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SUMMARY

Three groups are defined as transformation groups on the class of
Boolean functions. The transitivity classes are counted using the famous com-

4

binatorial theorem of Péiya. In particular, a concise algorithm is found for

counting the classes under the group of complementations and permutations thus

simplifying a result of Slepian.6
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I. INTRODUCTION

There is a well known connection between switching theory and Boolean
functions.6 Since the Boolean algebra of functions is a free algebra on n
generators, it has 2 atoms and contains 22n functions. Many of the tech-
niques of switching theory require enumeration of functions. To a mathema-
tician, these problems of switching theory are trivial, since if n is finite,
22n is finite and all of the functions may be enumerated. On the other hand,
for n =z 9, 22n is largér than the number of electrons and protons in the
universe and enumeration is impractical. A technique developed to help cut
down the number of functions to be enumerated is to define a group as operat-
ing on the class of Boolean functions. If the group is intransitive on Boolean
functions, one has only to enumerate equivalence classes (also called orbits
or transitivity classes) rather than functions.

We will consider three groups operating on Boolean functions and in each
case we shall count the number of equivalence classes of functions with k
atoms in their (unique) normal form expansion by the use of the Hauptsatz of

L
Pélya.

7
II. POLYA'S THEOREM

In his classic study of trees, chemical isomers, and their relatives,
Péiyau proved a theorem which has subsequently become the most famous and

most important single result of combinatorial analysis. Pélya’s theorem has



achieved this distinction because of its generality, and simplicity. We shall
briefly review this result; using the general fcocrmulation of DeBruijn.2 Our
discussion involves more generality than is needed for our results; the impor-
tance of the theorem justifies the additional generality.
Let F be the class of all functions from a finite set D to a finite set
R. Suppose D has s elements and that Cy,is a permutation group of degree s
and order g acting on D. Two functions f,, fo € F are called equivalent if
there exists a permutation o € () such that f1(d) = fo(a(d)) for all
d € D (d) denotes the image of d under the permutation a). We represent R
r '
as the union of r disjoint subsets, i.e., R = kJ} Ry end Ry N Ry = gif i £ j.
i=1
Let ki,...,kg be any partition of s. Péiya's theorem tells us the num-
ber of equivalence classes of functions from D to R such that for k; values of
d € D, the image f(d) ¢ Ry for i = 1,...,r.
Let {4 be the number of elements in R; and define the figure counting

series as
[0]
v(x) = z VX4
i=0

Let P(x1,...,Xs) be the generating function for the number of classes of func-
tions with the property that for ki values of d € D, the image f(d) is in Ry
. . . . ky kg .
€.g., the desired number is the coefficient of x; ~...xg ° in P(xl,,..,xs).
The polynomial P(Xi1,...,Xg) is sometimes called the configuration counting
series.
Before stating Péiya's theorem, we must develop the concept of the cycle

index polynomial of (/] (Zyklenzeiger), denoted by Z Let f1,...,f5 be s
'} ) s Ts

o °

indeterminates, and let 8315J2y000,Jg P€ the number of permutations of Q}

2



having jy cycles of length k for k = 1, 2,...,s, Naturally
s
§ ij; = s (1)
i=1

Then we define

1 J1 . Je J
7, = = .. . f fo T, fg 8
01 gZ_ €i1,d2s00sdg T T2 s

(J)

where the sum is taken over all partitions of s which satisfy (1). Iet
Zq; (g(x), g(x®),...,g(x%)) denote the cycle index polynomial with f; replaced
by g(xi) (i =1,...,s) for any arbitrary function g(x).

Now we can finally state Péiya's theorem which reduces the problem of
determining the number of equivalence classes to the determination of the fig-
ure counting series and the cycle index polynomial.,

Theorem 2.1 (Pélya). The configuration counting series is obtained by sub-

stituting the figure counting series into the cycle index polynomial of (ZLO

Symbolically

P(x1,000,%g) = 2 (¥(x1), w(x®),...,¥(x"))

i

For the problems to be considered here, Pélya's theorem takes an even
simpler form. First of all, we deal only with generating functions of one
variable, When one considers equivalence of Boolean functions, we have

n n
D={0, 1}, s=2", and R = {0, 1}. Thus
¥(x) = 1+x
The only non-trivial calculations that need to be made will be the con-

struction of the cycle index for each group. We can then compute P(x); the



coefficient of xX in P(x) will be the number of classes of functions having

k atoms in their normal form expansions.

n
III. THE GROUP E
2

The first group to be considered 1is the direct sum of n coples of the
n
cyclic group of order 2, denoted by ﬁ: . The order of this group is 2% and

2
the elements are n-tuples of zeroes and ones. The group operation is written

CDO Now we define this group as operating on the class of Boolean functions

1
following Ashenhurst who first studied this group.

n
Definition 3.1, Let i ¢ [:_ and let f(xl,...,xn) be a Boolean function of n
2
variables. We define
. : : 1 in
it = (i1,...,1p) f(X1,...,%y) = (X1 ,.e..,xy )
e
i Xj if 15 = 0
where X3 J =
X if iy = 1 for j =1,...,n
n
One defines two functions as equivalent under [:4 if there is an operation of
2

the group which maps one function into the other. Intuitively the functions
are equivalent if one can be obtained from the other by complementing some of

the variables.

Example: The two Boolean functions x1XotX1Xs and X;Xotx1Xs are equivalent
2
under [/ .
2 n
The effect of a permutation i € [:' is to permute the n-tuples of zeroes
2

and ones for which f(xl,...,xn) is one i.e., the atoms of the normal form ex-



pansion of f(Xi,...,%Xn). It will be convenient to have a notation for the
atoms and for the permutations of atoms. n-tuples of zeroes and ones are
associated both with the atoms and with the decimal equivalent of the binary

number. The correspondence is made clearer in the following table for three

variables.,
Atom Binary Representation Decimal Symbol
X1XoX3 000 0
X1XoXs 001 1
X1XoXs3 010 2
X1XpX3 011 3
X1XoXg 100 L
X1XoX3 101 5
X1XoX3 110 6
X1XoX3 111 7

n
If i, Je [2, then let py, Pj denote the corresponding permutations of

the atoms, and let pi,j denote the permutation corresponding to i@j. It
n

. = p.p..*¥ Thus the mapping from i € [: into the

is easy to prove that piJ 1P;
2

permutation group on the atoms denoted by X; n 1s a homomorphism. The map-

ping is easily seen to be one-to-one but properly into. J\;is easily seen
2

to be the automorphism group of the Boolean algebra of functions.

*If f = zAk is the normal form expansion of f, then p.p.f = E A, ) .
T 17 T 1®J®k

Since pijf = Ek Ai@j@k’ we have pij = PP 1®J denotes the digit-

wise modulo two sum of i and J.



Example: Let us apply the permutation i = (0, 1, 1) to all the functions
of three variables. We apply the permutation to the atoms and write the re-

sult using the conventional cyclic notation for permutations.

(03) (12)(47) (56)
To count the equivalence classes we must determine the cycle structure
n
of the permutations in ocur representation of [: .
n 2

Theorem 5.2, Every i e [i different from the identity induces a permutation
2

of the atoms which has 2%7' transpositions.

n
Proof. Let Aj and Ak be two atoms and let i ¢ [j be different from the ident-
2

ity. Suppose 1(Aj) = Ax, then Aj = i(Ag) because i is of order 2, Thus the
permutation of atoms associated with i, has disjoint transpositions for its
cycle structure. It cannot have less than o=l transpositiohs because no atom
1s invariant under any i.

23(1—1
Theorem 3.3. (Ashenhurst) Z = L(fl + (2% - 15 ).«

Proof. The first term corresponds to the identity element while the second

term corresponds to all other elements of the group.

*This is a special case of a more general result. If one takes 43 to be the

regular representation of the group of order pk and type (p,...,p), then it
~K k-1
1
can be shown that Z b, = oE (flp + (pk-l)fpp
y P

) for primes p > 2 and k > 1.



Corollary 5.&; The number of equivalence classes of functions having s atoms
n
in their (unique) normal form expansion under [;v is

e——

2

1 (ef ,
Eﬁ 5 if s =1 mod 2

A

= % <(§n> + (2% - 1) (22;;)) if s = 0 mod 2

Proof. By Péiya's theorem, we get

1 on n 2251
Z[in(l+X) =-2—n<(l+x) + (27 - 1)(1 + x®) /j
2
21’1 21’1-1’
e n /l’l-l .
5[5 () w5 (7))
27\ F=0 Mk j=0 \!
s . 1 (2"
If s = 1 mod 2, the coefficient of x° is =f \ .
o S
If s = 0 mod 2, the coefficient of x5 is

() -0 ()

Corollary 3.5. The total number of equivalence classes 9§ Boolean functions
n

-~
under 2;\ is
5 =

I\)ll—-‘
]

Some typical calculations for this group have been made and the results
are tabulated below. We use T, for the total number of equivalence classes

and Nﬁ for the number of classes of functions having k atoms in their normal

x o'k

form expansions. Note that N, = Np which is a consequence of the law of

duality for Boolean functions.



n N

k 1 2 3 L 5
0 1 1 1 1 1
1 1 1 1 1 1
2 1 3 7 15 31
P 1 T 35 155
L 1 1k 140 1,240
5 7 273 6,293
6 7 55% 28,861
T 1 T15 105,183
8 1 870 330,460
9 715 876,525
10 553 2,020,239
C11 273 4,032,015
12 140 7,063,778k
13 35 10,855,425
1k 15 1h, 743 L5
15 1 17,678,835
16 1 18,796,230
Ty 3 T L6 4,336 134,281,216

1v. THE GRouP { n

Now we define the symmetric group on n letters as a group of operators

on the Boolean functions.

v
Definition 4.1. For any o € d and any f(X1,...,Xn) € F, we define
EASLV q —= 2 ¥e getine

Gf(Xl,...,Xn) = f(xc(l),...,xc(n)).

Again we induce a permutation on the atoms exactly as before.

:4\/
is again a one-to-one homomorphism from JV\into 3 0’
n 2

This mapping

The cycle index for /ALas a group on n letters is well known, but we
n



need a representation of dﬂ\j as a permutation group on ot objects.* The
n
following theorem allows us to use the cycle index of /: as a group on n

letters to get the cycle index of the group on the atoms.

Theorem 4.2. Permutations of the same cycle structure in /Winduce permuta-
n

tions of the same cycle structure in /L
= == 50
Proof. Let h be the homomorphism from /V‘ into /M Since all permuta-
n ol
tions of the same cycle structure are conjugates, it is sufficient to show
that conjugates of o in /A correspond to conjugates of h(o) in f This
n

n
2
is trivial since

n(p~*op) = h(p~Hn(o)h(p) = (h(p)) *r(c)h(p)

because h is a homomorphism.
We must devise an algorithm to pass from the symmetric group on n letters
to a representation of the group on o letters. To accomplish this, we calcu-

late the effect of a cycle of length k on the atoms of the Boolean algebra.

Definition 4.3. e(l) = 2 3
ok _ Zd e(a)

dlk

e(k) = d<k

k

*Two groups may be isomorphic but IlO‘f; permutationally equivalent. Permutation
groups ﬂ and J}on object sets X and Y are called permutationally equiv-
alent if and only ifﬁz and Q@/ are isomorphic as abstract groups and there
is a one-to-one correspondence h: X =— Y such that if y is the abstract

isomorphism between 0"( and OG" then for every xe X, 0 € ﬁz’ , we have

h(a x) = (7 )h(x).



Theorem 4.4, A cycle of length k in ™ as s roup on n letters induces a
£ o £ g8 agrouponn 2

permutation of the atoms whose cycle structure is given by

_TTW fde(d)

dlk

where the fy are the indeterminates of the cycle index of JA; on gf letters,

Proof. Write the numbers from 0 to 2k-l in binary notation and in natural
order. The effect of a permutation of length k can be obtained by removing
the left-hand column and writing it as the right-hand column. This has the
effect of doubling each number modulo 2k-l. The exponent of f3 is independent
of n and has the same value every time it occurs. DNote that if k is prime,
k
272
then we get f%fk K. The exponent of fx is an integer; this fact is a con-
sequence of Fermat's theorem.
Before writing down the explicit formula for the cycle index of JM£ as
a permutation group on the ot atoms, we construct a multiplication of in-
determinates which will facilitate computation.

e ey s il ir <jl js . .
Definition 4.5. ILet a, ...8p" and by ...bg"” be two products of indeterminates;

the letters ax and bk are not necessarily distinct. The product of these

terms (written x) is given by

Tl oo

p,q

ap” X b4 = r
4 <p,q>

where < p,q > denotes the least common multiple of p and q and (p,q) is the
greatest common divisor of p and q. Of course, x is an associative and com-

mutative operation.

10



Example: We compute the cycle structure of the permutation which corresponds
to the product of a cycle of length 2 and a cycle of length 3, This is de-

noted by ‘tg'tg .

. o 2.2 2.2y [ 0202\ f o2 )
toty —> (£1f2) x (f1f3) = (£1F7) (£1£3)(£1T2) (£o13)
= riridr3rs = rircrifs
v (p,q)
The symbol N\ aj means a;X...X ap. The reason that fpxfg = f <p,q> is
1=L

that we are changing the degree of our representation from p+q to pg. The
subscript will be <p,qg> as Slepian6 showed and the exponent occurs because
(p,q) <p,q> = P4, the number of objects being permuted.

Theorem 4.6. The cycle index for ;fY; as a permutation group on the gf atoms

of the Boolean algebra of functions is

J Ja
(3) 521 52128 g™ /A=D1

Z)?l =

Blk4
34
Ce
]
%
;i:i
(ol
@
e
[l
i_J

where the sum is over all partitions of n such that

n

g l‘jl = n
i=1

J'. . . .'
and y =y X yJ2X,..x an where yJ y X y X...X §

m———

Proof. The coefficient in the sum is the number of permutations of the n
letters with ji cycles of length i(i = 1,...,n). To see this, choose any per-
mutation with the required cycle structure. If all n! permutations are ap-
plied‘to the letters in the cycles, then the resulting permutations are not
distinct for just two reasons, (1) the relative position of the cycles is ir-

relevant and (2) all cycles with the same elements in the same order are the

11



same., The number of duplications for the first reason ji! Ja!...Jj,.. The

j Ja
number of duplications for the second reason is 191 2°7...n"" so that the

desired number is

A
Corollary 4.7. The number of equivalence classes under J n of functions

with k atoms in their normal form expansion is the coefficient of EE in

P(x) = Z (1 + x).

YW
in

Corollary 4.8. The total number of equivalence classes of functions under

is

P(l) = Z (2).

8

Example: We perform the calculations for n = 2.

1
7 = 5 (£% + £51,)

P(x) = 1+ 3x + Lx® +3x3 + x* .,
The twelve equivalence classes are listed below,
(0] [1] [xy] (xy]
[x+y] [%+7] x®7y] [x = y]
[X)y] [E:S;] [E"‘Y;X_l'?] [X?R—CYJ

12



The results of some computations for modest values of n are shown be-
low. The number of variables is denoted by n and Nﬁ is the number of classes
2k
of functions of n variables having k-atoms. Note that N, = Ny - again T,

denotes the total number of classes.

il Ng
Kk 1 2 3 L 5
0 1 1 1 1 1
1 2 3 b 5 6
2 1 L 9 17 28
3 3 16 52 13k
L 1 20 126 625
5 16 28 2,67k
6 9 b7 10,195
7 L 655 34,230
8 1 720 100,577
9 655 | 258,092
10 k77 579,208
11 28L 1,140,090
12 136 1,97k,L38
13 52 3,016,994
1k 17 L,077,077
15 5 4,881,092
16 1 5,182,326
T 4 12 80 3,98k 37,333,248

V. THE GROUP 0} 0

The next group to be considered is the group which allows both comple-
mentation and permutations of the variables. This group, denoted by Cik.has
order n!2%; a general element of the group is of the form io where i ¢ [jz
and o € JM. Cﬁ;n is defined as a transformation group on the Boolean

n

functions as follows:

10f(X1,...,%n) = fF(x



C7 is also the symmetry group of the n-cube and the dual of the n-cube,
Jn

the hyperoctahedron. * Péiya (5, footnote 7) mentions that Qi is the wreath
product (Kranzgruppen) of {A‘and )f denoted by CKA If‘ , however this
n 2 n 2
gives 622 a representation of degree 2n., The 2n objects may be taken as the
n
faces of the n-cube or the vertices of the hyperoctahedron inscribed in the
hypercube,
Our problem requires that g? be given as a permutation group of degree
n

5

2", Harary~ has constructed an operation called exponentiation of groups

for precisely this reason; we review Harary's defintion briefly.
Let (}[and j% be permutation groups of degrees a and b operating on
object sets X and Y; let the orders of Cﬂﬁand(lgfbe m and n respectively.
4

. X
. has Y , the class of all functions from X to ¥,

)

The exponentiation group

e

W

/
as its object set. The elements of (;} are constructed by permuting the do-
main X using a permutation in(Qz and then permuting the image objects for
every domain object by elements of J}r. The properties of this group are

given below along with the properties of Cjz [J}] . The explicit construc-

tion of (}1_[.£%] may be found in PSlya's paper.u

*This probiem may be interpreted as counting the number of distinct ways that
the vertices of the n-cube may be painted with two colors. We mean that two
paintings of the n-cube are distinct in case one cannot be transformed into

the other by a rotation or reflection of the n-cube,

1k



Wreath Product Exponentiation

Group CNL JE%
Y

X
Object Set X XxY Y

a
Degree a b ab b
Order m n mn® mn®

Y~
Thus CU = Z;gl{ Note that Ijlmh is isomorphic to JM& [Ii ] ,
n 2 n =

but the groups are not permutationally equivalent since they have different
degrees,

The important problem of determining Z gg? in terms of 2'01 and Zcﬁf
is still unsolved. We present a method of computing the cycle index of the
exponentiation group in this special case. Unfortunately the technique can-
not be generalized to arbitrary exponentiations. Slepian6 has already counted
the number of equivalence classes under CE&, but his argument was unneces-
sarily complicated. His method required counting the conjugate classes of
the hyperoctahedral group; our result depends on the knowledge of the cycle

ywv

index of i
n
The derivation of the cycle index rests on the following argument. Since
n

n
Cgﬁ\ = X JQA;* every element of 47’ 1s of the form io where i ¢ ji

n n 2

*By the product Cjzéb' of two groups (gyand C£§ which are subgroups of a
: -~ )
larger group C@Zwe mean the group whose domain is %ab‘a € «QZ, b eéﬁj

P)
This group is defined when one of C&ior 47 1s normal in CCZ. In our case
n n

LA
Z:i is normal in CZ; . Thus CZZ‘ is the least group containing z:’ and C/o
e n n 2 n

15



, n
and o € J‘“’ . Since every element of K except the identity has the same
n 2
cycle structure, we need only compute the effect of the permutation of @
n
pre-multiplied by any permutation consisting of ot transpositions because

n
we already know the structure of J/has a group on the 2 atoms.
n
Definition 5.1. The function g(d) is defined as follows:

d |2k
d<2k
2k

®

N
o

=
!

Theorem 5.2, If ty is an indeterminate of the cycle index of JM, then the
n

following correspondence indicates the cycle structure induced on the atoms

in Jf -
n

Proof. The first term describes the elements of @7 when 1 = (0,...,0);
" n
this subgroup is Just J . The second term describes the cycle structure
n n
obtained by pre-multiplying the permutations of )/V by any element ): ,
n 2
n n
say (0 1)(2 3)...(27-2, 27-1).
The multiplication of indeterminates is exactly the same as for C}/V

n

and for exactly the same reasons.

16



i/
J

Theorem 5.3. The cycle index of (i; = Ef’ is given by
o - =

N n! \\p,/‘“"rw TV I
! N d
T i [ s, ¢ £
\)-(//n SCENT [jizi 1 /i ali ah

!

C

where the sum is over all partitions of n such that

n

Z 134

i=1l

!
B

The reason that our calculation of the cycle index of (?; is so simple
n

n
is that the cycle index of f/ has only two terms.
2

Corollary 5.4. The number of equivalence classes underviéy of functions
n

with k atoms in their normal form expansions is the coefficient of xk in

—— — —

P(x) = Z Q;n (1 + %)

Corollary 5.5. The total number of equivalence classes of functions under

(/21 is

P(1) = % (2)
FExample. The calculations for n = 2 yield

2
((£5 + f2) + £5f5 + f4)

Z = -
8
O
1 4 2 2
=3 (f3 + 3f7fo + 5 + fy4)
P(x) = 1+ x+2x2+x%+x*

17



The classes are (o], 11, Xy, Xy, xy, xy]

[x,%,7,7], x@®y,x = y], [X7,X+y,x47,x+y]

Some results are tabulated below.

n N%

k 1 2 3 L 5

0 1 1 1 1 1
1 1 1 1 1 1
2 1 2 3 L4 5
3 1 3 6 10
L 1 6 19 L7
5 3 27 131
6 3 50 L2
7 1 56 1,326
8 1 Th | 3,779
9 56 9,013
10 50 19,963
11 27 38,073
12 19 65,664
13 6 98,804
1L L 133,576
15 1 158,658
16 1 169,112
Ty 3 6 22 Lo2 1,228,158

18



REFERENCES

Ashenhurst, R. L., "The application of counting techniques,” Proceedings
of the Association for Computing Machinery, Pittsburgh Meeting (1952),

Pp. 293-305.

De Bruijn, N, G., "Generalization of Péiya's fundamental theorem in enu-
merative combinatorial analysis," Koninklijke Nederlandse Akademie Van
Wetenschappen, Series A, Vol. IXITI, No. 2 (1959), pp. 59-69.

Harary, F., "On the number of bi-colored graphs," Pacific Journal of Math-

ematics, Vol. 8 (1958), pp. 7T43-755.

/ (9
Polya, G., "Kombinatorische Anzahlbestimmungen fur Gruppen, Graphen, und
chemische Verbindungen," Acta Mathematica, Vol. 68 (1937), pp. 145-253,

1"

/.
Polya, G., "Sur les types des propositions composéés,
bolic Logic, Vol. 5 (1940), pp. 98-103.

Journal of Sym-

Slepian, D., "On the number of symmetry types of Boolean functions of n
varisbles,” Canadian Journal of Mathematics, Vol. 5 (1953), pp. 185-193,

19









IR

3 9015



