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SUMMARY

An (n,k) switching network is defined as an n-input,k-output network such
that associated with each output is a Boolean transmission function of the
n inputs. If we allow a group Q?{on the inputs and a group«é;'on the outputs,
then the family of networks is decomposed into equivalence classes. In this
paper the number of equivalence classes is derived for the important groups

encountered in switching theory.






I. INTRODUCTION

Many writers have considered the problem of classifying Boolean functions
under various groups (ef. 1, 4, 10, 14). 1In this paper we shall show how to
extend the approach that this writer has taken in References 4, 5, 6, 7, in
order to count the number of classes of sequences of k Boolean functions of n
variables.

We shall be initially interested in classifying sequences of k Boolean
functions of n variables under some transformation groups on the n variables.
One may think of the functions in these sequences as the transmission func-
tions of a switching circuit having k outputs. ©See Fig. 1 for a diagram of
the generic network which we shall call an (n,k) network. Our (n,k) networks

12

realize the (k,n) sequences of Povarov—= as their behavior.

Xq fl(xl,...)Xn)
fo(X1,...,%n)
.
»
[

Xn ——— T3 (X150 %)

Fig. 1.

One may take elther of two points of view in this investigation. Net=-
works can be characterized by (1) their structure, i.e., the placement of

certain components in arbitrary arrays or (2) by their behavior, i.e., the



terminal relations. The former problem has been handled very neatly by
Ninomiyall for the group of complementations and permutatiops. We shall not
extend his results here, but we shall take the behavioral péint of view. Some
related results of a special nature have been obtained by Sagalovitch13 who
obtained the number of one input k output networks whose transmission func-
tions are non-trivial Boolean functions of n variables. In this paper, the
"behavioral" aspect of the problem is completely solved for all the groups

commonly studied in switching theory.

Dramatis Personae

n
1. [j is the group of all 2" complementations of variables. This
2

group was first studied as a group on Boolean functions by Ashen-
murst. t
2. ;P“/ denotes the symmetric group on the n variables. The order of
n

}/b/ is n!; this group has been studied in Reference k.
n

n
3. (zz_ is the smallest group containing [i and bAL. It has been
n ~ 2 n

studied by a great many people; Referenées 1, 4, 10, 14 are a small
subset of the entire class of papers.

4. @Ln(Zs) is the general linear group on the variables; the group has
14

been studied by Slepian~ " and Harrison.7

n
5. (}( (Zo) denotes the least group containing [j22 and GL,(Zp); this
n

group 1s the affine group on the variables and has been studied by

9

Nechiporuk” and Harrison. [



Before proceeding to our method, we shall briefly review the famous the-
orem of Pélya which will be used. We shall use a form of the theorem adopted
from De Bruijn.2

Iet F be the class of all functions from a finite set D to a finite set
R. Suppose D has s elements and that 4;1 is a permutation group of degree s
and order g acting on D. Two functions f,, fo € F are called equivalent if
there exists a permutation « € $¢ such that f,(d) = fo(a(d)) for all d e D(a(d)
denotes the image of d under the permutation ). Consider R to be represented
as the union of r disjoint subsets, i.e., R = lj) R; and Ri/W Rj =4 if i # j.

i=1
Let kj,...,k, be a partition of s. Péiya’s chorem tells us the number of
equivalence classes of functions from D to R such that for ki values of d € D,
the image f(d) € Ry for i = 1,...,r.
To every set Ri, we attach an indeterminate x; and define {5 to be the

number of elements in Ry for i = 1,...,r. The figure counting series is de-

fined as

r
1lf(xl,v“')xz‘) = z Wixi
i=1

Usually the convention is adopted of taking x; = 1. Let P(X1,...,Xp) be the
multi-variate generating function of the numbers that we are seeking, that
is, the coefficient of x; ... Xy is the number of classes of functions with
the property that for ki values of d € D, f(d) € Ry where i = 1,...,r.
P(%X1,...,%y) 1is often called the configuration counting series.

Before stating Péiya's theorem, we must develop the concept of the cycle

index polynomial of %Z: (Zyklenzeiger), denoted by Zi; » Let f1,...,fg be s



indeterminates, and let g, be the number of permutations of 6}77

Jisdoseeesds

having j; cycles of length i for i = 1,2,...,s, so that

ij; = s (1)
1

S
1=

Then we define

o N

2,y = }: s o992 e ds
%;‘ ng;JE)-";Js 1 2 S
()
where the sum is taken over all partitions of s which satisfy (1).
Now we can finally state Péiya’s theorem which reduces the problem of
determining the number of equivalence classes to the determination of the fig-

ure counting series and the cycle index polynomial.

Theorem 2.1 (Pélya). The configuration counting series is obtained by sub-

stituting the figure counting series into the cycle index polynomial of 475.

Symbolically

P(Xl:"')xr) = Zq7~(¢(xl;--'fxr)) W(Xi,---,xi),---,W(Xi,---,X§))

In our applications to single Boolean functilons, Pélya’s theorem takes
an even simpler form. Since Boolean functions are mappings from {O,l}n into

n

(0,1}, we find that D = {0,1}", s = 2", and R = {0,1} with r = 2. Taking
2 ) J J J J

R; = {0} and Rs = {1} and associating the indeterminate 1 with R; and indeter-

minate x with Ry, the figure counting series becomes
W(x) = 1+x

Before proceeding to the theoretical results, we give an example of two



networks to be considered equivalent under )/;i Using the notation of Refer-
ence 4, let o= (2,3) € )4°/be applied to the inputs of the top network of
5

Fig. 2 to give the bottom network of the figure.

X3 f1(x1,%0,X3) = X1XoX3
X2 f2(X1)X2;X3) = X1+X3
X3 — Ta(x1,%X2,X3) = X1#+X3
fa(xy,%2,x3) = 1
X1 _ T1(x1,%X2,X3) = X1XpX3
fo(X1,X2,Xa) = X3+Xp
XZF*\\J/ f3(X1,X2,X3) = 21'622
X3 <8 fa(x1,%2,x3) = 1

Fig. 2.

IT. THE TOTAL NUMBER OF CLASSES

Our problem is now to count the number of classes of (n,k) networks under
any group C;L-acting on the domain of the functions, {O,l)n. The total num-
on

k2™

ber of such networks is 2 since there are 2 choices for each one of the

k outputs.

In order to modify Péiya’s formula for counting the number of classes
of networks, we note that no change has been made in the way that 6§Z acts
on {O,l}n. The only change is in the range. We are now looking at mappings

n
from {0,1} into {O,l}k so that we need a new figure counting series. Ob-

viously



2k

‘V(XlJ'-')ng) = Z X5
i=1

Usually x4 is chosen to be one, but this is of no consequence.

Theorem 1. The number of equivalence classes of (n,k) networks (sequences of

k Boolean functions of n variables) under a group qz,gi given by

Proof. To count the total number of classes, one takes x4 =1 for 1 =1,...,2
in the figure counting series. Thus fy is replaced by

2k

j{: 1t o= 2k ror 1=1,...,28

J=1

n
Corollary 2. The total number of classes of (n,k) networks under [j is
- - 2

n n-1
L2 4 (en - 1))
2Il
Proof. This follows from the fact that
1 n gn"l
Z - & (£.° + (2% - 1)fs" )

El’l
2
Cf. References 1 and L.
It is interesting to note that the class of all mappings from {O,l}Il in-

n
2 functions in the natural way. It

to {O,l}k forms a Boolean algebra of ok
appears that the generalization of many problems in switching theory to the
multiple output case can be handled naturally from this point of view. This

observation has already been verified for the multiple output minimization

problem.



The calculations have been carried out for the five groups under discus-
sion and the results are given below in Tables 1 through 5. Certain facts
may be deduced from the tables. For example,the number of classes under B/IT

and GL1(Z2) is 4 since these groups consist of the identity alone.

ITTI. SYMMETRIES IN THE RANGE

While the results of the previous section are of some interest, certain
networks are considered non-equivalent which differ only in the order of the
outputs. We wish to enlarge our definition of equivalence of networks by
allowing permutations in the range. More precisely, let the symmetric group
on k letters, ﬁ, ‘act on the range, and consider two networks equivalent if
and only if there is an O € 07 and a permutgtion o € X’/k/such that
(£.(a),...,f(d)) = (ga(l)(ad),..,,gc(k)(ad)) for every d € {0,1}*. This in-

stance is a special case of the following theorem of De Bruijn.

Theorem 3. (De Bruijn). it q; 1s a group on the domain D of a family of

functions, and 6, is a group on the range R of the function (D = s, and

R = r), then the number of equivalence classes of functions is given by

3 o
2'7 (SZ IEERY) S-Z-,-;)Zé,(hl,'“’hr)

evaluated at z; = zg = ... = 2g = O where
o
hy = expit szt for t=1,...,r
k=1

In order to carry out calculations with this theorem, the following lemma

was proved in Reference 5.
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Temma 4. A term hyJd1 ... hr‘Jr in Zé, gives rise to

op (L oo L)

t|1 t|s

The only information required before our calculations can begin is the
. . . . k
determination of the cycle index of % Since there are 2 elements of
k . k
{0,1}", we need a representation of )""K/of degree 2. Fortunately, such a

representation was constructed in Reference 4. The result 1is

LER .
(3) EJiIl £ o) ali

where the sum is over all solutions of

k

1 d
and e(d) = 3 z 2tu(f). The definition of the cross operation (X) is given
in Reference 4, and u(a) denotes the Mobius function.

For the sake of reference, the results of De Bruijn's theorem are worked

out below for 1 <k < k.

e———

Theorem 5. The number of classes of (n,k) networks with a group 7 on the

domain and the symmetric group on the range is given below for 1 <k < kL.

k=1 zgf('z',...)

k =2 %(Z?L(H )““ch(_lT o))

K = 3 %(zo}(es ) +5z7(u 8,...) +227(228 )
K = b = (Zp?(l6 D)+ 620}(8 16,...) + 52%(1516,...)

+ 824%@,1;,16,...) + 627(2,24,2,16,...))

13



where the notation Z%? (f15+.,fp,...) means fp = fq if and only if p = g mod m.

The calculations have been carried out and are given in Tables 6 through 10.

The number of classes with (say) [:; on the domain and b‘ﬁ’on the range is de-

n
noted by T [: .
y T ( X ?ft)

IV. COMPLEMENTATION IN THE RANGE

Suppose we allow ourselves to complement the k outputs of our networks
and enlarge our definition of equivalence by considering two networks to be
k
equivalent if there isanq ¢ 6¢ and an 1 = (i,...,1x) € [j , such that
2
i, ik n
(£1(d),0e.,fx(d)) = (£f1 ((d)),...,fx ((d)) for all d € {0,1} . The nota-

i.
tion f; J(d) is defined as

il
o

5. f3(a) if iy
£y 9(a) = for j = 1,...,k

fj(d) if iy

Il
=

The number of such classes can again be determined from De Bruijn's the-

orem.

Theorem 6. The number of classes of (n,k) networks with a group {7{ on the

k
domain and the complementing group [j on the range is
2 -
1 k k k k
;{— <Z7(2 e, 25) 4+ (2X - 1)27(0,2 5ees,0,2 )>

k
Proof. The cycle index of [jg is knownl to be

1 oK k . ok-1
Zk=;1;é’l + (27 - 1)fs

L.

The result follows from Theorem 3,

1k
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The special case when k = 1 has been previously investigated and is the
topic of References 3, 5, and 10. The calculations are shown below in Tables
11 through 15, where T(% s Ez) denotes the number of equivalence classes
of (n,k) networks with a group 4]/ on the domain and El; on the range.

It 1s somewhat artificial to consider complementation of the outputs
only. One would prefer to consider both symmetries and complementations on
the range. This suggests considering the least group containing m and
ik. This group, 0%1{, is very well known and its cycle index is knownlL to

2

be

o L X (e )
= Tk ko d4 d
P e (3) ?-SL 3;1(21) b \d 4 SASS

d|ei
/ :’*5

where the sgm is over all partitions of k, i.e., over all non-negative integer

1
solutions Z ij; = k. e(k) = T }: Edp.(g-) and

i=1 alk
_]____z a/e ok
g(2k) = ~ 27 w3
atk
a |2k

where p(a) is the M8bius function. Using Lemma L4, the polynomials to be
evaluated are written below.

Theorem 7. The number of classes of (n,k) networks with a group /% on the

domain and the group ng/k of complementations and permutations on the range

is given below for 1 < k < L,

20
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k=1 %(zg(E,...) +z7(6‘,§,...))

k=2 B (2gy(Fyonn) + 524(Gh,0) + 22(B,. )
+ EZOZ(W,-“))

k=3 %fé (z%(é,...) + 152(7(6',@,...) + 827(2,2,8,...)
+ 82?(0,2,0,2,0,8,...) + 627@‘,8,...) + 122%(0,0,0,8,...))
1 — —— —_—

K= b ey (z%(_m,...) + 5124(0,16,...) + uaz%(e,u,e,m,...)

+ u827(o,o,o,o,o,o,o,16,...) + 12Z7(8,16,...)

+ 8&27(0,0,0,16,...) + 122%@:1%,...)

+ 322%(%&,16,...) + 962%(o,h,o,h,o,16,...))

Using this result, the number of classes has been computed and is tab-

ulated below in Tables 16 through 20.

V. LINEAR GROUPS IN THE RANGE

Theorem 3 and Iemma 4 allow us to consider any grou;>9/on the domain and
any group f; on the range. We now complete our analysis of all remaining
cases by allowing GL,(Z2) and CT(;(ZZ) on the range. Because of the length
and complexity of the cycle indices of these groups, we shall not exhibit the
explicit formulae to be used in the calculations; instead the reader is
referred to Reference 7.

The results are given below in Tables 21 through 30.

26
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VI. MISCELLANEOUS RESULTS AND COMMENTS

One might be interested in comparing our results with some related re-
sults on invertible functions. In both cases we consider n-input ,n-output
networks with groups on the domain and the range, but in References 6 and 8
the functions are required to have inverses. Comparing the results of these
references against T(ez_,gé) for (n,n) networks, one finds that the ratio
of the number of classes of invertible functions to T(@Z, f{) approaches
zero for large n. Thus the invertible classes are comparatively rare.

One degenerate group has not been discussed, namely the identity group
on the n variables, g&n' é?n has order 1, degree 2n, and its cycle index
is flgn. Our results with ng on the range reduce to Zgz(2k,...,2k) as one
would expect. Separate calculations are required if é?n is applied to the
domain and an arbitrary group 25? is used on the range. These calculations
will not be performed here because of the limited interest in the results
and the size of the numbers.

It 1s sometimes of interest to have lower bounds on the number of classes.

The following theorem gives the desired bounds.

Theorem 8. A lower bound on the number of classes of (n,k) networks with &

group % of order g on the inputs and a group jﬁ of order h on the outputs

is given by L kgn
= Z0(25, ... ,25) > A 2
h ~ gh

Proof. The argument simply takes the largest terms in the polynomials given
in Theorem 3. Note that for k = 1, and Z{‘= 221, the bound reduces to

1 n

g 22 which is a well known7’8 lower bound for the number of classes of

Boolean functions with a group of order g on the domain.

Lo
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