INFLUENCE OF pH ON THE DISTRIBUTION AND ABUNDANCE OF FRESHWATER SNAILS

Abstract

We compared snail populations with pH as a limiting factor in two acidic and two alkaline lakes in Northern Michigan. We estimated populations by the depletion method to determine whether the snails differed in abundance and diversity. The two acidic lakes contained no snails as opposed to the basic lakes which had relatively large snail populations. No species overlap existed between these alkaline lakes. We concluded that pH was a limiting factor in snail distribution.

INTRODUCTION

The niche of a freshwater organism has many dimensions which include abiotic and biotic factors. "In freshwater environments, abiotic factors tend to overshadow biotic ones, especially in temperate climates (Aldridge1983)." The pH of surrounding freshwater can be one of these abiotic factors. "The pH of soil in terrestrial environments or of water in aquatic ones is a condition which can exert a powerful influence on the distribution
abundance of organisms (Jewell 1929)." Freshwater snails need specific pH levels for the formation and development of the shell. The mantle of the snail, which is the skin that lies next to and underneath the shell, is responsible for making the shell. The mantle takes up fluids containing $\mathrm{Ca}++$ and $\mathrm{HCO}_{3}-$ from the body and external medium. The mantle's cells excrete Ca and $\mathrm{H}_{3} \mathrm{CO}_{3}$ to the extrapallial fluid. This fluid separates into two phases, one of which is the CaCO_{3} shell (Figure 3), (Wilbur and Yonge 1964). "Under the conditions leading to acid accumulation...the CaCO_{3} of the shell will act as a buffer. The result is an etching or erosion of the inner shell surface (Wilbur and Yonge 1964)." Based on the premise that pH levels will influence the development of snails, we propose to find different snail fauna and abundance when comparing acidic and basic lakes.

DESCRIPTION OF AREAS SAMPLED

We sampled four lakes in the Upper Penninsula that were known to have varying pH levels (N . Tuchman, pers. comm.). In this study we incorporated two acidic lakes, Johnson Lake (pH 4.46) and McNearny Lake
(pH 3.86), and two basic lakes, Piatt Lake (pH 7.08) and Carp Lake (pH 8.09), (Table 1). All of the lakes sampled had sandy bottoms and vegetation around the shoreline. Johnson Lake (T43N, R6W, Sec. 26) was a small lake (16 hectares) with few houses. There was quite a bit of vegetation around the shore and the sandy bottom included some black soil. McNearny Lake (T47, R5W, Sec. 32) was surrounded by homes and activity was apparent by the presence of the residents' boats. McNearny Lake was also one of the smaller lakes we sampled (50 hectares). The shoreline was surrounded by shrubs and soil deposits also existed on this lake bottom. Piatt Lake (T46N, R6W, Sec. 35) was relatively larger (102 hectares). Human activity at this lake was evident from the presence of houses and boats. Piatt Lake had sandy beaches and a unique feature in that it had adjoining ponds which flowed into the lake and were rich in lillies and weeds. Carp Lake (T44N, R6W, Sec.22) was surrounded by a sandy beach; this sandy substrate continued into the lake bottom. There were many rocks scattered across the bottom of this larger lake (137 hectares).

MATERIAL AND METHODS

We obtained a water sample from each lake in a 50 mL polyurethane
bottle. These samples were analyzed for calcium and pH levels by Michael Grant at the UMBS chemical lab. Both of us collected snails in a 10×5 meter quadrat at the same time to ensure that we thoroughly covered the quadrat. We scanned the quadrat and collected all snails found underneath lily pads and on the lake bottom in 15 successive five minute samples. Glass bottom buckets were used to increase visibility. The samples from each of the five minute intervals were counted separately and recorded to observe the successive depletion of the population. We proceded with this method twice at each lake. The above method describes the depletion estimate from which population estimates can be determined. This method consists of taking repeated sampling of a population so that a constant fraction of the remaining population will be taken in each sample. "This fraction can be estimated by regression of the number taken in ith sample (Y) against the total taken in all previous samples (X). The slope of the regression line is the estimate of the fraction of the remaining population taken with each sample. The X intercept of the line is the estimate of the total population size" (Zippin 1958). We estimated snail species populations for only the species in which we captured more than ten representatives were found. Also, we determined a snail population for the total number of snails found within
the quadrats. From these population estimates we found the mean of the samples captured on the two separate sample days.

RESULTS

From the water samples of each lake we found the calcium levels to be proportionally related to the pH levels (Figure 2). Mean population estimates for snails in Piatt Lake ($\mathrm{pH} 7.08, \mathrm{Ca}=10.4 \mathrm{mg} / \mathrm{L}$) and Carp Lake ($\mathrm{pH} 8.09, \mathrm{Ca}=72.3 \mathrm{mg} / \mathrm{L}$) were 491.71 and 201.38, respectively (Table 1 and Table 3). We found no snail fauna in either Johnson (pH 4.46, Ca=1.3 mg / L) or McNearney Lake ($\mathrm{pH} 3.86, \mathrm{Ca}=0.8 \mathrm{mg} / \mathrm{L}$) after searching each for 90 minutes (Table 1). Figure 1 displays differences between mean population estimates of the lakes. In Piatt Lake, the two most abundant species had mean population estimates of 322.89Physella ancillaria and 67.13 Ferrissia paralleia, (Table 2). Amincola limosa, population estimate=180.12, and Valvata sincera, population estimate=21.25, (Table 2) were the only two species for which population estimates were made at Carp Lake.

DISCUSSION

The effects of pH levels were most obviously seen in comparing Johnson Lake (ph 4.46) and McNearny Lake (pH 3.08) with the basic lakes, Piatt (pH 7.08) and Carp Lake (pH 8.09), (Figure 1). There was no snail species found in the acidic lakes while relatively large snail populations existed in the basic lakes. The trend of increasing snail fauna with increasing pH did not continue when comparing Piatt Lake with Carp Lake, (Table 1 and Table 3). Even though Carp Lake had a higher pH , it contained less snails than Piatt Lake. This may suggest that pH is determining the abundance or presence of snails when the lakes are highly acidic, but there may be no difference once a certain pH level is reached (Figure 1). Jewell (1929) found that "the most acid waters in which molluscs were found was pH 6.1 in case of snails and pH 5.7 for Pisidium. This approximates the point at which the deposition of lime shells would theoretically cease to be possible."

There was no species overlap in the quadrats or in the shells found on the beaches of Piatt Lake and Carp Lake . From the shells on the beach, we recovered and identifiedGyraulus Torquis circumstriatus at Piatt Lake. At Carp Lake we found five other shells of species not already mentioned: Stagnicola emarginata, Sphaerium simile, Sphaerium striatinum,

Planorbella Campanulata campanulata and Planorbella Pleisoma trivolvis. This suggests that species diversity varies proportionally with pH levels. "...the restriction of species to specific types of habitats is the general rule (Burch 1989)."

No snails were found in extremely acidic waters and snail species differed between the basic lakes; therefore, our data support the idea that pH levels do limit the abundance and distribution of freshwater snails. However, it is important to keep in mind the other dimensions of an organisms niche. As described earlier, calcium is important in the formation of a snail's shell. Calcium levels in the lakes will also have an effect on snail distribution and abundance. The calcium and pH levels rose proportionally in the lakes that we surveyed, (Figure 2). It would be difficult to exclude one factor in order to study the other. Calcium levels may have been the determining factor of snails presence instead of the pH level. Boycott (1934) also found in his survey that a number of molluscs do not live in freshwater below a specific calcium level.

Varying vegetation will also affect snail distribution. Piatt Lake contained more vegetation than Carp Lake. The ponds connected to Piatt

Lake also provided this lake with more algae slime which freshwater snails eat (Boycott 1919). Aldridge (1983) found that "...food availability is an important determinant of snail distribution patterns." Water lilies also provide favorable habitats for snails. Boycott (1919) observed that water lilies afford particularly favorable nurseries for the eggs and young.

Temperature could also alter the abundance and distribution of freshwater snails. "Many animals, including molluscs, migrate downshore or into the sublittoral during the autumn...(Wilbur and Yonge 1964)." The size of the lakes can help determine the temperature. For example a smaller, and shallower lake will provide a snail with a higher temperature. At the same time, a smaller lake could also provide a snail with less vegetation and possibly make food and shelter limiting resources. All of the factors mentioned above influence the niche of freshwater snails, but we conclude that pH levels do play a significant role in determining snail distribution and abundance.

WORKS CITED

Aldridge, D.W. 1983. Physiological Ecology of Freshwater Prosobranchs. p 330. In K.M. Wilbur (ed.), The Mollusce. Vol. 6, Ecology. Orlando: Academic Press, Inc.

Begon, Michael, John L. Harper, and Colin R. Townsend. 1990. p. 65. Blackwell Scientific, Boston. Ecology: Individuals. Populations and Communities, 2nd ed.

Boycott A. E. 1919. The Freshwater Mollusca of the Parish of Aldenham. p. 149 and 332. Transactions of the Hertfordshire Natural History Society, Vol XVII, Part 2:46

Boycott A. E. 1934 The Habitats of Fresh-Water Mollusca in Britain. p 46. British Ecological Society, "The Habitats of Land Mollusca in Britain."

Burch, J. B. 1989. North American Freshwater Snails. p 75. Malacological Publications: Hamburg.

Department of Agriculture Forest Service-Lake and Stream Survey for Piatt and McNearney Lakes. Reference-Nancy Tuchman.

Jewell, M. E. and H. W. Brown. 1929. Studies on Northern Michigan Bog Lakes. p 67 and 473. Ecology 10: 427-75.

Tuchman, Nancy. Person Communication. Professor of Lymnology, University of Michigan Biological Station and Loyola University.

Wilbur, Karl M. and C. M. Yonge. 1964. Physiology of Mollusca. p 63, 245, 248 and 250. New York: Academic Press.

Zippin, C. 1958. The removal method of population estimation. J. Wildlife Manage. 22:82-90.

MEAN POP ESTIMATES IN FOUR LAKES AS RELATED TO pH

FIGURE 1
pH AND Ca LEVEL RELATIONSHIPS

FIGURE 2

APPENDIX

