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SUMMARY

In a recent paper, C. S. LorenslL has focused attention on invertible
Boolean functions. Lorens has counted the number of classes of such func-
tions by considering the same group acting on both the domain and range of
such functions.

In this work, we give an algorithm for obtaining Lorens' results and

extend his work to allow different groups on the domain and range.
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I. INTRODUCTION

The work of C. S. LorensLF has focused attention on the invertible
Boolean functions, Since Boolean functions are also ordinary functions, a
function f is invertible (i.e., has an inverse) if and only if f is one-to-
cne and onto. That is we are considering one-to-one onto mappings of {O,l}n
into {O,l}n. These are just the 2%! permutations of {O,l]n.

Lorens has counted the number of classes of such functions when one al-
lows the same group to operate on the domain and on the range. These results
will be generalized in this paper.

Three different groups will bevconsidered as transformation groups on

. n

Boolean functions. will denote the group of all ot complementations of
2

the variables; 7AL will denote the group of all n! permutations of the
¥ n

n

variables, and Ci}, denotes the least group containing both [: and sz_.

n 2 ‘'n

The order of OEZ is of course n12n. In order to carry out our calculations
n

. . L. 2
we shall use a combinatorial result due to De Bruijn.

IT. DE BRUIJN'S THEOREM

Consider a class of functions from a finite domain D to a finite range
R.  Let 021 and 75r denote permutation groups acfing on D and R respectively.
Two functions £, and fo are called equivalent if and only if there exist
elements Q e q;ﬁ and B ¢ ?%—such.that f.(d) = Bfo(a(d)) for all d € D. This

Y

equivalence relation decomposes the family of all functions into equivalence



classes, We desire the number of suc¢h classes.

The statement of the pertinent theorem will require the cycle index
polynomial of a group. Let 6;1 be a permutation group of order g and degree
s. let fy,...,fg be s indeterminates and let gjl)'--)js be the number of

permutations of ezl having J, cycles of length k for k = 1,2,...,s. Naturally

iiji = s (1)

‘ i=1

Then the cycle index of C;L is defined as

where the sum is taken over all partitions of s which satisfy (1).
It is now possible to state the theorem of De Bruijn which we shall use.

Theorem 2.1. The number 9£ classes 92 one—Eg—one functions EE

7 . (1 + 27, 1+ 220,...,1 + s2g)
CZP <§Zl 2) %%\ 1 2, s

evaluated at z; = zp = ... = Zs = 9

It is clear that before proceeding we shall need to know the cycle in-

n .
dices for [: ’ 3*4: and (7;>. Ashenhurstl first calculated the cycle index
n

n

for r/ while Slepian5 first counted the classes under C;Z». The explicit

polynomials are given in Reference 3 and the result is quoted below without

proof.



Theorem 2.2.
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where the last two cycle indices are summed over all partitions of n such that
n ,

Z:: ij; = n. The functions e(d) and g(d) along with the cross operation (x)
i=1

are defined in Reference 3.

III. APPLICATIONS

The following lemma will facilitate our calculatiomns.

Lemma 3.1. A term of the form

m,y Mo ms jl .
a 9 .9 .9 b(l+kyzy ) ... (L¥kgzy )Js
3z 2z dzs 1 s
1a 1z 1s Zy = Zp =...= 2g = 0
( S m,
ab Y/T'kp mpl if i = ky,...,1g = kg
. p:l
yields 9
_ 0 otherwise.



Proof. Notice that unless the cycle structure of the term involving the dif-
ferential operator is the same as the term involving the variables, the re-
sult will be zero. If i, = El,...,is = kg, then my = J;,...,mg = jg and the
result follows from the rules of differentiation.

n
We will first apply this lemma to the case where [: acts on both the
2

domain and the range.

n
Theorem 3.2. The number of classes with E: acting on both the range and the
2

domain is given by

n-1 2n-l
2L (2P o+ (2® - 132" )2 >
22n

The calculations for the other cases have been carried out and are sum-
marized below. It would require a computer to evaluate the results for n =5
and most computers would require at least triple precision arithmetic to ac~-
complish this. These answers agree with those of Lorens except in the case
n = 4 with the symmetric group on both the range and the domain,

Since we are dealing with invertible functions, the results with Ci%ﬁ

acting on the domain and 4%»-acting on the range are exactly the same as with

4sf and Ogb~interchanged.



Number of Invertible

n
Y: on Range
2

X”’ on Range
n

0] on Range
/5 g

Functions and Domain and Domain and Domain
2 1 2 1
2k 6 7 2
40,320 924 1,172 52
20,922,789,888,000 81,738,720,000 36,325,278,240 142,090,700
n n
[jg on Domain [:2 on Domain }??on Domain
7(; on Range qgh on Range %Zi on Range
1 1 1
3 3 2
840 196 154
54,486 ,432,000 2,271,124,800 2,270,394 ,624




IV. ACKNOWLEDGMENT

I wish to thank Dr. B. Elspas for polnting out the work of Lorens and

suggesting this problem.



REFERENCES

Ashenhurst, R. L., "The application of counting téchniques," Proceedings
of the Association for Computing Machinery, Pittsburgh Meeting (1952),
pp. 293-305.

/
De Bruijn, N, G., "Generalization of Polya's fundamental theorem in
enumerative combinatorial analysis," Koninklijke Nederlandse Akademie
Van Wetenschappen, Series A, Vol. IXII, No. 2 (1959), pp. 59-69.

Harrison, M., A., The Number of Transitivity Sets of Boolean Functions,
The University of Michigan Technical Note O04L879-3-T, June 1962.

Lorens, C. 5., Invertible Boolean Functions, Space-General Corporation
Research Memorandum No. 21, January 1962.

Slepian, D., "On the number of symmetry types of Boolean functions of n
variables, Canadian Journal of Mathematics, Vol. 5 (1953), pp. 185-193.













