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SUMMARY

The solution of Prandtll for plastic indentation of a half-space by a
rigid punch in plane strain is extended to cases where the load is applied
eccentrically. Complete solutions are obtained for all possible combinations
of applied load. The solution is also given for the obtuse angle truncated

wedge loaded at the end, of which the former problem is a special case.
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1. NOTATION

M applied moment

W applied load

c,p material constants for a Coulomb body
k shear stress at yield

m,w dimensionless variables

P indentation pressure

s width of punch

o] width ratio

B wedge semi-angle
0 displacement

6 rotation

v = 56/8



2. INTRODUCTION

The extensive literature on the theory of punch indentation seems devoid
of any reference to tilting modes. The latter are to be expected when the load
: . . : 2-b
is applied eccentrically, and they have been observed in tests on sands and
clays.5 An estimate of the failure load can be found easily3 by introducing

_ _ 1

an eccentrically placed stress field of the type used by Prandtl, with the zone
of surface pressure extending over part of the width of the punch, the remainder
being unloaded. The solution is incomplete in the sense this term5 is used in
plasticity theory, unless the load can be shown to be statically admissible
and unless at least one kinematically admissible mode of deformation can be
associated with the stress field. It is the purpose of this note to supply
these ingredients for the plane strain indentation of a level surface and also
for the more general case of an obtuse angle truncated wedge loaded at the
end. It will also be shown that a series of tilting mechanisms are possible

even when the loading is concentric. The latter point will be dealt with first.



3. CONCENTRIC LOADING

Three velocity fields have been proposed for plane strain indentation of

1,6
= but none accommodates rotation of

a half-space by a smooth rigid punch,
the punch. A broad class of velocity fields accommodating rotation can be
defined by noting the restriction placed on the velocities by the stress field,
which requires only that the sign of the plastic power be everywhere positive.
An example of a possible velocity field is shown in Figure 1, where the extent
of the deforming zone is shown in (a), and the corresponding hodograph in (b).
The material has been assumed to be one in which the yield point stress is
independent of the hydrostatic component of stress, so that the stress defor-
mation characteristics form an orthogonal net and there is no dilation during
plastic flow. The instantaneous center for motion of the punch has been placed
in an arbitrary position outside a zone defined by vertical lines drawn through
the corners of the punch B and B;, so that the indenting surface of the punch
does not 1lift at any point. The slip between punch and surface, bb' at B, is
defined at once from the requirement that the velocity in ABC near AB must be
normal to AB, in view of the presence of rigid material below AC. The slip

at other points on the punch surface is not uniquely determined but must meet
certain conditions. There is a one-to-one correspondence between points on

BB, in (a) and points on bby in (b). Progression from B to B, is accompanied
by progression from b to b;. In a progression from B to B, the change in the

velocity component in direction EF cannot be positive and the change in direction

EF; cannot be negative, in order that no element of material should act as an
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Figure 1. A possible deformation mode for the tilting punch with
concentric load.



engine during the motion. It follows that the change in velocity for the indented
material on line BB; for a progression from B to B; must have a negative projec-
tion on ob' and a positive projectiop on oby'. In terms of the hodograph,
Figure 1b, vectors for increments of velocity associated with progression from
B to By must lie within an arc between the directions b'o and b'b. In the figure,
the path b'e"e'j'b1"by1' has been chosen arbitrarily to meet this condition and
to illustrate various types ofldiscontinuity that can occur. It 1s interesting
to note that a velocity discontinuity oa' on ACD must be accompanied by a
discontinuity bi" bY" in surface velocity at B;. The point b} could be chosen
on ob' and in that case, zone AC;D,B; is rigid and motion is confined to zone
ACDBB;. On the other hand, no choice of surface slip velocities can eliminate
deformation from any part of the latter zone. The surface velocities for points
on BD cannot be the same, but must decrease from B to D, with possible dis-
continuities, as at H and D in the example shown. On B;D;, the velocity can

be the same at various positions, as between M; and Hi, and in particular zero,
as between H; and D; in the example. The non-tilting punch can be considered

as a limiting case of the tilting punch when the instantaneous center is removed
an indefinite distance either to the right or to the left of the punch. The
velocity field (Figure 1) then coincides with that given by Spencer7 as the
limiting (quasi-static) field for dynamic indentation without tilting. On

the other hahd, the velocity fields proposed by Prandtll and Hill6 are inadmis-
sible in the presence of even the smallest amount of tilting, because it be-
comes impossible to ensure that every element of material in the deforming

zone dissipates work.



L, ECCENTRIC LOADING

A case in which the instantaneous center of motion of the punch lies between
the vertical edges of the punch is shown in Figure 2. Clockwise motion about
the center O is assumed, so that points on the indenting surface to the left of
B, (Figure 2a), will rise and points to the right will fall. It appears reasonable
to introduce a Prandtl stress field ACDD;C; which is associated with contact pres-
sure over BB; and which leaves the rest of the punch surface unloaded.

To prove this choice of stress field correct, it is necessary to establish
an associated velocity field and also to show the existence of an extension of
the stress field which is statically admissible throughout the half-space.8
A velocity field can be found quite simply by adapting the field discussed for
the case of concentric loading (Figure 1). Due to the presence of the punch
surface to the left of B; (Figure 2a), the vertical component of velocity just
to the left of B; must tend to zero, and this condition is met by the field
shown (Figures 2a and 2c).

A statically admissible extension of the Prandtl stress field was first
given by J. F. W. Bishop.8 An alternative suggested by Shield9 will be repeated
here because it is simpler and deserves more recognition. The field (Figure 2a)
is obtained by continuing the stresses of the radial zone ABC outwards and
introducing a discontinuity AE chosen so that the principal stresses just to the
left of AE are horizontal and vertical. The path of the discontinuity is
constructed starting at A (Figure 2a) using a succession of constructions of the

type illustrated in the stress plane, (Figure 2b) which shows the discontinuity
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Deformation mode for the punch with an eccentric load.
One possible statically admissible extension of the
stress field is shown in (a).



for point E (Figure 2a). To the left of AE, the horizontal and vertical stresses
on AE are assumed to be maintained in columns of material downwards and to the
left. The pressure pp decreases monotonically as the depth increases, so the
material in the zone EAE; is below yield.

The cycloidal trace of poleslo for stresses in zone ABC is shown in Figure 2b
and it is confirmed that the velocities shown in Figure 2c are associated with
absorbtion of work by every element of material.

The deformable zone can be restricted to ACDBB; in two steps. Zone EAE;
is below yield and hence rigid, so it will be rigid in all solutions.5 In-
extensibility of the slip lines ACD and AC,D; then ensures that the entire zone
below DCAC.D; is necessarily rigid in this (and hence in all) solutions. In
establishing the velcecity field, it has been noted that the veiocity at By Just
to the left of AB; must be zero to avoid interference with the punch at Bj;
however, in view of the sense of the shear stress in zone B1C;D;, the velocity
in the direction AB, cannot increase across any element along the line B,C;.

As a monotonic function zero at beth Bp; and C;, the velocity must be zero
everwhere c¢n B;C, and so the zone AB,C1D; must be rigid. The deformable zone
is now confined te ACDBE,.

Contact with the punch must be maintained along BB; in the assumed stress
soluticon. Alsc. there ig no velocity across AB; in view of the rigidity of
AB;Ci; hence velocities in ABB; and thus in the rest of the deforming zone

ACDB, are completely determined by the motion of the punch. The deforming

region must reach out te D and there i1s no alternative possible.



In the case of concentric loading discussed in Section 2, an extended stress
field of the type shown in Figure 2 can be constructed below ACDD;C; of Figure 1
and hence the material below that zone can be shown to be necessarily rigid.

The deformable zone comprises the whole of ACDD;C;.

COLIAPSE LOADS

1
The Prandtl indentation pressure is

pr = (2+n)k (1)

where k is the yield stress in simple shear. This pressure acts across the
interface BB;, and equilibrating it with an applied force W and a moment M

applied to the center of the punch, we obtain

e (2)

(1-a)sW/2 ]

=
1l

=
i

where s is the width of the punch and Qs is the length of BB;. The yield curve
in the M; W plane for the range M > O is found by eliminating & between equatilons
(2). The analysis is repeated for M < 0. It is convenient to introduce the

dimensionless variables

B8
i

8M/91S2
} (3)
W/Pls

and the results can then be summarized by the single expression

=
Il

lm| = hw(1l -w) (L)



which defines the yield curve shown in Figure 3.
The rate of energy dissipation is Wo + M3, where ® is the displacement rate

of W and © the rotation rate of M. It can be rewritten

D = pis(wd + m}) (5)

where ¥ = s6/8. Hencell

w and m can be regarded as generalized stresses and

§ and ¢ as corresponding generalized strains for the purposes of plasticity theory.

It follows that the yield surface shown in Figure % is necessarily convex, and

if a corresponding generalized strain vector is drawn for any point on the surface,

it will lie in the direction of the outwards drawn normal to the yield surface.
With this interpretation, the various features of Figure % can be readily

identified. Point A corresponds to concentric loading, and the presence of a

corner in the yield surface at that point permits a fan of normals to various

supporting planes; each corresponding to a different position for the instantaneous

center O (Figure 1) as it ranges over all possible locations outside the punch.

These many modes of deformation, with various ratios of sinking and tilting are

all assoclated with the same indentation load. Point B corresponds to lifting

of the punch with no indentation, and hence zero load. The arrows shown at

that point in Figure % correspond to tilting about one or other of the corners.

The curves between A and B represent the loads associated with the tilting

mode described in this section.

SOILS
The analysis can be repeated for the indentation of material, the yield-

point stress of which 1s sensitive to the level of mean stress. Such materials

10
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Figure 3. Yield curve for the tilting punch drawn in terms of the non-
dimensional variables m = 8M/ps®; W = W/ps.
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are commonly used as models for granular media and other soils. In order to
illustrate the differences in procedure, a material of this type will be used

in the following discussion of the truncated wedge.

12



5. TRUNCATED WEDGE

The analysis for indentation of a half space can be adapted to the general
case of the truncated wedge without introducing new difficulties. The material
of the wedge will be assumed to obey the Coulomb yield criterion12 in which it
is postulated that deformation can occur when, on any plane in the material, the
shear stress reaches the value ¢ - 0 tan @, where o is the normal stress across
the plane and c,p are material constants. This model is often used to represent
granular media. In terms of the stress plane (Figure L4b), yield will occur when
the largest Mohr circle associated with the stress state touches the sloping
line defined by the dimension c¢ and the angle ®. If the body is ideally plastic,
yield will be accompanied by dilation15 such that relative motions will not be
parallel to the directions of slip, but will subtend an angle ¢ with them.

Details of the construction for a wedge with semi-angle M5o are shown in
Figure L4, where the same notations have been used as in Figure 2 to facilitate

1k

comparisons. The pressure across BB; is
pz = c.cot® [e2B tan @ tanz(n/h +/2) - 1] (6)

where B is the wedge semi-angle. The non-dimensional yield curve shown in
Figure 3 applies to this case if the pressure defined in equation (6) is
substituted in equation (%) for the Prandtl indentation pressure p; = (2 + n)k.

For material insensitive to mean stress, the pressure across BB; is

ps = (2 +2B)k (7)

13
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Again, the yield curve shown in Figure 3 applies if ps is substituted for p; in
equation (3).

The solutions are valid for n/2 >B>0. If B <O, the wedge is reduced
in size at points remote from the punch and a local failure would occur there.
reg > ﬁ/2, the extension of the stress field AC;D;B; cannot be constructed

due to the presence of the punch interface within the required zone.

15
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