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ABSTRACT

This report considers the detection of events for which the
occurrence times and durations are random variables. In this context,
two special cases are considered: (1) the continuous-action detectors
that seek to respond at each time when an event is present and (2)
the discrete-action detectors that seek to respond at only a single time
during which each event is present. For both cases, the optimum
detectors are specified in terms of recursion relations and examples
of the numerical solutions of these relations are presented and com-

pared.
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1. INTRODUCTION

Classical detection theory assumes that an observation ex-
tends over an interval of time at the end of which a decision is made
to either accept or reject the hypothesis that a signal was present
during that observation. This theory has found great application in
modeling the decision process for those systems where it is possible
to consider the occurrence of signals as being confined to well-de-
fined observation intervals (e. g., active radar systems, active sonar
systems, and digital communication systems). In many detection sys-
tems, however, both the times at which the signals begin and the
durations of the signals are unknown. In these cases, the classical
detection theory paradigm may no longer be applicable, and the de-
cision theoretic model for the detection problem becomes more com-
plicated.

As a concrete example, consider a simple passive surveil-

lance system for which the observation x(t) is given by

x(t)

n(t) if no target is present at time t

x(t)

n(t) + s(t) if a target is present at time t
and the arrival time of each target and the length of time each tar-
get spends in the systems field of view are random variables. In

these systems, it is often the case that an action must be taken each



time a target appears and while the target is still present. For
example, the function of the system may be to take a continuous
action, such as to sound an alarm when targets are present. Alter-
natively, its function may be to take a discrete action such as to
allocate some resource to investigate the nature of the target further.
In both of these cases, the system must operate in real time to detect
the presence of randomly occurring events (target appearances) as
they occur. In the continuous action system, the detector must de-
cide at each point in time whether or not a target is present in order
to control the alarm, whereas, in the discrete action system the
detector must designate only a single time when each target is
present in order to takethe appropriate action. This distinction in
the purpose of the systems detectors defines two different detection

problems. In this report, the optimum Bayes detectors for each

problem are determined.



2. CONTINUOUS ACTION AND DISCRETE ACTION DETECTORS

In this section the continuous action detector (CAD) and the
discrete action detector (DAD) are defined by specifying in terms of
loss functions how the performance of each is to be measured. It is
assumed that the observation x(t) is available at the input of the de-
tector for te [0,T]. The detector is to be a casual device that
produces at its output the response function a(t) that extracts from
x(t) the information about each event that is necessary to take the
appropriate action. The loss function for each detector, therefore,
depends on both the response function. a(t) and the randomly occur-
ring events present at the input. We consider the CAD case first.

The objective of the continuous action detector is to take
some action at each instant of time that an event is present. Thus,
when no noise is present in the observation, the CAD response function
may be defined by

1 if an event is present at time t
a(t) =
0 otherwise
The effect of noise on the performance of the CAD can be seen in
Fig. 1. Figures 1(a) to 1(e) illustrate the times at which events are

present in a typical event sequence, the corresponding noisy



times at which events are present

al(t)
(c) >
az(t)
@ >
a (1)
3
X X X X
(e) >

Fig. 1. Illustration of response functions



observation, and a typical response function. It is seen by comparing
Fig. 1(a) and Fig. 1(c) that the time axis can be divided into four

sets: detection times [a(t) =1 and an event present] , false alarm
times [a(t) =1 and an event present] , miss times [a(t) =0 and no
event present] , and correct rejection times [a(t) =0 and no event
present] . If we let Ty Tp, Ty, and T denote the total
amount of detection times, false alarm times, miss time, and correct

rejection time, respectively, then a reasonable choice for the CAD

loss function is

L = LIT, + LoTp + LoT + LiT, (1)
T T T T . .
where LD , LF , LM , and LC are losses per unit detection

time, etc.

A more general definition for the CAD loss function is needed
when it is necessary to show special concern for the possibility of
missing an event altogether. For example in Fig. 1(d) we have illus-
trated a second response function that results in the same values of

TD , T T and T, as the response function in Fig. 1(c),

F’> "M’ C
but that detects only one of the three events. This distinction may

be incorporated into the loss function by adding in the term

LD ND + LM' NM



where ND and NM are the total number of detected pulses and

missed pulses respectively, and L_ and LM are the corresponding

D

losses. The resulting general CAD loss function is

T T T T
L = LDTD + LFTF + LMTM + LCTC + LDND + LMNM (2)

Hereafter we shall refer to the CAD with the loss function in Eq. 1
as the "'classical' CAD for reasons which will be apparent later.

Next we define the loss function for the discrete action detec-
tor. The objective of the DAD is to take a single discrete action for
each event that occurs. When no noise is present in the observation,
this task can be accomplished if the response function af(t) is de-
fined as

1 if an event begins at time t

0 otherwise

The effect of noise on the DAD performance can be seen by examining
the typical response function in Fig. 1(e). It is seen that some false
alarms are made and some events are missed altogether. When an
event is detected, the initial detection occurs some time after the
arrival of the event, and finally some events are detected more than
once. Let NF and NX denote the number of false alarms and extra
detections respectively, and 1ef LF and LX be the corresponding

losses. Let ’I‘T n be the total amount of '""late detection time. "



Specifically, TLD is the total amount of elapsed time until each event
is detected or the duration of the event if it is not detected. Let LLD
be the loss per unit late detection time. Then the performance of the

DAD can be characterized in terms of the loss function

= T
L LDND+LN LXN +LN +LLD LD (3)

where ND , NM , LD , and LM are as defined above.



3. THE OPTIMUM BAYES DETECTORS

In this section the optimum Bayes detectors are specified in
terms of a recursion relationship. In order to minimize the mathe-
matical difficulties involved in the derivation, the following assump-
tions are made.

(1) Both the continuous action and the discrete action

detectors make decisions only at the discrete
decision times t ¢ J = {t =ka, k=1,2, ..., N}
where N = T/A.
This assumption states that the detectors determine the response
functions a(-) only through the values a(ty). In order to interpret
this assumption in the context of Section 2 we define the response

function for the DAD by

a(ty) t eg
k k
a(t) =
0 otherwise
and
a(t) = aflty) tete_q,t)

for the CAD. Thus, assumption (1) restricts the DAD to respond
only at the times t, € & and restricts the CAD to respond either

at every time in the interval [tp_q, t}) or at no time in the interval

8



-1 )

The decision separation time A can be interpreted as the
shortest possible duration of an event as a result of the next assump-
tion:

(2) Events begin and end at the decision times ty € & in
the sense that if an event is present at any time in the
interval (t,_q, t, ] , then it is present at every time
in that interval.

As a consequence of assumption (2), the occurrence of events may
be completely specified by the sequence of random variables {Hk} Ezl
where

1 if an event is present in the
interval (tg-1, t;]

He =

0 otherwise

The specification of the prior probability law on the occurrence of
events constitutes the third assumption:
(3) The sequence {Hy} is a stationary two-state Markov

chain with

|
<

il
[«

P[Hk =0 l Hyp_1 = 1]

and
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P[H, =1] = v/(v+6)

Assumption (3) asserts that the number of decision times be-
tween successive events is geometrically distributed with parameter
v , and the number of decision times that each event is present is
geometrically distributed with parameter 6 . It follows that the
average duty (percentage of time when an event is present), D, is
equal to v»/(6 + v) , and the rate (number of events per second) is
spa” L

The final assumption specifies the probability law on the ob-
servation process. Specifically, let xp denote the "current' ob-
servation pertaining to the interval [t,_1, tk) , and let X, denote

the ""total past" observation pertaining to the interval [0, t) so

that
Xk = (Xk_ 17 Xk)

Then, it is assumed that

(4) The observation Xy is continually independent and the

current observation Xy is described by the densities

P |S) = plx | H = 1)

plx [N) = plx, |H = 0)

It should be noted that as a consequence of assumption (4) the con-

ditional density of x, depends only on whether or not an event is

k
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present at time t._ and not on the arrival time of that event.

k

As a first consequence of the above assumptions, an updating
formula for the a posteriori probability that an event is present at

time t, may be obtained. Denoting this probability by Pk = Pr[H

k k

=1 X,], it is easily shown that,
Piy1 = PlP Xy 4] @
= [Pk(1 -0) + (1- Pk) V] p(xk-l—ll S%(Xkﬂl Xk)
where
P, 1| Xy (5)

= [P (1-8) + (1-P)v] p(xk+1,S)

+ [Pké +(1- Pk) (1- )] p(xk+1| N)

Next, we develop an updating formula for the a posteriori
probability that any event present at time tk has been previously
detected. This is done as follows. Let ¢ {1, 2, ...} denote the
elapsed number of decision times since the most recent response as

measured from time tk . Let ak(rk) be the a posteriori probability

that a previously detected event is present at time tk . Then,

= Pr[H =1, H

g =l B =1|X

k- T k]

and the a posteriori probability that any event present at time tk has
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been previously detected is

=1, ..., H

dk(Tk) = P [H =1 Hk-l_

r' vk T k-7, =1 | Ko H=1)

k
= d )/ P,

With these definitions, it is easy to show that
Yes1Ter) = Y1 [P 4 (6)

(1-29) Pk dk(Tk+1 - 1)

v(1 - Pk) + (1-9)P

k

where

d, (0) 2

With the above results at hand, it is possible to characterize
the optimum Bayes detectors. The bagic result is contained in the

following theorem.

Theorem I. The optimum Bayes detector determines a(t,) according

k)
to:
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[y

if Rk(Pk, dk) < Wk(Pk, dk)
alt,) = (8)
0 otherwise

where

R (P,d) = (1-P) - [Ad +B(1-d)] P + W, (P,d =1)
(9)

W (Pd) = Vi 4 [P (Px ), d (P, d)] plx g [ K dxy
(10)

and

0 k =N

Vk+ I(Pk+1’dk+1) - (11)

min[R, (P, d,), W (P, ,d)]

The quantities A and B in Eq. 9 are '"'normalized losses"

given by

@l -1y a
M~ M

A = —5—F (12)
(LF-LC) A

L -L

B=A+ %D 0<ALB<® (13)
(LF-LC) A

for the continuous-action detectors, and
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L
A=-—L-‘—)£- (14)
F
L. -L. L..A
B - ML D, ED 0 <A< O0<B< w (15)
F F

for the discrete - action detectors. Note from Eqs. 12 and 13 that for

the classical CAD, A =B.

The proof of the above theorem is obtained by interpreting the
loss functions from the preceding sections in terms of the loss at a
particular decision time and then applying standard dynamic program-

ming techniques to obtain the recursion relation for Vk(Pk, dk) . The

details of the argument are found in the appendix.
The use of Theorem I to obtain an explicit expression for the

Bayes detectors involves first computing the decision rule at the

terminal time tN and then proceeding recursively through decreas-

ing indices to determine the decision rule at time tk < tN . In the

case of the classical CAD, the solution can be obtained immediately

by setting B = A and noting that the dependence on dk in Eqs. 8-11
vanishes. The resulting decision rule is,
1 if P> 1

0 otherwise
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A more familiar expression for the response condition is obtained in

terms of the a posteriori odds ration,
O, = P /(1-P)

The updating equations for Ok and dk are obtained immediately from

applying the definition to Eqs. 4 and 6. The results are

o - Ok_1(1-6)+v
k k Ok_16+(1-1/)
and
. 0, ,(1-8)d,_,
k‘Ok_16+(1-v7

In terms of Ok , the response condition for the classical CAD is

L
=1 iff o>

2 3| 3
o303

It is noted that this is precisely the same response condition as would
be obtained in the problem of testing the hypothesis that an event
is present in the interval [tk_ 1 tk) against the alternative that no
event is present during [tk-l’ tk) .

The decision rules for the other detectors have been obtained

using a digital computer to solve the equations in Theorem I. The
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major results of these computations are stated as two properties.
The first of the two properties states that, as in the classical CAD

case, the optimum detector responds iff Pk exceeds a threshold.
The threshold, however, depends on the current values of dk’ the
a posteriori probability that any event that is present has been pre-

viosly detected. Stated formally:

Property I (The Threshold Property). For each optimum detector

there exists a sequence of functions Kk(°) k=1, ..., N, such that
a(tk) = iff Pk—> Kk(dk)
or, stated in terms of the odds ration,

at,) = 1 iff O > T, (d)

~ 1
1- Kk(dk)

+

\
It follows from Property I that the general form of the optimum

Bayes detectors is as indicated in Fig. 2.

The operation of the optimum detector is clear from Fig. 2.

At time t__,, Ok_1 , dk_1 and a, _q are all stored in memory.
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Then at time tk , the current likelihood ratio 'Qk along with Ok_ 1

. Simultaneously, dk is calculated from
Ok-1 and d k-1 where d k-1 canbe considered as the result of

equal to one whenever the detector responds. The

are used to determine O

setting dk- 1

statistic dk is then used to determine the value of the threshold

T, (d Finally the detector responds iff O

kk)° k

Ok’ dk and ak are stored for use at the next decision time t

exceeds Tk(Ok) and
k+1°
It should be pointed out that only that portion of the general
optimum detector enclosed in dotted lines is necessary in the clas-
sical CAD.
The second of the two computational properties states that,
except for decision times t, that are close to the terminal decision

k

time tN , the structure of the optimum detector does not depend on

time. More precisely:

Property II (Asymptotic Stationarity Property). For each optimum

detector, the sequence of threshold functions {K (-)} converges

k
through decreasing indices k to a limiting threshold function K(-) .
As a consequence of Property II, the threshold functions

Tk(-) in the general system model can be replaced by the limiting
threshold function
R@)/[1-K@)] K@) <1

T(d) = (17)
+00 f((d) = +00
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except for decision times near the terminal decision times.

We complete the description of the oplimum Bayes detectors
by illustrating some specific examples of the threshold functions for
both the continuous action and the discrete action detectors. For
simplicity, we illustrate the thresholds K(-) with the understanding
that ’f‘(d) can be obtained by the monotonic relationship in Eq. 17.
The CAD case is considered first.

Figure 3(a) illustrates three different threshold functions
for continuous-action detectors. [ The values of the losses A = (L;
- L']I;)/ (L§ - Lg) and B = A + (LM - LD)/ (Lg - Lg)A corres-
ponding to each threshold function appear next to the curve as the
couple (A,B) .| The three different threshold functions in Fig. 3(a)
were computed for the same value of A . The threshold function for
(A,B) = (0.5, 0.5), corresponding to the classical CAD, is constant
at the value 1/(1+A) = 2/8 as expected from Eq. 16. The other two
threshold functions both lie below the classical CAD threshold except
at the point d =1 where they are all equal. [It can be shown that
K(d =1)=1/(1+A) for all continuous-action detectors. ] It is noted
that the threshold function for the larger value of B is smaller than
the threshold function for the intermediate value of B . This is
reasonable since a large value of B reflects a large value of the net

loss of a missed pulse, (L., - LD) , and thus the optimum detector

M
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(0.5, 10.)

0 [ d
0.5 2.0
Fig. 3. Illustrations of threshold functions (a) CAD (b) DAD
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would be expected to respond more often.

Figure 3(b) illustrates four different threshold functions for
discrete-action detectors. It is noted that for each threshold func-
tion there is a d* such that when dk > d*, ﬁ(dk) equals 1, and it
is impossible for the detector to respond. The value of the "inhibit
threshold"” d* depends on both the losses A = -LX/ L, and B=
(LM + LLDA)/LF . For constant values of B, an increase in the
loss for an extraneous detection LX results in a decrease in d*

[ compare the threshold functions for (-2, 1) and (0.5, 1)]. On the
other hand, for fixed A , an increase in either the loss for a missed

pulse L__ or the loss per unit detection delay L causes an in-

M LD
crease in d* [compare the threshold functions for (-0. 5, 1) and
(-0.5,10)].

The threshold functions for the CAD and the DAD depend not
only on the normalized losses A and B, but on the parameters of
the prior probability law and on the signal-to-noise as well. The
threshold functions in Fig. 3 were calculated for a pulse rate R =
0.05and a duty D = 0.5 and a signal-to-noise ratio S/N=1.
Other calculations indicate that although the basic form of the threshold

functions do not vary with changes in R, D and SN, increases in

either R, D or SN result in a decrease in the threshold functions.



4. SUMMARY AND CONCLUSIONS

In the previous sections we have considered two classes of
detectors both of which function to detect randomly occurring events
as they occur. One class, the continuous-action detectors, seek to
respond at each point in time that an event is present whereas the
other class, the discrete-action detectors, seek to respond at only
one time while each event is present. It has been seen that in both
cases, the optimum detectors have the same canonical form (Fig.
2). Both calculate the odds ratio O, and the previous detection

k

probability dk at each decision time tk and respond iff

0, > T(d)

The difference in the optimum for the two cases appears in the form
of the threshold function T(-) . For the continuous action detectors,

T(-) , is everywhere finite. In the special case of the classical CAD,
T
o)

dk , a result that could have been derived using classical detection

T(+) is equal to a constant (L? - Lr](;)/(Lr];m - L) , independent of

theory. For the other continuous action detectors T(‘) is an in-

T
creasing function of d, , bounded above by (LF - LI)/(LIO - Lg).

k ’

The threshold function for the discrete action detector equals +o

for d_ greater than some inhibiting threshold d*. For d < d*,

22
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the discrete-action threshold function is an increasing function of

dk.



APPENDIX

Theorem I must be proved for the CAD and the DAD
separately.

Continuous-Action Detector

We begin with the following observations:

(1) Since each event that occurs must be either detected or

missed,

total number of events

Z
n

(2) Since at each instant that an event is present, either a
detection or a miss occurs,

total time when events are present

—J
H

(3) Since at each instant that no event is present, either

a false alarm or a correct rejection occurs,

total time when no event is present

-3
]

24
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Substitute for, NM , TM and TC from the above into Eq. 2 to

obtain
L = [(Ly- L) Ny + (L - Ly) T + (L - L7) T.]

T T
+ [LyNg + Ly Tg + Lo Ty

The second bracketed term does not depend on the decision process
and hence can be neglected. Denoting the first bracketed term by

L and noting by assumptions (1) and (2) in Section 3, that

TD = A(ND + NX)
TF = ANF

we may write

o= [y - Ly+ (L) - Lo) Al Ny + [(Lg - Ly A] Ny
+ [(Lg - LY A] Ny

Now, since (Lg - Lré‘> is assumed positive, it is sufficient to mini-

mize the expected value of
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where
A - (L;fd- L)/ Ly - LY)
T . T
B = A + (LM- LD)/(LF- LC)

But 1 may also be written in the form

where

and

1 if no event is present at time
t. and a(tk) =1

k
L = < -B if an undetected event is present
k at time t_ and aft,) = 1
k k
-A if a detected event is present
L at time tk and a(tk) =1

Equations 8 through 15 then follow immediately after noting that

1- Pk , (1- dk)Pk and dkPk are the a posteriori probabilities that

an event is present at time tk , an undetected event is present at

time tk , and a detected event is present at time tk , respectively.
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Discrete-Action Detector

By using the first observation above to substitute for NM in

Eq. 3 and by dividing through by LF > 0, we may reduce the problem

of minimizing L to the problem of minimizing

L= [ty - Ly/Lpl Ny + [Ly/Lp] Ny

.A/LF)N + N

+ (Lyp LD F

where NLD = TLD/A is the number of times an undetected pulse

is missed. Alternatively we may write,

where

LLDA/LF if a(ty) =0 and

undetected event present

(LD - LM)/LF if a(tk) =1 and
undetected event present

. = 1
LX/LF if a(tk) and

previously detected event present

1 if a(t ) =1 and
\_ ho event present
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Then by taking expected values, we have

V(P,, d) = min {R (P, d), W (P, d)}

where

ﬁk(Pk,dk) = 1- P, + {[Ly/Lpl dp +[(Ly- Ly)/Lg] (1- d )} Py

S V[P G (P & = DIy | x)dy

Wk(Pk,dk) = LLDA/LF(I - dk) P,
+ ka+1[Pk+1’ dk+1(Pk’dk)] p(xk+1)

from which Eqs. 8 through 15 follow with

Rk(Pk,dk) = Rk(Pk,dk) + (LLDA/ LF) (1- dk) Pk

~

W, (P, d) = W (P, d) + (L A/ L) (1-d)P,

and
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