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ABSTRACT

The asymmetric rotator model of Davydov and Filippov has
been extended to odd-A nuclei by coupling a single nucleon to
an inert core of well stabllized asymmetric equilibrium shape.
Rotational energies are calculated for states with spin I through
numerical diagonalization of (I + 3) x (I + 3) rotational matrices
which depend in a complicated way on the state of the odd nucleon,
The state of the odd nucleon is described by single particle wave
functions such as those calculated by Newton, generalizations
for the asymmetric case of the wave functions computed by
Nilsson for axially symmetric nuclei, The rotational energy
spectrum for a particular particle excitation 1s in general very
rich 1n number of levels and may consist of a complicated sequence
of spin values. In many cases, however, particularly for small
asymmetries, the rotational spectra may consist of several well
separated or overlapping sequences of spin states which resemble
‘the rotational bands of axially symmetric nuclei, especilally
insofar as K (which gives the projection of I on the body-fixed
z axis) may be approximately a good quantum number for each
sequence.

In an initial survey of odd-A nuclei around A of 190 no
clearcut evidence has been found for the existence of nucleil
with a well defined asymmetric equilibrium shape. Calculations

for Tr91 and Rel®5 indicate only that it may be very difficult
to distinguish between a symmetric and an asymmetric rotator

model when the asymmetry is &mall. Calculations for Pt195 show
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that, although the observed level scheme can be reproduced by
asymmetric rotator theory, the observed electromagnetic transition
probabilities are not in agreement with the predictions of the

simple asymmetric rotator model.

INTRODUCTION

Since Davydov and Filippovl first suggested the validity of
the asymmetric rotator modification for the strong coupling limit
of Bohr's collective modelg, surveys have been made by several

3

authors~ which seem to indicate that the model, in which the
nucleus 1s pictured to have a well stabilized axially asymmetric
equilibrium shape, may successfully describe the properties of
low-1lying levels of even-even nuclel in many different regions
of the periodic table. However, since the I = 2 and 3 rotator
levels, particularly in the limiting case of large asymmetry,
have properties very similar to those predicted on the basis of
the vibrational model, the validity of the asymmetric rotator
model has been questlioned by other authors who point out that
many of the predictions of the Davydov-Filippov model are also
in quantitative agreement with the vibrational model with ap-
propriate refinementsu. The calculations of Newton5, on the
other hand, indicate that the axially symmetric equilibrium
shape of the Nilsson model nucleus6 is perhaps not always the
intrinsically most stable. It was therefore thought worth-

while to extend the asymmetric rotator model to the case of

odd-A nuclei, 1In order to afford a further possible test of
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the model, however, the nuclel to be studied should have pre-
ferably both large asymmetry and, equally important, a well
defined equilibrium shape, that i1s small vibration-rotation
7 on even nucleil suggests

that the sequence 08186, 03188, 05190 192

interactions. The work of Davydov
, and Os may satisfy
both of these requirements better than nucleili in other regions
of the periodic table. The theory will therefore be applied

in particular to odd-A nuclei in the vicinity of A ~ 190,

THE MODEL
It will be assumed that a single nucleon is coupled to
an inert core of asymmetric equilibrium shape. The rotational

Hamiltonian2 has the form

-3 A (T 5 (1)
2 Z

Hrot ‘)E‘g( 3">2+

I

where the inertial parameters are such that 3}{ * Sy * 32
The operators Ik and jk describe the body fixed components of
the total angular momentum of the nucleus and the angular
momentum of the odd nucleon, respectively. For the present it
will be assumed that the wave function which describes the
motion of the odd nucleon in the ellipsoidal potential field

is known in the form

Pmm Z:. c: Q:X‘.Q. =X, (2)
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where Jﬁg‘are eigenfunctions of j? and jz, In the limit of zero
deformation (spherical shell model 1limit) all but one of the co-
efficients CJO are equal to zero in a particular state. In the
limit of axial symmetry Q2 is a good quantum number, and the sum-
mation extends only over the possible values of j. In the asym-
metric case ellipsoidal symmetry still imposes some restrictions.
The Hamiltonlan can depend on the angular coordinates of the odd
nucleon, defined relative to the principal axis system of the

2 2

ellipsold, only through the spherical harmonics, Y o7 Y o and

2

Y o As a result the summation over (O will involve either the

T 2n) or (- % T 2n) with n =0, 1, 2, ... The two

[\II

values (+
el
types of coefficilents are related by Cj_O = (- 1)3-2 ch, The
. J . _
complementary state X _,, ,formed with A&zoj‘o jﬁio, is de
generate with JCL, as 1in the axially symmetric limit. In the
strong coupling approximation the wave function of the system
is made up of products of the particle wave functions and the
rotational wave functiohs, DIMK' (The wave function which
describes the zero point vibrational motion will be under-
stood but not explicitly written.)"/The total wave function
must have the specific symmetry2
' ! ' ‘ I (] I—. 1 N
ZCW‘FT”ZCZ D } 4 )
= =JTen2 . 4+
1@5 K K "K [lom ” KSQCJQ MK‘:X”K?— () Q_KX_R
1 T | (3)
' I-» I
== +1 -
[, 2. G | Du X 60 Die X

where(K - Q)must be an even integer., This can be accomplished
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by restricting the summation over both K and 2 to the set of

values

|3
)%) “Z‘)“

(SN

. =l -
s 27 ) %‘)

ol

_*_2)
This restriction is indicated by the prime on the summation
symbols. The coefficlents CK which determine the K-admixtures
in a given rotational state are to be determined from the
solution of the rotational problem, - unlike the coefficients

c which are assumed known for each particular state of

JjQ
particle excitation. In the axially symmetric limit K is a good
quantum and all but one of the coefficients, CK’ go to zero.
Similarly only one (Q remains, although there is still a sum over
j. We then have K = Q, (the K # Q states are infinitely high

in energy). The above convention for the values assumed by K

and () means that the wave function reduces to that of Bohr

and Mottelson2’6 for K = Q = (3 + 2n) in the symmetric limit,
I-Jj

it for K = QO = (- 3 + 2n) where n is integral,

but (- 1)
ROTATIONAL ENERGIES

It will be useful to introduce the rotational angular
momentum operator R, (@V=I;A— ;w). In terms of R, , the

rotational Hamiltonian has the simple form

2 2 2 2 2 2
Hro-t = ;Lx Qx +%393 + 7 Qz
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which will be particularly useful if a change is made from the
LHQKf) representation of Eq. (3) to an leRKﬁ) repre-

sentation. (R and K, are the quantum numbers which determine

R
the magnitude and the body-fixed z component of the rotational

angular momentum, respectively.)
T | i -, i IR
J& DM.JCfZE;(-') kA LRKY Y™\ ()

The unusual phase factor and the unusual sign in the Clebsch-
Gordan coefficient arise from the fact that the angular momentum

coupled wave function 1s constructed for the case of angular

momentum subtraction rather than addition. (R =

Bo= Ll

*

K, =K - Q)

R
Davydov8 has treated the special case of an odd-A nucleus
in which the intrinsic particle state 1s assumed to be such
that J is a good quantum number and has the special value J = 3.
The EIJRKR:> representation is particularly useful to show
that the rotational energies in this very speclal case have
exactly the same values as the rotational energles of even-even
nuclel with corresponding values of R. Each rotational energy
level, however, 1s doubly degenerate corresponding to the two
+ 1

possible values I = R -~ 5. The total wave function, of sym-

metry given by Eqg. (3), leads to a rotational wave function

*
A similar representation has been used by Osborn and Klema.

Nuovo Cimento 9 (10), 791 (1958).



made up of terms of the form

IjR

I\R .
%’g(w ) +( \) w -KQ) (Kp even) (6)

In the special case R = 3, for example, only one such linear combil-
nation exists, corresponding to lKRl = 2, When the quantum numbers
have the values R = 3, IKRl =2, jJ =%, the total spin I can have
the two possible values 5/2 and 7/23 so that two independent
(orthogonal) wave functions can be constructed with R = 3. Ap-
plication of Eq. (5) gives,

with I = 5/2

\]_LZ_-QHS 5/2‘/?_32__ ws/zl/gzl ) ( ){ ( Ms/ '/z D/?_ x /2-) E(D /2- le)}

and with I = 7/2
/ 7

7 Vo oyt e ey 1(p _ 7,2
{_ZLWWZ v - (&) {%(DM 0D ) - Lo x» }

Since both of these wave functions result in exactly the same
linear combination of R and KR values, and since the matrix
elements of the rotational Hamiltonian can be functions of the
quantum numbers R and Kp only, (as can be seen from Eq. (4)),
both of these states have the same rotational energy. Also,
since the rotational Hamiltonian operates on an eigenfunction
of R, in exactly the same way in which the rotational
Hamiltonian for an even-even nucleus operates on an eigen-

function of [T, This energy has the same value as the

rotational energy of an even-even nucleus with I = 3. Al-
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together there are three independent wave functions with I = 5/2
and four with I = 7/?, corresponding to the possible number of
values of |K|. The two I = 5/2 states orthogonal to the R = 3
state above have asymmetric rotator wave functions with R = 2
and energies which are identical with those of the two possible
I = 3/2 states. The complete energy spectrum consists of a non-
degenerate I = 3 (R = 0) ground state, the two different doubly

degenerate I

i

3/2, 5/2 (R = 2) states, the single doubly de-

generate I 5/2, 7/2 (R = 3) state, three different doubly
degenerate I = 7/2, 9/2 (R = U4) states, and so forth, all with
the same energies as the analogous rotational states 1in even-
even ﬁUclei.l If the particle wave function 1s only approxi-
mately a pure j = 3 function, the degeneracies are removed and
the rotational energy spectrum should consist of doublets with
I=RTZ 1, Since no example is known for which j = 3 1s even

a moderately good approximation this very special case 1s of
academic interest only. However, it does illustrate a general
feature. The rotational energy spectrum of an asymmetric odd-A
nucleus may be very rich in total number of levels compared with
an axially symmetric nucleus.

In the strong coupling approximation the particle wave
function in a given state is well specified independently of
the rotational state of the nucleus. In an odd-A asymmetric
nucleus a realistic particle wave function in general involves
many different values of J and Q, so that products of the form,

<Zj

QFJCDDCJQ) pi , lead to rotational wave functions which
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are linear combinations of many different values of R. Since R
‘is no longer a good quantum number, there will be no simple cor-
relation between the rotational states of odd and even-even
nuclel, and the rotational energles will depend in a complicated
way on the state of the odd nucleon. Either the ]IKJOj? of the

\IJRKR:> representation can be used to compute the matrix

elements of the rotational Hamiltonian. For given I (and

specified particle excitation) there will be (I + 3) independent

wave functions corresponding to the (I + 3) possible values of
|Kl , so that the determination of the rotational energies with
spin I will involve the diagonalization of (I + 3) x (I + %)
matrices, (provided the strong coupling limilt applies; that is,
provided the rotational energies are small compared with the
single particle excitations so that matrix elements of the

rotational Hamiltonian between different particle states can

be neglected). In terms of the rotational constants

A, = hl24y ) AZ=‘F12/233 ) Ay = %Z/ZSE
(7)

the rotational energy for the state I =3, (K = %) is given by

B = p ArAJerR) - L (AmA)e v AKKED

+ (Al+A)d + (A-A)e (6)
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] 2
where the parameters a, b, ¢, d, and e, and <KR> are deter-
mined by the state of the odd nucleon. The parameter a is the
decoupling parameter familiar from the theory of axially sym-

metric nuclel

The parameter c¢ involves a similar sum

] :S'VZ ‘ ., y
CinCiai©l) |-+ Q D) * (11)

o
l

Kjeh

while
2 _ ' 2 2
{Kgy = ZE?; Ciq (K-Q2) (12)
d

with K = 3 for I = 3, The term (Al + As)d + (Al - A,)e has been
purposely separated from the main terms in the rotational energy.
It has the value

0 ]
L(A+A 205 L - e .
2( \ Z)SZK{C‘\Q 3(\\;\-?) Q-‘-Zl-‘- (Al A2>BZ§{CJQCJ(Q‘2) (13)

[+ )+ 0-0(i-0+2)

and is an energy contribution common to all states I. (It arises

L
2
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from the term Alji + A2j§ in the rotational Hamiltonian, and could
in principle be lumped together with the particle energy. In all
numerical computations, however, it will be included in the
rotational energy.) For I > 5 matrix elements of the rotational
Hamiltonain have been computed between the different possible
states MJK of Eq. (3). They are shown explicitly in Table I

for I = 3/? through 13/2 in terms of the rotational constants,

the particle parameters a, b, and c, and the different values of

<K§> . The common term (A, + A,)d + (A, - A,)e must be

1 2) 1 2)
added to the rotational energies computed from these matrix
elements.

Diagonalization of the (I + 3) x (I + %) matrices of Table
T will yield reliable rotational energies only for particle states
which are well separated from other particle excitations since
the rotational Hamiltondan, (1), can couple different particle
states, In the special case in which two different particle
states lie close together the two sets of coupled rotational
energies can be obtained from the dilagonalization of
(2I + 1) x (2I + 1) rotational matrices built up from the two
coupled (I + %) x (I + %) rotational matrices for the different
states. Matrix elements diagonal in the particle wave function
have the form of Table I, with particle parameters, a, b, etc.
defined for each state, and with the two different particle
energies added to the diagonal matrix elements. Matrix elements

off-diagonal in the particle wave function again have the form

of the matrix elements of Table I provided that products of the
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TABLE I

Matrix Elements of the Rotational Hamiltonian, <K"Hﬂot‘ @

K= % K=-%

(A+AY) (%+a+lo>+ (A-A)e +A KD ‘/-g[(Ar\*AQC +(ArA)(+a +b) }

%(A|+Az) + A3<\<é> »t
_ 9
i
K= 52 K= "o K= 3
|
(A|+Az)+A3<KaR> @_(A "'Aa’) |- 2{ \"Azxa‘*b)'\jA—Az)C]
@ A -3erk)] | mE(AsAde
,ZKA-Ag)f—%-Ag(KE) | A Az){m 2lou+b)]
s ——
Bk A (k>
1-%
 K=5n K= V2 K= - 3/2 K= =74
3B (A-h,)  BAFANes)  TIT(AFA o+ E)
C?(A+A )+A3<‘$R> 2 . ' LBAFA) © g E{_Z( \il\ Yo
A+A rl5+2 o,+b)\ r:(A“Az)rZ‘P(Q*\Dﬂ | S
+2(A—A2)C+A3<KQ> +J_5(A‘+Aa ! O
\E(A‘+A2)+ Al 2 (ArAy)
2(ArA)A, &
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Table I (continued)
1=+
2
K=Y2 K=5/2 K= Yg K= -3%72 K=-72
_q 2(A+A, (A=A ' ;-%(ArAJ{ourk)
K 2. +A3<Kg> . \ ’ | *‘"3*_ O --%(A.—AZ\}C
k=S GMA ! AZ) '%{I: (A=A,) "J_ L(A*A ) arl) = 2(ArA,(ark)
2 | +A3<KQ> __JT(A -A)e 3 —Z(L +A“
(A+A )[a-gccua] G- A,,[_-m,)] . :
K= LZ '2-(A| Ay)c +A3<KR>' ~C(A+A,) ©
0 (A+A,) “
23 2T(AcA,
K 2 + Ag LKES (hirke)
GA+A)
3 + Ay (K
_h
L= 2
K=Y K=F K=z =% K=-% K==l
ko2 B(A+A;) :E_ZLIS(A‘—AQ 0 0 [S{hth,)(a+g) N_ZL\‘(A;AZ)(M'\.:)
z +A3\Kw HEAADE (AR
K-_- = 2;"<A\+AZ) \)76 (A."Az> 2J—<A+AZ)\Q+@ N—(A'A?‘)(Qﬁ E)
z A3<KP/ +9r(A Az)c +Or(A +Ag>
- b +3(a+‘°>1 Bich, [w;,] .
K=z salhrhde sALKE B (b 0
N 535( l A) _ :
K,g_& +A (> 36 (A-A,) 0
- Bon) Booa
} +A5<Ké> I
K=-U 1 %‘(A"" A?-)
2 | ~+ A3 <Ké>
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Table I (continued)

: I
\
(3y+'V) b
HEY + 4
AM(I.,{ lbl 2 a
) ine (v +'¥) 21 _ Z
2 Y + <
O (y-WTi | . -
B | A<+$mm
0 o | um~<+< L,N!WAM_/ Mo+ oﬂu<’_<vw 2
o_gv w@- @N mﬁtg Z- L?,&v |
SEveal- o (V-Y %f e+ <
0 , oy e s
GrI(y-y) Q- @.%45_%4 Cvrvishe Cv+v) iz
QTR LA By m<+
+0)(2y2 v - (a1o) Py |Nll O _ O A,<l<v|mls\% A v
@)(V-Y)N- @+)CY+Y)&E YY)
UAM«QL{Vw‘ | . | - AYNE H 2
vl O 5 | o 0 | R Av_v<
VG- | (*v¥v)e
| |
2h - = Ty - =2 Z/e — =) Zh = UYg =M Yp=A %=X

< _ v
a =1

A V4
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. 2
form CJOOJO, in the parameters a, b, ¢, d, e, and <:KR:>' are
replaced by cgé)cgéé where the superscripts refer to the two
different particle states. Terms not proportional to a, b, etc.
must be omitted in matrix elements off-diagonal in the particle
states. They are zero through the orthogonality of the different
; ; (1),(2) _
particle wave functions, QE:jO CJO c ol 0.
THE PARTICLE WAVE FUNCTIONS
So far no specific assumptilons have been made about the
rotational constants, (Ak ='ﬁ2/2§d{),cn’the particle wave
functions describing the odd nucleon., In subsequent calculations

the inertial parameters suggested by Bohr's hydrodynamical

model2 will be used

ﬁh = 4 E;/&z s;na(x-z,g%) (=123 =x9.2) (14)

where, however, B 1s to be determined empirically. The state
of the odd nucleon will be described by wave functions such as
those calculated by Newton5, that 1s by the eigenfunctions of a
particle in an anisotropic oscillator potential with Nilsson
spin-orbit coupling and .EE term. The single particle Hamil-

Las ol

tonlan is

2 2
Heaticle = “H 7" + mox+ o035 0,2)+ CLs + DL (15)

0y = wo(/&)/@)[] +m/5 cos (% - 2%‘?2)]-! (Qh. = ‘,2,3 =%, ,Z)

2,043, = [Dy(pe1-0)]° (16)
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In the notation of Nilsson6
C = -2#%*w, D= - &phw, (17)

As pointed out by Nilsson, the elgenfunctions of the Hamiltonian
(15) can be treated in two possible ways. The Hamiltonian can be
diagonalized by neglecting matrix elements off-diagonal in the
principal harmonic oscillator quantum number, N. In this case
the particle eigenfunctions are expanded naturally in terms of
angular momentum eigenfunctions in real physical space, for
example in the ]NE, JQ:> representation. Alternately, by

introducing the change of variables
Yo Y |
x= (h/mw) ¢, Y= (h/mog)n,  z= (h/mw)? 6 (18)

the single particle Hamiltonilan can be made rigorously diagonal
in N if the orbital angular momentum operator gu for the real
physical space 1s replaced by the infinitesimal rotation

t

the Hamiltonian

operator ﬁg in the pseudo=-space é, 7 , C., leading to

H = % (-9 + &) mﬂ(. 7)+Jﬁwz—v4+é)+CQts+D2 (19)
2

Diagonalization of the Hamiltonian (19) leads to particle
elgenfunctions which are expanded in terms of angular momentum

eigenfunctions in the pseudo-gpace a, ? . C , that is in
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an ‘N et%jédg> representation., Newton has chosen to
diagonalize the Hamiltonian in the form (19). For the present
work Newton's calculations have been extended to include the

N = 5 and 6 harmonic oscillator states and N = 4 states with
parameters appropriate for odd-Z nuclei.* (See Figs. 1 and 2
in this paper and Mottelson and Nilsson, reference 9.) The
particle wave functions are therefore known in the form of Eq.
(2), but as linear combinations of angular momentum eigen-
functions in the pseudo-space é?, Q ) ‘;. The formulae for
the rotational energies, on the other hand, as well as all
subsequent formulae for electromagnetic moments and transition
probabilities, particle widths, etc. are given in terms of ex-
pansion coefficients involving the angular momentum eigen-
functions in real physical space. To first order in J§7ﬁﬁ:/3 ’
however, the two types of functions are identical, Since the

model can be expected to have approximate validity, at best, no

*The diagonalization of the Hamiltonian (19) wés carried out on
the IBM 704 digital computer of The University of Michigan Com-
puting Center. The problem has been programmed for arbitrary
values of C, D, /5 , and & and computes the eigenvalues and
eigenvectors as well as parameters such as a, b, etc., and some
additional quantities which are useful in the computation of
electromagnetic moments and transition probabilities. The
diagonalization of the (I + 3) x (I + 3) rotational matrices

(with I & 13/2) was also carried out on the IBM 704 computer.
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distinction will be made beftween the two types of eigenfunctions.,
If the distinction were to be taken literally, the operator

jx in the rotational Hamiltonain, for example, could be written

b= o b= o (B ety + £ ([ -G

The second term can be ignored since it has no matrix elements
diagonal in N while the eigenfunctions of the Hamiltonian (19)

are rigorously diagonal in N, Therefore jX could be replaced by
ho= L []2z [D ) -
where h Z(\J 03+ d) ﬁ
In the most unfavorable case, ( - 300), h would have the value
2
o= (578m) B* + arder ()

Insofar as h can be neglected the matrix elements of jx are

independent of the choice of eigenfunctions, and no distinction
) 1.

need be made between the IN'@23($7 and the lN Qt23t0£>

representations.,

ELECTROMAGNETIC MOMENTS. TRANSITION PROBABILITIES
Expressions for the electromagnetic moments and transition
probabilities are straightforward generalizations of the ex-
2,6,10,11

pressions developed for axially symmetric nuclei.®’?”’-VY> They

involve matrix elements of the multipoleboperators, YYL(L, w),
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between the possible states QIK of Eqg. (3) and summations over
the coefficients C,. The reduced transition probability between

K

states Ii and If, governed by an arbitrary tensor operator of

rank L, 1s defined as usual by

By, L—>1I)= Z:M K% L Mﬂm(‘-»/@ldtlt M‘»>\z (20)
i

The uth space-fixed spherical component of the tensor operator

is given in terms of the body-fixed components U (L, » ) by

.m(L) U') = Z.» ™)

function of the odd nucleon's intrinsic coordinates the reduced

m; (L,»). If the tensor operator is a

fransition probability can be written

. ' / [} _‘/
L)I; = <° \WL L) | u;_ 23 z.
B(L, L= T,) [Z&Z"?%Z M 1> (2jer)

Z: C(\«) ® G
{ew\» kD) J 2 Sl o LL LN T LTk L ol Li@e)
® d> @) (21) .o

+§_"»CK ~ (ko) €3, Q A (m»)(l <I Liy|L; LIP(K+»)><JVLQ)J15 L 3€(Q+p>}

As previously, the prime on the summation symbols indicates that
the sums over K and Q are restricted to the set of values

- %y - gy %y %3 %y oo Only the value of the reduced
matrix element of the particle operator of rank L remains to be
calculated. The above formula can be applied specifically if
the particle wave functions are expanded in the form of Eq. (2),

that is in the |N€3jQ0>  representation. For some types of

operators the ]NQ,ﬁx%ZL:> representation used by Nilsson may
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lead to simpler expressions for the reduced transition probabllities.
The quantum numbers A and 2., give the eigenvalues of 2’2 and S,
the body-fixed z components of the orbital and spin angular momentum
of the odd nucleon, in units of 4 . The Nilsson expansion co-

*
efficlents Q'QAZ, are given in terms of the OjO through

dene = Lo <GS AZIR IR ¢
J

In terms of such coefficients an alternate expression for the re-

duced transition probability may be useful

BL -1 =

[Z ZZ ﬂz C C(f) O gl (LUK TLT K@Ml QD

ol 0(‘, even Y X K’H’) % Q Ol LQ V)

+ b8 W G?) Te-" (22)
Y ~(K+Y) % ct{ (.Q.+v)( AR LI{-(K*”» @e(ﬁ’f”)'m(l— 2)ote Q>”

where the labels o¢ stand collectively for quantum numbers such

as N, Q,/\, and 27, .

*In order to define the phases of the coefficients it is impor-
tant to note that the cjO are defined in the IBIQ J(ﬂ} rather
than in the h«%e,y§> representation. The quantum numbers N,

4 , and s = 3 are never indicated in cJO but are to be implicitly

understood.,



21 -

The expression for the magnetic moment takes the specific

P = 39)1 -+ (I+l)Z*; C K[(%s %) {So? +(3e, Ie! <Q>]

+ZK_| CKC—(K E—%) KI-\—K)(I \<+\) [ <5§+(3 ch)(o“-%)-_\

2(T+1) (23)

/
C (I-k){T+k=+) .
+ 2. C LS B Tl r (695> +3,-3)¢]

where (a + b) and c are written out explicitly in Egs. (10) and
i
(11), while <O.> = Z-JQCJEQQ Expectation values such as

<:séj> have their simplest form in terms of the expansion

coefficients CLQAJL

{(Sed = Z:Z_ ( Vpa-yys — Ote(mvz) '/2>

{
s = Zﬁ:%(“ Qem—vz) Qo) &

'
< S+> = Z?; g ("‘) QQ(Q+V2)-‘/2_ QQ —(Q+¥2) =%

The electric gquadrupole moment is given by

Qs = (Qpeost+ C‘o) Z’ Ci [3K*-~ 1(1’+l)1
K

(I+1)(21+3)

Vo

e (@ sint + 9y) Z_C L )5(I+%< K-k (I-ke2) .
(T+1) (2I+3)

where QO gives the contribution of the deformed core
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Q, = 3ZcRs B 5w (26)

while 4, and ds give the contribution of the odd nucleon. The
matrix elements of epr’g ng ( Qp) for the odd particle are again

evaluated most easily in terms of the expansion coefficients Qg

and lead to
= 2¢e.h [ Qo (N+2)] L@+1)
qo —-E%:éZA QA(. =2 ) (2@ | (22 5‘1 <QZAO‘QZQ/\>

7

2
+ 2050, [N+ )(N—2+2)3Q(€-\)] )
Hean U 2(2en@e-3) 1<€ZAO‘ eatt 2)[\>]

O\Z = 2_9(“_‘5. Zs K—-QQAQQ(NZ)(N"' 3) L) AX<QZA2\Q2' ¢ (A+2>>

LN N 2€ \) 2Q 5
R
+0eAOgpqpve) | NHEDIN-GAIUED! 9550 o022 T
P [ (20-1)(2-3) enz| y

T QeaQgeanyAs2) LN+Q+3)I N-2) 5(Q+2)(€+\)-\ <Q,2[\ o QZ(Q+2)(A+2)>
| 22+32) (2%+5) |

The quantum number 2 , (as well as the harmonic oscillator
quantum number, N), is not indicated explicitly in the coefficients
Qpp since all the matrix elements are diagonal in Z:_ | ep
is the charge of the odd nucleon. An effective charge might be

used 1f vibrational interactions with the core are taken into

account.) It should be noted that QS can be negative even if
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the nucleus has a large positive intrinsic deformation, ( ﬁ>> o,
% & 30°%).
Since explicit expressions for M1 and E2 reduced transition
probabilities may be useful, they are tabulated below for transi-
tions Ii———> I_. between different rotational states based on the

f
same particle excitation

BM, Li»>1,) = Ka EReA 51 1, Z C(w C
+ Zl C(;) C(S T 1 KO| Tl Ty K>§(%s—<3a<s‘> * Q;%@@D}

..(\(.

T
P I <k '\I:!I¥<\<—\>%_Q‘°{fa;aa<s.>+<3e-3a><&+‘°>}
2 .

(28)
I{;-!-l/g_

2
) (a.- - i
J;.— 2‘.(35 J)<ED +(3e 39,)(:.}

-(K+1)

(If there 1s a change in the particle excltatlon of the odd
nucleon in the transition, the expressions for the M1l transition
probabilities are merely slight generalizations of the above
formula which are obtained if products of the form c.-C.

P 3% 3-(0-1)
and O%( _01 O _ (Q-1)3 in the expectation values are re-

r N EY (r)
placed by CJO 3(a-1) and a,e< )10,2 (0-1)3 respectively.)
The E2 rates, again for transitions between different

rotational states based on the same particle excitation, are

given by
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B(EL, TimT,) = L( ocosk+a,) ;C C (<L:2KO| T 21K

2

+Q oSm‘<+3a Z( C | (Tek-2Jrer (k2 +C (( <z 2K2| T: 21 |<+2/))]

K ~(k-2) K+2)
(29)

(If the transition involves a change in the particle excitation,
the core can give no contribution. The contributions of the odd
nucleon will have a more complicated form and will involve five

different terms of the form dos A _os ql, q_l, and qo.)

SPECTROSCOPIC FACTORS FOR NUCLEON EMISSION OR CAPTURE

In this section we consider the relative amplitudes for
nucleon capture into, or removal from, bound states of asym-
metric nuclel. Such amplitudes are measured by stripping and
pick-up reactions, respectivelyl2. The amplitude for strip-
ping or pick-up contains an overlap integral over target and

residual nucleus wave functions, which may be expanded in the

form

J o) Vs = 2y i T X

X~ denotes the coordinates of the (A + 1)th nucleon, while
the z-component m refers to a space-fixed coordinate system.

Quantum numbers such as N and € are not explicitly indicated
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in (30) for simplicity. The parentage coefficient ﬁ%, in ex~
pansion (30) is then the amplitude for finding the (A + 1)th.
nucleon with angular momentum J within the nucleus of mass
A + 1 when in a stafe ”ﬂ5A+3 , With the remaining nucleus of
mass A in state ng. If there are n nucleons of this type in
nucleus (A + 1), the capture or emission probability is pro-

portional to the spectroscopic factorlg,

The two cases we shall consider are the removal of a
nucleon from (i) an odd-A nucleus to leave an even nucleus,
and (ii) an even nucleus to leave an odd-A nucleus. (The
stripping processes are simply the inverses.,) 1In previpus
sections we have only considered the states of a nucleué with
a single nucleon coupled to a structureless asymmetric core.
This is adequate for the description of the removal of the
nucleon if the core 1s identified with the resulting even
nucleus, However, the removal of a nucleon from an even
nucleus requires a more detailed description. One simple
generalization is to consider the nucleons to fill (con-
sistently with the Pauli Principle) the lowest levels in the
ellipsoildal single-particle potential well. If we restrict
ourselves to configurations in which even numbers of nucleons
are paired off in the lowest (doubly degenerate) single-

particle levels while only the last odd particle is allowed



26—

fo change its state, it 1s straightforward to show that the
resulting energy levels and wave functions are the same as
for the single-particle model of the preceding sections. (This
simple equivalence does not hold for more complicated con-
figurations.) The other nucleons merely form an inert core
which we assume to be The same as the corresponding even nucleus.
However, we now have a consistent mechanism for removal of a
nucleon from an even nucleus, or inversely 1ts addition to an
odd-A nucleus.

With this assumption, the wave-function of the even nucleus

now has the form
—! A vy I. T —
_ ’21'+\ _ ‘1
’(‘); - l(;:r\'z ZK_‘ CKe XD"LKQ-{—( ) :D“v.‘Ke }—(— (32)
(-

The summation is over positive, even values of Ke only, in-
cluding zero, and CO is chosen to absorb a factor of V2 which
arises Dbecause the normalization of the function in brackets

1s different for the special case Ke = 0, The X is a normalized
determinant of the wave functions (2) for the occupied single-

*
particle states . The odd-A nucleus has a wave function which

*
If neutrons and protons are treated as distinguishable, X
if a product of determinants, of order N for the neutrons

and of order Z for the protons.
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is a generalization of (3),

0= T K e 1 X

l(o'ﬂ'z Ko ) o—“‘

(33)

The X, 1s again a determinant of single-particle states. For
the configurations which we are considering, all but one of the
nucleons are paired off, while the odd one occupies the state

Ly . Ther;v is similar but with the odd nucleon in the
state X., .

With these wave-functions the amplitudes ﬁ from the over-
lap (30) are given by

Case 1: = even nucleus (e); (A + 1) = odd nucleus (o)

(A+1)
‘[-/5 \‘g% Z—"Z:)C C [Cj(Ko‘Ke)<IejKe<K5'Ke)‘IejI°Ko>

Te .
D) g T j- KKkl T TR (38

Case 2: A = odd nucleus (©); (A + 1) = even nucleus (e)

Lil, K;
-

T
+(-1) ecj(Ko“'Ke)\/Xoj K°'(KQ+K°)‘I°§)1:K€>|

(A-\- \

we= B T CA)CKQ

J hT
[CS(K;KQ <LJ K. (K- Ko)

(35)

where n in (34) or (35) is the number of nucleons in (A + 1) of

the same type as the one removed.

The spectroscppic factor is then S( l{—ﬁ%
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NUMERICAL RESULTS. POSSIBLE APPLICATIONS

According to our model the odd-A nucleus 1is assumed to
have a well defined asymmetric equilibrium shape. In looking
for possible examples for such a model the neighboring even-
even nuclei might be used as a gulde. Preferably these should
have large asymmetry and show relatively little vibration-
rotation interaction. There is some indication that nuclel
around A a 190 maly satisfy both requirements. Asymmetries of

16.50, 190, 220, and 250 have been reported3 for the sequence

186 188 190 192

Os , Os , 08 , and Os , for example; and the indi-

cations are that asymmetric rotator theory 1s satisfactory,

190 192. For this

particularly for the isotopes Os and Os
reason 1t was decided to make a preliminary survey of the odd-A
nuclei around A = 190. Unfortunately very little is known
about the excited states of the odd-A i1sotopes of osmium, al-
though 1t might be noted that the experimentally observed

187 (

magnetic moment of Os W = .12) 1s considerably smaller
than the value predicted on the basis of an axially symmetric
rotator model (u = .8, Table VII, Mottelson and Nilsson,
reference 9). Although insufficient experimental information
1s available for a test of asymmetric rotator theory in the
case of 03187 and 03189, the experimental situation i1s some-

what more favorable in the case of some of the itotopes of

Re, Ir, Au, Pt, and perhaps W,

ODD Z NUCLEI

The low-lying levels of the 1sotopes of Re seem to form
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a 5/2+, T7/2+, 9/2+ rotational sequence. The various isotopes
of Ir and Au all have 3/2+ ground states with magnetic moments
between .1 and .2 nuclear magnetons., On the basis of an

5

axlally symmetric model rotational bands based on Q = 5t and
%‘+ states should be expected in these two cases. The most
likely particle states are the [MOQ] Q= g-+ Nilsson level for

the 75th proton in Re and the [ﬁOé] Q = %—+ Nilsson level for
the 77th and 79th protons in Ir and Au. (See Fig. 3, Mottelson
and Nilsson, reference 9. The levels are labeled by the
asymptotilc quantum numbers [N nz/\l .) In an asymmetric
nucleus 0 is no longer a good quantum number. With the intro-
duction of a small asymmetry Nilsson levels with different Q
interact with each other. As a result the single particle
levels of an asymmetric nucleus cannot cross each other when
plotted as a function of the deformation paramater /3 s €X~-
cept for states of opposite parity. For small values of the
asymmetry parameter, 4 , the single particle energies differ
little from the Nilsson values, except in regions where
Nilsson levels with different ) cross each other or lie close
fogether over large ranges of /5 . The single particle

levels for asymmetric odd Z nucleil in the region 50< Z < 82
are shown in Figure 1. <for an intermediate value of the
asymmetry parameter, 4 = 150 and in Figure 2, for the largest
possible asymmetry, %4 = BOO. In order to give some idea of
the possible rotational bands which can be built on these

particle states, the levels have been labeled with the spin of

the ground state, (lowest rotational level), for ﬁ5 values of
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-.2, and .3. For these specific values of ﬁ. and ¥ the spin
values of the lowest rotational levels based on each particle
state are also listed in Table II starting with the ground state
at the left. Since the rotational spin sequences may be very
sensitive functions of both ,6 and ¥ , the spin values
listed in Table II can only serve as an indication of the types
of rotational sequences to be expected. The investigation of
any specific example must be based on a plot of the rotational
energies as a function of % for appropriate values of f5 .
To get some understanding of the behavior of the rotational
levels, however, consider particle state 65, the lowest negative
parity single-particle state which grows out of the hll/? shell
model level, as an example. In the prolate symmetric rotator
limit, /3 > 0, 4= 07, this is a pure Q = % state with an
I = 3/2 rotational ground state. In the oblate symmetric
rotator 1limit, /5<ZO, ¥ = 0°, or what is equivalent,
pB>o, %= 60°, this is a pure Q = 11/2 state with an
I = 11/2 rotational ground state. Between &' of 0° anda 60°
( ﬁ)) 0) the ground state therefore changes from an I = 3/2
to an I = 11/2 state. Note, however, that for ¥ = 300 an
I = 11/2 value has already been reached, whereas for X = 150
the ground state I value is 7/2° Note also from Figure 2
that I = £ ground states are very common in the case of large
asymmetry. Although the single particle levels could be
labeled with the asymptotlc quantum numbers [nx ny nZ] this
does not seem to be a useful label since the order of the

single particle levels n, ny nz] would be a function of ¥ .
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TABLE II

Order of Low-Lying Rotational Levels for 0dd-Z Nucleil
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Table II (continued)
Order of Low-Lying Rotational Levels for 0dd-Z Nuclel
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Table II (continued)
Order of Low-Lyling Rotational Levels for 0dd-Z Nuclei
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(Levels with I € 11/2 are listed for the negative parity states, I < 9/2

for the positive parity states.)
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Since levels of the same parity cannot cross each other, the
levels are labeled by the occupation number of the odd nucleon.
Since levels of opposite parity do cross each other, however,
such a scheme cannot give the order of the single particle
levels for all values of /5 . In Figs. 1. and 2. the particle
levels are therefore labeled by the number of the odd nucleon,
(Z), for the case of very small deformation, /3 . Thus, level
81 grows out of the s% shell model state, while levels 79 and
77 grow out of the d3/2 shell model state. For small values of

ﬁs the wave function for the state 77 becomes predominantly
Q) =% as % approaches zero. For larger values of /6 s, how-
ever, the wave function for state 77 approaches that of a
pure Q = 5/2 state as ¥ approaches zero. (Note that the
Nilsson levels [ﬁli] Q=3 + and [402] Q= g-+ cross each
other at /3 = .19.) The state 77 may therefore be expected
to be the state of the odd proton in the isotopes of Re if
asymmetric rotator theory is applicable.

Figure 3. shows the rotational energies based on the
particle state 77 as a function of 4 for relatively small
asymmetry and a value of /5 (= .3) which reproduces the ex-
perimentally observed value of the electric quadrupole moment

185

for Re The behavior of these rotational energy levels
as a function of 4% 1is characteristic of a large number of
particle states. For very small values of 4% the particle
wave function is predominantly Q) = 5/?, The lowest set of

rotational states form an I = 5/2, 7/2, 9/2, ... sequence

with approximate I(I + 1) spacing. The corresponding wave
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functions are almost pure K = 5/? rotational functions, (cor—
responding to Kp = 0). At % = 10°, for example, the low

I = 5/2 state is 99.98% pure K = 5/2. The particle wave

Il

function, on the other hand, is only 80.7% pure Q = 5/2,

with the following admixtures: Q = 3 : 10.1%, Q = - %—: 7.3%,
Q = %—: 1.9%, Q = - %-: 0.1%. The rotational energies of these

states first increase with % since the energies are very

sensitive to a small amount of admixture of KR = 2 near X = Oo

2 . . . o
fhrough the A3 . <:KRT> term in the rotational Hamiltonian;

A, is inversely proportional to singﬂ . In the axially sym-

3

metric limit the I = 5/2 ground state has a rotational energy
of 0.96 in the units of ﬁﬁg/T3p2 appropriate to Figure 3. A
relatively large zero point rotational energy, such as that
predicted for ¥ Q.12O, may be important in determining the
order of rotational bands based on different particle exci-
tations. For % < 11° the next set of rotational levels form

an I = %, 3/2, 5/2, ... sequence with K, of approximately 2

R

units. As '% approaches OO these rotational levels rapldly

. 2
go to large values through the influence of the A3 <1KR:>

O

term, At % = 12° the I = % and §-1evels form the lowest

2

rotational states. At X ® 12.5° the states with I > 5/2
have rotational wave functions with almost equal proportions
of K = 5/2 and K = 2. By ¥ =~ 14° to 15° the I = 3, 3/2, 5/2,
sequence has crossed over the I = 5/2, 7/2, 9/2, ... sequence.
(Note, however, that levels of the same I do not actually
cross.) The lower sequence now has rotational wave functions

of almost pure K = 3 character while the higher sequence is
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predominantly K = 5/2. At 14° the particle wave function con-

sists of the following admixtures: Q =5/2 : 62.6%, Q= - 7/2
21.5%, QO =9/2 : 3.0%, Q=% :12.8%6, Q= - 3/2 : .1%. At still
larger values of % an I =3/2, 5/2, 7/2, ... sequence with KR

approximately equal to 4 units crosses the I =5/2, 7/2, 9/2,
sequence and near % of 18° the higher levels have strongly

mixed K = 5/2 and K = - 3/2 rotational wave functions.

185

The observed levels of Re consist of the following: an

I = 5/2+, 7/?+, 9/2+ sequence bullt on the ground state at O,
128, and 287 kev; a %+, %—+ doublet at 646 and 717 kev; and
*, 27 doublet at 872 and 879 kev, (with the spin

assignment of these last two somewhat uncertain). Mottelson

another %

and Nilsson on the baslis of the axlally symmetric model9 ex-
plain these as the beginning of rotational bands based on the
single particle Nilsson levels [402] QO = %—+, [406] a0=137,
and [ﬁli] Q=3 +, in that order. In terms of the asymmetric
model, however, the possibility exists that two of these three
rotational sequences are based on the same single particle
level (77). With %iiloo the spacing of the first five
rotational levels corresponds to the observed energies. Since
the two apparent rotational sequences at 10° correspond to
almost pure K = g-and K = 4 bands even though K is not a good
quantum number 1in the asymmetric case, 1t would be difficult
to distinguish between an axially symmetric and an asymmetric
model. The E2 rates would be very similar in the two cases.

Predictilons for the magnetic dipole moment differ somewhat

since the asymmetric ground state particle wave function is
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not a pure QQ = 5/? wave function; but these differences are
small. The theoretical value on the basis of the asymmetric
model is pu = 3.37 (for /3 = .3, ¥ = 100), compared with an
experimental value of 3.16 and a theoretical value of 3.7 pre-
dicted on the basis of the axlally symmetric modelg. The ma jor
differences between the theoretical predictions for the two
models would probably involve the transition probabilities
between the 2 +, %—+ levels and the ground state band. Ac-
cording to the axlally symmetric model these transitions would
involve a change in the odd nucleon particle excitation. In
the asymmetric model, however, transitions from one % +, g—+
doublet to the ground state would involve no change in the
particle wave function. At present there is not sufficient
experimental information to declde between the two possibilities.
Note that the selection rule ‘AK]:S 1 would inhibit the M1
rates between two rotational sequences in the case of both
models. Note also that the collective contributions to the
E2 rates are small for a AK &2 2 transition in the asymmetric
model if sin 4 is very small.

The rotational energies in Figure 3., have been drawn only
for %< 18°. Near ¥ 2 20° the single particle levels 77 and
63 have very nearly the same energy so that diagonalization of
(I +3) x (I + 3) rotational matrices based on a single
particle state cannot be expected to give sensible values for
the rotational energies. For 4 > 22.5° the difference in

energy between the particle states 77 and 63 is again large

enough so that the rotational energies can be expected to be
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small compared with the difference in particle energies. Now,
however, particle state 63, the lower of the two, has a wave
function whose character 1s very similar to that of the state
77 at smaller angles % . The rotational energies based on
particle level 63 should therefore form the natural continuation
of the rotational energies of Figure 3., They are shown in
Figure 4. for values of X between 22.50 and 300. The rotation-
al energies based on particle level 77 for the same range of %
are shown in Figure 5.

Among the isotopes of Ir and Au, which seem to have similar
low energy spectra, the experimental situation seems to be most

favorable for the isotope 77Ir191.

91

The experimentally observed

low-1lying states of Irl are shown in the insert of Figure 0.

According to the axially symmetric model the low-lying posi-
tive parity states might be explained in terms of two rotation-
al bands; the ground state band with K = 3/2 based on the

[402] Q = g-+ Nilsson level, and a nearby band with K = 3

based on the [AOO] (=1 " Nilsson level. Because of the
3

proximity of the two states the K = 3 and §-bands would be

coupled through the rotation-particle coupling (RPC) term,
13)

(Kerman , in the rotational Hamiltonian. According to the

asymmetric model, however, the positive parity particle
levels 81 and 79 are split relatively far apart even for
small asymmetry. (The limiting Q = £ L and Q% %—axially
symmetric particle levels have very nearly the same energy
and are connected by an off-diagonal matrix element when

¥ # 0°,) In the asymmetric model therefore the two
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particle states are far enough apart so that the observed
rotational states should be based on a single particle state.
Figure 6. shows the rotational energies for particle level 79
as a function of % for the deformation /.5 = ,2, Figure 7.
shows the rotational energies for the same particle level with

ﬁ> = ,3. The low-lying levels have the appearance of two
overlapping rotational band systems, one a 3/2 + 5/2 + 7/2 +
sequence, the other a % + 3/2 + 5/2 +, ... sequence. (The
zero point rotational energies are very large for ¥ between

O

2° and 6° since the strong Q = %, 3/2 mixing of the particle

wave function gives a relatively large KR ~ 2 admixture for
small values of % so that the e 'd Ké > /8Bﬁgsin2’&‘

term in the rotational Hamiltonian gives a large energy contri-
pution to all rotational levels.) For /3 - .2, #=13.50°,

and for ﬂ== .3, 4 =9.85° the observed levels of il

are
reproduced quite well. For intermediate values of /3 There
is always a value of 4 for which the predicted and ob-
served energy spectra are in relatively good agreement.

The theoretically predicted energies are shown in Table
III on the basis of both the asymmetric and the symmetric
models. In the asymmetric model the rotational constant,
)ﬁg/B/&E, was determined empirically to fit the 129 kev
level., The predicted energies for the upper g-+ and %—+
states are somewhat too high but this 1s perhaps not dis-
turbing since vibration-rotation interactions have not been

taken into account. In the symmetric model the rotational

energies were computed by diagonalizing the symmetric rotator
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TABLE IIT

Rotational Energies for Ir

| Theoretical Theoretical
5 Asymmetric Model Symmetric Model with RPC
1 2 3 i
Experimental ﬁ=.3,v=9.850 ﬂ=.2,v=13.500 B=.3 /3=-2
2+ 351 Kev 377 Kev 418 Kev 305 Kev 316 Kev
L+ 348 374 415 324 325
% + 178 173 178 208 206
2+ 129 (129) (129) (129) (129)
_2;_ + 83 87 86 (83) (83)
2+ 0 0 0 0 0
v >
H /6B~ = 29.6 Kev
2 2 >
A /6B 5" = 30.8 Kev
3,0 >
H /6B = 28.4 Kev, a = .415, A = .670, AE = 174.5 Kev
hoo 2
ho/6BRT = 28.8 Kev, a = .348, A = 741, AE = 172.5 Kev

a =

computed decoupling

parameter, A =

F = E ( [4500) 3 +) - B ( [s02] 2+)

%ﬁ%&ﬂsﬁg and AE are chosen empirically

computed RPC parameter,
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Hamiltonian with RPC term. The values of the decoupling
parameter a for the O = + state and the coupling parameter,
A, (Kermanl3), were computed from Nilsson wave functions and
are shown in Table II. In the symmetric case the determination
of the rotational energies involved two empirical constants,

3

the energy difference between the Q = 3 and Q = §-particle
states, and a rotational constant, 4H2/2§' :‘ﬁg/EB/32 which
was assumed to have the same value for both bands. Although
the predicted energy values may be somehwat better on the
basis of asymmetric theory, (if it is borne in mind that
vibration-rotation interactions are apt to depress the higher
rotational states somewhat), no preference can be given to
either model. The rotational wave functions are very similar
for both models since the overlapping 3/2 +, 5/2 + 7/2 +
and % + 3/2 + 5/2 t ... sequences in the asymmetric model
are predominantly K = 3/2 and K = %, respectively. The
ground state which is predominantly K = 3/2 has a K = 3 ad-
mixture with amplitudes C% between - .1 and - .2 in the case
of both models. As a result it is again difficult to dis-
tinguish between the two models as far as predicted values

of the electromagnetic moments and transition probabillities
are concerned. Table IV shows that neither model is very
successful in predicting the experimentally observed magnetic

moment and in giving consistent predictions for the observed

M1 and E2 transition probabilities. (Free nucleon 8 values
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are used in all the magnetic moment calculations, and er is
set equal to Z/A. A value of Ry = 1.2 x 10713 em x Al/3 is
used for all electric quadrupole calculations.) The Irlgl
calculations seem to indicate that it may always be difficult

to distinguish between a symmetric and an asymmetric model

when the asymmetry is relatively small,

ODD N NUCLEI

Figures 8. and 9. show the single particle energy levels
for odd N nuclei in the region 82 < N < 126 for asymmetries
of lBQ and 300, respectively. For the specific deformations
/3 = ,3 and /3== - .2 the spin values of the lowest rotatlon-
al levels based on each particle state are also listed in
Table V, (starting with the ground state at the left), in order
to give at least some indication of the types of rotational
sequences to be expected. Particle levels 121 through 115,
and perhaps level 99 may be the pertinent levels for odd parity
states of nuclei with A around 190.

The nucleus 78Pt195 is of particular interest since its
energy spectrum is seemingly fit by asymmetrilc rotator theory.
The experimentally observed energy levels are shown on the
left hand side of Figure 10. The levels have been studied

through Coulomb excitationlu, the decay of the metastable

13/2 F

states. The most striking feature of the level scheme is that

level and the positron decay of Au195 to the low lying

both the upper and lower 3/2 ~, 5/2 ~ doublets show large

electric quadrupole transition probabilities to the ground
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Order of Low-Lying Rotational Levels for Odd N Nucleil
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state, the E2 strengths being 10 to 30 times the single particle
estimateslu. In a rough way each doublet seems to correspond
to a state with a rotational (or vibrational) angular momentum
of 2 units, Figure 10. shows that there are actually three
different particle energy levels all with theoretically predicted
rotational spectra which seem to reproduce the experimentally
observed level scheme. All three particle states fall in the
region appropriate for the 117th neutron in Ptl95, and all three
seem to imply large asymmetry. Moreover far any value of {3
within the limits to be expected in this region of the periodic
table there seems to be a value of % for which the observed
level scheme is reproduced at least tolerably well., For

/6 = .1, % «30° similarly for ﬁ = .2, ¥ ~ 23° however,
particle levels 119 and 121 have nearly the same energy so that
rotational energy calculatlons based on a single particle state
may not be valid. For the values of ‘ﬁ and ¥ used in Figure
10. the energy separations between single particle states 119
and 121 seem to be large enough for at least the approximate
validity of the simple model. The theoretically predicted
7/2 " and 9/2 T levels which fall above the 13/2 T metastable
state are dashed since they would not have been experimentally
observed. A 5/2 = state above 259 kev, however, would be in
agreement with experiment only if the E2 transition pro-
bability from the ground state is small.

The experimentally observed and theoretically predicted

values for the magnetic moment are shown in Table VI. These

are determined mainly by the particle wave functions since an
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TABLE VI
Magnetic Moment and M1 Transition Probabilities in Pt195

STATE 115 STATE 121 STATE 119
p = .1 p=.1 B=.2

Expt . v = 30° v = 20° vy = 30°
.600 n.m. .689 .726 .667
.OL7 (n.m.)2 .076 .392 .088
(.ohL) 072 017 .12
.0087 .0056 242 014

L0711 .024 .306 .165
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T = 1 level is a pure K = & level for all values of ¥ . The
reduced widths for magnetic dipole transitions seem to rule
out the second possibility; but, considering the limitations
of the model and perhaps experimental uncertainties, seem to
give fair agreement for the other two levels.

The electric quadrupole transition probabilities are shown
in Table VII. The asymmetric model fails to predict one of the
most striking features of the observed spectrum, the large
crossover E2 transition probabilities involving the upper
3/2 7, 5/2 = doublet. Since this is the most characterilstic
feature of the spectrum, it must be concluded that the simple
asymmetric model does not fit the low-lying levels of Ptl95.
The calculations indicate that a fit of the energy spectrum
alone, if only a few states are observed, can never be con-
firmation of the asymmetric model, since the asymmetric rotator
spectrum is very rich in levels which are a sensitive function
of A , so that many different sequences of four or five
levels can be reproduced.

Attempts to fit the levels of Ptl95 with a symmetric
rotator model seem to indicate only that the nucleus falls
into the intermediate coupling region where neither the simple
rotational nor the simple vibrational model can be applied.
Since the particle states 119 and 121 are nearly degenerate
for certain values of ﬁ5 and relatively large 4 s, the
possibility does exist that the observed level scheme can be

accounted for in terms of two different particle excitations

with rotational wave functions which for the I = 3/2 ~, 5/2 ~
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Table VII
B2 Transition Probabilities in Pt12°
5 (£2) STATE 115 STATE 121 STATE 119
| B=.1 B= .1 B= .2
10749 on®  Expt.. v = 30° v = 20° y = 30°
g .90 1.6 1.5 6.5
(99 Kev)
2—>3 1.0 1.6 1.5 6.5
(130 Kev)
23 .53 063 .00005
(31 Kev)
3 1
Cross- 3 —» 5 2. 14 .05 08 ,00003
OVET | (210 Kev)
5 1
2>z 1.29 .006 .003 .00003
(240 Kev)
2—3 11 .006 .36 1.84
(140 Kev)
2z ,002 _ .28
(> 259 Kev)

*
McGowan and Stelson, Phys. Rev. 116, 154 (1959)
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states are strong mixtures of the two states and would there-
fore give rise to two 3/2 7, 5/2 = doublets with strong E2
transition probabilities to the ground state. However, much
more experimental information would be needed about the

nucleus before such a sophisticated interpretation could be
adequately tested. It should be noted, however, that no strong
E2 cross-over probabilities are observed for the ot levels of

194 ona pet90, The

195

the neighboring even-even isotopes, Pt
assumption that the low-lying levels of Pt involve two

different particle excitations may therefore be reasonable,
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Figure 3. Rotational Energies for the Particle State 77.

[5 = .3. As % approaches 0°, particle state 77

goes over to the axially symmetric [LLOE] QO =5/2 +

particle state for this deformation.
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Figure 4,

Rotational Energies for the Particle State 63.
ﬁ =.3. (% > 22.5°). These are the natural
continuation of the rotational levels of Figure 3.
Near 4 = 20° Particle States 63 and 77 are nearly
degenerate. For % > 22.50 the particle wave
functions for state 63 are the natural continuation

of those for state 77 at smaller angles # .






Figure 5. Rotational Energies for the Particle State 77.
B=.3 (4%4>225%,
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Figure 6.

Rotational Energies for the Particle State 79.

/5 = ,2. As 4% approaches OO, particle state 79
goes over to the axlally symmetric [40?] QO = 3/2 +

particle state. The insert shows the experimentally

observed low-lyling energy levels of 191.

Ir Note

7
that the order of the rotational levels for % =

13.5O (p = ,2) is in agreement with the experimental-

ly observed + parity states in Irlgl.
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Figure 7. Rotational Energies for the Particle State 79.

p =3
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