) no longer hold and
the introduction of a functional relationship between the moment and
the curvature is extremely difficult, if not impossible.

In planar bending the moment curvature relation will be a
function of the cross sectional shape, the average stress, the depth
of the strain regression, the direction of buckling, and the stress-
strain relation. In biplanar bending the difficulties in expressing
the moment-curvature relation will increase because the moment-
curvature relation in one principal plane will be an implicit function
of the same relation in the other principal plane. Interaction curves
can be prepared for any stress-strain relation and cross section
to give the relation between the moment and the curvature to be used
in manual calculation. However, in feeding these interaction curves
to the computer memory either they must be expressed as algebraic
functions (or a group of algebraic functions), or be given in the form
of a matrix.

In the first case one has to develop these functions for any
specific stress-strain relationship and the cross sectional shape.

In general, these functions cannot precisely represent the inter-

action curves, but some acceptable approximation can be made.
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If the interaction curves are prepared in the form of a matrix,
the number of the elements of the matrix grows larger as one tends
to reduce the error of the solution. For an acceptable error the
elements of the matrix will occupy a considerable number of locations
of the computer memory:and therefore make the other parts of the
computer manipulation extremely difficult. An alternative solution
is to choose the number of the elements of the matrix as few as
possible and then use the interpolation procedure to obtain a closer
answer. However, this process requires extra computation in
addition to the preparation of interaction curves and the related
matrix and the error of computation will be significant.

For the above mentioned reasons and because in incremental
column analysis, the parameters of the moment-curvature relation,
such as average normal strain, depth of strain regression, axial
load and lateral deflection in x and y directions also have to be
determined on an iterative basis, no attempt has been made to develop
a separate and direct moment-curvature relation for the inelastic
range of the column behavior. However, during every increment of
the axial load and the lateral deflection of the column the moment
and curvature relation has been evaluated. A detailed description of

the iterative procedure is given in Chapter V.

ii. External Moment and Force Components

Moment Components:

The components of the moment due to deflection caused by

the concentric load P can be written as
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<
—
N
e
1]

-P L v(z)
(3.11)

g
5
1]

-PL[Z - u(z)]

il

The moment components due to the load eccentricity, initial imper-

fection and the lateral deflection from the unloaded position will be

Ile(e) - de ¥ Mxi * Mxe
My(e) = Myd + MYi + Mye (3.12)
z(e)
or
zZ
Mx(e) = -P L[V(z) + VO(Z) - ety(l + (rey - 1) i)]
x z
My(e) = -P L[i - u(z) - uO(z) + etx(l + (rex - l)—L)] (3.13)
Mz(e) =0
Using the transformation relation (3. 2) we can write
Meter = Mxie) ¥ P My(e
= - .14
Mate) = 7P My(e) ¥ Myge) (3-14)

M 1) = Myey [U(2) + U (2)] + M |

J(e) [V(z) + Vo(z)]

Torque applied externally on the cross section under consid-

eration will have another component besides Mgl(e)' This component

results from the torque produced by the components of the normal

stress on the plane of the cross section (refer to equation (2. 38)).

Hence,

_dp 2
My 2(e) © Tz N cp da
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where p is the distance of the element

from the center of the twist and o is i
the normal stress acting on that i

element (Fig. 3.4). Therefore, —_—tf ——f

torque exerted can be written as

Fig. 3.4. Torque Component

1 ) 1 d 2
Me ey = My [U(=) + U @)] + My [V(z) + V (2)] - Ezé SIA cp dA
(3.15)

Force Components:

The only force assumed to be acting is the axial load P so

x(e) =0
Foey = © (3.16)
Flle) = P

Using the transformation relations we get

Fg(e) = -P[U(z) + Uo(z)]
Fole) ™ -P[V(z) + V_(2)] (3.17)
P

Frle)
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iii. Internal Resisting Moment and Force Components

Moment Components:

It is assumed that:

1. the effect of the shear stress in lateral displacement
is negligible.

2. the slope of the deflected curve is small (U' , v' << 1);
therefore, the components of the axial force P on the
€ and m axes can be taken equal to zero

F - F -0 (3.18)

3. uniaxial stress-strain relation will not change due to
the shear stress (Chapter IV).
4. strain at any element of the cross section is proportional

to its distance from the center of curvature.

Having made the above assumptions we can write

Me iy = 'SA o(E;m) m da
(3.19)

S

- SA o(£,m) & dA

and the resisting torque

where C is the torsional stiffness and is discussed in Chapter IV.

The torque resisted by bending resulting from non-uniform warping

of adjacent cross sections (C B " ), where CW is called warping
W

rigidity, is assumed to be negligible in this case; therefore,

M, ;) = CB (3. 20)
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Force Components:

Fegy = 0
Faty ™ °
Fo = - SA o(£, 1) dA

3.5. EQUILIBRIUM CONDITIONS

The equilibrium conditions can be written as

Fee) ¥ Few 7 °
e T = 0
Tt Frp 7 0
and
Mete) * Meiy = °
ate) t My = °
Meer ¥ Mgy = ©

substituting for the values of F's and M's in the above equations

(3.21)

(3.22)

(3. 23)
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+p' S v(é,n)pz dA - Cp' =0 (3. 24)
A

Equilibrium equations (3. 24) should be satisfied for all the cross
sections along the column. The above equilibrium equations are very
general and take into account the biplanar bending accompanied by the
twist with or without initial crookedness and end eccentricity of

loading.

3.6. WARPING EFFECT

In case consideration of warping deformation is needed for a
more refined solution, the elastic warping displacement at any point
of a cross section, * having relatively thin walls, can be calculated

from(36’ >9)

*Does not apply near the longitudinal edges but this has a
negligible effect for thin walled sections.
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s n
W= W - [3‘ S\ r ds - S‘ r dn (3. 25)
o o S o P

where w_denotes the displacement in the z direction of the point from
o

which s is measured (Fig. 3. 5).

\O
s
The integral g' r ds represents s
. O . \
twice the area swept by the -~ Center of Twist ,
C ‘ e

radius p as we move along f

the middle line of the cross &

section from the origin of s,
n

while the integral g r dn
g B

represents twice the area

A
Normal

swept by the same radius as

we move from the center /
y
line to the element along 7
the normal line. The Fig. 3.5. Warping of the Cross Section

swept area should be taken positive if the radius p is rotating in
the positive direction, i.e., from £ to n. The contribution of the
second integral is negligible for thin-walled cross sections.

In the inelastic region equation (3. 25) cannot be used and a
rigorous solution is needed to evaluate the warping. Warping of cross
sections subjected to combined elastic and inelastic torsion is
discussed in Chapter IV. However, in Chapter IV it is assumed that
the center of twist coincides with the intersection of the center lines

of the flange and the web. In order to modify this as sumption
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one should, by using the shear stress values obtained from rigorous
solution, determine the new center of twist. If the new center of
twist did not (with an acceptable approximation) coincide with the
assumed one, a new center of twist should be chosen and the evalu-
ation of warping displacement, strain, shear stress, and the center
of twist should be repeated until an acceptable solution is obtained.
After the instantaneous center of twist is located, the term ''p"

in equation (3. 15) should be redefined as the distance between the
element and the instantaneous center of twist. Also, the change of
strain due to the warping displacement should be taken into consid-

eration.

3.7. PLANAR BENDING

Equilibrium equations (3. 24) can be simplified for the case
of planar bending. Cases studied in this thesis exclude the initial
imperfection or eccentricity of loading in the plane parallel to the
flange. Also, it is assumed that the column is initially stronger in
the flange direction than in the web direction. Previously it was
explained that in case buckling starts in the plane of symmetry of
the "T'" section towards the flange, theoretically, planar bending will
govern the behavior of the column. But when buckling initiates in
the direction away from the flange (to the right) up to the stage where
bending stiffness of the column in the plane of the symmetry is

greater than the bending stiffness in the plane parallel to the flange,



-57-

the biplanar bending will not commence. Therefore, it is advanta-
geous to express the simplified equilibrium conditions for the planar

bending in the plane of symmetry. In this case

and (3. 26)

0'(&, T]) = 0‘(&)

Hence, the equilibrium equations will reduce to two equations as

follows
d- —
Pl we s ag - o
t
-3 (3.27)
a-L
X z 2
PL [-I: - u(z) - uo(z)] te [1+ (r . - l)i] - S‘t t(g)o(E)dE = 0
"2
t(€) is the dimension of the cross section in 1 direction
tE) = b S<E<s
(3.28)
tHE) = w %<§<d-%

Limiting Stage of Planar Bending

When the non-linear distribution of the stress exists on the
cross section, the bending axis will no longer coincide with the
principal axis parallel to the flange, or we may say that the '"principal
axis' about which the bending stiffness of the cross section (weighted
moment of inertia) is to be minimum, will move parallel to its
original position. If the bending axis is a line § = E then the bending

stiffness in the plane of symmetry can be expressed as
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t
d-2

.50, = | wee-D7E0 a (3. 29)
t
3

£ has to be evaluated such that it would make (B.S. ). a minimum,
S

i.e.,

—d—_ (B.S.), =0
dg

3
(3.30)
a-L
d 2 -2
— S‘ t(g) (§ - &) Et(i) dg = 0
d¢ ot
2

t(€) in the above equation is sectionally continuous (3. 28).

If the stress and its derivative with respect to the strain in
the inelastic range is a continuous function of strain, then E(§) will
also be sectionally continuous, separated by the border line of the
elastic and inelastic zones. The integral equation (3.30) can be
divided to the sectionally continuous domains and integrated and

finally written in the following form

d =2 —
E‘g“[Al +AZ§+A3]:0 (3.31)
where ¢
42
a = we e
Yt
"7
a, = -2 | &ue) B at (3.32)
t
d-3
2
A, - gt ue) €8 E(E) at

2
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Equation (3. 31) is a continuous function with respect to E; therefore,

according to Leibnitz's rule(éo)
a-L
2 d >
gt 3 [t(€) E(E) (£ - §)7] dE =0 (3.33)
"2
or
t
d- )
Y [t(€) E(E) (§ - €)] dE =0 (3.34)
Yot
"2

t - (3.35)

L
2
Now the bending stiffness in the plane of symmetry can be found by
substituting the value of E from (3.35) in (3.29). While bending is
taking place in the plane of symmetry, axis of symmetry remains as
the axis about which the bending stiffness is maximum. Bending
stiffness in bending out of the plane of symmetry can be expressed in
the following form

(B'S')n :g g E(§) n dn dg
& "y

or
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3V] R

q-L
b3 W3 "2
(B,S,)n = =5 g Et(g) d§ + 5 S; Et(g> dg (3. 36)
2

fnv] Ky

Let a be the ratio of the bending stiffness in the plane parallel to
the flange (B.S. )T] to the bending stiffness in the plane of symmetry

(B.S.),., i.e.,

.

(B.S.)

P p— (3.37)
(B-5.7,

As long as the value of o for all the cross sections along the column

remains greater than unity, biplanar bending will not commence.



CHAPTER IV

TORSIONAL STIFFNESS

4.1. INTRODUCTION

At the stage where the elastic limit is surpassed and a linear
relation between stress and strain no longer exists, the presence of
bending moment in the cross section will subject different elements
of the cross section to a varying strain, and therefore their inelastic
properties (i.e., tangent modulus, secant shear modulus, Poisson's
ratio) will vary from one point to another. At some stage of loading
when strain regression is present, an abrupt change in the material
properties of the neighboring elements of the border line of the
elastic (regression) and inelastic zones of the cross section exists.
Evaluation of the torsional stiffness coefficient of a cross section
under above condition is a complex problem. The behavior of a
member in the above condition is similar to that of a composite
member made of numerous elements with different '"elastic"
properties.

In inelastic column analysis, when torsion commences, one
encounters such problems as the relation between the amount of
torque applied and the rotation produced or the shear stress distri-

bution.

-61-
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The precise solution of this problem is very complex,
involving three dimensional analysis, as torsional moment as well
as flexural moment varies along the column. In practice a variety
of geometrically complicated composite sections are being used.
Composite sections are used in reinforced concrete and aircraft,
as well as some very specialized applications. Some problems on
the torsion of compound prismatic bars have been treated analytically
by Muskhelishvilli, (61) Cowan, (62) Mitra, (63) Gorgidze, (64)

(65) (66) (67) (68)

Sherman, These

Craven, Takeyama, and Suhareviki.
problems generally dealt with cross-sectional shapes that could
easily be conformally mapped. The torsion problem of a member
with constant elastic properties across the cross section and with

a nonclassical geometry of cross section may be solved by relaxation
methods, as used by Christopherson, (69) Southwell, (70) Shaw,(7l’ 2)
Allen, (73) Dobie, (74) and others. Ely and Zienkiewicz(75) applied

relaxation method to the solution of torsion of some composite bars

of special cross sections, made of two different materials (Gl’ GZ)o
In this chapter (starting from compatibility conditions and using the
relaxation method) a procedure will be introduced to solve the
torsion problem of composite members with application to the
torsion of a "T'" shaped member in column analysis. The iteration

process is carried out by means of a MAD program written for the

7090 digital computer.
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4.2. ASSUMPTIONS

To reduce the complexities and apply the solution to the
problem of torsion of a "T'" shaped column, certain assumptions
have been made.

The structural shape has a uniform cross section and there
is no restraint against longitudinal displacement of the elements of
the cross section.

The torsional moment is assumed constant along any one
segment of the member. (By segment is meant an arbitrary incre-
ment of column length chosen for the numerical solution.) As we
increase the number of segments in column analysis, this assump-
tion tends to become more accurate.

With the above assumptions only St. Venant torsion will be
present and thus the magnitude of the rotation, B, along the member
within the length of the segment of the column will be a linear

function of the length of the segment.

4.3. DISPLACEMENT EQUATIONS

Assume a prismatic bar of length L fixed at one end to the
xy plane and with origin of the coordinate system fixed at the
center of twist of the bar with the z-axis coinciding with the longi-
tudinal axis of the bar and torque MZ acting counterclockwise on

the front face (Fig. 4.1).
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Fig. 4.1. A Prismatic Bar under Torsion

If 6 is assumed to be the rotation per unit length (uniform torsion)
then

B =6z (4, 1)

and point A(x,y,z) after application of torque will displace to
A'(x+u, y+v, z+w), then

O2 [Cos(a+pB) - Cos(a)] = OZ [CosaCos B - SinaSinp - Cos a]
(4. 2)

OA[ SinaCos B + CosaSinp - Sina]

u

li
i

v = OA[ Sin(a+ p) - Sin(a)]
assuming that 8 << 1 then SinB = B and Cosp =1, and OASina = Vs

OACosa = x.

o
H

-y B
(4. 3)
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or

u = -0yz
(4. 4)
v = 0Oxz
The displacement in the z direction, w, is assumed to be independent
of z and only a function of x and y and therefore can be written
w = 8 (x,y) (4. 5)
y which defines the warping of the end surface is called the warping
function.
The above assumptions are used in St. Venant's semi-inverse
method to reduce the governing equilibrium equations to one differ-
ential equation. Thus, the objective will be to find the function

U(x,y) so that the equilibrium equations and the boundary conditions

will be satisfied.

4.4, EQUILIBRIUM EQUATIONS

If in general terms we assume that the displacement vector

is u (i.e., u, =u, u, = v, u, = w) then strain vector in Cartesian

2 3
(76)

1

coordinates will be

1
=2 0T T Y Yy

i]
(4.6)
(i=1,2,3;j=12,3;k=1,2,3)
neglecting the nonlinear term Wy i equation (4. 6) can be
written as
O (4.7)
“ 772 M T Y :
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which is a linear approximation and is known as Lagrange's equation
of compatibility of strains, Assuming that there exists a linear
relation between the strain and stress components in the Cartesian
coordinates and in the neighborhood of the state of the present stress

or strain, stress vector T can be written

Tij = (GE)ij €ij (4. 8)

where (GE)ij is equal to ES when i = j and is equal to ZGS when
i #j. The secant elastic modulus (ES) and the secant shear modulus

(Gs) are defined in the following relations(ll) (Figs. 4.2 and 4. 3)

o
)
/ZEf \
|
T
E
og E s
1
1 I
G
W=
€ Ny y— 7
Fig. 4.2. Elastic, Fig. 4.3. Shear and Secant
Tangent and Secant Moduli Shear Moduli
E =2
s €
(4.9)
G =—
8 Y

where ¢ = axial stress
€ = total strain, including inelastic strain
T = shear stress in pure shear

Y = shear strain in pure shear
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and o and € are evaluated in the uniaxial stress. The equilibrium
equations can be written in the following form

T.. .+ F. =0 (4.10)
Ji, ] 1

Using equations (4.7), (4.8) and (4.10) along with displacement

equations (4.4) and (4. 5) strain components in xyz coordinates will be

2 = = 0
ny (or 2¢_ ) vyx(or»?e )

Xy yX
4,11
Yy, 0T 26 ) = v, = 03 4 x) o
Vox (or Zezx) T Vxz T e(g_j: - Y)
and stress components will be
o (or ‘TXX) = cry (or Tyy> =0, (or Tzz) =0
TXY = Tyx =0
4,
Tz T Ty G, (x,y) e(g—i + x) e
T = Tep = Gbey) 022 )

ZX Xz

Equations (4. 12) show that the secant shear modulus (GS) is assumed
to be a function of x and y only and independent of z. As we reduce
the length of the element the correctness of this assumption will
improve. Using the equilibrium equations it will be shown that the
assumption GS being independent of z is compatible with the

assumed displacement vector. Equilibrium equation (4. 10) can be

written
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80‘X BTXY BTXZ
+ =0
9x 9y ¥ 0z * Fx
8TYX 80‘Y aTyz
= 4,
rylil By Tt FY 0 (4.13)
asz BTZY 80‘z
=0
9x ¥ ay ¥ 9z ¥ Fz

There is no external force acting on the element; therefore,

Using stress relations (4. 12) the first two equations of (4.13) are
satisfied.
Had we assumed Gs to be a function of z then the first two

equations of (4.13) should have been written as

0G (x,v,2)
s oy B
0+ 0+ Yy 6(8X-y)+0_0
(4. 14)
0G (x,v,z)
s o
0 —_—— — 0=0
0+ 0 + 5 6 (ay + x) +
as
9y -
(ax - Y)l - O
and
oy
— 4+ 0
(5o + %)
give a trivial solutionof 1 =+ =71 =171 = 0. Therefore,
vz zy Xz ZX
8G_(x,v,2)

57 should be taken equal to zero (Gs = GS(X, v)).

The third and governing equilibrium equation will be
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0G (x,v) :
220 + Gy 02Y
3y 9 s Byz
8G_(x,y) :
5 9
+ 5% 9(33':‘ - y) o+ G xy) e—_LZ_IJ: 0
0x
or
8G_(x,y) 9 G, (x, )
2 9 —s 8
G, (x, y)[V(x, y)] +————Sax (5-:% -yt Say (3%4, % =0 (4.15)

In the case of constant Gs across the cross section

9 Gs(x, y) 9 Gs(x, y)

ox oy

=0

and equation (4. 15) will reduce to the Laplace equation (V ¢ = 0).

4.5. BOUNDARY CONDITIONS

The surface of the bar is free of external forces

(FX = FY = F7 = 0); therefore, the normal component of the stress

at the boundary should be equal to zero. Unit vector N normal to

the boundary can be written as

= dy > dx >
N—-d—sl—-agj (4.16)
and the stress vector
— = g 4
T-TXZ].+TYZ_] (4.17)
to satisfy the above condition
N.T = 0 (4.18)
or
d
dy . & _ 5 (4.19)

"xz ds Tyz ds
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Substituting for T and T from (4.12)
Xy vz

d d
6G (5, ) [¥, - V) & - b, + %) g5l =0
as Gs(x,y)¢0
W =N -, +xF=0oms (4.20)

equation (4.20) should be satisfied on the lateral surface of the
element. |

On the two boundary surfaces at the end of the element
defined by planes of z = 0 and z = L, stresses given by (4.12) should
produce a torque equivalent to the one applied externally and more-
over, the resultant force should be equivalent to zero. The first

condition requires that

M = g (XTYZ - YTXZ) dA (4.21)
A
or

M :Ggs‘ G(x,y)(x2+y2+x%—yi§£)dxdy (4.22)
z AYa S oy oy

Equation (4.22) gives the relation between the applied torque (Mz.)
and the rotation per unit length, 6. Even if we could express the
warping function y as an explicit function of x and y, the analytical
integration of the above equation would not be a simple problem, as
in general, Gs is not a continuous function of x and y. As we shall

see, the warping function ¢ will also be discontinuous.
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A third condition demands that

g‘ TXZ dA = 0
YA
and (4.23)
g\ TZ dA = 0
Ja y

substituting for T, and Tx from (4.12)

oy
gg v) (3% - y)dx dy

gg G(xy(¢+x)dxdy

"
o

(4.24)

11
o

As 0 is constant, it can be taken out of the integral sign and canceled;

therefore, we should prove that

Y ‘gA Gs(x,y) [(—g—i—i— + x)] dx dy = 0 (4.25)

and similarly the second equation can be proved. Multiplying both
sides of equation (4. 15) by '"y" and integrating over the end section

boundary A and adding it to equation (4.25),

gg Gs(x,y)(, +X)dxdy+gg XVVLP+G(,Y)(¢ -y)+ .
YOYA

' X

+ Gs(x,y) (¢’Y+x)] dx dy = 0 + gg\ (yx0) dx dy = O
JJoa

Left hand side can be written as

.gr SA [YGS<X’ Y)’X(qJ:X - Y) + YGS(X’ Y) LIJ’XX + GS(X, y) (LlJ,Y + X) + ..

’

yG(y) (W, 4 %)+ yG(x,y) Y yy ]dx dy = 0
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or

(f [38; [yG, vty _ - v)]] ax dy +

A
S' S‘A[-éa—y [YGS<X9Y) (¢’Y+x)]]dx dy =0

(60)

The above equation can be written as (Fig. 4.4)

§s [yG, v v, - ] gy - §S [y Gyl y) (b, +:)] éx = 0

or
d . dx

§s [[YGs(x.y)(¢,x - y)] -d% - [vyG (=, ) (4, +x)] EE] ds = 0

or

dy dx
§S y G (x,y) [ (tlJ,X- y) T (¢’Y+x) = ] ds = 0

or
§ fds =0 (4.26)
*'S

where

d dx
f= 1ty = yG Gy [0, -y L - ¥, + 0 ] (4. 27)
y The term inside the bracket is the

same as equation (4.20). If the
lateral boundary condition is satisfied,
this bracket will be equal to zero and

S
- X
\ A \J consequently equation (4.25) will be

satisfied.

Fig. 4.4. Cross Section
and the Boundary
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When discontinuity is present in the functions { and G , as
S
in the case of the existence of strain regression, the boundary can be

divided into two or more regions

‘y

and the above procedure followed

s/
and integration taken in different l

N\ s —Inelastic Region
. . \
regions separately. Finally, \ .
“ I

it will be concluded that the b -X

Sz A
integration (4.26) should be s,
taken over all boundaries of \Elostic Region

divided regions, for example,
Fig. 4.5. Elastic and Inelastic

as in the case of the Fig. 4.5 Regions
§ (f)lds + § (f)st = 0 (4.28)
. Sl . Sz
Sl and S2 can be divided into two parts
5, =58, +5] S, =S, =S,

then equation (4.27) can be written as

g, (f) ds + g (f) ds + g

Sl S1 SZ S2

Sl1 and Sé form the outer boundary of the surface (A) and (4. 2) is
satisfied on the boundary

g‘. (f) ds +g (f) ds :§ (fyds = 0

Sl S‘2 , S
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Now conditions (4.26) will become

J

(f)ds+g (f).ds = 0
SH l SII 2

1 2

" "

as s'l'= -8 = 8", then

2
g (f). ds - g
g" 1

(f),ds = 0 (4.29)
s

1o

The subscript on (4.26) means equation (4.26) written for
that region.

Equation (4.29) indicates that the components of the shear
stress at the separating boundary when approaching from region (1)

or (2) should be the same.

(sz)Z

(4.30)
(Tyz )Z

or, in other words, if equations (4.30) together with equations (4. 20)

are satisfied the boundary conditions (4.23) will also be satisfied.

4.6. DIFFERENCE EQUATIONS

In order to solve the problem of inelastic torsion one should
find a warping function (x,y) that satisfies both the differential
equation of equilibrium (4. 15) and the boundary condition (4.20)
with the supplemental relation (4. 30).

Except for a few cases for which analytical solutions may be
possible, solutions of the differential equations of equilibrium with

complex boundary conditions are not presently available. Numerical
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methods must be used to solve such a problem. The differential
equations of equilibrium are replaced by 'finite difference equations!''.

The relaxation procedure for solution of finite difference equations

(69) (70) (71,72)

was initiated by Christopherson and Southwell. Shaw
has also applied the relaxation method to some torsion problems.

In this analysis a modification of the relaxation method will -
be used to evaluate the warping function and consequently the torque-

rotation relations. Prior to forming the finite difference equation

for the differential equation (4. 15) the following should be reviewed:

4.7. POLYNOMIAL FUNCTION

Suppose that y, a function of the independent variable x, is

required to have the values Yor Yi» Yoo ¥y when x has the
values 0, h, 2h, ..., nh. It can be proved that the function
=a, + fax®+ +ax (4.31)
y =aytax+ax a_x .

which is a polynomial in x of degree n, and in which the (n + 1)
quantities of a are constants, satisfies the imposed requirements,
and all the differentials of (4.31) are continuous and have finite

. . . . th .. }
values in the considered range (x being finite). The n differential
dny/dxn has the constant value of na and the higher differentials

are zero.
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4.8. APPROXIMATE DIFFERENTIATION

In this procedure a range of three points will be applied in

calculation of the differentials.

Therefore, the following relations y
will be given without proof
(Fig. 4.6)
’Io ‘Il 3{2 {3
=X
[eh b ~}h
Fig. 4.6. Derivatives at
. 0, 1, and 2
(n = 2, given: Vo Yl’ Yy h)
r
dy 1
h(F o 2 (=375 + 4y - ¥)
dy 1
h [ A (AR FY
ﬁ ' (4.32)
dy 1
(2 = g am,
2
2(d
ht (=2 =Yg -2y, +7v,)
dxz 0 1 2
. 0,1,2

4.9. FINITE-DIFFERENCE APPROXIMATION TO THE PARTIAL
DIFFERENTIAL EQUATION OF EQUILIBRIUM

After a range of three points and a network of squares of side
"h'" has been considered, we shall formulate the finite-difference

equation for the differential equation (4. 15).
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Let us assume that functions Gs(x, y) and y(x,y) and the

first derivative of Gs(x, y) and the

first and second derivatives of N
Y(x,y) with respect to x and y are
h 1 n
comtinuous in the neighborhood of h/2 £
W w, (|0 e '
point“o” (Fig. 4.7) within a domain b——h —d—ns2d
X
of radius "h. In order to treat the s l
y
differential equation (4.15) in a S

manner more suitable for this

Fig. 4.7. Point '"o' and the
discussion it can be written in Neighboring Domain

the following form

9 9
T2 LGN, -] + 3y [G (x,y) (¢,Y+X)] =0

or

0 9 0 0
73 [Ge 1+ 55 [G ey, ] =53 [vG, b )] - 55 [xG 6 7)]

oy
or
2a 2 1a - [yG G
ax[ S(X,Y)Ll"’x]"'ay[ S(X’Y)LIJ’Y]—[Y S?X-X S:Y]
or
i[G(X )y ]+—8—[G(X Y ] =glx,y) 4,33
ox Lo F VIV (I a7 LG =Y (] = 8%y (4. 33)
where
9G (x,y) 9G_(x,Y)
gx,y) =y —g— - X —— (4. 34)

9x oy
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Now consider point o of the mesh with four surrounding points

N, E, S, W and four mid-points n, e, s, w (Fig. 4.7), then using

equations (4.32), g(x,vy) can be expressed for point o as follows

1
g(x, Y)O = }_1' [

S

S

y(0)[G_(e) - G_(w)] - x(o) [G,(s) - Gs(n)]] = b(o)

(4. 35)

having the values of Gs at the nodal points the right hand side of

the equation (4.33) can be evaluated for the mesh. These values

are constant for a chosen mesh and will tend to a more accurate

value as mesh size becomes smaller. To evaluate the left side of

(4.33)
and
9
B e | -
o
similarly
0
(ﬁ (GSLP,Y)):

v, ) Y(E) }-1 y(o)
(]
p(o) - Y(W)
W, ) ==t
w (4.36)
p(o) - Y(N)
(b ) =
’ Y n h
W ) = W(S) - Y(o)
’Y h

D‘N‘ —

';T‘NI —

-

| Gg(e)U(E) + Gy (w) §(W) - [G(e) + G (w)] ¢(o>]

(4.37)

f?? {Gs<s)4»<8) + G () 9(N) - [G(s) + Gs(n)]wo)]
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and thus the finite-difference equation for the differential equation
of the equilibrium can be written as

1
7| Go(m ¥ + G ()UIE) + Gy () U(S) + G (w) 4(W) -

[Gs(n) + Gs(e) + Gs(s) + Gs(w)] 44(0)} = b(o) (4.38)
where b(o) is expressed in (4.35) and has a constant value at every

nodal point. Solving (4.37) for (o) we will have

blo) = [G_()Y(N) + G_(e)Y(E) + G_(s)¥(S) + G_(w) Y(W) - hb(0)]/

[G,(n) + G_(e) + G_(s) + G_(w)]

Yo} = [G_(n) §(N) + G () W(E) + G_(s)Y(S) + G_(w) y(W)] /c(o) + d(o)

S

(4.39)

where d(o) —hzb(o)/c(o)

il

(4. 40)
c(o)

Gs(n) + Gs(e) + Gs(s) + Gs(w)

Now we write the difference equation for the point (i, j) (ith row and

jth column) of the mesh (Fig. 4. 8)
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i-1,j
X,y-h

———————

i,j+1 v
x-h,y

x(j), y(i- 1)

i, j+1
x+th,y

x(j-1), y(i)
b(i, j-1)

x(j+1), y(i)
p(i, j+1)

Fig. 4.8.

where

Point (i, j)

and the Neighboring Mesh

2i -1

2j - 1

(4.41)
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WL §) = [GU'-1,5") Wi-1,5) + G_(1'41,3") $(i+1,§) +
G (153" Dl §-1) + G_(", j "+ 1) (i, j+1) ] /e, )

- ¥, j)/ (i ) (4. 42)
where
c(i,j) = Gs(i',j'-l) + Gs(i',j'+1) + Gs(i'+1,j') + Gs(i'-l,j')
and (4.43)

b(i,5) = 3 [y(i)[Gs(i‘,j'H) - G (i53'-D)] - =()[G (141, 5" - Gs<i'—1,j‘)]]

If Gs is constant, equation (4.42) will reduce to the finite difference

equation of the Laplacian operator V

1 t 1 ] 1 i
I _ N _ 1y - o1 - ..
Gs(l ,j - 1) Gs(l ,j +1) Gs(l +1,35) Gs(l 5,7 ) c(i, j)/r

b(i,j) = 0

and equation (4. 42) will become

B(i,3) = [ J+ 1) + (- 1) + G+, §) + W(i-1,5)] /4 (4. 44)

4.10. DIFFERENCE EQUATIONS FOR BOUNDARY CONDITIONS
OF T SECTION
Choosing the xy coordinate system as shown below with the
origin in the centroid of the flange (assumed to be the center of the
twist) and x, y-axis parallel to the sides of the cross section,
boundary condition (4.20) will be simplified. On the sides parallel

to the x-axis, (Fig. 4.9), dy = 0, dS = dx and equation (4. 20)

becomes
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b, +x)=0 (4. 45)
(1,1) (1.m) | On the sides parallel to the y-axis,
dx = 0, dy = dS and equation (4.20)
becomes
I W, - ¥ =0 (4. 46)
(n,1) (n,m)

J

Fig. 4.9. Boundary of
the T Cross Section

Applying equations (4.32) to the above boundary conditions we can
write

For sides parallel to x

on the negative side of y

,._‘

st [-30(1,3) + 49(2,3) - w(3,5)] + x(j) = 0

=

on the positive side of y (4.47)

Zlﬁ [-3¥(n,j) + 44(n-1,j) - ¥(n-2,5)] - x(j) = 0

For sides parallel to y

on the left side

)
st [-39(E 1) + 4431, 2) - $(i,3)] - y(i) = 0

on the right side (4. 48)

% [-34(, m) + 44(i, m-1) - P(i,m-2)] + y(i) = 0
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In order to treat the boundary nodal points in the process of iteration,
the values of function § for the boundary points should be given in
terms of the value of the | of the neighboring points; therefore,

equations (4.47) and (4.48) should be solved for the boundary nodal

points
Negative side of y parallel to x
WL, §) = [49(2,5) - $(3,)) + 2hx(j)] /3
Positive side of y parallel to x j=l,2,...,m (4.49)
Y(n,j) = [4b(n-1,j) - Y(n-2,j) - 2hx(j)] /3
Left side parallel to y
P, 1) = [49(i,2) - ¢(i, 3) - 2hy(i)] /3
Right side parallel to y i=l,2,...,n (4. 50)
$(i, m) = [44(i, m-1) = §(i, m-2) + 2hy(i)] /3
Discontinuity

Equations (4. 30) should be satisfied along the line of discon-
tinuity. The basic assumption that has been made is that all
elements of the cross section go through the same amount of unit
rotation © about the center of twist (centroid of the flange).
Considering this assumption and using stress relations (4.12) for

the elements along the discontinuity line, the following should hold

1

[G ey 4, 4 %]} =[Gy, + 0],

y
(4. 51)

1

[G = y) (¥, - ], =[G,y W, - "],

' X



[ ]1 and | ]2 mean the term evaluated in the regions (1) and (2)

respectively.
of the difference
equation, assuming
that the nodal point
is on the border line

of the two regions,

equations (4. 51) can

be written as follows

(Fig. 4.10)

In terms
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Zh[Gs(i,m) - G_(i, 1)]x(m) = Gs(i, D[-36(1, 1) + 44(i, 2) - §(i, 3)]

Zh[Gs(i,m) - Gs(i, 1)]y(i) =

2\ 7
% 7MeGE-2, 1)
2 7
2
'///; /// YE-L, )
1-1,
>
G(i, m% P(i, 1) P(i, 2) P(i, 3)
b(i, m-2) ¢(i,m—l% <
‘ @
2} |
2
¢(i+1,m)/1 ﬁ
D
@ j /&\ h
/M &//\
Lp(i+z,m)’j Al—n
Fig. 4.10. Point on the Border Line of

the Discontinuity

+ G_(i, m)[-30(i, m) + 4p(i, m-1) - (i, m-2)]

Gs(i, D[-3¢(i, 1) + 4¢(i-1, 1) - $(i-2, 1]

+ Gs(i,m)[-3L|J(i,m) + 4Y(i+l, m) - Y(i+2, m)]

(4. 52)

The above equations can be solved for (i, 1) and (i, m) so that in

the iteration process either one can be calculated in terms of the

other
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P(i, 1) = { [Gs(i,m)/Gs(i, 1) + 1] 2hx(m) + 4¢(i, 2) - ¥(i, 3)
+ [Gs(i,m)/GS(i,1)][—3¢(i,m) + 44(i, m-1) - ¢(i,m-2)} /3
Y(i, m) = {[-1 + G_(i, 1)/Gs(i,m)] 2hy(i) + 4y(i+1, m) - P(i+2, m)

+ [Gs(i, 1)/Gs(i,m)][-3¢(i,_1) + 4h(i-1,1) - Y(i-2, 1)] } /3

(4. 53)

Other forms of discontinuity can be treated in the same manner.

Points with Non-Equidistant Neighbors

In many cases a point near a boundary or the border line of
two regions will not be surrounded by equidistant neighboring nodal
points, or one may wish to make a change of net interval in a special
region. Special formulas must be provided for such cases. Starting
from the polynomial function (4.31) for a general case such as the

one on the Fig. 4.11, equations (4.32) can be written as following

®
-IT—
\IJ(X: Y‘O’3h)
N
alh_{L.__aZh
D] $(x, )
th(x—ozlh, y) 0 ¢(X+a2h, y)
£<ﬁ
S | (x, y+a h) *
J—l 4 r
@ y

Fig. 4.11. Point with Non-Equidistant
Neighbors
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@ U(2) + (@ - ot )(0) - asp(l)

(32 - -
0 ¥y lay +ay)
a a, - a a2¢(0)
- 1 $2) + —— (1) - h
a, (oz1 +a, )h @@, a (oz1 + aZ)
2 2) + + 2 (0) (2a, + Yy(l)
Q¥ o W(2) + ey ey ) W0) - e, (20 + ey ) ¥
9x 1— alaz(al + az)h
-a a. +a 20, + a
2 2
- —— 42) ¢ —= 4(0) - —— — (1)
a, (oz1 + az)h @, @, (al + az)
(4. 54)
2 2
oy (2, e )W) - (e +ay)” W(0) - o) W)
(-B—E)Z: alaz(al+a2)h
2a, + a (¢, + a,) o
2 1 2
- — 4(2) - —— 4(0) + —— (1)
@, (al + 012) alazh a, (al + 012)
o2 @) W(2) - (e +a,) W(0) + a, U(1)
—2) =2 2
ox 201 @, (oz1 + ozz)h

2
== [ ! P(2) - —4L-LH0)-+————l————— P(l1)
h az(al +az) @, ozl(oz1 +oz2)

By changing the (1), y(2), @), a respectively to the y(3), y(4),

2

ay, ay, the above relations will give the derivatives of { with respect

to y. For @, = a, = 1 relations (4. 54) reduce to those expressed
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in (4.32). Using the above relations, governing difference equations
and the boundary conditions for points with non-equidistant neighbors

can be obtained; however,

Line Separating the

in this study to simplify WElostic and Inelastic Regions
the manipulation, the
straight lines of discon- @

_—Stepwise Approximation

tinuity have been approx-

imated by a step-wise @

line (Fig. 4.12)

Fig. 4.12. Stepwise Approximation

4,11. CONVERGENCE OF THE ITERATION

Relations (4.32) and (4. 54) can be obtained by applying Taylor's
theorem and expanding the function y(x,y) at the neighborhood of 0

78
(Fig. 4.13), as done by Young( )

4
(xo, yo—h) T
r—.X
h y

(x4 Y0+h‘) D

Fig. 4.13. Expansion of {(x,y)
in the Neighborhood of (x, y)



hZ h3 4
U2V =90 # B0, 4T ) F ) g )
(4. 55)
where
(—, xxxx) N LJJ,xxxx (XO te yO) 0<g<h (4. 56)
0,2
similarly
2 3 4
h h h™ —
UL = 90 = R, ) T 0, ) T ) T @)
(4.57)
Combining (4. 55) and (4. 57)
4
_ (@) +y(l) - 2¢(0) b
(qjvxx 0 - hZ T4 [(lp,xxxx)o’ 5 Ty, xxxx)o, 1 ]
(4. 58)
2
C9(2) - y(1)  BS
(U'va)O N 2h 1 [ PXXE ) ¥ (qj’xxxx)o,l]
similarly the derivative with respect to y can be expressed
Y(4) + 4(3) - 20(0) _h*
Yoy 12 7l YYYY)O, LW YYYY)O, 3 ]
2 (4. 59)
W) - 93)  n”
W) = . [w,YW)M + WY)M]

Neglecting the higher order terms and substituting (4. 58) and (4. 59)

in (4.15), for each point (x,y) in the domain, we get
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[G 65, y) +3 G (6, y), JUlxth,y) + [G_(6,y) - 2 G_(x,y) ] blx-h,y)
G b G h G = G h
+[G o y) + 3 G e y) T4k y4h) + [G(x,y) - 3 G (x, y),  Jolx y-b)

2
- 4G (x, y)d(x,y) = b [yG (x,y) - sz(x,Y),y] (4. 60)

1 X

(4. 60) can be written in the following form

al P(x-h, y) + az P(x+h, v) + a3 Y(x, y-h) + a4L|,l(x, y+h) - aOLIJ(x, y) = t(x, y)

(4.61)
where ai(i=0,1,2,3,4) are functions of (x,y)
we observe that
a0=a1+a2‘+a3+a4
If h is chosen such that
fzss(x,y) 2G_(x,y)
h < min{ —mmmm— , ————— (4.62)
)

the minimum being evaluated in the domain of the operation, then
all the a, will be positive and convergence of the iteration process

will be guaranteed. *

4.12. SHEAR-STRESS-STRAIN RELATIONSHIP

In order to derive the shear stress relations (4.12) from

shear strain relations (4. 11) the values of Gs used in equation

T=G vy (4. 63)

*For further details refer to reference (78)
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should be defined and evaluated for the inelastic range. Suppose the
relation between stress and strain is given by the Fig. 4.14. Total
o

\ strain can be written as the

summation of two strains,

e ]
Ee’ elastic strain, and ep, plastic

]— s1:rain(1 1)
E

9 |
PL. € =€ + € (4. 64)
| ©
: - or
€
Lep’ _—I o o
= = - 4,65
Fig. 4.14. Total Strain €T E ¥ (B ( )
vs. Stress
Now we plot the stress against
o the plastic strain. The relation
|
between the plastic shear stress
// (T)p and strain (\/)p can be formed
by dividing the stress ordinate of
the Fig. 4.15 by two.
€ |- €
~1%p p

Fig. 4.15. Plastic Strain
vs. Stress



The reason for this is: for pure compression along the z-axis

¢ =o0 =0 and o, = -0, then the principal shear stresses will be
y X
o o
T = y . 0
Xy
o o
Z
T = =0 (4. 66)
XZ
o o
- z _ O
Tyz - -2

Since T and T
XZ

inelastic strains € and ¢
XZ vz

are equal in pure compression the corresponding

must also be equal, each being half of

the total inelastic strain €,. Therefore, to convert Fig. 4.14 to a

P

principal shear stress vs. the corresponding strain, stress ordinate

of Fig. 4.15 should be divided by two (Fig. 4.16). To form the

complete T vs. y diagram from
o vs. € diagram simply for
every value of plastic strain €P1
should be calculated and then

corresponding point on (T vs. vy)

diagram will be

71
T, = == vs. ( + €
Ty 5 Vo pl)

(Figs. 4.17 and 4.18).

T

=
&

5 /'

*

&

’p
(Zexz orléyz)p

Fig. 4.16. Shear Stress vs.
Plastic Shear Strain
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)
—
.
L
—
N
)

€

Figs. 4.17, 4.18. Conversion of Tensile Stress-Strain Diagram
to Shear Stress-Strain Diagram

The relation between modulus of elasticity E and shear modulus G

is given by the formula

E
G =37 (4. 67)

in which v is the Poisson's ratio.

4,13. EVALUATION OF Gs

For a given strain ¢, the stress o, can be calculated

1 1

graphically or mathematically. In case stress is given by an algebraic

formula in terms of strain,

T2



o
. . 1
and plastic strain €P1 =€ -5
"1
shear strain Yy = = + epl
o) 1
T —_— —
1 2 2
GS = —_— = = <
1 Y f_1_+ %] 2(1 + v)  C1 1
2G T ¢1 T E E o, E
or
G = E
*1 € F
2(v + —)
1

or in general

(4. 68)

It can be seen from equation (4. 68) that in the inelastic range
the value of Gs varies as
a function of € (Fig. 4.19). Gs
In the elastic range, relation
o = €E reduces the equation

(4. 68) to the relation (4. 67) r
between G and E. JG_

"GRL‘." €

Fig. 4.19. Strain vs. Shear
Secant Modulus
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It is obvious that in the case of combined compression and
torsion, the value corresponding to the combined stress according
to one of the failure criteria, such as VonMises criterion, should
be considered; but in this problem the amount of torque and rotation
and consequently the shear stress due to torsion are very small
compared to the compressive stress. It is assumed that Gs is
constant in the neighborhood of the considered strain. Moreover,
the tensile (or compressive) stress-strain curve is used directly

to compute T = f(y).

4.14. METHOD OF ITERATION

In any numerical solution of a differential equation, the
continuum of points on the boundary and the interior region should
be replaced by a discrete set of points. The value of the function
is then considered only at these points rather than at every point of
the governing region.

(79)

Liebmann suggested an iterative procedure in the year
1918 and demonstrated the solution for the Laplace's equation.

He divided the region into a square net and assigned approximate
values to the function at the interior nodal points and known values

at the nodal points of the boundary. Then traversing the region in

an orderly manner repeatedly, and replacing the value of the function

at each interior nodal point by the mean of the values of the four

neighboring points, i.e.,
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Y(i,3) = [WE,5-1) + 9, j+1) + G(i+l, §) + Y(i-1,3)] /4
(a special case of equation (4.42))

and using the newly calculated values immediately, he obtained a

solution for the Laplace's equation.

80)

Richardson( had suggested a similar method, earlier

(1910), in which he did not replace the old values by the newly calcu-
lated ones until the whole cycle was completed. This method
converges somewhat slower than the one suggested by Liebmann.

In general, for each interior point (LJJij)i and each boundary point

(¥

we can form an equation, and hence will have a system of
pq’b q y

linear equations for the nodal points. The most popular method for
solving the simultaneous linear equation is Gaussian elimination.

A dense system of N equations for N unknowns can be solved with

3

an order of =5 multiplications, plus other arithmetic operations.

Elimination methods which are called direct methods are
rarely applied to solution of elliptic difference equations because of
the large storage space required to store matrix aklij in the

relation

Tk ¢ﬁ = by, (4. 69)

(repeat of the subscripts means summation on these subscripts)
For partial differential equations, N is usually chosen very large
. 2
such that we can only store some multiple of N but not N elements.
However, it is obvious that, disregarding the round-off

errors, the elimination method will give the exact solution in a finite
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number of steps. On the other hand, the indirect or iteration methods,
both in operation and in storage, take full advantage of the numerous
zero elements in the matrix [a] . Moreover, in contrast to the
elimination method, iteration methods are self-correcting in the
process of iteration and, therefore, minimize the round-off error.
The algorithm for an iterative method is very simple, but
rormally an exact solution can be achieved only with a very high

number of iteration cycles,

The algorithm for the direct method is rather complicated.
: . (81)
The above methods have been treated extensively by Householder

. (82) . . .
{1953) and Bodewig (1956). If we write the two-dimensional
matrix [Lliij] in the form of a vector {4}} then equation (4.69) can
be written as follows

[a]{v} = {B) (4.70)

considering the difference equation (4.42) matrices [A] and {B}
can be formed. [A] i1s a matrix with no zero diagonal element and
has diagonal dominance and also is not reducible. Then the method
of successive displacements, sometimes called relaxation method,
. . . . (83) . )
will converge in solving this problem. This method was intro-
duced by Seidel (1874), but is known as Gauss-Seidel method.
Liebmann applied this method to the elliptic difference equations

(1918479

Overrelaxation

Overrelaxation is the change of any element of [qJ] by

w times the exact amount of the change necessary to make that
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(84)

element satisfy the equation written for it (w > 1). Young and

85) (86)

Frankel( introduced this procedure and Friedman,

(87) (88)

Householder, Arms, Gates and Zondek, Keller, (89) and

others have studied and applied this theorem. They suggest and

prove that overrelaxation speeds the process of iteration considerably.

(90)

w is called overrelaxation factor and the best value is

w, = 1 + A (4. 71)

b (1 + \/1 - X)Z

where A is the limit value of dn /dn—l and

a = max [9(,9)]" - [ew ] (4.72)

n is the number of the iteration cycle. The theory indicates that
it is much better to overestimate than to underestimate w to achieve
a better convergence rate.

The best method of choosing w is to perform a number of
iterations with the iteration factor equal to 1, and estimate the
value of \ and thereby W -

For solving the problem of torsional stiffness in the inelastic
range, i.e., the difference equation (4.42), the indirect method
with the advantages of overrelaxation procedure, explained above,

has been used and the difference equation (4. 42) has been written

in the following form
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(o, 331"

i

w [Gs(i’-l,j')[np(i—l,j)]n + G_(i'+1, 3" [w(i+1, 17

+ G151 [6,3-D]7 + GG D [eGE 3+ D] e, )

hzb(isj)/C(i,j)] + (1 - w) [q;(i,j)]n (4.73)

4.15. TECHNIQUE

i. Choice of Mesh and Matrices

In order to use all the locations assigned to the variable
(i, j) in carrying out the manipulation of the problem with the
electrical digital computer, two different variable names have been
assigned to the flange and the web, [qu] and [npw] , respectively.
[Lpf] has a dimension of (nf, m, + 1) and the dimension of [LIJW]
is (nw, m_ + 1) (Fig. 4.20). In order to preserve the continuity

of [Lpf] and [L]JW] in the intersection the following relation is kept

between them

L[JW(l,O) = Ll,Jf(I’l+1, m, - 1) 1:1,2,.,.,nw
L[JW(1,1) = Lpf(n+ i, mf) 1:2,3,,,.,,(nw— 1) (4. 74)
d_JW(l,Z) = ¢f(n+1, mf+ 1) 1:1,2,.,,.,nW
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1.1
¢?,) |

wf(1,mf)

N ——eee— X

< —————————————————

y{ng.mp)

wa(nf’ﬁ

Fig. 4.20. Choice of a Network

The reason for excluding nodal points (1, 1) and (nW 1 ) of the web and
the corresponding nodal points of the flange in continuity relations is

the indeterminate nature of the values of | at these corner points
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when approaching from x or y directions towards these points.,
Theoretically, the torsional stress at these corners is infinite. In
this solution two extremely close points are assigned to the corner
points, and therefore, aniﬁ\ abrupt discontinuity exists between the
values of | at these two points. In evaluation of torsional stiffness
these corner points have been ignored.

For the same reason, two matrices have been designated
for the values of secant shear modulus for the flange and the web,

[GSf (2n. + 1, 2m_+ 1)] and [GSW (2n_+1, 2m_+ 1)],

respectively.

For simplicity in this analysis the dimensions of the T
section have been chosen equal to some even multiples of the mesh
size h, except for the length of the stem of the web, which can be
taken any odd or even multiple of h. By doing so, existence of the
non-equidistant points due to the geometry of the cross section have
been avoided. Moreover, the center of the twist will coincide with
a nodal point.,

The dimensions of the cross section will be

t = (mf - l)h
= -1

b (nf )h

w=(n -1)h
W

d=(m _ -1)h+t
W

(mf, ng and n_ are odd integers)
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ii. Evaluation of Matrices [GS] and [y]

In order to form the secant shear modulus matrices one has
to evaluate the strain at that stage of bending and at the previous
stage of bending for every nodal point, and determine whether the
regression of strain has commenced at that point or not. In the
former case the properties of the element, represented by that
point, is chosen to be elastic, i.e., the secant shear modulus equal
to G, and in the latter case with the strain at hand, inelastic secant
shear modulus can be evaluated according to the previous discussion.
Strain at the nodal points for two successive stages can be evaluated

as follows

(E)l 1 1 1

It
™
1
X
o
i
=
S

(4.76)
(€)

1]

f o) - e ) :

o
In the above equations x and y are the coordinates of the respective
nodal point and €, is the strain of the origin of the xy-axes (center
of twist) and (-<|>X) and (-¢y) are the curvature in the x and y
directions respectively. Superscripts 1 and 2 indicate the stage

at which those values are given.

iii. Border Line of Discontinuity

1 2
Equating (€)" to (€) the separating line of elastic and

inelastic regions can be expressed

X

[<¢ ) - “*’X’IJX ~ [(¢ ) - “"y>1JV - [(eo)"‘ - (eO)IJ (4.77)
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This line will intersect the x- and y-axes at A and B respectively.

2 1
()" - (e,)

X = 1 x =0
(6. - (8)
A < B < (e )2 ~ (e )1 (4. 78)
Y = 0 Y = o 2 0 1
| | (¢y) - (¢Y)

In case of the existence of the line of discontinuity, stepwise
approximation of the border lines in the flange and the web can be
made. Then some arbitrary values must be assigned to the elements
of matrices [qu] and [LIJW] and the iteration to the extent of

acceptable approximation carried out.

4.16. SHEAR STRESS AND TORQUE

After determining the values of the warping function,

components of the shear stress can be found from the following

relations
L) - gyl e 1)
[TXZ(i,j)]f = GGsf(i 0 ST - ¥d)]
(4.79)
N AR U FCEE YR
[ry (9] = 06, (530 — + x ()]

By changing the subscript f to w shear stress components for

the web can be expressed in terms of [LLJW] , [Gs ], {XW}
w

and {Yw} - Then torque M_ can be evaluated using equation (4.22)
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n m
w w
* Z Z [Xw(f)Tyzw(k,Jl) "y R T O D] AA (K, 2)  (4.80)

k=1 ¢=1
where
.. 2 . . .
AAf(l,J) = AAW(k, £) = h for the interior points
hZ
= = for the boundary points
hZ
=T for the corner points
3h‘2 .
= = for the three corner point

(line separating flange and web counted on boundary line)

4.17. TORSIONAL STIFFNESS COEFFICIENT

Thus, having evaluated MZ in terms of 0, stiffness
coefficient can be evaluated from the relation

C=M_ /6 (4.81)

4.18. CONCLUSIONS

The objective of this study was to determine an approxi-
mate acceptable value for the torsional stiffness coefficient under

the conditions explained in this chapter, and to use this value in



-104-

the torsional behavior of the column under study. Going through this
rigorous calculation for every iteration cycle of the deflection of the
column is very much time consuming and rather impossible.

A study was made for a T section of the following dimehsions

t = 1 inch

b = 6 inches (4. 82)
w = 1l inch

d = 7 inches

and twelve different cases of strain distribution and the stiffness
coefficient for each case was evaluated, and then for the same cases

the following computation was followed

nf m
3\ 3\ G (1,3) AA(i,])
Ay
i=1 =1
c =l Ebt’ - 0.21t%)
a n m 3
f f
7 AA (i,3)
{y
k:l ﬂ:l
n m
W W
z 7 G (k, I)AA (k, 2)
JZ_Jl
k:l = 1 3 4
— [—3—(d-t)w - o.105w] (4.83)
W W
S anen
ly
k=1 =1
n m n m
f w w
? G ) AA (i, )+Z§‘ G (k, 1) AA (k, 1)
- f L
i=1 j=1 k=1 £=1 w 4
a.D
n m n 171
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For this example h was taken

0.1 inch and @ = 0.105
(reference (91), figure 7) T
and D, = 1.25 inch (Fig. 4.21). ——f————\

t

Fig. 4.21. Junction of Flange and Web

The range of variation for these twelve cases was found to be

0.92C_ < C < 1.54C (4. 84)
a a

(4.83) indicates that assumption of Ca as the stiffness coefficient
is more a conservative assumption and does not deviate 'too much"
from the exact solution. To formulate a closer solution more cases
have to be considered and solved.

In the study of the column problem, equation (4.83) has been
used as an approximate value for the torsional stiffness of the

"T" section.



CHAPTER V

INCREMENTAL ANALYSIS OF "T" COLUMN BEHAVIOR

5.1. INTRODUCTION

The procedure presented herein is the one used to determine

the load deflection history and thereby the ultimate load carrying

capacity of the column. This procedure is based on Newmark's

(92)

and uses Batterman and Johnston's method of

(16)

numerical method
expressing strains in terms of the radius of the curvature.
In order to evaluate the integrals in the equilibrium, torsional
stiffness, and the bending stiffness equations over the area of the
cross section of the column, the cross section was divided into a

(36)

grid network in a manner similar to Birnstiel's method. Integrals
were taken over each mesh area (assuming that the value of the
integrant is constant over the mesh area and is equal to the same
value for its centroid), and then summed over the cross sectional
area. The effect of initial crookedness in the plane of symmetry

and in either direction of the x-axis has been taken into consideration.
Eccentric loading in the plane of symmetry has been studied and
compared with the initial crookedness. Different ratios of bending

stiffness with respect to two principal axes at the unloaded state

have been studied. Comparison has been made between the assumed

-106-
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sinusoidal deflected shape and the more exact deflected shape. Also,
different stress-strain relations have been used to find the load-
deflection history of the column. The results of the above studies
will be illustrated graphically.

o : (93)

The steps followed in this analysis and also the MAD

language computer programs, written for the IBM 7090 to carry out

the numerical manipulation, will be explained in this chapter.

5.2. STRESS-STRAIN RELATION

For the purpose of comparison of the analytical and the
experimental results it was necessary to use experimentally
determined elastic and inelastic properties of the material in the
incremental analysis. This necessitated that the stress-strain
relation be prepared in a manner that could easily be fed into the
computer memory. The ideal case was to find a mathematical fit,
as close as possible, to the experimental results.

The best fit curve consisted of three parts, beginning with
a straight line portion and ending with a segment of a hyperbola,
connected together with a portion of a parabola of third degree.
These three segments were chosen such that the slopes of the two
segments at the point of their intersection were the same. The

(94)

method of least squares was used to choose the separating
points of the above three segments and the numerical calculations

were done by the digital computer. The graphical representation

of the algebraic fit for the stress-strain relation along with the
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elastic (tangent) modulus and the secant shear modulus, evaluated
on the basis of discussion in Chapter IV, is shown on Fig. 2.6.

The equations of the best fit curve are:

Straight line segment € < 0.0035 o =10290x €
E === 10290
€
8 3
Parabola segment 0.0035€€<<0.0050 o =4.54444x10 €
6 2

- 8.83111 x 10 €
4
+ 5.54069 x 10 ¢

- 69.2125

do 8 2
— = 13.63332x 10
t de 13.6 * €

- 17.66222 x 1066

=1
i

(5. 1)
+ 5.54069 x 10

]

-3
Hyperbola segment € > 0,0050 ¢=[-1.77152x 10 7/

(€ - 3.7743 x 10'3)]

+ 45,2953

do 3

=3 = [-1.77152 x 10~

(e - 3.7743 x 10'3)2]

t

Also two alternative stress-strain relations are used in the numerical

evaluations. The stress-strain curve used by Batterman and

(16)

is called stress-strain curve #2 (Fig. 5.1). The stress-

(14)

Johnston
strain curve used by Johnston in the strut model study is called

stress-strain curve #3 (Fig. 5.2).
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5.3. BASIC RELATIONS USED IN THE INCREMENTAL PROCEDURE

i. Division of the Column Length

The column is divided into m equal segments of length \

A =

8|

(5.2)
The nodal points along the column are numbered consecutively starting
with 0 from the top (left) and ending with m at the bottom (right).

In this chapter the longitudinal view of the column will be

designated by an axis passing through the centroid of the flange (twist

center) of the initially straight column (Fig. 5. 3).

U(l) <ULS2) Y(m-l)

! \ | | 1 —z
N~ \ N -
-?’___. e N Ai)_(_______.——-—’/L—"F’

TAX /
\L_—/
0 i 2 m-2 m-{ m
P
L
y
Fig. 5.3,

Initial and Deflected Positions of the Column

If it is desired to have the mid-height section as a nodal point, m

should be chosen an even number. All behavior characteristics of

every nodal point, such as deflection, curvature, depth of strain
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regression, and others which will be explained, can be distinguished
by the values of the subscripts of every variable, i.e., [-d)(JZq)]n
th .

represents the curvature at the £ nodal point (£ = 0,1,...,m) along

th . . . . .
the q  axis (q = 1 is x-axis, q = 2 is y-axis), after n cycle of
incrementing the fixed increment. The fixed increment in this analysis
is chosen to be the increment of the deflection of the mid-height of the

column in the x direction, i.e.,

(A8 (5, D], = [A8 (5, D], = «.enn = [A8(5, 1] (5. 3)

ii. Curvature-Deflection Relation

Consider the vector <U> with (m + 1) eiei’nents. The
element Ug of the above vector represéﬁts the deflection of the column
in a longitudinal plane of the column under consideration. If {—d)}
is the curvature vector of the deflection {U} (Fig. 5.4), then,
using the Newmark's procedure, one may find the matrix [R] such
that
{(v) = [r] {4 (5. 4)

du
) dz?2

\./m

IR il
L A

Fig. 5.4. Curvature Distribution along the Column
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7 r h
UO ¢0
Ul q)l
UZ ¢Z

:§ ) <¢}=< ) (5.5)

Um-l (brn-l
(o o
< \ J

Matrix [R] is the product of three matrices [ql] , [qz] and [q3] .

Matrix [ql] converts the distributed values of the curvature, {-4)} s

into the concentrated angle changes, {9} , according to the following

relation (Fig. 5.5)

ONIO (5.6

8
° 1 fz 0’/ lem-Z 9m-1 em
..)‘-L)\J L)\-—A-—)‘_.
L

Fig. 5.5. Concentrated Angle Changes
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where
(eo A
E)l
eZ
(e}=¢ = ) (5.7)
ern-l
5]
m
\ J
and
r ‘1
3.5 3. -.5 00 0 0O O
1 10 1 0O . 0 0 O
0 1 10 1 O . 0 0 O
[q (m+1 m+l)]=—I:— : ' ' (5.8)
’ 12m

0 o 0 . . 01 10 1 0
0 o o .. 00 1 10 1
0

o 0 . . 00 -.53. 3.5

e =

The moment vector in the conjugate beam loaded with the angle
changes will be equivalent to the displacement vector {U} Matrix
[qz] relates the concentrated angle change (load), i.e., {e} , to the
average slope of the deflection curve (shear in the conjugate beam),

{S} , in the following equation(95)

(s} = la,] {e) (5.9)
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where
( 7
Sl
SZ
{s} = { : (5.10)
Sm—Z
Sm—l
\ J
and
. -
0 m-1 m-2 m-3 2 1 0
0 -1 m-2 m-3 2 1 0
0 -1 -2 m-3 2 1 0
1
[qz(m-l,m+l)]=—r;
0o -1 -2 ~(m-2) 1 0
0 -1 -2 ~(m-2) -(m-1) 0
- J

(5.11)

Matrix [q3] transforms the average slope (shear) into the deflection

(moment in the conjugate beam) in the following form (Fig. 5. 6)

(U} =lay] {5} (5.12)
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L
T F f t ! R
s‘| 11/‘ Uz UD’ Um-2 sr?"l
T -
Ui m-2 U -1
-1
Y

Fig. 5.6. Average Shear and Deflection

where
r -
0 O 0 0
1 0 0 0
11 0 0
[q3(m+1,m—l)] =;nli (5.13)
11 1 0
11 1 1
. J
Combining (5.6), (5.9) and (5. 12) we get
{uv)- [a5][q, ] [q, ] {cb} (5.14)
Matrix [R] can be found by comparing (5.4) and (5. 14)
[R] = [a5] [q,] [, ] (5.15)

One can find [R] by replacing for [q1 ], [qz] and [q3 ] and

performing the operation
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R..=0 for i = 0,m
1)
g 2 .
_(m-l)L for j =0
- 3 (except for i = 0, m)
12m
_ iL2 for j = m
- 3 (except for i = 0, m)
12m
2 (5.17)
[12i{(m - i) - m] L ) _
= 3 for i =
12m
-
= M for i > j
3
m
oL 2
=——————1(m_J3)L for i< j
m

The above relations show that, except for the boundary elements,

the matrix [R] is a symmetrical matrix

R,. = R..
ij ji

Matrix [R] relates the curvature to the deflection as well as it
relates the increment of the curvature to the increment of the
(96}

deflection. This follows from distributive property of the matrices,

as we can write

{¢>n+l B <¢>n ¥ {A¢}n+l (5. 18)
Using the relation (5. 4)
(07 1= BRI =R, * [RI(80),, = (0D, + (a0),,
(5.19)

where

{AU}nH - [R]{A¢)_,, (5. 20)
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Here, in every cycle of increment the algebraic increments of the
curvature and the deflection are considered and related to one another.
Because in the general case we shall have to evaluate the deflection

in two directions, § and 6£2 will represent the deflection per unit

21
length of the column at ﬁ_th nodal point along the column in the x and

y directions respectively. A6£ and ABfZ will represent the incre-

1

ments of the above values. Using the matrix [R] we can write

m

= =1,2;4=0,1,..., 5.21
Aélq Z T e A¢kq (q=1,2;2=0,1, m) ( )
k=0

where Aq)kq is the increment of the curvature of deflection in the
th . . th .
q  (gq=1,2) direction at the { nodal point along the column, and

r, = Ry /L (5.22)

Relation (5.15) (or (5.17)) shows that elements of the first and the
last rows of the matrix [R] are zero, then

det [R] =0 (5.23)
and therefore [R] is a singular matrix and its inversion is not
possible. This means that in the general case for which the curva-
tures of the end sections are non-zero, with the ends prevented from
deflecting, one cannot obtain the curvature vector {—c])} from the
displacement vector {U} In the case of concentric loading of the
pinned-end column the end section curvatures are zero and therefore
the first and the last elements of the deflection and curvature vectors
and also the first and the last rows and columns of the matrix [R]

can be dropped so as to eliminate the singularity of the matrix [R] .
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In this incremental procedure the vector {A¢} was assumed, then,
using [R], the increment of the displacement vector, <AU} , was
evaluated by (5. 20) and thus the need for the inversion of [R] was
avoided. The advantage was taken of the matrix properties in the
process of modification of the assumed <A¢} for a better value and
normalization of the {AU} , i.e., both the modified {A¢> and the
corresponding (AU} were multiplied by a scalar value to make the
deflection at the mid-height section equal to the assigned value, as
{au} = [r]{a0)
a{au} = a[R]{2¢) (5.24)
(aau) = [R] {a80)

where a is a scalar factor. Part of the incremental analysis is

1]

devoted to the assumption of a sinusoidal curve for the deflected

shape of the column. In this case we can write
U(z) = U Sin — (5.25)

where UO is the mid-height deflection, then

2
[-6(=)] = U(=z) = iz U,
and (5.26)
2
L
U L° "2 ¢ L
Z= 2 us Z——Z'

Thus the matrix [R] will have only one element, i.e.,

2
[R] = [%] (5.27)
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iii. Equilibrium at the Nodal Points along the Column

In order to evaluate the values of the integrals in equations
(3.24) or (3.27) for planar bending, the distribution of stress over
the area of the cross section must be known. In general, the stress
cannot be expressed in the form of a single function in terms of § and
n. Thus, the integration cannot be carried out algebraically. Numer-
ical evaluation of the integrals required the division of the area of the
cross section into a grid network (Fig. 5.7). Then the values of the

integrant at the centroid

b/n¢
of every mesh and (1.1) (1,mf)
thereby the values T B §§éi/—f/mf
of the integral over
its area were deter- (1)
' (k,p)
mined and summed /
(i) Yw Nw /—(d-t)/mw -—(1,m,,)
over the cross ~h4 Hrre T
b IR \%Efiér S W

sectional area. i . f

)

L NI sl
Two different variable -t) — S

(d-t) (nw,mw)
names were chosen (nw =1)
to express the coor-
dinates of the mesh
centroids to differen- v R LERR
(ng,1) ' (ng,mg)

tiate between a mesh fr fot

Y
of the flange and of K
the web. Fig. 5.7. Cross Section Divided

into Grid Networks
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Coordinates of the point (i, j) of the flange are

t ) 1 t
gf— ng" -E+(J-Z);f
(5.28)
- ___}‘l.{_ (1_1.)_2
e = Mg 77 2 2 n,
Coordinates of the point (k, p) of the web are
t 1 d-t
by = Egp = 3 (P 3) ()
W
(5.29)
W 1w
Me = Mex = "7 1 (k’E)T

g

Now the integrals of the equations (3. 24) at the lth nodal point along

the column can be written in a summation form

P M w Pw
e Y S e sy e Y
gA o(&:m) - ch AAfIJ ¥ L lekp
izl j=1 k=1 p=1
nf mf nw rnw
T D APV
gA o(&m)m L L O-ffl_] Mg AAfl_] ¥ Ly O-Wlkp N wk AAwkp
i=1 j:]. k=1 p:l
e "w Cw
dA = S AA ? y
S‘A &) & L ch + o 1 Gwﬂkp prAwkp
i=1 j=1 k=1 p=1
ne mg (5.30)
y 2 2
'g‘A o(&:m) e da E ...1 frij (gfj 11f1) AAfl‘] ¥
i=1 j=1
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where
AA . = brtn - AA,
I Ry
(5.31)
AA _d-tw _ AA
wkp n_m W
W W

The area of the mesh is constant for the flange or for the web.

Therefore, AAﬁj and AAWk can be factored out of the summation.
. . th .
Using the above relations for £ nodal point along the column the

equilibrium conditions (3.24) can be written in the following form

n, mg nW m_

P -1AA S‘ .. AA 7 y =0 5.31

{ f 7 z Uf£13+ wo ol O-W,ﬂkp ( 2)
i=1  j=1 k=1 p=1

By My "w
can Y S a5 S
f 7, L (Tfﬂl_] T AW s L Uwﬁkp T wk
i=1 j=1 k=1 p=1 (5.31b)
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BZ AT feij pfij w ol L 0~Wlkp pWkp
i=1 )= k=1 p=1
n, m
%bt - 0.21t i f
- n.m y S‘ G
£f i=1l j=1 £0ij
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la-ed o005t YOV a.D
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¥ n m Gs +nm +n m
ww k—=/l p—:jl wikp ff "w w
n m n m
f f W W
7 G+ 3 7 G =0 (5. 32d)
i=l j=1 £i] k=1 p=1 wikp
-
where
2 _ 2 2
Pij fij T i
(5. 33)
T
Pwkp ~ wkp 1ﬁ'wkp

The last term, in brackets, of the equation (5.32d) is the torsional

. . th .
stiffness of cross section of the column at the £  nodal point

evaluated according to the equation (4. 83).

iv.

Evaluation of the Stress at the Centroid of the Mesh

Stress is given as a function of strain; therefore, the strain

at the centroid of the mesh should be known so that the stress at that
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point could be evaluated. Having made the assumption that the plane
sections remain plane, in order to express the strain across any
cross section along the column, it is necessary to know the strain at
one point of the cross section, i.e., at the origin of the £n{ axes,
and the curvature of the deflected shape of the column in two non-
parallel longitudinal planes at the same cross section. In general,
in order to express the orientation of the strain distribution plane
relative to the unstrained position, it is required to know the strain
at three points which are not on a straight line. Let €1 be the
strain at the centroid of the flange at the lth cross section. Strain €

at point (€, n) of this cross section will be
= - - (- g .34
€ (&) =€, - (6, + B,o,)E - (-B,d, +6,)n (5.34)
For the mesh of the flange and the web
€ep3j = Cop T (P TR0 By - (B 0yt Oy My,
(5.35)
Cwikp = Sop ~ (®g1 T By ¢y)) gwp LT EITRR TP TPN
where (»4)1“ ) and (~¢£2) are the curvature of the deflected column

. th . . .
in the xz and yz planes at the /  section, respectively. The strain

at the origin is expressed in the following form

€, =%, C,p " C (£=1,2,...,m) (5.36)

¢£2 L2

The magnitude of Clq is the same as the corresponding curvature of
the deflected shape. Figure 5.8 gives the strain distribution at the
th

£ cross section along the column and at the two consecutive incre-

mental steps, n and (n + 1).
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Fig. 5.8. Strain Distribution at the lth Cross Section

th
The depth of strain regression SR at the (n + 1) incremental step,

£ section and on the qth axis will be

[SR ] - [¢£qch] nt+l [q)ﬂqcﬁq]n
1q9-°n+l [Acl)

(q:l, 2’ »e:]-, Z,. . .,rn)
fq]n+1 (5.37)

Stress at the Strain Regression Region

Having evaluated the strain at the centroid of the mesh, if

strain regression has occurred, i.e.

(€ ne1 < €435)n (5.38)



then the stress will be
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= - - .. 5- 3
(Ufij )n+1 (o-lij )max E [(Glij )max (eh_] )n+1 ] ( 9
h d '
where (élij )rnax an (O-Eij )max
are the maximum strain R
/
. /
recorded at the mesh (£ij). /
|
: . / (o,..)
If strain reversal is present 1 £ij 'max
/
/
(the fiber is in tension) ( ) /
T4ij 'n+1 e/ .
(Fig. 5.9), the stress will U L/\_Eeff €
. (Ezij )n+l _:_\J_q
correspond to the effective
M (e .. —
f1) ‘'max
strain (€ ff), in the stress-
€ Fig. 5.9. Strain Regression -

strain diagram, where

(€ege) = (

v. Planar Bending

€,Zij )n+l ) [(efij )max

Stress - Reversal

) Uﬂij max ]

= (5. 40)

In the stage where the biplanar bending accompanied with

torsion has not yet commenced, one should take advantage of the

simplifications which can be made in the preceding relations. In

planar bending (bending in the plane of symmetry)

$pp = By, = Uy, =

(£=1,2,...,m)
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then

€015 7 C1g25 7 00 T Effnfj and € p1p = Cwazp = 0 T €Wﬂnwp

and (5.41)
%015 7 %fg25 T 00 T 0-flnfj and “wilp = "wa2p” " T GFwﬂnwp

The equilibrium equations will reduce to

m m

f w
Pﬂ - anAf Z (Tfllj + nWAAW o-wﬁlp =0 (5. 42a)
j=1 p=1
Pk (EZ TN R RO
mf mw
-i-anAf Z 0'lej ng + nWAA Z Uwﬁlp Wp 0 (5. 42b)
j=1 p=1

and the strain at the centroid of the mesh will be

Efﬂij =€, ¢£1 gfj (1:1’2’“'°’nf)
(5.43)
_ - k= Cee,
eWlkp €ot q)ﬁl gWp (k=t, 2, nw)
For the evaluation of the limiting point of the planar bending
equation (3. 35) can be written in the following form
n AA S\ E €., + n_ AA S‘ E £
: £ wip P
£, = =1 p=1 (5. 44)
! m, m



where

wip
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the tangent modulus at the point gij of the flange

th
at the ¢ section of the column

the tangent modulus at the point gwp of the web

th .
at the [/ section of the column

th .
The ratio of the stiffness « at the ¢ cross section of the column

will be
, mf , mW
bt >“ E L W(d-t) y E
3 - t. . 3m 7y t
o = f j=1 f1j W p=1 wip
1
mf mw
bt S‘ - 2 w(d - t) ? - .2
mf 7 (gf_] ) ﬂ) Etfﬂ. ¥ m ] (gwp gﬁ) Et ’
j=1 J W p=l wEp
(5. 45)
5.4. TECHNIQUE OF THE INCREMENTAL ANALYSIS

The technique of the incremental analysis may be summarized

as follows:

Given:

ii.

iii.

iv.

the dimensions of the cross sectionb, d, t, w

the length of the column, 1, or the slenderness ratio,

L

r

m_, n ,

A\

m

the number of divisions of the grid, n w

f’ f?

the number of the segments the column is to be divided

into, m

L ‘s
—, positive

the increment of the deflection Ax (at z = >

or negative)



vi.

vii.

viii.

Desired:
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initial crookedness 6i , aiy; eccentricity of loading,
X

e eY (per unit length)
relation between strain and stress, strain and tangent
modulus, and strain and secant shear modulus
acceptable error in the evaluation of the axial load in
the longitudinal sections, satisfying the moment

equilibrium equations and the calculation of the twist

at the longitudinal sections.

Equilibrium position after each increment of the
deflection together with all the related characteristics
such as deflection and curvature in the x and y directions,
twist along the column, axial load, moment about the

x- and y-axes, stress distribution across the column

and at the longitudinal nodal points, and the border line

of strain regression.

The following are some important points to be noted in the

process of convergence to an equilibrium position after each incre-

ment:

. . th
The estimated change of curvature vector in the n

increment {-Acb}n was revised for a better estimate
according to the following relation

(APa ) +Q

_ vg n
[ae, ) ] = (¢, AP 5 (5. 46)
(c+3‘-) £'n

where c¢ = the number of the cycle of iteration
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(AP ) = (P ) - (P ) (5. 47)

m
(P, ), = o ) (B

avg'n +1

Having revised [{Aq)}n] to [<A¢>n] , - using
c c+

2

matrix [R] corresponding increment of deflection

[{AU>n] | can be obtained. Normalization of the
c+

2

curvature and the deflection vectors may be done

according to (5. 24),

[{ae), ] = a[{a¢) ] |
c+l c+

2
(5.48)
[(avd] = al{av)]
ct+l Ct+=
2
where
a = (Ax }inc (5.49)
Li.m
[ao(5n1
C+—2-
and (A ). = mid-length deflection increment
x 'inc

The term Q in the equation (5.46) is used to optimize
(16)

the convergence rate. The value of Q should be

chosen such that the numerator and the denominator of

the fraction in the equation (5.46) would always be

positive. In the unloading stage where (APavg)



ii.
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and (or) (API) are negative, the fraction may become
negative and consequently the revised values in the
cycles of iteration will oscillate between a negative
and a positive value without achieving convergence.
For the same reason Q was assumed to be the sum

of two values

Q=0 +Q (5. 50)
where
Ql = largest value of {AP}
Q2 = a positive value which should be

reduced if the convergence rate is

slow and visa versa
In the loading stage where (APavg) is positive if the
magnitude of (API ) is smaller than the (APavg)
a greater curvature change and otherwise a smaller
curvature change should be assumed. In the unloading
stage where (APan) is negative, the curvature
revision scheme should be inverse of the above

procedure. The fraction in the equation (5.37) follows

the above scheme.

The change of curvature vector {—Acb) should be
controlled such that if its magnitude becomes smaller
than a specific value the dire:ctvion (sign) of that value
will be changed. This will prevent the underflow of

the values of the change of curvature vector {-A¢ } .
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The change of direction of the increment of the curvature
occurs in the unloading stage and at the sections close

to the end of the column in the case of eccentric loading.

The steps followed to obtain the desired results are summar-

ized in the computer program flow chart in Appendix A.

5.5. RESULTS

The cross sectional dimensions of the tee columns which were
analyzed incrementally by means of the 7090 digital computer are
as follows (Fig. 5.7)
b = 4. inch

t = .279 inch

(5.51)
w = ,218 inch
d = 1.5, 2.5, 3. inch
Other section properties were
d = 1.5 inch d = 2.5 inch d = 3. inch
Area, inch2 1.382 1.600 1.709
. 4 ,
Ix’ inch 1.489 1.490 1.490
. 4
Iy’ inch . 161 . 734 1.245
T inch 1.038 . 965 . 934 (5.52)
ry, inch . 342 L 677 ., 853
IX
a:I—— 9. 248 2,030 1.197
Yy

d, inch . 283 . 518 . 660
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Load-deflection history of columns of various combinations of slender-

ness ratio, initial crookedness, eccentrically or concentrically loaded

(Fig. 5.10) (with three

different stress-strain 1/2

relations) was deter-

mined. Combinations 'L\
\\\§\§
which were studied 1
X
are summarized in
Fig. 5.10.

Table 5. 1.

—— —

Eccentric Loading-Initial
Crookedness
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Table 5.1

Combinations Analyzed Incrementally

by Digital Computer

Stress-Strain d KL/t Initial Eccentric

ale ol
sesk

Relations Crookedness™ | Loading

10
20
30
40
50
#1 1.5" 60
80
100
120
160
200

2.5" 30

40

#2
and 1.5 40 %
#3

“concentric loading - initial crookedness assumed to be a half-sine

curve (equation 3. 6); 6iy =0, 8, = (*0.0, T0.0001, t0.0005,
10.001, 10.002, 10.004).

**no initial crookedness - e =e , r =1, e, = 0 (equation 3.4,
tx x ex ty

Fig. 5.10), e_= (fo. 001, *0.002).
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In the following pages the summary of the results of the incremental
analysis will be shown graphically and tabulated. Some selected
graphs of the load-deflection history will also be presented. For all
the graphs the stress-strain relation used is #1 and d = 1.5 unless
otherwise is indicated.

The lines indicated by (i.b.g.) in the graphs are the tangent

lines to the dimensionless load-deflection curves, i.e.

?

AP/Pt L AP}
(i.b.g.) = lim g—-——-—’ = — lim l———
AL T pg—o By A1 As—0

(I.B,G.)(?)L—) (5. 53)
t
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.04
i.b g A G b L
.D.gQ. r.m.s.
—-’_"’—_"‘—"‘%\-»-._
—Six =+0.
=+0.000I
=+0.0005
=+0.00I
=+0.002
=+0.004
8ix = -0
= -0,000! ——]
= -0.0005
= -0.00l
= -0.002
= -0.004
— t———Prevented from
. Deflection in y Direction
i [ '/—Cemriid
I N
L
Bred © 4
-.00I 0] .001 .002 .003

MID-LENGTH DEFLECTION PER UNIT LENGTH OF THE COLUMN, 8, ,INCH /INCH

Fig. 5.11. Dimensionless Load vs. Mid-length Deflection
(initial crookedness; L/r = 20)
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r.m.s.-
Bix
3ix= -0.000!
i
8,x- ~0.0005
|
8ix= -0.001 -7
e
8 Six= '0002 \\\
g
: N\
O L—TN M- 240.000 _|
g \ =+0.0005
O e - :
g Six= -0.004 \\\— 410,001
o / N -.0.002 _
o N :.0.004
<
o
-
________ Half - Sing¢ Curve
Deflection Shape
[
f ‘fCenfr?id
-0 LA 5
1Bk
Y,
-.004 -.002 0 .002 .004 .006 .008

MID-LENGTH DEFLECTION PER UNIT LENGTH OF THE COLUMN, 8, ,INCH/INCH

Fig. 5.19.

half-sine curve deflection-shape comparison)

Dimensionless Load vs. Mid-length Deflection
(initial crookedness; d = 1. 5", L/r = 40; stress-strain relation #3;
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LI
1.0 3
PN | ] ///_\\\
\
.8
) e N pd
()
AN W / /
s |
: \
(1 o
S \
g 8ix = -0, :// \ \_slx =+0
Z | =-oo00 - 20,0001
= -0.0005 —// N~ -,0.0005
- -0001 \_  -.0.00!
| = -0002 - N -+0.002 —
= -T_ooc; /] / N\ =+0.004
_ [ g
L
=,
-.012 '.0I08 -.004 0 .004 .008 012 .0le

Fig. 5.13.

MID-LENGTH DEFLECTION PER UNIT LENGTH OF THE COLUMN, 3, ,INCH/INCH

Dimensionless Load vs. Mid-length Deflection
(initial crookedness; L/r = 80)

020
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Fig. 5.18. Dimensionless Load vs. Mid-length Deflection
(initial crookedness; d = 1.5"; L/r = 40; stress-strain relation #2;
half-sine curve deflection-shape comparison)
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Fig. 5.22. Dimensionless Load vs. Mid-length Deflection

(eccentric loading - initial crookedness comparison; L/r = 20)
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(eccentric loading - initial crookedness comparison; L/r = 40)
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CHAPTER VI

TESTING
6.1. INTRODUCTION
Previous Experiments
. . . (41,42) .
In a historical note on column construction, Hoff points

out that the columns which were hewn out of solid rocks and erected
almost five thousand years ago in Egypt, and twenty-five hundred

years ago in Persapolis still stand, while the scientific and mathe-
matical approach to the study of column problem started with Euler's
formula in 1744. Although Musschenbroek built the first testing
machine about 25 years prior to that date, his experimental research
on columns did not receive attention until it was discovered that
Euler's formula failed to give an answer to the column buckling in

the inelastic range. In 1889 Considere conducted a series of 32 column
tests that were important in relation to the tangent modulus theory.

Of large number of column tests which have been carried out,
a few will be cited, as follows:

In the 1920's several series of tests on rolled built-up columns
were conducted at the University of Wisconsin. 97 In these experi-
ments the effects of crookedness, eccentricity and imperfections of
rolling were studied and the results were compared with the "ideal"

column analysis. In these tests planar bending about the strong axis
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was considered. These tests led to the development of design
specification formulas in railing engineering practice.

(98

Massonnet and Campus performed 95 tests on columns in
Belgium and developed some design formulas for columns under
oblique compression, and made a comparison with European column
specifications. In these tests they studied symmetric or unsymmetric
eccentrical loadings.

In 1956 Baker, Horne and Heyman(gg)

published results of
the tests performed on small models of three-dimensional frame-
works in which the columns were subjected to biaxial bending in
Cambridge.
. . (100)

In 1958 Mason, Fisher and Winter performed tests on
24 welded hat-shaped sections, loaded eccentrically and bent about
the weak axis parallel to the flange.

(101)

Estuar and Tall in 1964 reported on a test procedure on

2
pinned end columns. In January 1966, Lay, Aglietti and Galalrnbos(10 )
suggested some testing techniques for restrained beam-columns.

0
In May 1966 Yarimci, Yaura and Lu(1 3)

published a report on
techniques for testing structures permitted to sway. The above
mentioned techniques were considerably helpful in developing the
testing procedure for the measurement of the lateral displacements
and the twist of the column explained in this chapter.

(37)

Recently Birnstiel, Leu, Tesoro and Tomasetti concluded
a report on the experiments of the H-columns under biaxial bending,

in order to compare the results with the values determined from the
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interaction formula published in the "Column Research Council Guide
to Design Criteria for Metal Compression Members, " and found the
formula generally very conservative. In this experiment 16 H-
columns of high strength low-alloy V65 steel were used. Twelve of
these experiments were loaded with substantially alike eccentricities
at both ends with respect to both axes of the column and not alike
eccentricity of the two ends on the rest of the experiments. In the
process of the experiment, load vs. deflection in two directions and
the rotation were recorded. As in the general case of the behavior

of the column, biaxial bending combined with torsion will deduce.

6.2. OBJECTIVE OF THE EXPERIMENT

In order to study the applicability of the analytical results
and compare the results obtained from incremental analysis with
those obtained experimentally, it was necessary to perform a series
of tests on the behavior of "T'" shaped aluminum alloy columns.
However, the author experienced a great deal of technical difficulties,
and some of the experiments in the early stages yielded surprising
and unexpected results. However, the experiences gained and the
guidance obtained cannot be overlooked.

In the first series of tests it was attempted to support the
column at the mid-height at either the flange or the web side and in
the direction parallel to the web and normal to the column axis in

order to study the load vs. deflection history of the column after



-163-

initiation of buckling in the positive
or negative x direction (Fig. 6. 1).
Surprisingly, considerably

higher ultimate load carrying
capacity than the one anticipated

by theory was obtained in the

case where the column was
prevented from deflection

towards the negative direction

of the x-axis. The reasons

for this are threefold:

L/2

X

Fig. 6.1. Column Supported

Laterally

i. The existence of the mid-height support changed the

effective length and the mode of behavior of the column.

ii. The existence of the eccentricity of loading at the ends,

no matter how small, in the positive direction of x was

producing horizontal force in the lateral support and this,

in turn, was changing the mode of deflection.

iii. The existence of even negligible initial imperfection or

crookedness in the plane parallel to the web and towards

the negative direction of x had the same effect as end

eccentricity.
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However, in this series of tests, because of the above reasons and
also over-estimation of the critical local buckling load, the failure
occurred in local buckling of the flange. To eliminate the local
buckling, the widths of the original test specimens were reduced.
Also, the scheme of the experiment was changed, lateral support
was omitted, and by intentionally giving end eccentricity along the
x~-axis and in one direction or the other the column was forced to

deflect in the arbitrarily chosen direction.

6.3. MATERIAL PROPERTIES

The material properties of the columns used in the experi-
ments were determined by compression tests on two specimens of
the complete rolled aluminum alloy H-section which was then split
longitudinally to form the T sections used as column specimens.

The length of the first specimen was chosen to be 12 inches but
occurrence of local buckling at 45. 7 ksi determined the last point
obtained for the curve of the stress-strain relation. The second
specimen was cut shorter to an 8 inch length and was braced to delay
the local buckling, but it buckled locally a step sooner than the first
specimen as the rods which were used to brace the specimen might
have exerted lateral pressure and changed the mode of local buckling
towards outside (Fig. 6.2). However, the range of the stress-strain
relation which was obtained was far more than enough for use in
relating the test results to analytical studies, as that limit of stress

was beyond that of the loading stage of the chosen column tests.
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M-M ""Precision Strain
Gages' (made by MicroMeasure-
ments, Inc., Romulus, Michigan)
were used as electrical strain
gages and the TINIUS OLSEN
400000 pognds Mechanical Testing

Machine in the Civil Engineering

Department Laboratory of The

Fig. 6.2. Specimens of the

University of Michigan (Fig. 6. 3) Material Properties Test

was used as a loading device.

The rate of machine head
movement was chosen to be about
0. 025 inch per minute in the
elastic range and 0. 05 inch in
the inelastic region. The graph
of stress-strain for the above
tests and the approximated
algebraic fit for them are given
in Fig. 2.6. The average

Poisson's ratio was 0. 325.

Fig. 6.3. Tinius Olsen Mechanical
Testing Machine
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6.4. COLUMN DIMENSIONS

Columns are compression members of considerable length
compared to their cross sectional dimensions. Tee column test
specimens of various lengths were prepared by cutting and milling
froma 6 x 4 6061-T6 aluminum alloy H-section. Before cutting to
length, the web of the H-section was cut along the line parallel to
longitudinal axis. The end cut surfaces were milled to give a
smooth surface with a rather precise right angle to the adjoint
surfaces. Very negligible effect, if any, of the relief of the residual
stress was observed as the specimens did not tend to become
crooked or change their initial form after cutting. The cross
sectional dimensions of each specimen were measured at a few
points along the length by means of micrometer and vernier calipers
with accuracy of 0.001 inch. The result of the measurements of
the web thickness is somewhat differed from the one given in the

Alcoa Structural Handbook. (104)
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The dimensions of the cross section were (Fig. 6.4)

*i-—

-{i_
fl
b
3 -
: d

Fig. 6.4. Cross Section
Dimensions

f

1

u

1]

1]

i

0. 230 inch (0. 250 in the

handbook)
0.279 inch

0.218 inch (0. 230 in the

handbook)

4, inch

2.5 inch (first series);

1. 5 inch (second series)

length of the specimens,

chosen such that the

slenderness ratio would

be multiples of 10

Other section properties were calculated as follows:

For H section used as stress-strain test specimen:

Area =

3.464

For T section:

d = 1.5 inch

) 2
Area = 1.404 inch
I = 1.489 inch4
* 4
I = 0.161 inch

y
r = 1.038 inch

X
r = 0,342 inch

Yy
d = 0.284 inch

d = 2.5 inch
Area = 1.622 square inch
I =1.490 inch4
* 4
I = 0.734 inch
y
r = 0,965 inch
X
r = 0.677 inch
y
d = 0.519 inch

(6. 1)

(6.2)



-168-

6.5. END CONDITION

Although a pinned-end column does not exist in actual
structures and a column with absolutely no restraints at the end
is a highly idealized member, study of its behavior is essential to
the column design. In practice the end condition of columns lies
between the two limiting points of full restraint and no restraint
at all. Providing full end restraint in testing is perhaps even more
difficult than furhishing restraint-free end condition. In the case of
a column with full end restraint, especially short columns, where
ultimate load is achieved in the inelastic range of the stress-strain
relation due to St, Venant's effect, in the distribution of stress at
the sections close to the end, a non-uniform flow will exist and the
effectiveness of the end restraint will gradually reduce. Moreover,
the presence of mixed problems will prevent us from studying the
sole problem of overall buckling of the column.

Establishment of a complete restraint-free end condition is
also difficult. However, the end resistance to rotation can be
minimized to a negligible extent by means of techniques such as
were used in these experiments. In the case of a pinned-end
column the critical and governing state of stress will exist in the
mid-height section with no end effects. For these reasons and
because the basic problem of overall buckling was under study,
the pinned-end condition was selected for the experiments and the
analytical study. Of course, consideration of effective length for

different end conditions, the effect of residual stress, transverse
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load, symmetrical and unsymmetrical eccentric loading, and planar
or biplanar bending for varied slenderness ratios and cross sections
with different ratios of moment of inertia in the x and y directions is

also a feature of this study.

6.6. END FIXTURES

A few variations of end fixtures have been used in testing of

the pinned-end columns. In 1887 Bauschinger used the conical end

(105)

fixtures (Fig. 6.5a) which allowed free rotation of column ends

and also ensured concentric loading. Later Von Karmaén, in his
column tests, used a knife-edged bar bearing on a plane surface as

27)

an end fixture( (Fig. 6. 5b).

(a) (b)

Conmical
RHB Edge

N\ Knife
.:...'_...: Edge |

Fig. 6.5a. End Fixture Fig. 6.5b. End Fixture
used by Bauschinger used by Von Kdrman
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In this experiment a segment of a sphere with attachments,

shown in Fig. 6.6, was utilized to provide a hinge action for each

end of the column. Each end fixture consisted of four parts:

1.

1"

A segment of sphere of radius 2—}1- and height 2"
(part #1), made of hardened crucible steel. The
maximum load carrying capacity of the sphere was

(106)

calculated from the equation

P =Ccd (6. 3)

in which d is in inches and P is in kips. For d = 4.5"
2
and C = 5 kips/inch

P ~— 100 kips (6. 4)

max
which provides a safety factor of almost 1.5 for this
experiment in the highest loading case.

" "
A circular plate of radius 5 > and thickness — made

16
of hardened steel of sufficient shear resistance, set
between the flat surface of the sphere and the end of the
column to give smooth distribution of load and prevent
local yielding (part #2).
A circular ring, to attach parts (#1) and (#2), and
together with part (#4), prevent the column from slipping
and help set the column in the desired position, as the
three small screws could move the segment of the
sphere with respect to the rest of the set-up some
fraction of an inch (part #3). This part is also made

of hardened steel.
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4. A circular lead plate (part #4) of radius 5—;— poured with
the cross section of the column cut on it such that the
centroid of the cut segment is at the desired position with
respect to the center of the plate which coincides with
both centers of the parts (#1) and (#2).

5. A circular hardened steel plate (part #5) of radius 7' and
1'"" thickness set between the part (#1) and the testing
machine to distribute the load at the top and bottom of
the machine on a larger area than the surface of contact

of the sphere and thus prevent the local yielding of the

headings of the machine.

Details of the end fixtures are shown in F‘ig. 6. 6.

Fig. 6.6. Different Parts of the End Fixture

Part (#6) in Fig. 6.6 is a device which was used to determine the

centroid of the cross section.
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6.7. ATTACHMENT OF STRAIN GAGES

In the tests for obtaining the material properties, M-M
Precision Strain Gages were used in order to have rather accurate
strain readings in the inelastic range. For the column tests SR-4,
A-8, strain gages were used. Strain gages were carefully attached.
The surface of the contact was cleaned with a range of medium to
soft emery paper. Then the surface was cleaned with carbon tetra-
chloride and finally with acetone. Duco cement, specially made for
strain gage attachment, was used as adhesive and moderate pressure
applied until the cement dried enough so that the edges of the gage
would not draw away from the specimen. Protective measures were
taken to secure the gages. Enough time was given for the cement
to harden before testing the specimen.

The purpose of attaching the strain gages to the column was
mainly to check the concentricity, or in some cases the correctness

of intended eccentricity, in the initial steps of loading.

6.8. MEASUREMENT OF THE LATERAL DISPLACEMENTS
AND THE TWIST
As the spherical end fixtures are free to rotate and displace
their contact points with respect to fixed surfaces of the headings
of the testing machine (Fig. 6.7), measurement of the displacements
and the twist of a point along the column relative to the end points

requires special attention and technique.
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The method used in this

P IP
experiment to measure the mid- l i
height displacement and the //:\\23
/ At~
twist, relative to the end L'T\"\’ \\\
! \
section, is as follows: \\ \\\
\\ \ \
Near each end of the \ \\ \\
\ L
column four pulleys were _ML"N—"

attached, two on two ends of

the flange, one at the end of Fig. 6.7. End Fixture Movement

the web and the last one on the face of the flange. The centers of
"
) from the end of

] w

these pulleys had a certain measured distance (
the column (Fig. 6.8). The pulleys were adjusted such that the piano

strings passing over them were exactly at the center of the cross

section.
(a) (b) (c)
! e X " 7 y
QR o o e e o
|
%y l}
|
L/2 N
Ll
|
|
|
|
% I,
\ ]
| Chrome Piano String
z Plate Scale z z

Fig. 6.8. Displacement and Twist Measurement Attachments



-174-

At the mid-height section 4 ferro
type chrome plates (blades),

with a scale divided to (1/100")
and each with their axis perpen-
dicular to the respective piano
string, were attached to the
column with epoxy glue (Fig. 6.9).
The grooves of the pulleys were
very narrow in order to prevent
the string from sliding from its

original position. The wires

were fastened at the lower end Fig. 6.9. Attached Pulleys and

Chrome Blades
and by means of some weight

attached to the other end of the wire, after passing over the upper
pulley, the wires were kept taut. The pulleys were lubricated to
eliminate the friction between the wire and the surface of the groove.
At the first step (400 lbs. of load to keep the column in position) and
at every step of reading the position of wire on the chrome plate
scale was recorded (such that the wire and its image on the chrome
plate and the reading edge were on a straight line). A magnifying
glass was used to read with a better accuracy. The mid-height
deflection and twist can be obtained from the above readings by the

aid of the following explanation:
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Let us assume that the centroid of the flange is the center of
the twist. xyz coordinate is fixed to the end of the column with its
origin (o) at the center of twist, and x- and y-axes respectively, the
axes of symmetry fof the web and the flange (Fig. 6.10). £n{ coordinate
is fixed to the mid section of the column with its origin (ol) at the
center of twist and, § and n axes respectively, the axes of symmetry
for the web and the flange at the mid-height section. When there are
no displacements or twist, and no initial imperfection, xyz will coincide
with §nf{. At some deformed stage, the mid-height section will have,

in general, lateral deflection (U, V) and the twist (8).

!
é; 23 ° v ?5 /
"N \\\\\\\ '5‘ I l’ AI
[ ——
/ -— U —4° ﬁ ~———i_t
| |
[
|

|

—
—— E

|
/
|
|
/
/
|
I

I T ——

Fig. 6.10. Translated and Twisted Mid-length Section
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Readings on chrome plate scales (minus the original readings)
will give the values of Al’ AZ, A3, A4, which is the distance between
the reflection of the initial position of the string on the plate and the
present one. (The distance A is smaller than the distance between
the wire and the chrome plate and the chrome plate will not interfere
with the reading for small twist.) The following gives the relation

between the readings and the displacements and the twist

Al Cosﬁ =V + bl Sin
—AZ COSB = U - b2 SlnB
(6. 5)
-A3 CosB =V - b3 SlnB
A4 Cos‘3 = U + b4 Slnp
Solving (6. 5) for
the twist
- _A1+A3_AZ+A4 6.6)
B b1 + b3 bZ + b4
and the lateral displacements
U = l (A, -A_ )C + (b b.) Si
=3 [(8,- 8, o0sg * (by - b)) Sing ]
(6.7)
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Assuming B to be very small, then

tanﬁfx— Sin = B and Cos_ = 1

p

A+ A A2+A4

1 3 .
B = = (radian)
b1+b3 b2+b4E
b, -b
1 4 2
U=z [(Ag-80% g (8,4 4))]
4 2
1 bl—b
V:—E[(AI—A3)+———b 5 (A1+A3)]
1 3
In this experiment
b
bp=by=3
t
bl = (d - -2-)
t
by =7
and
"A2+A4_A1+A3
P = b d

(6. 8)

A's are positive if the wire moves to the right (increasing the figures

on the chrome plate scale) and negative otherwise. Accuracy of the

data can be checked by the first equation of (6.9).

In reading the A's a slight error is encountered which can be

corrected. Instead of Al ... in the above equations the value of
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1

Al ... should be used.

The following relation

8' Piano Strin
7 d

B S A, T2~
exists between A' and 4 \\@\\1 l// [Zl i
ol
A (Fig. 6.11) /

Fig. 6.11. Reading Error

A = A -8, smB
where 61 is the distance between the wire and the plate. As both B
and 61 are small, and as 61 decreases with increasing B, the above
error may be neglected, as it is done in this experiment. Thus, the
lateral deflections and the twist relative to the location of the center
of the pulleys were determined. By a simple parabolic-interpolation,
the deflections and the twist with respect to the end section were
calculated. Mechanical deflection gages were also used in the first

few steps to verify the other readings. They were also used in the

cases not involving the twist, i.e., d = 1. 5",

6.9. LOADING AND ADJUSTMENT

Loading the specimen concentrically, or with a certain eccen-

tricity, was the objective. To achieve this goal, the centroid of the

"
cross section used in the experiment cut to =~ length was determined

4
by means of the device shown on Fig. 6.4 (#6). Part #4 was poured

of lead such that its center would coincide or would have the desired

eccentricity with respect to the centroid of the cross section and to
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hold the column in the end fixture. By loading in the elastic range
and checking the strains and deflections, by means of three small
screws of part #3, the necessary adjustments were made to set the
column in the desired position. This was a very long and delicate
job and required some amount of patience. The rate of head move-
ment of the testing machine was chosen to be 0. 025 inch per minute.
Except for some scattered reading in two or three experiments,

the author was unable to take the desired data for the unloading part
of the experiment, as load dropped suddenly in all cases - in some
cases because of local buckling, in others because the unloading
time was extremely small.

Paris(107) in his study of plastic dynamic buckling of columns
took also the behavior of the testing machine into consideration. He
noted that the machine was set to a slow rate of head movement and
left on throughout the test. As the unloading time was extremely
small, therefore, little additional axial deformation could be
attributed to the turning of the screws of the testing machine. Paris
stated that comparatively large additional deformation noted in the
unloading stage was due to the release of strains within the testing

machine itself.

6.10. PROTECTIVE MEASURES

Although part #3 (the ring) of the end fixture would somewhat
prevent the column from sliding and skipping out, in the case of

extensive end rotation, the danger of end fixture and the column
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being thrown out exists. In this
experiment protective measures
were taken, and protective plates
were set around the testing
machine (Fig. 6.3) and the top
end fixtures were loosely attached
to the machine by means of wire.
Wire was also wrapped around

the poles of the testing machine

to prevent the parts from flying

out (Fig. 6.12). Fig. 6.12. Column under Test

6.11. SUMMARY AND RESULTS

The main objective of conducting the experiments was to
verify the analytical solution to the problem of asymmetrical behavior
of the "T" shaped column of aluminum alloy. Also, the material
properties were to be determined in order to be used in analytical
solution. The material properties (the stress-strain relation, the
Poisson's ratio) obtained from the experiment and its mathematical
fit, the elastic (tangent) and shear (secant shear) moduli evaluated
from the mathematical fit and according to discussion on torsional

stiffness (equation (4. 68)) are shown on Fig. 2. 6. Fourteen columns
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were tested, eight with d = 2.5" and the rest with d = 1. 5", The
ultimate load carrying capacity of the tested columns and the corre-
sponding values obtained by incremental procedure (computer

results) are tabulated belo’w:

Table 6.1

Table of Comparison of Experimental Results

with Analytical Results

>~ -
g = E | s T |
. 8 g E ] /_c"m?ld
18| £ & |4 :
d é g o o |8 > v Remarks
g : I S |
&3] < C] < [SER ¢ —
+.002 | 33.944 | 34.585 | -1.887% No torsion or local buckling
+0. 42.511 | 42.870 | -0.84% No torsion or local buckling
30
-0. 43.542 *
1.5" -.002 | 41.545 | 40.710 | +2.01% No torsion or local buckling
+.002 | 28,660 | 29.362 | -2.45% No torsion or local buckling
+.0 40.290 | 40.512 | -0.55% No torsion or local buckling
40
-0 42,047 * _
-.002 | 38.172 | 37.405 | +2.01% No torsion or local buckling
+.002 f 35.006 [ 36.120 | -3.18% Web buckled locally after the ultimate load
+.0 42.521 | 41.800 | +1.70% Failure due to local buckling of web
30
-.0 43.128 *
-.002 | 40.140 | 38.950 | +2.96% Web buckled locally prior to the ultimate load
2. 5" 50 | +.002 | 23.851 | 24.520 | -2.80% Web buckled locally after the ultimate load
60 | -.002 | 23.338 | 24,084 | +3. 20% No torsion was induced
+0. 43.664 | 44.800 | -2,60% Failure due to local buckling in web
20 | +0. 43.664 | 42.600 | +2.44% | 3 Failure due to local buckling in web
-0. 43.883 * g 2
Q" L
¥
+0. 40.310 | 43.150 | -7.05% a 8 Considerable difference between the experiment
o
40 g - and the analytical result due to the lateral
3 support. Failure due to local buckling in web
-0. 41. 682 *

*Buckling did not follow this direction
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Table 6.1 also gives the percentage difference between the computed
and the tested values with respect to the computed values.

It can be noticed that test results are lower than the computed
values in the case of negative eccentricity (buckling towards the web)
and higher than the computed values otherwise. Also, it is noticeable
that in the cases of concentric loading the columns deflected to the
flange side (negative x direction) and as it is seen from Figs. 6.13
and 6. 14 deflection started below their respective tangent modulus
load and test ultimate loads were higher than the computed values.
Although some discrepancies between the test and analytical results
were observed (Figs. 6.13, 6.14, 6.15), the tests as well as the
incremental procedure show that in buckling behavior of a tee column
a considerable difference exists in the ultimate load carrying
capacity of the T shaped aluminum alloy column when it buckles in

the plane of symmetry towards or away from the flange.
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CHAPTER VII

SUMMARY AND CONC LUSIONS

The post buckling behavior of a tee shaped aluminum column

has been studied. Attention has been focused on the cases where the

buckling commences in the plane of symmetry. The effects of initial

curvature and eccentricity of loading in the web or the flange direc-

tions have been considered. The problems discussed and the con-

clusions derived can be summarized as follows:

1.

Bounds of behavior of a column, specifically a T column,
have been discussed in Chapter II. The differing inelastic
buckling gradients and the reduced moduli for buckling
towards or away from the flange have been explained and
illustrated graphically.

Equations of torsional flexural buckling and the choice of
the coordinates have been discussed in Chapter III. The
initial crookedness and the eccentricity of loading, in a
general form, have been intorduced in these equations.
The limiting point up to which the column will not buckle
out of its plane of symmetry has been determined and
simplifications of the equilibrium equations for the state

of planar bending have been made.

-186-
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In Chapter IV the problem of torsion of a cross section
subjected to a varying strain in the inelastic range with
possible presence of a strain regression region has been
treated. This is the problem encountered in the evaluation
of the torsional stiffness of the column cross section in
the inelastic range of biplanar bending. At the conclusion
of this chapter the relation (4. 83) (which has been used in
the column analysis) has been suggested to approximate
the torsional stiffness of the column cross section under
‘the above conditions.
An incremental procedure has been presented in Chapter V
for the purpose of obtaining a quantitative evaluation of
the ultimate load carrying capacity of the tee shaped
columns and a comparison is made with the qualitative
predictions that bound the behavior of the column. The
7090 digital computer was utilized to carry out the manip-
ulation. Combinations studied were summarized in
Table 5.1. A selected number of load-deflection history
and the tables of the results were presented in Chapter V.
The following conclusions may be drawn from the
incremental analysis:
i. For d=1.5" (¢ =9.248), except for L/r = 10,
the column did not buckle out of its plane of
symmetry in the loading stage. For L/r = 10,

biplanar bending accompanied with torsion



ii.

iii.
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started almost at the ultimate load. In

Fig. 5.1l, dashed lines show the case where
the column was prevented from deflection in
the y direction.

For d=2.5" (a=2.030) and d = 3."

(¢ = 1.197) the dimensionless graphs of the
load vs. the components of the deflection in
the x and the y directions as well as the twist
are shown on Figs. 5.14 through 5.17. In
these figures the behavior of the column is
indicated where prevented from buckling out

of the plane of symmetry. From these figures

I
it can be seen that as o (= TE) becomes smaller

y

(d becomes larger) the difference between the
ultimate average stress when buckling
accompanies torsion and the ultimate average
stress, in buckling away from the flange (to

the right), when the column is prevented from
buckling in the y direction becomes larger.

A noticeable difference exists between the
ultimate load carrying capacity of the T column
in buckling towards or away from the flange.
As a tends towards unity this difference

becomes smaller. The ultimate load for
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different values of slenderness ratio and
initial crookedness in buckling towards or
away from the flange is given on Figs. 5. 20
and 5. 21.
iv. Figures 5.12, 5.18 and 5.19 and also Tables
5.6 and 5. 7 show the difference between the
ultimate load evaluated on the basis of a
half-sine curve deflection shape assumption
and a more exact deflection shape. It can be
noticed that as initial crookedness becomes
larger the difference between the ultimate
load evaluated on the above two bases becomes
larger.
v. Figures 5. 22 through 5. 26 and also Tables
5.8 and 5.9 present a comparison between
the initial crookedness and the eccentric
loading.
vi. Three different stress-strain relations have
been used in the incremental analysis
(Figs. 5.18 and 5.19).
A series of tests was conducted to confirm the analytical
results. A procedure of deflection and twist measurement
for the pinned-end columns has been developed and
presented in Chapter III. Table 6.1 compares the

analytical and the experimental results.



APPENDIX A

Main Computer Program Flow Diagram

Evaluate the Coordinates of the Mesh
Initiate the Curvature, Deflection, Twist,
Initial Deflection, Moment, Stress,
Strain, ..., Matrices

INPUT

"'Ideal" Column
Concentric Loadin,

Execute FINTAN.
Set P = Pt

Set Stress and
Strain Matrices

Execute RMATIX.

A4

Estimate [A¢
Calculate [AS]

A 4

gl q =1 (x-axis)

- <
T [[Newp, -oldp | <e

(for all £}

Convergence
achieved with
no change in

estimated [A¢]

Execute
CALBET.

‘When Planar

Bending
Calculate T Execute
[sr] CALALF

l

One cycle of increment
is complete

Planar
Bending ?

Record and print:
Curvature
Deflection
Axial Load
Moment
Stress and Strain

Matrices

TERMINATE
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Improve A¢lq
Calculate A6
fq

Normalize when|
q=1
(for all ¢)

-P <
avg

(for all ¢)

Calculate

avg

A 4

Improve Execute
C CALMAP.
9
F Moment
equilibrium
satisfied?
Record
P! s oeen

T = True
F = False




CALALF.

CALBET.

CALMAP.

ET.

FINEPS.
FINTAN.

GS.

RMATIX.
SIGMA.,

RELATED PROGRAMS

Calculates the vector <a> according to relation 5.45
and determines if biplanar bending has commenced.
Calculates {[3 '> , then {[3} using relation 5.32d, when
end section is deleted (¢ = 0), uses FINEPS. to
find the strain at that section.
When planar bending:
Calculates axial load (relation 5.42a).
Also evaluates the moment equilibrium
equation (5. 42b).
When biplanar bending:
Calculates axial load (relation 5. 32a).
Also evaluates the moment equilibrium
equation (relation 5.32b when q = 2 and
relation 5. 32c when q = 1).
Calculates tangent modulus for a given strain
(relation 5.1, Fig. 2.6).
Finds strain for a given stress (from relation 5. 1).
Finds the stress and the strain at the tangent modulus
load for a given slenderness ratio.
Finds the secant shear modulus for a given strain
(relation 4. 68).
Generates the matrix [R].

Finds the stress for a given strain (relation 5. 1).
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