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ABSTRACT

An airplane approaches a target T at a constant speed V
along a straight line which makes an angle e with the horizontal.
When the airplane is at a distance Ry from the target, it pulls
up in a 3g turn through an angle 6 while maintaining its constant
speed V. The airplane then releases a bomb which travels a bal-
listic trajectory and bursts on the target. The purpose of this
study is the preparation of a number of graphs from which pertin-
ent information regarding the various bombing runs can be read.
In particular, Fig. 2 readily yields the values of €, the time of
flight of the bomb, and the minimum ground clearance for a general
bombing run identified by the values of Ry and © associated with
it. Also, Fig. 4 accomplishes the same purpose when the bombing
run is identified by the rectangular cartesian coordinates of the
airplane at the instant when the pull-up begins; Fig. 5 is the
same as Fig. 4, except that the bombing run is identified by the
rectangular cartesian coordinates of the airplane at the instant
when the bomb is released. Figures 6-9 in a similar fashion
yield the values of five error coefficients associated with a
general bombing run. These error coefficients permit the cal-
culation of the maximum amounts by which the burst misses the
target due to small errors in e, Rys and ©, and in the prescribed
58 pull-up. Figures 12-14 show some typical bombing runs.

OBJECTIVE

This report is devoted to an analysis leading to the
construction of various graphs containing information pertinent
to toss bombing.

iv
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LIST OF NOTATIONS

€: angle of approach. See Fig. l.

Vi velocity of the airplane,

g: acceleration due to gravity,

n: pull-up constant. The airplane pulls up into an ng turn.
Ro: range at pull-up beginning. See Fige 1,

©: pull-up angle. See Fig, 1.

q: minimum ground clearance. See Fig. 3

r: radius of the pull-up circle. See Fig., 1.

t: the time, measured from the instant of bomb release.

(xy y): coordinates of the bomb at time te

(xg, y8): (x, y) at the time of burst.

L': a standard length = V=/g,

T': a standard time = V/g.

T: the modified time = /77,

Q: the modified minimum ground cleasrance = /L.
p: the modified range = RO/L'.

(N, u): modified coordinates of the bomb (x/L, /L),

i

(€, £): (x/Bgy ¥/Ro)e See Bquations (3.4).

°

(tgs tgl): (&, ¢) at the time of burst.
T: value of T at the time of burst.

Pmax: maximum value of p for given €.

v
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defined in Equation (6.2).
defined in Equation (6.3).
defined in Equation (8.5).
defined in Equation (8.6).
defined in Equation (14.3).
defined in Equation (1L4.3).

SR, %€, ®n: errors in 6, R, €, n, respectively.

, SyB: horizontal and vertical errors in the location of the burst.

See Section 24, par. 2.

angle of inclination of the trajectory in the neighborhood of the target.

Ex, By, Egy ERy Ec, En: percent errors defined in Equations (2k.2).

Exos Eyos EQRs Boes Eont: error coefficients defined in Equations (26.9).
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SECTION 1: INTRODUCTION

The reader who is concerned only with the results of this study, and
not with the theory on which these results are based, may skip Sections 6-9,
12-16, 19-23%, and 26.

An airplane approaches a target T along a straight line AOT which
makes an angle e with the horizontal, as illustrated in Fig. 1. At O the air-
plane pulls up onto a circular path OR. At R a bomb is released which follows
a ballistic path and bursts at a point B. The speed of the airplane over its
entire path is a constant V. The radial acceleration of the airplane on the
circular path OR is thus a constant which will be denoted by ng, where g is
the acceleration due to gravity and n is a dimensionless constant called the
pull-up constant. We shall be particularly concerned with the case n = ’
but in order to make a determination of the effect of small variations in n
away from 3, we shall leave n unspecified for the present.

The slant range of the airplane from the target when the pull-up
begins is Ro’ and the pull-up angle when the bonb is released is 0, as shown
in Fig. 1. 1In this study it is proposed to prepare several families of curves
which present in a compact form pertinent information regarding the various
bombing runs culminating in a bomb burst on the target. These curves are such
as to permit one to read off at a glance, for any trajectory, the values of
the slant range R,, the angle of approach €, the pull-up angle 9, the time of
free flight of the bomb, the minimum ground clearance q, the coordinates of
the pull-up point 0, and the coordinates of the point R where the bomb is
released. It is also proposed to present curves showing the amounts by which
the burst might miss the target in both elevation and range due to small errors
in the pull-up angle ©, the slant range RO, the angle of approach e, and the
pull-up constant n.

Actually, these curves will be expressed, not in terms of the quan-
tities defined above, but in terms of certain equivalent dimensionless quan-
tities to be defined in the next section. The various curves appear in Figs.

2 and 4-9. The precise description of the meanings of these curves is quite
involved. As may be seen from the Table of Contents, the explanations of these
figures appear in Sections L, 10, 17, and 24k, The Table of Contents also in-
dicates where the theory pertaining to the curve families appearing in these
figures may be found.

1
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SECTION 2: THE EQUATIONS OF MOTION

We refer here to Fig. 1. As stated in Section 1, the airplane
travels the circular arc OR at a constant speed V and a radial acceleration
ng. If r is the radius of this circular path, then we have V2/r = ng, so
that

r = Vz/l’lg. (2'1)

The lines TO, OE and ER, with the positive x-axis, make the angles
€, € + (1/2)n, and € + (1/2)x + (x - ©), respectively. Thus, by projecting
the broken line TOER on the x- and y-axes, we find that the coordinates of R
are [Ryp cos € + T cos{(l/e)rr + € + T cos {(5/2)1{ i+ e - O}, Rp sin
€ + r sin{(l/2)n + e} + T sin{(}/Z)n + € - @}], or

[Rpcos e -r sine +r sin (¢ - 6), Ry sine +r cos € - r cos (e - 0)].
(2.2)

The velocity of the bomb at R makes an angle with the position x-axis of

€ + w - ©, Thus, the velocity components of the bomb at this instant are
[Veos (x + € - 0),Vsin(x + ¢ - ©)], or
[ - Vecos (e - ©6), - Vsin (e - 9)]. (2.3)

Let t denote the time of flight of the bomb, measured from the in-
stant when the bomb is released, and let (x,y) denote the coordinates of the
bomb at time t. From (2.2) and (2.3) it then follows that

b
]

Rocos € -r sine +r sin (e - @) - Vt cos (¢ - 9),

Yy = Rysine +rcose-rcos (e -0) -Vt sin (¢ -9) - %-gtz.
(2.4)

These are the equations of motion of the bomb.
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SECTION 3: DIMENSIONLESS QUANTITIES
THE FUNDAMENTAIL EQUATIONS
The desired results in this study can be expressed more compactly in
terms of dimensionless quantities rather than in terms of those introduced

heretofore. To this end we introduce a standard length L' and a standard time
T' which we define by the relations

L' = Vi/g, T = V/g. (3.1)

It will be noted that L' is the radius of a lg turn made at speed V. If, for
example, V is equal to Mach 1, then L' is equal to approximately 30,000 ft,
and T is equal to approximately 30 sec.

We now introduce a dimensionless time T and a dimensionless slant
range p defined by

T = t/T" p = Ro/L'. (5‘2)
We also introduce dimensionless coordinates (A, p) defined by

N = x/]'_,', u = y/L'. (3.3)

The quantities 7, p, Ayand p will be referred to as the modified time, modi-
fied range, and modified coordinates, respectively. We shall also find it
convenient to introduce a second set of dimensionless quantities (¢, ) de-
fined by

E = xR, t = y/ROQ | (3.4)

Let us now express the equations of motion (2.4) in terms of dimen-
sionless quantities. We substitute in (2.L4) for t, R, x, y from (3.2) and
(5.5), and also substitute for r from (2.1) to obtain the modified equations
of motion,
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o(t - cos €) + % [sin € - sin (e - Q)] +T cos (¢ -6) = O,
p(t - sine) - L [cos ¢ - cos (¢ =0)] +T sin (e - ©) + % ™ = 0.
n
(3.5)
The bomb bursts at the point B, which may or may not coincide with
the target. Let us suppose that the burst occurs at a modified time T = T,
the corresponding values of (&, ) being (ég> Gp)- Then (3.5) yields
p(tg - cos €) + % [sin e - sin'(e = 6)] + Tcos (e -0) = O, (3.6)
p(gB - sin €) - % [cos € - cos (e - ©6)] + T sin (e - ©) + % ™ = 0,
(3.7)

These equations are fundamental in the developments which follow and will be
referred to as the fundamental equations.

SECTION 4: FIGURE 2

EXPLANATTONS

Figure 2 presents in convenient form information concerning the
various bombing runs specified by assigned values of the modified slant range
p and the pull-up angle ©. This statement is amplified below. This figure
deals with a situation in which the bomb bursts on the target, and the pull-
up constant n has the value 3, so that the airplane pulls up into a 3g turn.
It is intuitively obvious that in such a situation the assignment of values
of € and p completely specifies a bombing run. We may then regard © as a
function of € and p, and write

@ = 06(e, p). (k1)

Of course, there are bounds placed on the values assigned to € and p, because
of physical limitations. Equivalently, we may specify a bombing run by the
assignment of values to p and 6. 1In Fig. 2, p is plotted horizontally and ©
is plotted vertically. It thus appears that, to each point in some region

in the (p, ©) plane of Fig. 2, there corresponds a bombing run, and vice versa.

In Fig. 2 there are three families of curves and a single curve be-
sides. These will now be explained in turn.

L
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The Family ¢ = Const.—As mentioned above, to each bombing run there
corresponds a point in the (p, ©) plane of Fige 2. The curves € = const.
in Fig. 2 indicate the values of the angle of approach e associated with the
various bombing runs. The theory leading to the determination of the curves
of this family is developed in Section 6.

The Curve p = ppgx.~T0 each bombing run there corresponds a point
in the (p, Qi'plaﬁe"a?*?ig. 2. The points on the curve p = Pmax Correspond
to bombing runs for which ¢ is assigned and p is as large as possible. It

willl be noted that this curve cuts each curve of the family € = conste. where
p 1s as large as possible, as might be expected. The theory leading to the
determination of the curve p = Pmax 1s developed in Section T

The Family T = Const.—It will be recalled that T is the modified
time of free flight of the bomb. To each bombing run there corresponds a
point in the (p, ) plane of Fige 2. The curves T = const. in Fig., 2 indi-
cate the values of T associated with the various bombing runs. The theory
leading to the determination of the curves of this family is developed in Sec-
tion 8.

The Family Q = Const.—TIt is assumed that the surface of the ground
1s a horizontal plane containing the x-axis of Fige 1. The minimum ground
clearance of the airplane, which occurs at a point on the pull-up circle, will
be denoted by q. We introduce a corresponding dimensionless quantity Q de-
fined by the relation

Q = Q/L' ’ (k.2)
where L' is the standard length defined in Section 3

To each bombing run there corresponds a point in the (p, 6) plane of
Fig. 2, The curves Q@ = const. in Fig. 2 indicate the values of Q associated
with the various bombing runs. The theory leading to the determination of the
curves of this family is developed in Section 9.

SECTION 5: FIGURE 2

EXAMPLES OF ITS USE

Example l.—~Let us suppose an alrplane approaches the target at
1000 ft/sec‘l with an angle of approach of 30°, and starts the pull-up at a
range of 60,000 ft. Then V = 1000, ¢ = 30°, and R, = 60,000. For con-
venience we take g = 32 ft/sec'z. Then the standard length L' and the stan-
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dard time T' have the values L' = VZ/g = 108/32 = 31,250 £t and T' =
V/g = 1000/32 = 31.250 sec. Then p = Ro/L' = 1.92, and the point A
in Fig. 2 corresponds to the bombing run under consideration here. From Fig.
2 it then follows that © 26.2° and, by the use of linear interpolation on

L]

the families of curves T = const. and Q = const., that T = 1.47 and
Q@ = 0.92. The time of free flight of the bomb is TT' = 1.47 x 31.250 =
45,9 sec, and the minimum ground clearance of the airplane is QL' = 0.92 x

31,250 = 29 x 10° ft.

Example 2.—~An airplane approaches the target at 1000 ft/sec‘l with
an angle of approach of 30°. It is desired to investigate the bombing run for
which the slant range at the instant of pull-up beginning is as large as pos-

sible. As in Example 1, we have V = 1000 and € = 30°, and for convenience
we take g = 32 ft/sec™®, and so L' = 31,250 ft and T' = 31.250 sec.

The point B in Fig. 2 corresponds to the bombing run under consideration.

From Fig. 2 it then follows that p = 2.58and @ = 64.2°., The range at
which the pull-up begins is thus Ry = pL' = 2.58 x 31,250 = 806 x 100 ft.
As in Example 1, linear interpolation yields T = 2.27and Q = 1.24, Thus,
the time of free flight of the bomb is TT!' = 2.27 x 31.25 = 70.9 sec, and
the minimum ground clearance of the airplane is QL' = 1.24 x 31,250 =

38.8 x 1000 ft.

SECTION €: FIGURE 2

THEORY FOR THE CURVE FAMILY € = CONST.

The determination of this curve family is based on the fundamental
equations (3.6) and (3.7). Now Fig. 2 refers to bombing runs for whieh the
bomb bursts on the target, so in (3.6) and (3.7) we should set tg = tg = O.
However, for later convenience we shall defer this step temporarily.

It will be recalled that in the Present study the pull-up constant
n has the value 3. Thus (3.6) and (3.7) are two equations involving the para-
meters p, €, ©, and T. Iet us eliminate T between these two equations. We
readily solve (3.6) for T and then substitute in (3.7). This yields an equa-
tion quadratic in p. After some simplification, this equation takes the form

pPT - 20p +

0, (6.1)

where
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1 g - sin €

= sin 2(e - 6) - [L + cos 2(e - 9)]
2(tg - cos e) ! g - cos €
(6.2)
- 2[sine - sin (e - Q)]:},
n ,
¥ = L 2(1L - cos ©) cos (e - ©)
n(eg - cos €)2 |
(6.3)
+ %[sin € - sin (e - O)]z}.
Solving (6.1) for p, we obtain
o] = 0] i‘_ @2 - m’ e (60"4')

Referring to Fig. 1, we note that the lower sign in (6.4) gives a smaller
value of p than does the upper sign., This smaller value corresponds to the
case where the bomb leaves the release point R with a speed V downward along
the parabola. This case is extraneous. Hence, we have

p= 0 + 40 - T (6.5)
When the bomb bursts on the target, we have kg = €y = 0, so that
> = - ———;;——-{%in 2(e -©8) - tane [1 + cos 2(e - 9)]
2 cos ¢
2 . .
- mlsine - sin (e -O)]}, (6.6)
1 1 . . 2
¥ = ——=—{2(1 -cos®)cos (¢ -0) + =[sine - sin (e -0)1° 7.
n cos® ¢ n
(6.7)
Equations (6.5)-(6.7) yield the curve family e = const. in
Fig. 2. To obtain the curve corresponding to € = 0, we set € = O in (6.6)
and (6.7). We then compute the values of & and ¥ corresponding to @ = 0°,
5% 10°, e+, 90°. Eguation (6.5) then yields the values of p corresponding
to these values of 6. The curve € = O can then he constructed by point
plotting. A similar procedure yields the curves corresponding to ¢ = 5°,




— ENGINEERING RESEARCH INSTITUTE - UNIVERSITY OF MICHIGAN —

10°, 15°, e+ , U5°. However, in each of these cases 6 = 0°, 5°, 10°, +=- ,
90° + €.

The numerical computations involved here are rather extensive. Sub-
sequent portions of this study, (Section 8) require the constructions of mem-
bers of the curve family € = cost. for a denser set of values of €. In par -~
ticular, only portions of these curves in the vieinity of the place where p
has a maximum value are required. The computations for these additional curves
were not carried out as previously but were made by use of the results of the
previous computations and use of the forward and backward finite-difference
formulas of Newton. For example, previous calculations yielded the values of

p corresponding to @ = L0°, ¢ = 0°, 5°, 10°, e+« , 45°, The two difference
formulas mentioned above then readily yield the values of p corresponding to
@ = L40% e = 2.5° 7.5°, 12,5%, o , 42,5°,

S SECTION 7: FIGURE 2

THEORY FOR THE CURVE p = Py

Equations (6.5)-(6.7) express the modified range p in terms of the
pull-up angle © and the angle of approach e when the bomb bursts on the tar-
get. For convenience, we write (6.5) in the form

p = p(6, €). (7.1)

Corresponding to each value of € there is a value of p which is as large as
possible; it is denoted by Pmaxs TO obtain ppay we could solve simultaneously
Equation (7.l) and the equation

% -
5 0 (7.2)

for p and © in terms of €. The values of p thus obtained are the desired
values of Pmax*

A casual glance at (6.5)-(6.7) indicates that the solving of these
two simultaneous equations (7.l) and (7«2) would present severe algebraic
difficulties, and if a numerical method of solution were employed, the numeri-
cal work would be. prohibitive. Accordingly, the following numerical approach,
which is only approximate, is employed. In the determination of the curves
€ = const. in Fig. 2 (Section 6), the coordinates of pdints on the curves

8
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€ = const. are computed and the curves ¢ = const. are thus constructed by
point plottings On the curve ¢ = 0, we select the three points nearest the
point where p = ppgye ‘Let us denote these three by Pi(p1, 01), Pz(pz, 62),

and Pg(ps, 95) in order of increasing ©, Through these three points we pass
a parabola with a horizontal axis. In the language of finite differences, the
equation of this parabola is

-1
p(6) = p1 + phpyr + 9-93—2—)— Aoy, (7.3)
where
Aps = Pz - p1yAp2 = p3 - p2, A®p1 = Aps - Api,
6 -6
P = T, = & - 0 = 63 - 6.

Let EKE; 5) be that point on this parabola where p is as large as possible.
From (7.3) it readily follows that

- — p(p - 1 — —
P = p1 + DpApy + QLE—E—)— 001, 8 = 61 + wp, (T.h)
where
= _ 1 A pa
p 2 A2p1 . (7‘5)
We then compute the coordinates of that point Ei on the curve € = 0 where
6 = 6 and denote the p coordinate of this point by P “Then P has coordin-
ates (9, ©). Of the four points Py, P, P3, and P, we then select the three
which are closest to the point where p = Pmax @nd repeat the process until
stability in the values of p is reached. The final value of P thus obtained
is Ppax COrresponding to € = O. A similar procedure yields Ppax for e =

5%, lO@, ey L5°,

In practice it is found that the difference of E'and'E‘for the first
cycle is negligible, due to the fact that Pi, Ps and P3 are close together.,
ance, it follows that Ppmax 1S glven with satisfactory accuracy by the value
of p given by (T7.4) and the value of © corresponding to pp.y is given also
with satisfactory accuracy by (T.l4).

In the above computations the pull-up constant n had the value 3
When ¢ = O, it appears from the numerical computations that Pmax = L4/3.
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Computations made for an earlier study indicate that Pmax = 3/2 whenn = 2,
Accordingly, a theoretical determination was attempted for ppqy when € = O.
After some very extensive and involved algebra, it was found that

n+ 1
Pmax = - (7.6)
when € = O. A similar determination of Ppax for general values of e was

abandoned early because of the algebraic complexity.

SECTION 8: FIGURE 2

THEORY FOR THE CURVE FAMILY T = CONST.

To find the equation from which this curve family can be deduced
by computation, we must eliminate € between the fundamental equations (%.6)
and (3.7). Just as in Section 6, we shall defer setting tg and ¢ equal to
zero for the present, even though we are concerned only with the case when
the bomb burst on the target. To carry out the elimination of e between (3.6)
and (3.7), we write these equations in the form

Qy sin € + By cos ¢ = Y1y
(8.1)
Qo sin € + PBo cos € = Y2,
where -
= _ 1 1 .
@ = - P2 = = - =cos @ + Tsin o,
n n
Br = Q2 = - p + i-l-sin@ + T cos o, > (8.2)
71 = - pEgy 72 = - ptly - =T,
: J

Next, we solve (8.1) for sin e and for cos e, then square and add the results
to obtain the equation

Q1 + B = 712 + 72? (8.3)

10
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Substitution in (8.3) from (8.2) then yields

2 - 28p + ¥ = O, (8.k)
where
1 1 1 2
= = & T o = QT 8.
0] — ng - CBZ (n sin + cos + > tp ), (8.5)
v o= ; > 25-(1 - cos ©) + g'III"S:'Ll’l e + T - % ™.
1 - gB = CB o n
(8.6)
Solving (7.4) for p, we obtain

P = ¢ ;I; ¢2 - 1‘[ ps (817)

One value of p given by this equation is extraneous. To resolve this, we note
that (8.7) yields values of p corresponding to given © and T. Intuitively it
follows that there will be two values, one corresponding to a positive € and
one to a negative €. The positive e will yield a value of p larger than will
the negative €. Hence, in (8.3) we choose the positive sign to obtain

o= +afF - (8.8)

When the bomb bursts on the target, we have Eg = CB = 0 so that
(8.5) and (8.6) yield

¢ = %-sin © + Tcos 0, (8.9)
_ 2 _ 2T . o R
v o= n""z'(l cos ©) + —sin6 + T2 - ;T (8.10)
Equations (8.8) - (8.10) yield the curve family T = const. in Fig. 2. To
obtain the curve corresponding to T = 0.5 in Fig. 2, we set T = 0.5 in
(7.9) and (7.10). We then compute the values of @ and ¢ corresponding to
© = 0° 5°, 10°, *++ . Equation (8.8) then yields the values of p corres-
ponding to these values of 6. The curve T = 0.50 can then be constructed

11
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by point plotting. A similar procedure yields the curves corresponding to
T = 1.00, 1.25, 1.50, =<+ , 3.00.

SECTION 9: FIGURE 2

THEORY FOR THE CURVE FAMILY Q = CONST.

Let us refer to Fig. 3 which, like Fig. 1, represents a typical
bombing run. The airplane is closest to the ground when it is at the point
M. The minimum ground clearance is thus the y-coordinate g of M. From Fig.
5 we see that

4 = Rysine - r (1L - cos e).

Substitution for r from (2.1) then yields

2
Q@ = R, sine - Y_(1-cose). (9.1)
ng

We now introduce the dimensionless ground clearance Q defined by the relation

Q = gq/L', (9.2)

where L' is the standard length defined in Section 3. Substitution in (9.1)
for q from (9.2) and for R, from (3.2) then yields, since V3/g = L,

Q = psine - L (1 - cos €).
n

Solving for p, we obtain

Q + % (1L - cos €)
p = - (9‘5)

sin ¢

Equation (9.3) yields the curve family @ = const. in Fig. 2. Of
course, n has the value three throughout this study. To obtain the curve cor-
responding to @ = 0.1, we set @ = 0.l in (9.3), then compute the values of

12
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p corresponding to e = 0°, 5°, 10°, **+ , 45°, On the curves ¢ = 0°, 5°,
10°, ***, 45° in Fig. 2, we then locate the points corresponding to these
values of p, and through these points we draw a smooth curve; it is the curve
Q = 0.l. We proceed similarly for Q@ = 0.3, 0.5, s+ , 2.7,

In carrying out the procedure described in the previous paragraph,
we find that, in the vicinity of the curve p = Pmaxs Points were not obtained
with a density sufficient to permit an accurate drawing of the curves Q =
const. In order to remove this obstruction, use was made of the curves of
the family € = const. computed for a denser set of values of € by the use
of finite differences, as described in the last paragraph of Section 6.
These curves have not been reproduced in Fig. 2 since they would complicate
this figure still further.

SECTION 10: FIGURE 4

EXPLANATTONS

Figures 4a and 4b present in convenient form information concerning
the various bombing runs specified by assigned values of the modified coordin-
ates (N, u) of the airplane at the point O (Fig. 1) where the pull-up begins.
Figures 4a and 4b deal with a situation in which the bomb bursts on the target
and the airplane makes a 3g turn in travelling on the circular arc OR (Fig. 1).

In Figs. 4a and 4b, A is plotted horizontally and p is plotted ver-
tically. It thus appears that to each point in some region in the (A, )
plane of Figs. 4a and 4b there corresponds either one or two bombing rums,
depending on circumstances. When two bombing runs correspond to a single
point in the (A, p) plane, we distinguish them by referring to one as being
of S-type and the other as being of L-type; S-type is characterized by having
smaller values of the pull-up angle © and of the time of flight T than does
L-type. Figure 4a presents information concerning bombing runs of S~type,
while Fig. Ub refers to bombing runs of L-type.

In Figs ba and 4b there are four families of curves and a single
curve besides. These will now be explained in turn.

The Family ¢ = Const.—As mentioned above, to each bombing run there
corresponds a point in the (AN, p) plane of Figs. 4a and 4b. The curves e¢ =
const. in Figs. 4a and 4o indicate the values of the angle of approach e asso-
ciated with the various bombing runs. The theory leading to the determination
of the curves of this family is developed in Section 12.

13
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The Curve p = Pmax+*—To each bombing run there corresponds a point
on the (N, T Plane of FIgs. 4a and 4b. The points on the curves p = p_ .
of these figures correspond to bombing runs for which the angle of approach
€ is assigned and the modified range p is as large as possible. The theory
leading to the determination of these curves is developed in Section 13. It
will be noted that these curves form right-hand boundaries of the regions in
the (N, p) plane of Figs. 4a and 4b made up of points corresponding to which
bombing runs exist.

The Family T = Const.--It will be recalled that T is the modified
time of free flight of the bomb. To each bombing run there corresponds a
point in the (A, p) plane of Figs. 4a and 4b. The curves T = const. in
these figures 1nd1cate the values of T associated with the various bombing
runs. - It will be noted that, provided T is large enough, a curve T = const.
has branches in both Figs. 4a and 4, Both branches terminate at the same
point on the curve p = Ppayx and are tangent to this curve. The theory
leading to the determination of the curves of the family T = const. is devel-
oped in Section 1k4.

Egg_Familz Q = Const.—It will be recalled that Q is the modified
minimum ground clearance of the airplane and is defined in Equation (8.2). To
each bombing run there corresponds a point in the (A, p) plane of Figs. 4a and
b, The curves @ = const. in these figures indicate the values of Q associ-
ated with the various bombing runs. The theory leading to the determination
of the curves of this family is developed in Section 15.

The Family 9 = Const.—It will be recalled that O is the pull-up
angle of the airplane. To each bombing run there corresponds a point in the
(n, p) plane of Figs. ba and 4. The curves © = const. in these figures
indicate the values of © associated with the various bombing runs. It will be
noted that, provided 6 is large enough, a curve © = const. has branches in
both Figs. 4a and 4b. Both branches terminate at the same point on the curve
P = Ppay and are tangent to this curve. The theory leading to the determina-

tion of the curves of this family is developed in Section 16.

SECTION 11: FIGURE 4

AN EXAMPLE OF ITS USE

Let us suppose an airplane approaches the target at 1000 f‘t/sec_l
and begins the pull-up when the horizontal range is 60,000 ft and the altitude
is 30,000 ft. Tt will be recalled that in all bombing runs considered in this
study the airplane is aimed directly at the target at the instant when the

14
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pull-up begins, so the information given above is enough to specify two bomb-
ing runs, one of S-type and one of L-type, as defined in Section 10, par. 2.

For convenience we take g = 32 ft/sec'z, whence the standard length
L* and the standard time T' have the values L' = V2/g = 31,250 ft and
T' = V/g = 31.250 sec. The modified coordinates of the airplane at pull-

up beginning are thus

X 60,000 _ Y _ 30,000 _
= X 2= = 1,920 = = 222 = ,060.
» i 31,250 920, b L 31,250 9

The point corresponding to these values of A and u is marked A in Fig. ba and
B in Fig. 4b.

The point A refers to a bombing run of S-type. By means of linear

interpolation, we obtain from Fig. 4a for the point A the values e = 26.6°,
e = L7.7°, T = 1.77,and Q@ = .928, Hence, the angle of approach is 26.6°,
the pull-up angle is 47.7°, the time of flight of the bomb is TT' = 1.77 x
3L.25 = 55.3 sec, and the minimum ground clearance is QL' = .928 x 31,250

= 290 x 100 ft.

The point B refers to a bombing run of L-type. By means of linear
interpolation, we obtain from Fig. 4b for the point B the values € = 26.6°,
© = 78.3°, T = 2.42, and Q = .928. Hence, the angle of approach is 2h4.k45,
the pull-up angle is 78.3°, the time of flight of the bomb is TT' = 2,42 x
31.25 = T5.6 sec, and the minimum ground clearance is QL' = .928 x 31,250
= 290 x 100 ft.

SECTION 12: FIGURE 4

THECRY FOR THE CURVE FAMILY € = CONST.

Let us refer to the typical bombing run illustrated in Fig. 1, Sec-
tion 1. If (x, y) denote the coordinates of the point O where the pull-up
begins, then

X tan e. (12.1)

B
]

But, by (3.3) we have x = AL' and Yy = ubL', where L' is the standard length
defined in Section 3. Substitution for x and y from these equations in (12.1)
then yields
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M = X\ tan €. (12.2)

This equation gives the family of curves € = const. in Figs. 4a and 4b. The
family obviously consists of straight lines passing through the origin.

SECTION 13: FIGURE &4

THEORY FOR THE CURVE p = py..

Corresponding to each value of the angle of approach €, there is a
value of the modified slant range p which is as large as possible. This value
1s denoted by pp,yy and its determination was discussed in detail in Section
7. To obtain the curves p = ppgy in Figs ba and 4b, we measure off, along
the lines € = const. in these figures, distances equal to the corresponding

values of Pmax’ & smooth curve is then drawn through the points thus obtained;
it is the desired curve.

SECTION 14: FIGURE 4

THEORY FOR THE CURVE FAMILY T = CONST.
To find the equation from which this curve family can be deduced
by computation, we must eliminate © between the fundamental equations (3.6)

and (3.7). Since we are concerned only with the case in which the bomb bursts

on the target, we set ¢g = {g = 0, and then write (3.6) and (3.7) in the
form

- % sin (6 -6) + Tcos (¢ -6) = pcosce 1

T sin (e - 0) + %-cos (¢ -0) = psine + % cos € - %-Tz

We now square and add the two equations in (14.1) to obtain

™ = p2 4+ %-T4 - T (p sin e + = cos €)
n
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or

1

02 - 200 + ¥ o, (14.2)

where

P SO

Solving (13.2) for p, we obtain
o = F+yF - 7. (Lh.4)

To obtain the curve T = .5 in Fig. 4, we compute from (14.4) the values of

p corresponding to T = S and e = 0° 5°, 10°, <+« , 45°, We find that

the negative sign in (14.4) yields negative values for p which are extraneous.
We measure off, along the lines ¢ = 0°, 5°, 10°, *<«+ , 45° in Fig. 4, dis-
tances equal to the values of p computed above., A smooth curve is then drawn
through the points so obtained; it is the curve T = .50. A similar procedure
yields the curves T = .75, 1.00, 1.25, *** , 3,00, but for the higher values
of T it is found that (l4.k) yields two positive values of p.

For the higher values of T, the curves T = const. are tangent to
the curve p = Prax® The points of tangency divide these curves into two
parts; one part appears in Fig. 4a and the other in Fig. 4b. The parts in
Figs. 4a and 4b relate to bombing runs of S-type and L-type, respectively. It
will be recalled that for a given point of pull-up beginning there are, in gen-
eral, two bombing runs possible, the one with the smaller pull-up angle © be-
ing of S-type and the one with larger pull-up angle being of L-type.

SECTION 15: FIGURE 4

THEORY FOR THE CURVE FAMILY Q = CONST.

The modified ground clearance Q is defined in Section 9 by the rela-
tion Q@ = q/L', where g is the actual minimum ground clearance of the air-
plane and L' is the standard length defined in Section 3« In Section 9 we
found that
Q + % (1L - cos €)

p = - . (15.1)
sin €
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To obtain the curve corresponding to @ = 0.1, we set @ = 0.10 in (15.1)
and then compute the values of p corresponding to € = 0°, 5%, 10°, e« ,
45°. (These values have already been computed in Section 9.) On the straight
lines € = 0°, 5°, =<+ , 45° in Figs. 4a and 4b, we measure off from the ori-
gin distances equal to the values of p so computed. Through the points so ob-
tained, we draw a smooth curve; it is the curve @ = O0.,l. In similar fashion
we get the curves Q@ = 0.3, 0.5, *++, 2.7.

SECTION 16: FIGURE 4

THEORY FOR THE CURVE FAMILY © = CONST.

In Section 6 we developed (6.5) which reads

Po= 0 + 07 -, (16.1)

where ® and ¥ are certain known functions of © and € given in (6.5) and (6.6).
To obtain the curve corresponding to @ = 10°, we set © = 10° in (16.1) and
then compute the values of p corresponding to ¢ = 0%, 5°, 10°, =«- , L5°,
(These values have already been computed in Section 6.) On the straight lines
e = 0° 5° 10°, *++ , 45° in Fig. b, we measure off from the origin dis-
tances equal to the values of p so computed. Through the points so obtained,
we draw a smooth curve; it is the curve © = 10°. 1In similar fashion we get
the curves 8 = 20°, 30°, s« , 120°,

For the higher values of ©, the curves 6 = const. are tangent to
the curve p = Pmaxe The points of tangency divide these curves into two
parts; one part appears in Fig. 4a and the other in Fig. Ub. The parts in
Figs. ba and bb relate to bombing runs of S-type and L-type, respectively., It
will be recalled that for a given point of pull-up beginning there are, in
general, two bombing runs possible, the one with the smaller pull-up angle ©
being of S-type and the one with the larger pull-up angle being of L-type.

SECTION 17: FIGURE 5

EXPLANATTONS

Figures 5a and 5b present in convenient form information concerning
the various bombing runs specified by assigned values of the modified coordin-
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ates (A, p) of the airplane at the point R (Fig. 1) where the bomb is released.
Figures 5a and 5b deal with a situation in which, as usual, the bomb bursts on
the target and the airplane makes a 3g turn in travelling on the circular arc
OR (Fig. 1).

In Figs. 5a and 5b, N\ is plotted horizontally and . is plotted ver-
tically. It thus appears that to each point in some region in the (N, p)
plane of Figs.5a and ob there corresponds either one or two bombing runs, de-
pending on circumstances. When two bombing runs correspond to a single point
in the (A, u) plane, we distinguish them, just as in Section 10, by referring
to one as being of S-type and the other as being of L-type; by definition, S-
type has a smaller value for the pull-up angle © than does L-type. Figure 5a
presents information concerning bombing runs of S-type, while Fig. 5b refers
to bombing runs of L-type.

In Figs. 5a and 5b there are four families of curves and two single
curves besides. These will now be explained in turn.

The Family ¢ = Const.—As mentioned above, to each bombing run there
corresponds a point in the (A, u) plane of Figs. 5a and 5b. The curves € =
const. in these figures indicate the values of the angle of approach € asso-
ciated with the various bombing runs. The theory leading to the determination
of the curves of this family is developed in Section 19. It is found that the
family of curves € = const. has an envelope E and that each point to the
left of E corresponds to two different bombing runs, one of S-type and one of
L-type. The S-type bombing runs are described in Fig. 5a and the L-type are
described in Fig. 5b. As usual, the S-type bombing run has a smaller pull-up
angle than has the L-type bombing run.

The Curve p = Ppax*—7T0 each bombing run there corresponds a point
in the (A, ) plane of Figs. 5a and 5b. The points on the curve P = Pmax
of Fig. 5b correspond to bombing runs for which the angle of approach € is
assigned and the modified range p is as large as possible. The theory leading
to the determination of this curve is developed in Section 20, It will be
noted that, unlike Figs. 4a and 4b the curve p = Pmax Lies entirely in Fig.
5b and does not form a right-hand boundary of the region in the (A, p) plane
of Figs. 5a and 5b made up of points corresponding to which bombing runs exist.

The Family p = Const.—As mentioned above, to each bombing run there
corresponds a point in the (A, i) plane of Figs. Sa and 5b. The curves p =
const. in these figures indicate the values of the modifed slant range p asso-
ciated with the various bombing runs. The theory leading to the determination
of the curves of this family is developed in Section 21, The family of curves
P = const. has the curve E as an envelope, and E divides the curves of the
family into two parts, one in Fig. 5a and one in Fig. 5b.
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point in the (A, p) plane of Figs. 5a and 5b, The curves € - © = const. in
these figures indicate the values of € - O associated with the various bombing
runs. Now € 1s the angle of approach of the airplane and © is the pull -up
angle of the airplane, so € - © is the angle which the axigs of the airplane
makes with the horizontal at the instant when the bomb is released. We note
that this angle is positive when the airplane is diving and is negative when
the airplane is climbing. We shall refer to this angle as the attitude of the
airplane. The theory leading to the determination of the curves of the family
€ -0 = const. is developed in Section 22. The family of curves € - 0 =
const. has the curve E as an envelope, and E divides the curves of the family
into two parts; one part appears in Fig. 5a and the other in Fig. 5b.

The Family Q = Const.—As mentioned before, to each bombing run
there corresponds a point in the (A, p) plane of Figs. 5a and 5b. Now Q is
the modified minimum ground clearance of the airplane, and the curves Q@ =
const. in Figs. 5a and 5b indicate the values of Q associated with the various
bombing runs. The theory leading to the determination of the curves of the
family @ = const. is developed in Section 23, The family of curves € - 0 =
const. has the curve E as an envelope, and E divides the curves of the family
into two parts; one part appears in Fig. 5a and the other in Fig. 5b.

SECTION 18: FIGURE 5
AN EXAMPLE OF TTS USE
Let us suppose an airplane approaches the target at 1000 ft/sec'l
and releases the bomb when the horizontal range is 45,000 ft and the altitude

is 30,000 ft. This information is enough to specify two bombing runs, one of
S-type and one of L-type, as defined in Section 17, par. 2.

For convenience we take g = 32 ft/sec"z, whence the standard
length L' and the standard time T' have the values L' = Vz/g = 31,250 £t
and T' = V/g = 31.250 sec. The modified coordinates of the airplane at

the instant of bomb release are thus

_ X _ 45,000 _ _ Y _ 30,000 _
A = X = 3—14,—2-56 = l.)-l-lI-O, n = i = -5-1—;—2—5—0— = .960.

The point corresponding to these values of A and p is marked A in Fig. 5a and
B in Fig. 5b.

The point A refers to a bombing run of S-type. By means of linear
interpolation, we obtain from Fig. 5a for the point A the values € = 31.7°,
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€ -0 = -3.4°,Qq = .96, and p = 1.92. Hence, the angle of approach ¢
has the value 31.7°, the pull-up angle © has the value 35.1°, the minimum
ground clearance is QL' = .96 x 31,250 = 30 x 1000 ft, and the range at
pull-up beginning is pL' = 1.92 x 31,250 = 600 x 100 ft.

The point B refers to a bombing run of L-type. By means of linear
interpolation, we obtain from Figs. 5b for the point B the values € = 24.8°,
€ -0 = -52.7, Q = .83, and p = 2.0k, Hence, the angle of approach e is
24.8°, the pull-up angle © is 77.5°, the minimum ground clearance is QL'
.83 x 31,250 = 26 x 1000 ft, and the range at pull-up beginning is oL'
2.0h x 31,250 = 638 x 100 ft.

SECTION 19: FIGURE 5

THEORY FOR THE CURVE FAMILY € = CONST, -

Let us return to the typical bombing run illustrated in Fig. 1, Sec-
tion 1. Let (x, y) denote the coordinates of the point R where the bomb is
released. Expressions for the coordinates of R were deduced in Section 2 and
are expressed in (2.2). Hence, we have

x = Rycose - rsine + r sin (e - 0),
(19.1)
y = Rysine + rcose - recos (e -80).
Let (N, p) denote the modified coordinates of R. Then,
A= X/L'r Booo= ;Y/L’: (19.2)
where L' is the usual standard length, defined by the relation L' = Vz/g,

V being the velocity of the airplane, and g being the usual acceleration due
to gravity. The modified slant range p is also defined in terms of the actual
slant range R, (Fig. 1) by the relation

o = RO/L" (19'3)

and the radius r of the circular portion of the path of the airplane is given
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by (2.1) which reads

r = V2/ng, (19.4)

since the alrplane travels this path with a radial acceleration of ng. Be-
cause V2/g = L', then (19.%) becomes

r = L'/n. (19.5)

Substitution in (19.1) for x, y, Ry, and r from (19.2), (19.3) and (19.5)
then yields

N = pcose - % [sine - sin (e - ©6)],
(19.6)
M = psine + %-[cos € - cos (e -9)].
To obtain the curves in Figs. 5a and 5b corresponding to ¢ = 0,
we set € = O and also set © = 0°, 5°, 10, **+ , 90°, In Section 6 the

values of p corresponding to these values of € and © were computed., If these
values of ¢, O, and p are substituted into the right sides of (19.6), we ob-
tain 19 pairs of values of (A, u) corresponding to € = O and 6 = 0°, 5°,
10°, «++ , 90°. By point plotting we then get 19 points in the (A, p) plane
of Fig. 5. A smooth curve is now drawn through these points; it is the curve

€ = 0. A similar procedure yields the curves corresponding to € = 5°, 10°,

«es , 45°. However, in each of these cases, ® = 0°, 5°, 10°, eee , 90° + €.
The family of curves € = const. has an envelope which we denote

by E. The curves ¢ = const. are, of course, tangent to this envelope, and

the points of tangency divide these curves into two parts; one part appears

in Fige 5a and the other in Fig. 5b. Just as in the case of Fig. 4, the bomb-
ing runs described in Fig. 5a are said to be of S-type and those in Fig., 5b
are sald to be of L-type. 1In order to appreciate fully the distinction be-
tween these two types, we must realize that corresponding to each point of
missile release there is a point in Fig. 5a and a point similarly situated in
Fig. 5b; however, the bombing runs corresponding to these two points are quite
different; the bombing run corresponding to the point in Fig. 5a is of S-type
and has a pull-up angle smaller than has the bombing run of L-type correspond-
ing to the point in Fig. 5b.
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SECTION 20: FIGURE 5

THEORY FOR THE CURVE p = Pmax

To obtain the curve p = p . in Fig. 5, we set ¢ = 0°, 5°, 10°,
see , 45°, Corresponding to each of these values there is a maximum value of
p and a corresponding value of ©, which values were computed in Section 7.

If, in the right side of (19.6), we insert these values of €, p, and 6, a set
of 10 pairs of values of (N, p) is obtained. By point plotting we then get
10 pofhts in Fig. 5be A smooth curve is then drawn through these 10 points;

it is the curve p = Pmaxe

SECTION 21: FIGURE 5

THEORY FOR THE CURVE FAMILY p = CONST.

In Section 6 the modified slant range p was determined in terms of
the angle of approach € and the pull-up angle 6., This result is expressed in
(6.5) which reads,

p = 0 +,/0° - F, (21.1)

where © and § are certain complicated functions of € and 6 given in (6.6) and
(6+7)s To obtain the curves in Figs. 5a and 5b corresponding to p = .5, we
must set p = .5 and e = 0° 5° <o | U5° in (21.1). We then compute the
corresponding values of Q. If these values of p, €, and © are substituted
into the right sides of (19.6), we obtain 10 pairs of values of the modified
coordinates (A, p) of the airplane at the instant of missile release. By
point plotting we then get 10 points in the (A, u) plane of Fig. 5. A smooth
curve is now drawn through these points; it is the curve p = 5 It will be
noted that this curve is tangent to the envelope E; the point of tangency di-
vides this curve into two parts, one of which appears in Fig. 5a and the other
in Fig. 5b. A similar procedure yields the curves P = 75, 1.00, 1.25, eee ,
k.00,

As mentioned in the previous paragraph, (21.1) expresses p as a com-
plicated function of € and ©., Also, the procedure outlined in the previous
paragraph involves the assigning of values to p and ¢ and the computation of
the corresponding values of ©. Because of the complexity of the right side of
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(21.1), a direct computation of this is impractical, and, instead, the method
of finite differences is applied to the values obtained in Section 6 for o)
corresponding to assigned values of © and e. 1In order to describe the actual
finite-difference procedure used, we denote the assigned values of € and p by
€ and p and the corresponding computed value of © by o. Further, let us de-
note (21.1) by writing

p = ople, €). (21.2)
To obtain 9, we would normally approximate the relation o = p(0, €) by an
expression of the form
® = polynomial in p. (21.3)
Now the curves p = p(©, €) appear in Fig. 2 and cannot be approximated well

by (21.3) in regions where their slope is large. Further, the coefficients

on the right side of (21.3) can be computed only by use of divided differences,
which makes extra labor. Hence, the relation p = o(e, €) was approximated
by an expression of the form

p = quadratic in o, (21.4)
This amounts to replacing the curve p = p(@, €) by a parabola with a hori-
zontal axis.
Let (p1, 61, €), (02, 62, &), and (ps, Os, €) be three adjacent sets

of values computed in Section 6 and such that P 1s bracketed by pi1, p2, and P3e
In the usual notation we have

B1pr = p2 - p1,B01p2 = p3 = p2,
A2 p1 = Mip2 - B1p1, A6 = 65 - 6, = 65 - 6o.
Equation (21.4) is now explicitly
1 0 - ©
P= pmm +phipor + zplp-1)sap,p = FE . (21.5)
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If in (21.5) we set p = pand 8 = © and solve the resulting equation for
8, we obtain

© = 06, + peAo, (21.6)
where

P = b+ ,b¥ - ¢, (21.7)

1 A1 p1 P -p1

b - —_— - = - 2 ° 21.8
2 Az p1 * € As p1 ( )

In (21.7) we choose the sign which puts p in the range 0 < p < 2. Sometimes
both signs must be used. Equation (21.6) thus gives the value © of O corres-
ponding to an assigned value p of p.

SECTION 22: FIGURE 5

THEORY FOR THE CURVE FAMILY € - 6 = CONST.

In Section 19 the values of (A, u) were computed for e = 0°, 5°,
10°, *** , 45° and for 6 = 0°, 5°, 10%, *++ , 90° + c¢. TFrom these computa-
tions we can read the values of (M, pu) corresponding to € - @ = L40°, By
point plotting we then get a set of points in the (A, i) plane of Fig. 5. A
smooth curve is now drawn through these points; it is the curve ¢ - 6 = L0°,
A similar procedure yields the curves € - 6 = 35%, 30°, 25°, eee , -90°. As
mentioned in Section 17, the angle € - © is the angle which the axis of the
airplane makes with the horizontal at the instant of missile release, It then
follows that the curve ¢ - 8 = -90° corresponds to the case where the bomb
is released vertically upward from points directly over the target. The curve
€ -0 = -90° is thus the curve A = 0, as can be seen from Fig. 5.

It will te noted that some of the curves € - @ = const. are tan-
gent to the envelope E; the point of tangency divides such curves into two
parts, one of which appears in Fig, 5a and the other in Fig. 5b.
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SECTION 23: FIGURE 5

THEORY FOR THE CURVE FAMILY Q = CONST.

The modified ground clearance Q is defined in Section 9 by the rela-
tion @ = q/L', where ¢ is the actual minimum ground clearance and I.' is the
standard length defined in Section 3. In Section 9 we found that

Q+ L (L -cose)
o = = (23.1)
sin €

and in Section 6 we found that

p= 0 + ¥ - § = p(e, €), (23.2)

where @ and § are certain complicated functions of ¢ and & given in (6.6) and
(6.7). Also, the modified coordinates (h, w) of the airplane at the instant
of missile release are given by (19.6) which read

A = pcose = % [sin € - sin (e - 9)],
(23.3)
w = psine + %.{cos e - cos {e -9)].
To obtain the curve § = 0.1 in Fig. 5, we first set Q@ = 0.1 and

€ = 0°in (23.1) and compute the corresponding values of Ppe (This has al-
ready been done in Section 9.) Let us denote this value of o by p. Equation
(23.2) then yields the value of © corresponding to p = p, and € = 0°; we de-
note this value by 8. Equations (23.3) then yield the values of (A, p) cor-
responding to p = p, € = 0°, and © = @. The values of (Ay u) then yield
a point in the (A, i) plane of FPigs 5. It is the point corresponding to Q =
Ol and € = 0° 1In a similar fashion, we obtain points corresponding to

Q = Ol and e = 5° 10°, 15°, c«. , 45°, A smooth curve is drawn through
these 10 points; it is the curve Q = 0.1. By repeating the whole process,

we obtain the curves Q@ = 0,3, 0.5, Oy 220 4, 247

It will be noted that all the curves Q = const. are tangent to the
envelope E; the point of tangency divides these curves into two parts, one of
which appears in Fig. 5a and the other in Fig. 5b.
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In the calculations described above it was necessary to compute from
(23.2) values of © corresponding to values of p and €. A straightforward ap-
proach to this was impractical because of the complexity of the functions in-
volved. Accordingly, this calculation was accomplished exactly as it was in
Section 21, by the use of finite differences., The details of this process are
contained in the last two paragraphs of Section 21.

SECTION 24: FIGURES 6-9

EXPLANATTIONS

As mentioned in Section 1 and illustrated in Fig. 1, the airplane
flies directly toward the target T with constant speed V along a straight line
which makes an angle € with the horizontal. When the airplane is at a dis-
tance R, from the target, it pulls up in an ng turn, still maintaining a con-
stant speed V. When the airplane has pulled up through an angle 6, a bomb is
released which bursts at a point B, which is presumably near the target.

Let us refer to a set of values of e, Rys n, and © which produce a
burst on the target as hit values. Let us consider the case when the actual
values of €, Ry, n, and © differ from hit values by small amounts, 8¢, ®R, ®n,
and 59, respectively. These quantities, %e, 8R, dn, and 80, represent errors
and cause the burst to miss the target. Let oxp denote the horizontal dis-
tance from the target to the point where the trajectory cuts the horizontal
plane through the target, and let Oyp denote the vertical distance from the
target to the point where the trajectory cuts the vertical line through the
target; dxp is positive and Oyr 1s negative when the trajectory passes on the
near side of the target, while Oyp 1s positive and dxgy is negative when the
trajectory passes on the far side of the target. Figure 10a illustrates the
case when dxp is positive, and Fig. 10b the case when Byp is pogitive., In
both cases, since the trajectory in the immediate neighborhood of the target
may be regarded as a straight line, a knowledge of Oxp and dyp permits us to
construct the tragectory in this neighborhood; this is illustrated in Figs.
10a and 10b. If o is the angie which the trajectory makes with the horizontal
plane through the target, as shown in Figs. 10a and 10b, then in hoth cases
we have

tana = - b&yp/dxp. (2h.1)

We now define E, Ey, Egy Ery B¢y, and E, by the relations
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Bx oy
E, = 100—2,E = 100-2,8 = 10022,
R, Ro o |
(ok,2)
B8R, o dn
B, = 100 T8 = 10025, E; = 100 2%, |

Thus, Eyx is the percent that error dxp is of the slant range Ry at pull-up be-
ginning, and Ey has a similar meaning; also Eg, ERy E¢y and Ep are the percent
errors in ©, R, €, and n, respectively.

It is proved in Section 26 that

E = _E_ ’ E = -—E—— ’ (2405)
X
Exo EyO
where
E = Eg - —]:—- ER - .—:L_. Ee - —l-— En, (2)4-‘4)
Egr Ege Eon

the quantities Eyg, Eyvos Egrs Eges and Egp being certain error coefficients
whose values may be obtained from Figs. 6-9 in a manner indicated below.

In Figs. 6 and 7 the modified range p is plottedrhorizontally and
the pull-up angle © is plotted vertically, as in Fig. 2. As explained in Sec-
tion %, to each pair of properly chosen values of (py, ©) there corresponds a
bombing run and, thus, to each point in some region of the (p, ©) plane of
Figs. 6 and 7 there corresponds a bombing run. In Fig. 6 there appear two
families of curves labelled Eyg = const. and Eyg = const. These families
of curves permit a determination of the values of the error coefficients Exg
and Eyg for any particular bombing run identified by the values of Py © asso=-
ciated with it.

Similarly, there appear in Fig. 7 three families of curves labelled
Egr = const., Eg¢ = const., and Egy = const. These three families of
curves permit also a determination of the values of the error coefficients
Egrs Ege, and Egp for any particular bombing run identified by the values of
p, © associated with it.

In Figs. 8 and 9 the modified coordinates (A, W) of the airplane at
pull-up beginning are plotted in the usual rectangular cartesian fashion, as
in Fig. 4. As explained in Section 10, to each pair of properly chosen values
of (A, p) there corresponds two bombing runs, one flatter than the other, the
flatter one being referred to as being of S-type and the other one as being
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of L-type. Thus, to each point in some region of the (A, u) plane of Figs. 8
and 9 there correspond two bombing runs, one of S-type and one of L-type.
Those of S-type are referred to in Figs. 8a and 9a, while those of L-type are
referred to in Figs. 8b and 9b. In Fig. 8 there appear two families of curves
labelled Eyg = const. and Eyg = const., and in Fig, 9 three families of
curves labelled Egr = const., Eg. = const., and Eg, = const. These five
families of curves permit a determination of the values of the five error co-
efficients, Eyg, Eyvo, Egrs Eges and Egp, for any particular bombing run identi-
fied by the values of (A, p) associated with it.

SECTION 25: FIGURES 6-9

EXAMPLES OF THEIR.USE

Example l.—Let us suppose an airplane approaches the target at 1000
ft/sec™! with an angle of approach of 30° (+ 1°) and starts the pull-up at a
range of 60,000 £t (+ 500 ft). The pull-up is into a turn of 3g (+ .1g)e
The pull-up angle is that indicated by Fig. 2 and has a maximum error of +1°,
It is required to find the maximum values of the horizontal and vertical dis-
tances dxp and dyp from the target to the trajectory; these distances are il-
lustrated in Fig. 10.

As in the previous examples, for convenience we take g = 32
ft/sec"z. We have V. = 1000, and the hit values are ¢ = 30°, Ry = 60,000,
and n = 3. The standard length L' has the value L' = V2/g = 108/32 =
31,250 ft. The hit value of p is then p = RO/L' = 1.92, and the point A

in Figs. 6 and 7 corresponds to the bombing run here which would produce a hit.
From Fig. 6 it follows that the hit value of © is 36.2°. It then follows
from (24.2) that '

100 100
B = 1 = ° = ——— = .
© 36.2 (x 1) + 2.8, B 60,000 (2 500) x .83,
>
100 100
Ee = -5—0—(3: 1) = +3.3,B, = -—5——(1 1) =+ 3.3, ]
(25.1)

From Figs. 6 and 7 it also follows by linear interpolation that

- 2.33, Eyg = 1.76,

=
»
©

1]

(25.2)
83, Bge = 1.62, Egy = L.67.

&
>3]
¥
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Substitution in (24.4) from (25.1) and (25.2) then yields

1

e (+ 3.3).

= - L. " 3) -
E = (+2.8) 5 (+ .83) T (+ 3.3)

In this equation the upper signs do not have to be chosen together, nor do the
lower signs. The worst situations occur when the choice of signs makes every
term on the right side have the same sign. When these worst situations occur,
then E has the values

‘8 [ ] [ ]
2 4 223 4 33 + 6.5, (25.3)

SR = S s

Substitution in (2k.3) from (25.2) and (25.3) then yields

6.5

+ 6.5 —
= = + 2.8, E = i1.76

x 55 y = £33, (25.4)

In (25.4) the upper signs go together, as do the lower signs. From (24.2) it
now follows that

E,R (¥ 2.8)(60,000)
X O L sy —
= —_— = = . 1000
dxp 155 , 155 + 1.6 x 1000 ft,
2y To (. 3.7)(60,000) 2,2 x 1000 £t
- = N = + - ! .
8yB 100 100 - *

In conclusion, then, the worst possible combination of errors pro-
duces trajectories which miss the target T by distances shown in Fig. 1l.

Example 2.—Let us suppose an airplane is to approach a target at
1000 ft/sec™ and is to begin the pull-up when the horizontal range is 60,000
ft and the altitude is 30,000 ft. This information is sufficient to specify
two bombing runs, one of S-type and one of L-type. The identifying features
of these two types are defined in Section 10, par. 2.

For each of the two bombing runs, there is a value of the angle of
approach €, the range R, at pull-up beginning, and the pull-up angle ©. The
values of € and © can be obtained from Fige 4; the value of R, follows from
the given values of the horizontal range and the altitude so that

R, = v\/(6o,ooo)2 + (30,000)% = 67,082 ft. (25.5)

L ‘ 30
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Let us further suppose that the maximum error in e is + 19, in Ry is + 500 ft,
in @ is + 1°, and in the turn is + 0.l g Let us find the maximum values of
the horizontal and vertical distances dxpg and 8yp from the target to the tra-
Jjectory.

As 1In the previous exampies, we take g = 32 ft/sec'z. We have V =
1000, so the standard length L' has the value L' = Vz/g = 31,250 ft. The
modified coordinates of the airplane at pull-up beginning are thus

~

x 60,000
A = —_— = o = 14920
L 31,250 920,
> (25.6)
N 30,000 6
P ] = | S—————— = ° k)c
. Lt 31,250 ?

The point corresponding to these values of A and p is marked A in Fig. ba and
B in Fig. 4b. The points A and B refer to bombing runs of S-type and L-type,
respectively. We shall consider these two bombing runs in turn.

Bombing Run of S-Type.—In this case the bomb travels a relatively
flat trajectory. From Fig. h4a we obtain by linear interpolation the values
€ = 26.,6°and 6 = Yyr.7°. oOf course, these are hit values, as are those

in (25.5) and (25.6). From (24.2) it now follows that

100 o 100 )
Bo = g7y &1) = £2.,Fg = gogEs (£500) = 4 LTH,
e
100 o 100 1
EE = 2696 (i l) = i 308, Jf-"_n = ""““3 (i O¢_x_) = i 5@50

The point A, which identifies the bombing run under congilderation, also ap-
pears in Figs. 8a and 9a, From these figures we obtain by linear interpolation
the values

E.g -3.0, Byy = 2.0,

055, Ege = "'loo, E@n = 2‘60

Egr

Substitution in (24k.4) from (25.7) and (25.8) then yields

Pl
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+ 8.5 + 8.5

By = = Fa8, By = T = xhas (25.10)

Of course, the upper signs in (25.,10) go together, as do the lower signs. From
(24.2) it now follows that

Ex B (¥ 2.8)(67,082)

dxp oo = T = ¥ 1.9 x 1000 ft,
Ey Ry (+ 4e2)(67,082)
8 = {50 = T00 = + 2.8 x 1000 ft.

The slope of the trajectory in the neighborhood of the target is SyB/SXB =
- 105-

Bombing Run of L-Type.—In this case the bomb travels a relatively
steep trajectory. From Fig. Ub we obtain by linear interpolation the values

€ = 26.6°and ® = 78.3°; from (24.2) it follows that
-
B 100 _ _ _loo _
By = .3 (+1) = +1.3, By o (+ 500) + o Th, >
100 100
Be = 551 = 38,8 = F-(x0d) = +3.3 )
(25.11)

The point B, which in Fig. Wb identifies the bombing run under consideration,
also appears in Figs. 8b and 9b. From these figures we obtain for this point
by linear interpolation the values

-
EXQ = 241, Eyg = - *55’
> (25.12)
EgR = - 095, Ege = lul, Egn = - 5.10
J
Substitution in (2k.4) from (25,11) and (25.12) then yields
1 1 1
E = lt - . L" - —— 08 - Ld L
(£ 1.3) To5 T - (3.8 ST (£33

20
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As before, when the worst situations arise, we have

DUCI R 5 X S X (25.13)

E = +] 1.3 +
- .93 1.1 3.1

Substitution in (24.3) from (25.12) and (25.13) then yields

+ 6.7 + 6.7 _
E, = = +£3.2,B = = > - ¥ 12, (25,14 )

From (24.2) it now follows that

E, R, (+ 3.2)(67,082) 0o ¢
dxg = 55 = 700 = + 2,1 x10 t,
E; R ¥ 12) (67,082 -
dyp = Lo = ( )iog’ . + 8.0 x 1000 ft.

The slope of the trajectory in the neighborhood of the target is SyB/SxB =
- 3.8, which is much larger in absolute value than in the case of the bombing
run of S-type considered just above, as is to be expected.

SECTION 26: FIGURES 6-9
THECRY
The basic equation is (6.1) which is

P2 - 20p + ¥

i

0, (26.1)

where

- sin €
o = L sin 2(¢ - 0) - i
2(tg - cos €) Eg - cos ¢

[1 + cos 2(e - 9)]

- %-[sin € -sin (e - 0)] ¢, (26.2)
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1
¥ = Y 2(1 - cos 0) cos (e - ©)

(26.3)

2
+ L [sin e - sin (e - 9)] .
n

Here, p is modified range at pull-up beginning, € is the angle of approach,
© is the pull-up angle, n is the pull-up constant, and (gB, QB) are the modi-
fied coordinates of the burst. We can write (26.1) in the form

f(§B3 s 9y Py €, n) = O (26.4)

As mentioned earlier, when the bomb bursts on the target, then gg = {g = O
and the values of p, 0, €, and n are called hit values. -Such values satisfy
the equation

f(O’ 0, ©, p, €, n) = O. (26*5)

Let d¢p, 8(p, 80, Bp, de, and dn denote small changes in the vari-
ables., Then (26.4) yields

fg Otg + fC 6§B + fg 30 + f5 8 + fcde + fp dn = 0,
(26.6)
where -
of of of
fo = 550 % - Sgofe = %o
X X X f (26.7)
f f f
fp = 55-, f€ = 3 and f =
J

In (26.6) we shall evaluate the partial derivatives for hit values of the vari-
ables; it then follows that Otps 0€p,y 00, Bp, de, and dn are amounts by which
the actual values of the variables differ from hit values and, hence, (26.6)
permits a determination of the amounts by which the burst misses the target,
both in horizontal range and elevation, due to small errors in ©, p, €, and n.
This determination will now be made and the result expressed in terms of the
unmodified variables Xgs YB» ©y Ryy €, and n rather than the modified variables.
For this purpose we make the following definitions:

3h
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~
6XB
Percent that dxg is of Ry = 100 = = Ex
o)
. oyB

Percent that dym is of R, = 100 7?5 = Ey,

. 50
Percent change in 8 = 100 Y = Eg,

6Ro - (26.8)
Percent change Ry = 100 - ER,
0

. de
Percent change in € = 100 ~ = Ee»

. on
Percent change in n = 100 = = Eps

<

Evo = percent change in 6 which alone makes Ey = 1,
Eyg = percent change in © which alone makes Ey = 1,
Egr = ©percent change in R, which alone makes Eg = 1, L.(26.9)
Ege = percent change in € which alone makes E5 = 1,
Egn = 9percent change in n which alone makes Eg = 1.

In (26.4) the variables (&g, {p) may be regarded as the modified co-
ordinates of a general point on the trajectory of the bomb. We shall consider
in turn the point where the trajectory pierces the horizontal plane through
the target and the point where the trajectory cuts the vertical line through
the target.

The Point Where the Trajectory Cuts the Horizontal Plane Through

the Target.—For this point 8{g = O and (26.6) yields
8ty = - -J:-E.[f@ 80 + f,8 + f b + f onl. (26.10)
Now xg = Ry &g, and so

35




Since all coefficients are evaluated for hit values of the variables, this

equation reduces to 8xg = R, d&p, whence it follows from (26.8) that
5xB
100 8¢g = 100 — = E,. (26.11)
R
(o]
Also, L' p = Ry, where L' is a standard length introduced in Section bR
Hence,
9] R,
- T R

and from (26.8) it then follows that
100 §§ = 100 =% = Eg. (26.12)

We now substitute in (26.10) for 5tp and 8p from (26.11) and (26.12) and for
80, de¢, and dn from (26.8) to obtain

E. = - %—-[o fgBg + pfp ER + ef B¢ + nf, E l. (26.13)
3

Let us now refer to the symbols defined in (26.9). We note that

Ex = lvwhenEg = Epgand By = Ec = E, = 0. Hence, (26.13) yields
ef of
1 o= - PEgor - =2 - L (26.14)
fe : Exo

Similarly, we have

~
e f@ + P fp EOR = o,
©fg + e€efcBge = 0, 7 (26.15)
g fg + n fn Egn = Ov

7

Substitution in (26.13) for foy fe, and £, from (26,15) then yields

36
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1 1 1
E, = - —=|Bg - ——EFg - —EB, - —E|.
Te Eor Ege Egn
Because of (26.14), this equation becomes
where
1 1 1
E = E - —=—ER - —E. - —E,. (26.17)
EeR Bge © Bop
The Point Where the Trajectory Cuts the Vertical Line Through the
Target.—For this point we have &ty = 0, and so (26.6) yields

1
BCB = - gz-[fg d0 + fp dp + fe de + fn 5n]. (26-18)

By proceeding as in the previous case, we find that

o} fg 1
100 8¢y = By, - —— = = (26.19)
and that (26.18) ultimately becomes
Ey = E/Eye (26.20)

where E is as defined in (26.17).

With the establishment of (26.16) and (26.20) we have completed the
derivation of Equations (24.3) which are basic in the error theory under con-
sideration here.

There still remains the determination of expressions from which the
coefficients Eyg, Eyg, Egry Eges and Egn can be readily computed. From (26.14),
(26.15); and (26.19) we have the relations
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T
f £
ofg Y o fg
\
o fg o fg o fg
E = - —Z ,FE = - E = - « | (26.21)
oR o1, " e cr, ' om n f,
J
Now £ = p° - 28p + ¥, where ¢ and ¥ are defined in (26.2) and (26.3). The

various expressions in (26.21) which involve f denote partial derivatives and
and are defined precisely in (26.7). Of course, these partial derivatives are
to be evaluated for hit values of the variables, that is, when tg = g = O.
A straightforward but lengthy calculation of these derivatives yields the ex-
pressions

Ap - B C
o(Dp - F) o(Dp - F)
By = 8Dp -F) | p, - . 8o -F) 5 (26.22)
p(p - ©) cos2 ¢ e(Gp - H) o
8(Dp - F
By, = - 2o -F)
n(Ip - J)
v
where
A = ®cose + %—tan e [1 + cos 2(e -0)], -
B = 1§ cos e,
1
c = - §-[l + cos 2(e -~ 0)],
D = cos (e -20) + %-cos € cos (e - 9),
1 R R
F = H-[31n (¢ =0) =~ sin (e - 20)]
+ = [sin € - sin (e - ©)] cos (e - ©),
G = %-[é sin 2e¢ + L+ cos 2(c - 9)
cos €
- cos (e -26) + Sgﬁ_é.[cos e - cos (e ~0)],
1 . 1 .

H = Z{§sin2 - E-(l - cos 0) sin (e - 9)

n

+ [sin €

38
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COs € . .
1 = - -—;1—5-— [Sln € - Ssin (€ = Q)] ’
1 + cos 2¢ 1 . : 2
J = - = T everas - —|Sln € - 81ln (g =~ 9)] .
i 4n 2ns [ (

The actual determination of the curve families in Figs. 6-9 is as
follows. The first step is the tabulation of the values of A, B, C, D, F, G,

H, I, and J for ¢ = 0°, 10°, 20°, 30°, 40°, and 45° and for 6 = 0°, 5°, 10°,
sese , 90° + €« In this regard, the quantities & and ¥ appearing in the expres-
sions above are given by (26.2) and (26.3) with tEg = tg = O and were tabu-

lated for the above values of € and © in a calculation referred to in Section
6. The second step is the utilization of the results of the first step and of
Equations (26.22) to tabulate the values of the error coefficients Eyg, Eyos
Egrs Eges and Egy for € = 0°, 10°, 20°, 30°, 40°, and 45° and ® = 0°, 5°,
10°%, *=*+ , 90° + €.

The third step first requires the determination of values of € and ©
corresponding to various assigned values of the error coefficients., Finite-
difference methods were tried extensively here but were abandoned due to lack
of flexibility and to the extent of the labor involved. Graphical methods
were used instead. The procedure in the case of Fig. 6 is as follows. The
coefficient Exg is plotted against © for ¢ = 0, and from this graph the
values of © are obtained corresponding to Ey.g = -1.5, -2, 2.5, -3, -4, -5,
-10, + =, 10, 3, 1, .5, «25, and 0. On Fig. 6, where p is plotted horizontally
and © is plotted vertically, the curve € = O0° is drawn; it is taken directly
from Fig. 2. On this curve there are located points corresponding to the
values of 6 determined as above., Similar procedures are carried out for ¢ =
10°, 20°, 30°, 40°, and 45°. We thus obtain a sequence of points corresponding
to Exg = =-l.5, a second sequence corresponding to Exg = -2, and so on.
Through each sequence a smooth curve is drawn. The family of curves thus ob-
tained is the family Eyg = const. in Fig. 6. A similar procedure yields the
femily E o = const. in Fig. 6 and the families Egrs Egey and Eg, in Fige Te
In Fige. © the curve Eyg = o is just the curve p = ppoy Of Fig. 2; this
curve is also the curve Eye = « in Fig. 6 and the curve Egr = Ege = Egn
= 0 in Fige 7s Also, in Fig. 6 the curve Exg = O is the curve corresponding
to bombing runs in which the airplane releases the bomb vertically upward from
a point vertically above the target. This curve is also the curve Ey@ = 0
in Fig. 6, and the curves Egg = -, Ege = o, and Egy = - o in Fig. 7.

The procedure for the actual determination of the curve families in
Figs. 8 and 9 is as follows. About halfway through the preceding paragraph
it was explained how there was obtained on the curve ¢ = 0° in Fig. 6 a set
of points corresponding to certain constant values of Eygs From Fig. 6 the
values of p corresponding to these points are read off and the values of A com-
puted by use of the relation A = p cos e« We have thus a set of values of
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A corresponding to € = 0° and E,gq = -l.5, -2, -2.5, -3, -4, -5, -10, ¥ oo,
10, 3, 1, 5, .25, and O, On Fig. 8, where A is plotted horizontally, the
curve € = 0° is drawn; it is taken directly from Fig. 4. On this curve

there are located points corresponding to the values of A\ Just determined.
Similar procedures are carried out for e = 10°, 20°, 30°, 40°, and 45°. We
thus obtain a sequence of points corresponding to Evg = -l.5, a second se-
gquence corresponding to Eyg = -2, and so on. Through each sequence a smooth
curve 1s drawn. The family of curves thus obtained is the family Exyo =
const. in Fig. 8. Actually, this family of curves has an envelope which is
Jjust the curve p = Ppaxe The point where each member of the family touches
the envelope divides the curve into two parts; one part corresponds to bomb-
ing runs of S-type (flat trajectories), while the other yields bombing runs
of L-type (steep trajectories). To avoid confusion, the part of the family
corresponding to bombing runs of S-type appears in Fig. 8a, while the part of
the family corresponding to bombing runs of L-type appears in Fig. 8b. A

similar procedure yields the curves Eyg = const, in Figs. 8a, and 8 and
the curves Egp = const., Ege = const., and Eg, = const. in Figs. 9a and
9.

SECTION 27: FIGURES 12-14

EXPLANATIONS AND THEORY

These figures show typical bombing runs. In Fig. 12 the angle of
approach € has the value 0°, and the pull-up angle © has the values 30° and
60°; similarly, in Fige 13, € = 20° and 6 = 30°, 60°, and 90°; in Fig.
b, ¢ = 40° and 6 = 30°, 60°, 90°, and 120°,

In the construction of these graphs only the determination of the
parabolic arcs offers any difficulty. If (x, y) are the coordinates of a
general point on the parabolic arc, then the equation of this arc has the form

ba(y - k) - (x - )%, (27.1)

]

where (h, k) are the coordinates of the vertex of the parabolic arc and ha is
the length of its latus rectum. A knowledge of h, k, and a permits a rapid
construction of the parabolic arc.

We first introduce the dimensionless length L' defined in Section 3
and also introduce the dimensionless quantities Ny Ky 8, h, and k defined by
the relations
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~
A= X/L'9 3 = y/L')
’ (27.2)
a = a/l'yh = n/L',k = k/L'.
Then Equation (27.1) takes the form
- — -2
ba(k -p) = (A -h). (27.3)

Let us refer to Fig. 1. The locus of Equation (27.3) must pass through the
origin T of the coordinates and through the point R with modified coordinates
(KR, HR)- Also at R, this locus must have the slope tan (¢ - ©). These three
conditions yield three equations

bak = BB, -haug = A" -2h g, -ba tan (e -6) = 2(n, - h).

We solve these equations for ;; E; and E; obtaining the results

- AR
a = 9
Y[tan y - tan (e = ©)]
h = 2'5-[2 tan ¥ - tan (e - 9)], e (27.4)
= 1=
k = E-h [2 tan y - tan (¢ - 0)],
where tan y = uR/xR. Equations (27.4) permit a simple computation of values

of a, h, and k; this in turn permits a rapid construction of the parabolic
arcs in Figs. 12-1k,

L1




Fige 1« A general bombing run.



Fige 3« A general bombing run.
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Fig. 10a. A part near the target T of the trajectory
when there is undershooting.
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Figs. 10be A part near the target T of the trajectory
when there is overshooting.
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Fig. 11. A part near the target T of the two worst
trajectories of Example 1 of Section 25.
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Fige 124 Bombing runs for € = 0° and @ = 30° and 60°.
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Figs 13« Bombing runs for e = 20° and © = 30°, 60°, and 90°,
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