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SUMMARY

A continuum model which provides an adequate representation of the mechan-
ical behavior of a random granular medium such as soil has yet to be discovered.
In this paper one candidate—the material which deforms by glide on the critical
Coulomb friction planes—is used to analyze the kinematics of deformation under
conditions of axial symmetry. As in plane strain, the principal directions of
stress and strain rate do not necessarily coincide. A detailed analysis is giv-
en for the triasxial test and the predicted displacements are compared with some
test results for a sand.



I. INTRODUCTION

The kinematic consequences of the concepts of soil deformation usually
assoclated with the names of Coulomb and Rankine have never been fully explored,
and it is not known whether they can be used to describe the observed behavior
of soils. This question is of some significance because recent work on the
theory of plasticity has shown that a specification of the nature of the defor-
mations which may accompany a given stress state can be the key to the estab-
lishment of the uniqueness of the solutions to boundary value problems without
the need for reference to secondary effects such as strain hardening, geometry
changes, etc, In this paper, the kinematics of one type of Coulomb glide is
investigated for axial symmetry of the stresses, and certain experimental ob-
servations are presented.

In his pioneer work on the stability of retaining walls, Coulomb thought
in terms of rupture along a single critical surface of sliding on which a nomi-
nal coefficient of friction was exceeded.l Rankine® extended this idea by in-
troducing the concept of many parallel planes of incipient slip in the uniform
stress case., Neither author attempted to make use of kinematic conditions in
their subsequent analyses. It can be shown, however, that the existence of
incipient planes of sliding is not enough tc establish the uniqueness of the
assoclated stress states in mixed boundary value problems and that, without
further kinematic restrictions, may alternative stress states are equally
likely. There is the possibility that stress distributions in granular media
are not intrinsically unique even though consistent values can be obtained for
surface tracticns, but we do not wish to adopt this pcint of view until the
last possibility for restricting the stress distributions through kinemstic
conditions has been exhausted.

Uniqueness of stresses can be imposed by adcepting a modified material
model. While retaining the Coulomb criterion of yielding, Drucker and Prager5
have suggested the use of a stress-strain law of the ideally plastic type, for
which theorems are available which establish uniqueness of the stresses. Tn-
fortunately the concept of sliding on the critical planes must then be replaced
by the concept of an expanding layer and the volume changes predicted by this
theory far exceed any which have been observed, even momentarily. There is,
however, the possibility that the true extent of the dilation rates at the in-
stant of failure is obscured by elastic effects and by]volume changes in the
remainder of the material. Drucker, Gibson and Henkel™ and Jenike and Shield?
have introduced the model of a strain hardening plastic solid in order tc alleow
smaller or vanishing dilations. These authors retain the assumpticn that the
principal directions of stress and strain coincide. An unfortunate consequence
is that the computed directions of maximum shear strain nc longer coincide with
the observed slip planes, which prevents this alternative from being regarded
as entirely satisfactory.



COULOMB GLIDE

In the Coulomb theory, resistance to failure is regarded as essentially
frictional in nature. The shear stress T, causing slip on any plane is taken
as the sum of a constant value, termed the cohesion, and an additional amount
that is proportional to the normal pressure acting across the plane. Thus

To = C - 0 tan ¢ (1)

in which ¢ is the cohesive stress, o denotes the tensile stress across the
plane, and é is the angle of friction of the material. This relationship
follows a straight line in the ¢ - 7 plane (Fig. la), in which the representa-
tion of stress at a point (Mbhr6) can also be drawn. A gtress state for which
failure is incipient on some plane will be represented by a circle touching the
failure line, such as that shown in Fig. la. From the geometry of the triangle
ABC,

Oy - 0, = 2c Cosp - (o, + 0g) Sing (2)

in which o, and o4 are principal stresses. The intermediate principal stress
05, Where o, < 0, £ 05, does not appear in the relationship.

All experimental data for sands obtained for the direct shear, ring shear
(torsion), and triaxial tests are consistent with the assumption of failure on
the critical Coulong friction planes, as expressed in Eg. (1); however, in none
of these tests is a completely general state of combined stress reached. Two
of the principal stresses are always equal i1f a homogeneous state of stress is
assumed in the specimens. Results obtained with a combined compression and tor-
sion machinel indicate that the Coulomb criterion of failure may not be followed
for complex stress states in which the intermediate principal stress differs
from the maximum and minimum principal stresses. ©Some question remains, however,
as to whether the stress state achieved in the latter tests was in fact homo-
geneous, and there is still a reasonable chance that the Coulomb theory will be
shown to provide an adequate model for all combinations of stress.

If sliding can occur along the failure planes, the principal directions of
stress and strain do not necessarily coincide. In Fig. lb, the nature of the
strain is indicated for planes on which the stress state corresponds to point
C, Fig. la. It is a property of the Mohr circle that the angle subtended at B,
Fig. la, is twice the angle of inclination of the plane on which the correspond-
ing stresses act. Thus in Fig. 1b let the critical plane corresponding to stress
state C, Fig la, be EF. ©Since the extension rate will be zero along the plane
and since there is no volume change in the plane, the principal directions of
the strain will subtend 45° to EF. The principal directions of strain will
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deviate ¢/2 from the principal directions of stress. In the same fashion slip
on planes for which the stress state is represented by point D, Fig. la, will
give rise to strain with principal direction as shown in Fig. lc. Simultaneous
slip on both sets of planes—EF, Fig. 1lb, and GH, Fig. lc—is deemed possible
and the principal directions of strain can be found by superposition. Denoting
the angle of departure of a principal direction of strain from the closest prin-
cipal direction of stress by a/2,

e'max e"max
(3)

e' + e
max max

tano = tang .

Now E'max and E''mgx are both intrinsically positive because there is no volume
expansion during slip; hence

max = = max
12 e' + en Z' 1 ()-4-)
~ max max
Thus & lies in the range
p>a>- 8 (5)

DeJong has derived this same result, but by a different method°8



IT. AXIAL SYMMETRY

In axially symmetric problems the plane-strain motion associated with sim-
ple Coulomb glide is unlikely to occur except under very restrictive circum-
stances, In general axially symmetric motion involves deformation on more than
one plane, and will be possible only when two of the principal stresses are
equal@9 In this paper, attention will be confined to the latter stress state,
a more conprehensive discussion being reserved for a forthcoming paper.

Considerable extra freedom of deformation is introduced when two principal
stresses are equal. The directions of these two stresses are undefined, and as
a consequence glide is possible on all planes tangent to a cone having the third
(defined) principal stress direction as axis.

In the case of axial symmetry, it can be shown that a principal strain di-
rection can depart from the defined principal stress direction by an angle ¢/2.
This result can be demonstrated by computing the strain components in the prin-
cipal stress directions. Let 3', Fig. (2), be the defined principsl stress di-
rection., For axial symmetry of stresses, 3' will be in the meridional plane
unless oy = 0y, a trivial case. Defining 2' in the circumferential direction,
the principal strain directions 1, 2, 3 will be as shown in Fig. 2 when there
is glide on a single plane defined by the angle 6. There will be plane-strain
motion in the 1-3 plane, making the angle © with the 1'3' plane, and the direc-
tion 3 will deviate ¢/2 from 3'. Let €5 = -€ = -e;. Resclving in the primed
directions

e' =4 = 2(2

oB ai ZBi i3 o%t ﬂBl T Yas Bs)e

Cos®6 Cosp. ; % Sin20 Cosd; - Cos6 Sing
- e %Sin&’@ Cos ¢; Sin20 Cosg ; - Sin® Sing (6)

- Cos® Sind ; - Sin® Sing ; - Cosg

Now for axially symmetric motion, eég must be a principal strain, so that eie

= eés = 0; and the various plane motions must combine in such a manner as to

meet this condition. The total strain obtained by combining the n strains e;
associated with planes subtending angles ©3 will be

i n n |
Cosg % e; CosZ0y; g 3 -Sing % e; Cosdy
_ : . 2n .
e&B = On Cosé % e; Sin®oy; no (7)
-Sing % e;Cos0y ; 0 ; Cosp % ey

6



for two sets of orthogonal axes.

Fig. 2. Unit vectors



Two principal directions of strain will lie in the meridional plane, one making

an angle
y
2 L e, Cos@,
i i
L tan-? tangd -
2 2 2 5
% e; + % e; Cos<64
with the 3" direction. For all 65 and ey,
n
2261 COS@i
1
- 7 - >-1
% ey + % e; Cos®0;

so that the principal direction of strain does not deviate by more than ¢/2 from

the principal direction of the stress in the meridional plane.

be made use of in an example,

This result will



ITI. THE TRIAXTAL TEST

In the triaxial test, Fig. %, a cylindrical specimen is compressed between
rigid platens while subject to a lateral hydrostatic pressure. The specimen is
enclosed in a rubber membrane, so that the intergranular pressure remains atmos-
pheric.

open

excess
pressure

'
|

e Tf

[

Fig. 3. The triaxial test.

All diametral cross-sections at points remote from the platens may be ex-
pected to be stressed in the same manner, at least initially, so that the prin-

cipal directions of stress will be axial, radial, and circumferential. For ra-
dial equilibrium,

+ = 0 (10)



We shall assume tentatively that the circumferential and radial stresses are
equal, so that motion will not be restricted to plane strain, and proceed to
assoclate velocity fields with the uniform stress state which results from the
substitution g, = 0g in Eq. (10). It should be noted that this procedure, un-
like plasticity theory, does not establish uniqueness of the stress state,

A large number of velccity fields can be associated with this stress dis-
tribution: two types will be examined for purposes of illustraticn. Suppose
first that a constant angle o/2 is maintained between the principal directions
of stress and strain rate and where, as established above, the value of O can-
not exceed the angle of internal friction ¢. In the case of axial compression,
Fig. ha, the geometry of the Mohr circle for strain can be defined by the rela-
tion

tano = ——l (12)
€r = €z
Making use of the definitions
du  ow du ow
_')/ = 7:{'2 = é—z + g;}' er = a—r’)‘ eZ = SE (15)

the relaticns between the strain can be written in the form

Ju Ju ow ow
ag-:;-gz-gr"'—agz—g (llk)

where a = K tan® and K = +1 in the axial compression case and K = -1 in the
axial extension case. Equation (14) and the zero dilstion condition

—+ 24+ == = 0 (15)

comprise the governing differential equations. In the theory of ideally plas-
tic solids, the corresponding equations arelO:

10
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Fig. 4. Strain states for the triaxial test: (a) fallure with axial
compression; (b) failure with axial extension.
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ou + ow _ 0 (16)
dz  Or
and
ou u oW, o x g\ _
> + . + Sy tan m + 5 = 0 (17)

where the positive sign applies for axial compression and the negative for axial
extension, Equation (16) is the degenerate form of Eg. (1l4t) on setting a = O,
and expresses the fact that, in the plasticity theory, the principal directions
of stress and strain rate are assumed to coincide. The analysis makes it clear
that Eq. (16) is a necessary condition for isotropy only when the yield crite-
rion of the material is insensitive to the mean stress. Axially symmetric fields
satisfying the governing Egs. (14) and (15) can be found by a technique which
parallels closely that used by Shieldll for the compression of ideally plastic
metal cylinders. Neither equation involves a fundamental length, so a solution
which is independent of length is to be expected, provided suitable velocity-
boundary conditions can be found., Writing tan %= z/r, Egs. (1L4) and (15) re-
duce to the ordinary differential equations

(a tan Q/+ 1) u' - (tan /- a) w' = 0 | (18)
u' tan ¥/ - u Sec® Y - w' = 0 (19)

where the primes denote differentiation with respect to V/. Eliminating w'’
between Egs. (18) and (19) and employing the substitution x = tan ¥, there re-
sults

du (a2 - x) dx
I L/1]_ + 2ax - Xx= (20)

Hence

u = Cle + 2ax - x2 (21)

and Eq. (19) can be rewritten

dw _ - Ci(ax + 1)

(22)
dx Jl + 2ax - x2

12



For axial compression a = tan® and

u = O (M-x) (1/N4x) (23)
where N = tan (x/4 + @/2). Thus u = O on the line

@ -

+
IR

(2k)

1A

which forms a natural boundary to the deforming region. Setting w = +1 on x = 0
and w = O on x = N, Fig. 5, and integrating Eg. (22), we obtain

Cos2 (N-x) (1/N+x)

= (25)
Lia- z Sin 2«
2 2
and
g - 8in"(x Cosa-sinQ) - % Sin 2@*J(N—x)(l/N+x)
v T 1 7 (26)
5 + Q- 5 Sin 200
For axial extension, a = - tano and
u = CfJ(N+x)(l/N-x) (27)

Thus u = O on the line ¥ = /4 - ©/2, which now forms the natural boundary,
Fig. 5b. Setting w= -1l onx=0and w=0o0nx = l/h, Fig. 5b, and integrat-
ing Eq. (22) we obtain

-+ (W+x) (1/N-x)
(1-tan®x) (0-Sin~*(1-2 Sina)) + tano

and

o - (1-tan2) (Sin™*(xCosa-5ina) -Sin”*(1-281n0) ) ~tano v (N+x) (1/N-x) (29)

(1-tan®a) (0-Sin~1(1-25ina)) + tano

Figure 6a shows the nature of the deformation produced by the velocity field
represented by Egs. (25) and (26) (axial compression) for the case ¢ = L4O°.

15
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Fig. 5. Regions of deformation with axial symmetry: (a) failure with
axial compression; (b) failure with axial extension.
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Figure 6b shows the deformation for Egs. (28) and (29) (axial extension).

In the above analysis it was assumed arbitrarily that the angle & was con-
stant throughout the deforming zone. Other solutions for the velccities can be
obtained by dropping this assumption. If, for example, all flow in the meridi-
onal plane takes place parallel to OB, Fig. 5, then Eg. (1L4) is replaced by the
simple relationship

w = Nu (30)

The displacement component w can now be eliminated from Eq. (15). Employing
the substitution x = tan.97= z/r as in the previcus case we obtain, after using
the boundary condition,

w = Nu = 1 - X/N (29)

Figure 7 indicates the deformation of an initially square grid in the presence

of the velocity field, for the case ¢ = 40°. The above expressions for displace=-
ment all involve the angle O, where ¢ > Q > - ¢. Evidently the deforming zone
can vary between wide limits if there is in fact no further restriction on «,

and the actual mode of deformation is likely to be determined by second-order
effects, such as the influence of geometry changes on the stress distribution.

In the case of axial compression, local deformation will tend to incresase the
diameter and lower the mean stress so that there will be a tendency, due toc this
cause above for the strains to extend over the length of the specimen. For axial
extension, local strain will reduce the diameter and raise the mean stress, tend-
ing to concentrate subsequent deformations in the same zone. Both the sbove ef-
fects are observed; each is consistent with the adoption of & = . It is of

some interest to speculate that the value O = ¢ might always be adopted. New
experimental evidence having a bearing on this point is discussed belcw.

16
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IV. EXPERIMENTAIL EVIDENCE

If the Coulomb glide model is accepted without further restrictions, then
all the velocity fields developed in the foregoing analysis are pcssible. Ex-
periment would serve to determine which field is selected in practice, and the
process would then be regulated only by second-order effects such as changes in
geometry., While such second-order effects undoubtedly develop, and will cause
a certain velocity field to be preferred, it is also possible that the Coulomb
glide model is not sufficiently restrictive, and that the initial motion is reg-
ulated further due to the intrinsic properties of the granular medium. In par-
ticular, such a restriction might take the form of limitation to the angle O/E
between the principal directions of stress and strain rate. The finding of such
a restriction would be most useful in the sclution of mixed boundary value prob-
lems and it gives a further incentive to the examination of the experimental ev-
idence,

The final shapes of triaxial test specimens are well known, but there seems
to be no data available on the incremental behavior during and immediately after
the initial deformation. It is quite possible that the final shapes do not re-
flect the rates of deformation at every stage, and might in fact be misleading.
With this point in mind, arrangements were made to take a series of photographs
of a triaxial specimen during deformation, so that the rates of deformation of
the surface could be estimated.

The test was carried out on a standard triaxial testing machine at Michigan
State University. A cample of Ottawa sand 2.8 in. in diameter and 5.2 in., in
length was tested in compression under an intergranulsr vacuum of 11,10 lb/sq in,
The use of an intergranular vacuum enabled the enclosing pressure vessel to be
dispensed with, which greatly facilitated the photcgraphy and eliminated the pos-
sibility of optical distortion,

Average rates of radial displacement for two axial displacement increments
were found by comparison of photographs under a travelling microscope. The data
in Fig. 9a refer to the displacement increment AB, Fig. 8, and that in Fig. 9b
to the increment CD, Fig. 8. The average angle of internal friction, computed
assuming the internal cohesion to be zerc, was 26°; with o = ¢ the deforming
zone would then be expected to extend over almost the entire length of the sam-
ple, but there is also evidence of a tendency for the deformation to be concen-
trated towards the bottom of the sample. In Fig. 9b, deformstion occurs only
at the lower end, over a height very nearly equal to the diameter. The theo-
retical veloeity profile for & = O (coincidence of the directions of principal
stress and strain rate) is indicated by means of the solid lines. The final
velocity would appear to conform closely to this theoretical predicticn.

The observation that the specimen deformed over almost the entire length

18



during the early stages cannot be accepted as evidence that the principal direc-
tions of stress and strain vrate did not coincide, because alternative fields
with & = O exist which are compatible with the data. These have been given by
Shield.1ll On the other hand, the velocity field in Fig. 9b cannot be reconciled
with plasticity theorylo because it involves too small a depth of the specimen.
It has been well known that the dilatation rate predicted by plasticity theory
is much too large but until now there has been no example of an inconsistent de-
formation field available. Now that one has been provided, it lends further
weight to the contention that the plastiecity theory cannot adequately describe
the continuing motion of a granular medium.

One objective of this study was the establishment of some further restric-
tion to the angle @ on the basis of experiment. None has emerged; indeed the
observations suggest the possibility of wide variations in & during deformation.
Thus it appears likely that the actual mode of deformation is determined by fac-
tors which have not been considered, such as the influences of soil weight and
geometry changes on the stress distribution.

150

3
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Fig. 8. Load-deflection curve from a triaxial test on Ottawa sand.
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