Technical Report

VARIANTS OF THATCHER'S ALGORITHM FOR CONSTRUCTING PULSERS

S. Hedetniemi

ORA Project 03105

under contract with:

DEPARTMENT OF THE NAVY
OFFICE OF NAVAL RESEARCH
CONTRACT NO. Nonr-1224(21)
WASHINGTON, D.C.

administered through:

OFFICE OF RESEARCH ADMINISTRATION ANN ARBOR

August 1964

Background: The Logic of Computers Group of the Communication Sciences Program of the University of Michigan is investigating the application of logic and mathematics to the design of computing automata. The detailed working out of the von Neumann growing automata design forms a part of this investigation.

Condensed Report Contents: The background material for this paper is John von Neumann's "Theory of Automata: Construction, Reproduction, Homogeneity" [Part II of The Theory of Self-Reproducing Automata, edited by Arthur W. Burks; to be published by the University of Illinois Press]. Within the framework of his cellular automata, von Neumann presents an algorithm for constructing a class of organs, called pulsers, which function as follows. When given an input pulse at time t, a pulser will, after a specified time delay, $\Delta t$, produce at time $t + \Delta t$, one arbitrarily specified output sequence. A pulser behaves in this manner like a one-input-one-output encoder.

James Thatcher, in his paper "Universality in the von Neumann Cellular Model" [to be published as an IBM Research Report], presents another algorithm for constructing pulsers which is far simpler than von Neumann's to apply, but is less efficient in the sense that the pulsers produced are larger in size and have longer time delays than those produced by von Neumann's algorithm.

This paper contains several algorithms which, while retaining much of the simplicity of Thatcher's algorithms, produce pulsers that are smaller in size and shorter in delay than those produced by either von Neumann's or Thatcher's algorithms.

For Further Information: The complete report is available in the major Navy technical libraries and can be obtained from the Defense Documentation Center. A few copies are available for distribution by the author.
1. THE PROBLEM

Design a simple and efficient algorithm for constructing pulsers for arbitrary (output) sequences of the form

$$\alpha = \alpha_1 \alpha_2 \ldots \alpha_p \quad (\alpha_i = 0, 1) \quad (1)$$

and in particular for those sequences of the form

$$\delta = 1k_1 1k_2 1 \ldots 1k_n 1 \quad (k_i = 0, 1, 2, \ldots) \quad (2)$$

where the $k_i$ denote strings of $k_i$ consecutive zeros. The algorithm will be simple if it is easy to understand and easy to apply. It will be more efficient than another algorithm if the pulsers it constructs are smaller in area and have shorter delays, between input stimuli and output sequences, than the pulsers constructed by the other.

2. THATCHER'S ALGORITHM FOR CONSTRUCTING PULSERS

An algorithm for constructing pulsers far simpler than the one given by von Neumann [1] is proposed by James Thatcher [2]; the details of Thatcher's algorithm are presented in this section.

For a sequence $\alpha$ having the form (1) construct, or iterate, $p - 1$ copies of the block of Fig. 1, followed by one copy of the column of Fig. 2.

![Fig. 1](image1)

![Fig. 2](image2)

![Fig. 3](image3)

The pulser so produced will have the form of Fig. 3, with input $a$ and output $b$, and will contain $p$ confluent cells (C) above each of which is an, as yet, unspecified cell marked with an asterisk and a number ($\alpha_i$). The construction
of the pulser for $\alpha$ is then completed by changing the $i^{th}$ cell marked with an asterisk to either an unexcited cell ($\begin{array}{|c|}
\hline
U
\hline
\end{array}$) or an ordinary transmission-up cell ($\begin{array}{|c|}
\hline
\uparrow
\hline
\end{array}$), depending on whether the $i^{th}$ symbol of $\alpha$, $\alpha_i$, is a 0 or a 1, respectively.

3. VARIANT I OF THATCHER'S CONSTRUCTION

With Thatcher's construction the pulser for an arbitrary sequence of length $p$ has at least $p - 1$ unexcited, and therefore 'unused', squares ($\begin{array}{|c|}
\hline
U
\hline
\end{array}$). It is, therefore, natural to ask whether an iterative scheme could be developed, along similar lines, which would make more efficient use of the cells within (the bounds of) the pulser, thereby producing a pulser with a smaller area and, perhaps, with a shorter delay. One such scheme is presented in this section.

**Initial Step**

For sequences having the form

$$\beta = 1k_i1$$  \hspace{1cm} ($k_i = 0, 1, 2, \ldots$)

where $k_i$ denotes a string of $k_i$ consecutive zeros, construct for the following values of $k_i$ the corresponding pulsers with input $a$ and output $b$:

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th>b</th>
</tr>
</thead>
<tbody>
<tr>
<td>$k_i = 0$</td>
<td>$\uparrow$</td>
<td>$\uparrow$</td>
<td>$\uparrow$</td>
</tr>
<tr>
<td>a</td>
<td>$U$</td>
<td>$U$</td>
<td>$C$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th>b</th>
</tr>
</thead>
<tbody>
<tr>
<td>$k_i = 1$</td>
<td>$\uparrow$</td>
<td>$\uparrow$</td>
<td>$\uparrow$</td>
<td>b</td>
</tr>
<tr>
<td>a</td>
<td>$U$</td>
<td>$U$</td>
<td>$U$</td>
<td>$U$</td>
</tr>
</tbody>
</table>
\[ k_i = 3 \quad , \]

\[ a \quad \begin{array}{cccccc} \rightarrow & \\ \rightarrow & \\ \rightarrow & U & U & \rightarrow & \rightarrow & \rightarrow \end{array} \quad | \quad b \]

\[ \begin{array}{cccc} C & \rightarrow & C & \rightarrow \end{array} \quad ; \]

\[ k_i = 2m \quad , \]

\[ m \geq 1 \]

\[ \begin{array}{cccccccccc} \rightarrow & \\ \rightarrow & \\ \rightarrow & \rightarrow \end{array} \quad | \quad b \]

\[ \begin{array}{cccc} C & \rightarrow & \rightarrow & \rightarrow \end{array} \quad \left\{ \begin{array}{c} \text{m blocks, each having} \\
\text{the form} \\
\left\{ \begin{array}{c} \begin{array}{c} \end{array} \\
\uparrow \\
\end{array} \right. \\
\right. \end{array} \quad ; \]

\[ k_i = 2m + 1 \quad , \]

\[ m \geq 2 \]

\[ \begin{array}{cccccccccc} \rightarrow & \\ \rightarrow & \\ \rightarrow & \rightarrow \end{array} \quad | \quad b \]

\[ \begin{array}{cccccccc} C & \rightarrow & \rightarrow & \rightarrow & \rightarrow & U & \rightarrow & \rightarrow \end{array} \quad \left\{ \begin{array}{c} \text{m blocks, having the same} \\
\text{form as above, the last two of which are} \\
\text{separated by the column marked with the} \\
\text{asterisk.} \\
\end{array} \right. \]

**General Step**

For sequences having the form

\[ \mathcal{G} = \lambda k_1 \lambda k_2 \lambda \]

all one has to do is merge, or identify, the last column of the pulser \( F(1k_1 \lambda) \) with the first column of the pulser \( F(1k_2 \lambda) \). Notice that since all the pulsers
constructed in the initial step have identical first and last columns, the
last column of $P(lk_1 \ldots l)$ is the same as the first column of $P(lk_2 \ldots l)$, and thus
the merging of these two pulsers can be accomplished quite naturally.

For sequences having the form \( (2) \) above,
\[
\delta = lk_1 \ldots l k_n \ldots l,
\]
the process of merging generalizes very simply, i.e. $P(lk_1 \ldots l k_n \ldots l)$ is
the result of merging serially, or in sequence, $P(lk_1 \ldots l)$, $P(lk_2 \ldots l)$, \ldots,
$P(lk_{n-1} \ldots l)$ and $P(lk_{n} \ldots l)$.

For sequences having the form
\[
\epsilon = k_0 \delta,
\]
i.e. those having initial zeros, all one has to do is construct a path of delay
$k_0$ before (to the left of) the first confluent square of $P(\delta)$. This can be
done easily and in any of a number of ways.

4. END PULSERS — TYPE I

This section contains an algorithm for constructing a class of pulsers,
called end pulsers. The algorithm, however, is not iterative. That is, it is
not possible to merge the end pulser for a sequence $lk_1 \ldots l$ with the end pulser
for a sequence $lk_2 \ldots l$ to obtain an end pulser for the merged sequence $lk_1 \ldots l k_2 \ldots l$.
The construction of end pulsers only applies to sequences of the form $lk_1 \ldots l$.
However, this construction can be applied to the end subsequences, $lk_n \ldots l$, of
sequences of the form \( (2) \). That is, if the end pulser for the sequence $lk_n \ldots l$
is merged with the Variant I pulser for the sequence $lk_1 \ldots l k_2 \ldots l \ldots l_{n-1} \ldots l$,
the resulting pulser for the merged sequence $lk_1 \ldots l k_2 \ldots l \ldots l_{n-1} \ldots l_n \ldots l$ will have a
smaller area and a shorter delay than the corresponding Variant I pulser for
the merged sequence.

The algorithm for constructing Type I end pulsers follows.
For sequences of the form \( l k_n l \) construct for each value of \( k_n \) the corresponding pulser:

\[
\begin{array}{c|c}
\downarrow & b \\
\hline
\downarrow & U \\
\downarrow & C \\
\hline
\end{array}; \quad a
\]

\( k_n = 0 \) (as in Sec. 3),

\[
\begin{array}{c|c}
\downarrow & b \\
\hline
\downarrow & C \\
\hline
\end{array}; \quad k_n = 2,
\]

\[
\begin{array}{c|c}
\downarrow & b \\
\hline
\downarrow & C \\
\hline
\end{array}; \quad k_n = 1,
\]

\[
\begin{array}{c|c}
\downarrow & b \\
\hline
\downarrow & C \\
\hline
\end{array}; \quad k_n = 2m + 1,
\]

\[
\begin{array}{c|c}
\downarrow & b \\
\hline
\downarrow & C \\
\hline
\end{array}; \quad k_n = 2m,
\]

\[
\begin{array}{c|c}
\downarrow & b \\
\hline
\downarrow & C \\
\hline
\end{array}; \quad m \geq 1
\]

\[
\begin{array}{c|c}
\downarrow & \cdots \\
\hline
\downarrow & \cdots \\
\hline
\end{array}; \quad m \geq 2
\]

\[
\begin{array}{c|c}
\downarrow & \cdots \\
\hline
\downarrow & \cdots \\
\hline
\end{array}; \quad m - 1 \text{ columns, as above.}
\]

Notice (Table 1) that for \( k_n \geq 2 \) the width of \( P_{\xi}(lk_1l) \) is exactly half the width of \( P(lk_1l) \).
5. EXAMPLES

The following diagrams of a von Neumann, a Thatcher, a Variant I pulser and a Type I end pulser, for the sequence \( \alpha = 10010001 \), illustrate some of the differences between the various algorithms.

**von Neumann Pulser**

```
 a | C → C → C → C

 b
```

\[ \begin{array}{cccc}
+ & + & + & + \\
↑ & U & ↑ & U & C \\
↑ & U & ↑ & ↑ & ↑ \\
↑ & U & ↑ & ↑ & ↑ \\
↑ & ↑ & ↑ & ↑ & ↑ \\
↑ & ↑ & ↑ & ↑ & ↑ \\
↑ & ↑ & ↑ & ↑ & ↑ \\
↑ & ↑ & ↑ & ↑ & ↑ \\
+ & + & + & + & + \\
\end{array} \]

\[ \text{delay 13} \]

\[ \text{area 35} \]

**Thatcher Pulser**

```
 a | C → C → C → C → C → C → C

 b
```

\[ \begin{array}{cccccccccccc}
+ & + & + & + & + & + & + & + & + & + & + \\
↑ & U & U & U & U & U & U & U & U & U & ↑ \\
↑ & ↑ & ↑ & ↑ & ↑ & ↑ & ↑ & ↑ & ↑ & ↑ & ↑ \\
↑ & ↑ & ↑ & ↑ & ↑ & ↑ & ↑ & ↑ & ↑ & ↑ & ↑ \\
↑ & ↑ & ↑ & ↑ & ↑ & ↑ & ↑ & ↑ & ↑ & ↑ & ↑ \\
↑ & ↑ & ↑ & ↑ & ↑ & ↑ & ↑ & ↑ & ↑ & ↑ & ↑ \\
↑ & ↑ & ↑ & ↑ & ↑ & ↑ & ↑ & ↑ & ↑ & ↑ & ↑ \\
↑ & ↑ & ↑ & ↑ & ↑ & ↑ & ↑ & ↑ & ↑ & ↑ & ↑ \\
↑ & ↑ & ↑ & ↑ & ↑ & ↑ & ↑ & ↑ & ↑ & ↑ & ↑ \\
+ & + & + & + & + & + & + & + & + & + & + \\
\end{array} \]

\[ \text{delay 19} \]

\[ \text{area 45} \]
6. VARIANT II OF THATCER'S CONSTRUCTION

We can modify the Variant I algorithm slightly and in so doing obtain, in a uniform manner, pulser with shorter delays and sometimes (depending on the sequences) smaller areas. Figures 4 and 5 illustrate, for the sequence \( \alpha = 100001 \), the basic differences between Variant I and Variant II pulser (to be constructed).

Notice (Fig. 5) that, by moving the input \( a_2 \) to the middle row, the delay of the Variant II pulser is decreased by one time unit. In addition it
is possible to modify this pulser to produce the Variant II pulser for the sequence $\alpha' = 1000001$ simply by changing the cell marked with an asterisk to a confluent cell. The modified pulser has the same area and same delay as the original Variant II pulser. Yet it is not possible to modify the Variant I pulser to produce a pulser for the sequence $\alpha'$ without increasing both the area and the delay. Thus for the sequence $\alpha'$ the Variant II pulser will have a smaller area and a shorter delay than the corresponding Variant I pulser.

The details of the construction of arbitrary Variant II pulsers follows.

**Initial Step**

For sequences having the form

$$\beta = 1k_i 1$$

construct for the following values of $k_i$ the corresponding pulsers with input $a$ and output $b$:

$k_i = 0$,

\[
\begin{array}{ccc}
\rightarrow & \rightarrow & \rightarrow \\
\text{C} & \rightarrow & \text{C} \\
\text{U} & \text{U} & \text{U} \\
\end{array}
\]

$k_i = 1$,

\[
\begin{array}{ccc}
\rightarrow & \rightarrow & \rightarrow \\
\text{C} & \rightarrow & \rightarrow \\
\text{C} & \rightarrow & \rightarrow \\
\text{U} & \rightarrow & \rightarrow \\
\end{array}
\]

$k_i = 2$,

\[
\begin{array}{ccc}
\rightarrow & \rightarrow & \rightarrow \\
\text{C} & \rightarrow & \rightarrow \\
\text{U} & \rightarrow & \rightarrow \\
\end{array}
\]
\( k_i = 3 \), \( a \mid \begin{array}{c|c}
\rightarrow & \rightarrow \\
\rightarrow & \rightarrow \\
C & C \\
U & U
\end{array} \mid b \)

\( k_i = 4 \), \( a \mid \begin{array}{c|c}
\rightarrow & \rightarrow \\
\rightarrow & \rightarrow \\
\rightarrow & \rightarrow \\
C & C \\
U & U
\end{array} \mid b \)

\( k_i = 2m + 1 \), \( m \geq 2 \)
\( a \mid \begin{array}{c|c|c|c}
\rightarrow & \rightarrow & \rightarrow & \rightarrow \\
\rightarrow & \rightarrow & \rightarrow & \rightarrow \\
\rightarrow & \rightarrow & \rightarrow & \rightarrow \\
C & C & \ldots & C \\
U & C & \ldots & U
\end{array} \mid b \)

(\( m - 1 \) blocks, each having the form)

\( \begin{array}{c|c}
\rightarrow & \rightarrow \\
\rightarrow & \rightarrow \\
\rightarrow & \rightarrow \\
\rightarrow & \rightarrow
\end{array} \mid b \)

\( k_i = 6 \), \( a \mid \begin{array}{c|c}
\rightarrow & \rightarrow \\
\rightarrow & \rightarrow \\
\rightarrow & \rightarrow \\
C & C \\
U & C \\
\rightarrow & \rightarrow
\end{array} \mid b \)

\( k_i = 2m \), \( m \geq 4 \)
\( a \mid \begin{array}{c|c|c|c|c|c}
\rightarrow & \rightarrow & \rightarrow & \rightarrow & \rightarrow & \rightarrow \\
\rightarrow & \rightarrow & \rightarrow & \rightarrow & \rightarrow & \rightarrow \\
\rightarrow & \rightarrow & \rightarrow & \rightarrow & \rightarrow & \rightarrow \\
C & C & \ldots & C & \ldots & C \\
U & C & \ldots & C & \ldots & U
\end{array} \mid b \)

(\( m - 3 \) blocks, having the same form as above.)
General Step

The general step, very much like that of the Variant I algorithm, involves a process of merging pulsers. Notice again that all the pulsers constructed in the initial step have identical first and last columns so that the merging of two pulsers can be accomplished very easily.

7. END PULSERS — TYPE II

In the same way that Variant I pulsers were modified to obtain Variant II pulsers, Type I end pulsers can be modified to obtain Type II end pulsers. That is, when constructing the Variant II pulser for the sequence

\[ \alpha = l_{k_1} l_{k_2} l \ldots l_{k_{n-1}} l_{k_n} l \]

merge \( P(l_{k_1} l_{k_2} l \ldots l_{k_{n-1}} l) \) with one of the following class of pulsers, \( P_{\varepsilon}(l_{k_n} l) \), depending on the value of \( k_n \):

\[
\begin{array}{c|ccc}
& + & + & | b \\
+ & C & + & C \\
U & U & U & \\
\end{array}
\]

\( k_n = 0 \) (as in Sec. 6), \( a \); 

\[
\begin{array}{c|ccc}
& + & + & | b \\
+ & C & t & \\
+ & t & \\
\end{array}
\]

\( k_n = 1 \), \( a \); 

\[
\begin{array}{c|ccc}
& + & + & | b \\
& C & t & \\
& t & C \\
\end{array}
\]

\( k_n = 2 \), \( a \);
\[ k_n = 3 \] , \[ k_n = 4 \] , \[ k_n = 2m + 1 \] , \[ m \geq 2 \]

\[ k_n = 2m \] , \[ m \geq 3 \]

m - 1 columns having the form indicated ;

m - 1 columns, as above .

For Variant II pulsers the width of \( P(lk_n, 1) \) is almost twice the width of \( P_{\mathcal{C}}(lk_n, 1) \), for \( k_n \geq 5 \). The construction of Type II end pulsers is also not iterative.
8. END PULSERS WITH ADJACENT CONFLUENT CELLS

By taking advantage of the fact that two confluent cells may be adjacent to each other, neither of which may feed or receive stimulations from the other, we can construct an even better class of end pulsers which can be merged with the ends of Variant II pulsers. For an end sequence $k_n$ construct for the values of $k_n$ the corresponding pulsers:

$k_n = 0$, $a | b$

<table>
<thead>
<tr>
<th>+</th>
<th>+</th>
<th>+</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>C</td>
<td>C</td>
</tr>
<tr>
<td>U</td>
<td>U</td>
<td>U</td>
</tr>
</tbody>
</table>

$k_n = 1$, $a | b$

<table>
<thead>
<tr>
<th>+</th>
<th>+</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>+</td>
</tr>
<tr>
<td>+</td>
<td>+</td>
</tr>
</tbody>
</table>

$k_n = 2$, $a | b$

<table>
<thead>
<tr>
<th>+</th>
<th>+</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>+</td>
</tr>
<tr>
<td>+</td>
<td>C</td>
</tr>
</tbody>
</table>

$k_n = 3$, $a | b$

<table>
<thead>
<tr>
<th>+</th>
<th>+</th>
<th>+</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
</tbody>
</table>

$k_n = 4$, $a | b$

<table>
<thead>
<tr>
<th>+</th>
<th>+</th>
<th>+</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>+</td>
<td>C</td>
<td>+</td>
</tr>
</tbody>
</table>

For $k_n \geq 5$ we present the construction somewhat differently. Let us letter the following six blocks:

$a | b | c | d | e | f$

For the following values of $k_n$ construct the corresponding sequences of blocks:
\[ k_n = \begin{array}{l}
5 + 6m : \quad a(c'd)^{m}e \\
6 + 6m : \quad b(c'd)^{m}ef \\
7 + 6m : \quad b(c'd)^{m}ed \\
8 + 6m : \quad ac(c'd)^{m}f \\
9 + 6m : \quad b(c'd)^{m+1}e \\
10 + 6m : \quad b(c'd)^{m+1}ef
\end{array} \]

For example, the pulser for \( l k_n l \), where \( k_n = 11 \), is

```
|   |   |   | C |   | b \\
|---|---|---|---|---|---
| a | C | C |   |   |   \\
|---|---|---|---|---|---
|   | C | C |   |   |   \\
| a | C | C |   |   |   \\
```

And as another example, the pulser for \( l k_n l \), for \( k_n = 15 \), is

```
|   |   |   | C |   |   | C |   |   | b \\
|---|---|---|---|---|---|---|---|---|---
| a | C | C | C |   |   |   |   |   |   \\
|---|---|---|---|---|---|---|---|---|---
|   | C | C | C |   |   |   |   |   |   \\
| a | C | C | C |   |   |   |   |   |   \\
```

9. SUMMARY

The following two tables provide comparisons of all of the algorithms for constructing pulsers, for the class of sequences of the form \( l k_n l \).

[Notation: \( P_\xi(\text{CC}) \) - End Pulser with Adjacent Confluent Cells; \( P_\xi(\text{II}) \) - Type II End Pulser; \( P_\xi(\text{I}) \) - Type I End Pulser; \( P(\text{II}) \) - Variant II Pulser; \( P(\text{I}) \) - Variant I Pulser.]
### AREA

<table>
<thead>
<tr>
<th>k_n</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
</tr>
</thead>
<tbody>
<tr>
<td>P_ξ (CC)</td>
<td>9</td>
<td>6</td>
<td>6</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>18</td>
<td>18</td>
<td>18</td>
</tr>
<tr>
<td>P_ξ (II)</td>
<td>9</td>
<td>6</td>
<td>6</td>
<td>9</td>
<td>9</td>
<td>12</td>
<td>12</td>
<td>15</td>
<td>15</td>
<td>18</td>
<td>18</td>
<td>21</td>
<td>21</td>
<td>24</td>
<td>24</td>
</tr>
<tr>
<td>P_ξ (I)</td>
<td>9</td>
<td>6</td>
<td>6</td>
<td>9</td>
<td>9</td>
<td>12</td>
<td>12</td>
<td>15</td>
<td>15</td>
<td>18</td>
<td>18</td>
<td>21</td>
<td>21</td>
<td>24</td>
<td>24</td>
</tr>
<tr>
<td>P(II)</td>
<td>9</td>
<td>15</td>
<td>12</td>
<td>12</td>
<td>18</td>
<td>18</td>
<td>18</td>
<td>24</td>
<td>24</td>
<td>30</td>
<td>30</td>
<td>36</td>
<td>36</td>
<td>42</td>
<td>42</td>
</tr>
<tr>
<td>P(I)</td>
<td>9</td>
<td>15</td>
<td>12</td>
<td>12</td>
<td>18</td>
<td>18</td>
<td>21</td>
<td>24</td>
<td>27</td>
<td>30</td>
<td>33</td>
<td>36</td>
<td>39</td>
<td>42</td>
<td>45</td>
</tr>
<tr>
<td>von Neumann</td>
<td>6</td>
<td>12</td>
<td>12</td>
<td>15</td>
<td>18</td>
<td>21</td>
<td>24</td>
<td>27</td>
<td>30</td>
<td>33</td>
<td>36</td>
<td>39</td>
<td>42</td>
<td>45</td>
<td>48</td>
</tr>
<tr>
<td>Thatcher</td>
<td>9</td>
<td>15</td>
<td>21</td>
<td>27</td>
<td>33</td>
<td>39</td>
<td>45</td>
<td>51</td>
<td>57</td>
<td>63</td>
<td>69</td>
<td>75</td>
<td>81</td>
<td>87</td>
<td>93</td>
</tr>
</tbody>
</table>

### DELAY

<table>
<thead>
<tr>
<th>k_n</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
</tr>
</thead>
<tbody>
<tr>
<td>P_ξ (CC)</td>
<td>6</td>
<td>5</td>
<td>5</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>7</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>10</td>
</tr>
<tr>
<td>P_ξ (II)</td>
<td>6</td>
<td>5</td>
<td>5</td>
<td>6</td>
<td>6</td>
<td>7</td>
<td>7</td>
<td>8</td>
<td>8</td>
<td>9</td>
<td>9</td>
<td>10</td>
<td>10</td>
<td>11</td>
<td>11</td>
</tr>
<tr>
<td>P_ξ (I)</td>
<td>7</td>
<td>6</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>8</td>
<td>8</td>
<td>9</td>
<td>9</td>
<td>10</td>
<td>10</td>
<td>11</td>
<td>11</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td>P(II)</td>
<td>6</td>
<td>9</td>
<td>7</td>
<td>7</td>
<td>9</td>
<td>9</td>
<td>11</td>
<td>11</td>
<td>13</td>
<td>13</td>
<td>15</td>
<td>15</td>
<td>17</td>
<td>17</td>
<td>17</td>
</tr>
<tr>
<td>P(I)</td>
<td>7</td>
<td>9</td>
<td>8</td>
<td>10</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14</td>
<td>15</td>
<td>16</td>
<td>17</td>
<td>18</td>
<td>19</td>
<td>20</td>
</tr>
<tr>
<td>von Neumann</td>
<td>6</td>
<td>8</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14</td>
<td>15</td>
<td>16</td>
<td>17</td>
<td>18</td>
<td>19</td>
<td>20</td>
</tr>
<tr>
<td>Thatcher</td>
<td>7</td>
<td>9</td>
<td>11</td>
<td>13</td>
<td>15</td>
<td>17</td>
<td>19</td>
<td>21</td>
<td>23</td>
<td>25</td>
<td>27</td>
<td>29</td>
<td>31</td>
<td>33</td>
<td>35</td>
</tr>
</tbody>
</table>

Notice that, oddly enough, although different in appearance (for \( k_n \geq 4 \)) the von Neumann and Variant I pulsers, for the sequences \( k_n \), have identical areas
and identical delays. Figures 6 and 7 indicate the similarity of these two classes of pulsers for the case $k_n = 5$.

Fig. 6  von Neumann Pulser

Fig. 7  Variant I Pulser
References


DISTRIBUTION LIST
(One copy unless otherwise noted)

Technical Library
Director Defense Res. & Eng.
Room 3C-128, The Pentagon
Washington, D.C. 20301

Defense Documentation Center
Cameron Station
Alexandria, Virginia 22314

Chief of Naval Research
Department of the Navy
Washington 25, D.C.
Attn: Code 437, Information Systems Branch

Director, Naval Research Laboratory
Technical Information Officer
Washington 25, D.C.
Attention: Code 2000

Commanding Officer
Office of Naval Research
Navy 100, Fleet Post Office Box 39
New York, New York 09599

Commanding Officer
ONR Branch Office
207 West 24th Street
New York 11, New York

Office of Naval Research Branch Office
495 Summer Street
Boston, Massachusetts 02110

Naval Ordnance Laboratory
White Oaks, Silver Spring 19
Maryland
Attn: Technical Library

David Taylor Model Basin
Washington, D.C. 20007
Attn: Code O42, Technical Library

Naval Electronics Laboratory
San Diego 52, California
Attn: Technical Library

Dr. Daniel Alpert, Director
Coordinated Science Laboratory
University of Illinois
Urbana, Illinois

Air Force Cambridge Research Labs
Laurence C. Hanscom Field
Bedford, Massachusetts
Attn: Research Library, CRMXL R

U. S. Naval Weapons Laboratory
Dahlgren, Virginia 22448
Attn: G. H. Gleissner, Code K4
Asst. Dir. for Computation

National Bureau of Standards
Data Processing Systems Division
Room 239, Building 10
Washington 25, D.C.
Attn: A. K. Smilow

George C. Francis
Computing Laboratory, BRL
Aberdeen Proving Ground, Maryland

Office of Naval Research
Branch Office Chicago
230 N. Michigan Avenue
Chicago, Illinois 60601

Commanding Officer
ONR Branch Office
1030 E. Green Street
Pasadena, California

Commanding Officer
ONR Branch Office
1000 Geary Street
San Francisco 9, California
DISTRIBUTION LIST (Concluded)

The University of Michigan
Department of Philosophy
Attn: Professor A. W. Burks

Lincoln Laboratory
Massachusetts Institute of Technology
Lexington 73, Massachusetts
Attn: Library

National Physical Laboratory
Teddington, Middlesex, England
Attn: Dr. A. M. Uttley, Supt.
Autonomics Division

Office of Naval Research
Washington 25, D.C.
Attn: Code 432

Commanding Officer
Harry Diamond Laboratories
Washington, D.C. 20438
Attn: Library

Kenneth Krohn
6001 Dunham Springs Road
Nashville, Tennessee

Commanding Officer and Director
U. S. Naval Training Device Center
Port Washington
Long Island, New York
Attn: Technical Library

Mr. Laurence J. Fogel
General Dynamics/Astronautics
Division of General Dynamics Corp.
San Diego, California

Department of the Army
Office of the Chief of Research
and Development
Pentagon, Room 3D442
Washington 25, D.C.
Attn: Mr. L. H. Geiger

National Security Agency
Fort George G. Meade, Maryland
Attn: Librarian, C-332