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ABSTRACT

An underwater acoustic propagation experiment was jointly
conducted by NUSC at New London, Connecticut and a team from
Cooley Electronics Laboratory at The University of Michigan. A
special pseudo-random waveform, complement phase modulating a
carrier was transmitted continuously for 58.5 hours. The power and
angle of the carrier, the power in the sidebands, and the noise power
in the signal bandwidth were recorded continuously dﬁring this time.
In addition, the total power and the power spectrum in a narrow band
about the carrier were recorded as a measure of the forward scatter-
ing reverberation. Also, the cross-correlation of the received sig-
nal with a stored reference was continuously computed in order to
examine the multipath structure and its stability. This report
presents a brief description of the experiment and the on-line analy-

sis of the results.
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CHAPTER I

THE COOLEY BIFI EXPERIMENT

An underwater acoustic propagation experiment was jointly
conducted by NUSC at New London and a team from the Cooley Elec-
tronics Lab at The University of Michigan at Ann Arbor. This
experiment is an extension of project MIMI propagation and signal
processing research.

During the week of 7 September 1970 approximately 58.5
hours of reception were taken and analyzed on-line at the BIFI range
of NUSC. The analysis was performed by Mr. Peter Wood and Dr.
Richard Heitmeyer using the Cooley Measurement Package in the
MIMI Field-8 data acquisition and signal processing equipment. In
addition to the on-line analysis, about 1.5 million digital words of
reception at intermediate stages of processing were recorded for
later processing at CEL.

This report presents a brief description of the BIFI range,

the experiment, and some of the on-line analysis. A more complete

report is planned.

[.1 The BIFI Range

The material in this section is taken from Ref. 1. A more

complete discussion on the BIFI range can be found there.



Location and Facilities

The BIFI range, illustrated in Fig. 1, is part of the New Lon-
don Laboratory of the Naval Underwater System Center located at
New London, Connecticut. It extends from Block Island (BI), Rhode
Island to Fisher Island (FI), New York, a distance of 18.6 nautical
miles, and to Watch Hill Point, Rhode Island, a distance of 12 nau-
tical miles. The Cooley-BIFI experiment used only the BI to FI
portion of the range.

The transmitting site for the BIFI range is located on Block
Island. Bottom mounted, omnidirectional projectors are located
at point S (Fig. 1) and connected to BI by cable. The projectors
used were a 400 Hz Minneapolis- Honeywell source with a bandwidth
of 70 Hz and a source level of 89 dB/1 ubar/1 yard, and a 127 Hz
Minneapolis- Honeywell source with a bandwidth of 25 Hz and a source
level of 106 dB/1 pbar/1 yard.

The receiving site used for the experiment is located at
Fisher Island. A bottom-mounted DT-5S hydrophone located at
point H1 in Fig. 1, and connected to FI by submarine cable, was
used for the experiment. This phone was approximately three feet
off the bottom at a depth of 150 feet.

Both the transmitting site and the receiving site are connected
to the BIFI laboratory at NUSC by telephone lines. A telephone line

to the transmitter site at BI was used in the experiment to provide
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voice communications between BI and the BIFI lab at NUSC. To

transmit the received signal from the hydrophones at FI back to the

BIFI lab for processing, a 15 kHz B.W. telephone line was used.

Oceanographic and Acoustical Characteristics

The BIFI range is a shallow water range. From BI, the water
depth drops to 110 feet in about one mile. It stays at that depth for
approximately 10 miles and then becomes irregular over the remain-
ing distance to FI. The composition of the bottom is soft mud and
sand from BI, becoming progressively more rocky as FI is approached.
The bottom profile is shown in Fig. 2.

The general character of the velocity gradient for the BIFI
range depends on the season. In summer, the velocity gradient is
negative resulting in mostly bottom reflecting paths. In winter the
velocity gradient is slightly positive and the paths become mostly
surface reflecting. Iso-velocity contours for both summer and win-
ter are shown in Fig. 3. Summer conditions were presumed to hold
for this experiment.

Previous work by NUSC predicted the propagation loss in
September at the frequencies of interest would be approximately

90 dB at 127 Hz and 110 dB at 400 Hz.
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[.2 The Transmitted Signals

Two different signals were used for the Cooley-BIFI experi-
ment. Each of these signals consisted of a linear-maximal binary
sequence, complement-phase modulating a carrier. The phase of
the carrier is either +45° or -45° depending on the value of the binary
digit in the modulating sequence. A portion of such a waveform is

shown in Fig. 4 where:

fc carrier frequency
d duration of the sequence digit
D number of cycles of carrier per sequence digit.
+1
«— d= D/fc. —_—
-1

(@)

TV

(b)

Fig. 4. A complement-phase modulated signal
(a) a portion of the modulating waveform
(b) the resulting transmission



Both of the signals used in the experiment had an integral
number of cycles per digit D. The signals are periodic with period

T given by
T =Ld = LD/fc

where L is the number of digits in one period of the modulating se-

quence. For the two signals of interest in this experiment

f = 400 Hz

c

D =38

d = 0,02 sec

L = 31

T = 0.62
and

f = 127 Hz

c

D =8

d = 0,063 sec

L =15

T = 0,945

The bandwidth, B, (frequency spread under the main lobe) and the

spectral line spacing, Af, for the two signals are (see Fig. 5).
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fc-fc/B f f +f/8
Fig, 5. The RMS spectrum of a complement-phase modulated
signalfor L = 15, D = 8
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for the 400 Hz signal

B = 100 Hz Af = 1.61 Hz
and for the 127 Hz signal
B = 32 Hz Af = 1.06 Hz

The number of spectral lines between the first two zeros is 2L-1,

and the fraction of the total power in the carrier is

1 1\ .
) s

[.3 The Equipment Configuration

no| =

The configuration of the equipment used in the Cooley-BIFI
experiment is shown in Fig. 6. The signal generating equipment at
the transmitting site, and the signal processing equipment at the re-
ceiving site were provided by Cooley; the source, hydrophones and
frequency references were supplied by NUSC. Stability of the fre-
quency reference was investigated by H. J. Arens and reported in
Ref. 2. Both references are more stable than 1 part in 109.

The different components in Fig. 6 function as follows. The
output of the frequency synthesizer at thertransmitting site is a sine
wave at a frequency equal to 4 x fc . This signal is converted to a
square wave reference, at the same frequency, by the phase-locked

function generator. The resulting square wave is then used as a clock
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to the digital modulator whose output, after filtering, is the signal
described in the preceding section. This signal is amplified and then
transmitted down the BIFI range. It is received at Fisher Island and
sent over phone lines to the NUSC lab. At the lab it is first filtered

witha 1/3 octave filter and then processed by the FIELD-8 com-

puter.

[.4 Quantities Measured

The measurements made in the Cooley-BIFI experiment fall
into one of three categories: (1) power and angle measurements of
the received signal, (2) measurements of the surface reverberation
effect, and (3) measurements of the multipath arrivals. Each set of

measurements is computed and recorded every 100 seconds. For the

400 Hz signal, each set of measurements is computed on the basis of
approximately 80 seconds of data and for the 127 Hz signal each set
of measurements is computed on the basis of approximately 60 sec-

onds of data.

[.4.1 Power and Angle Measurements.

C Power. The C power measurement is a measure of the power
present in the carrier of the received signal transmission. It is de-
termined as that power passed through a digital processing filter with
a frequency response as illustrated in Fig. 7a. The bandwidth of this

filter, Bm, depends on the signal transmitted. In particular
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Brn =(0.013 Hz for the 400 Hz transmission
and

Bm =0.016 Hz for the 127 Hz transmission.

N Power. The N power measurement is a measure of the noise
power contained within the main lobe of the received signal spectrum:
f,-B/2 < Ifl < f +B/2. Itisdetermined as that power passed
through the digital processing filter with a frequency response as
illustrated in Fig. Tc. Such a filter is often referred to as a comb
filter. It is to be noted that each tooth in the comb filter of Fig. Tc

is centered midway between the spectral lines in the signal spectrum.
Moreover, the bandwidth of each tooth is Bm , the same Bm as used

for the carrier power measurement.

S Power. The S power measurement is a measure of the signal
power within the main lobe of the received signal power spectrum,
excluding the carrier power. It is determined as that power passed
through the‘ digital processing filter of Fig. Tb. This filter is recog-
nizedas a comb filter with a tooth missing at the carrier frequency.
The remaining teeth are aligned with the line frequencies of the trans-

mitted signal. The bandwidth of each tooth is also Bm .

Sideband Signal-to-Noise Ratio é/ﬁ . The sideband signal-to-noise

ratio is a measure of the signal-to-noise ratio of the output of the
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sideband processing filter of Fig. Tb. This quantity is not measured
directly, although it can be related to the measurements as follows.

Denote the actual sideband power at the output of the sideband
processing filter by S watts and denote the actual noise power at
the output of the sideband processing filter by N watts. Let the

noise power out of the noise processing filter be denoted by N. Then

A

S = 10log, S +N) (1)
and
N = 101og10(ﬁ) (2)
so that
S-N-= lOlog10 —§; +£:I
N N

Except for statistical fluctuations and the effect of one missing tooth

in the sideband processing filter, N and N are equal. Therefore

s-Nz101og105+1 3)
N

The output sideband signal-to-noise ratio, §/N, is inferred from
S- N using (3) whenever S> N. The input sideband signal-to-
noise ratio is 20.8 dB below this for the 400 Hz signal and 18.1 dB

below for the 127 Hz signal.
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Carrier Angle (A). The carrier angle is a measure of the relative

difference between the phase of the output of the carrier processing

filter (Fig. 7a) and the phase of the local reference oscillator (Fig.

6).

[.4.2 Surface Reverberation Measurements. The effect of

surface reverberation is to scatter some of the power of a transmit-
ted frequency into sidebands on either side of that frequency. It is
felt that this scattered power should lie between 0.1 Hz and 0.4 Hz
on either side of the transmitted frequency, depending upon the spec-
trum of the surface waves. For the signals used in the Cooley-BIFI
experiment, the spacing between the lines in the power spectrum is
large enough so that the sideband line frequencies do not interfere
with the power scattered from the carrier frequency. Thus, the sur-
face reverberation effect can be measured by computing the power
spectrum of the received signal in a bandwidth Br centered about the
carrier line. The bandwidth Br is chosen large enough to include the
power scattered by surface reverberation but small enough to exclude
the power in the sideband line frequencies. In particular, Br was
taken as 0.8 Hz for the 400 Hz signal and 1.06 Hz for the 127 Hz
signal. In addition to calculating the reverb power spectra, the total

power in the bandwidth Br minus the carrier power was calculated

for each data set.



-17-

I.4.3 Multipath Arrival Measurements. The cross-

correlation function between the demodulated received signal and a
pulse- compression reference was used to measure the multipath
structure of the channel. In the absence of noise, this function has a
triangular peak of width, 2d, centered at the arrival time of each sig-
nal path (mod T) with an amplitude proportional to the amplitude of
the signal transmitted over that path. This is the same as if a single
large one-digit pulse had been transmitted once every T seconds
and received through a matched filter.

As a measure of the time stability of the channel multipath
structure, the zero-delay cross-correlation coefficient between the
demodulated received signal and the replica was calculated for each
data set. When this coefficient fell below a set value, indicating a
marked change in the multipath structure, the current signal became
the replica and the new multipath picture displayed. Otherwise, the
previous replica and display were held. The changing magnitude of
the correlation coefficient is an indicator of how fast the multipath

structure is changing.



CHAPTER II

THE RESULTS OF THE ON-LINE ANALYSIS

In this chapter the results of the on-line analysis of the 58.5
hours of the Cooley-BIFI data are presented. Of the total data,
56. 5 hours of data were taken using the 400 Hz signal transmission
and 2 hours of data were taken using the 127 Hz transmission. Dur-
ing the 400 Hz signal transmission, the experiment was interrupted
twice, with the result that the largest portion of uninterrupted 400 Hz

measurements was 41.75 hours.

II.1 Power and Angle Measurements

This section contains plots of S-N, the three powers S,

C and N and the carrier angle as continuous functions of time.
(The continuity is obtained by a linear interpolation between succes-
sive data points.) The different powers appearing in these plots are
expressed in decibels above an arbitrary reference and the carrier
angle is expressed in terms of the number of cycles relative to the
phase of the reference oscillator.

A plot of S-N and N power for the 400 Hz signal appears
in Figs. 8a - 8e and the corresponding quantities for the 127 Hz sig-
nal are illustrated in Fig. 9. Both of these plots include two addi-

tional vertical scales, one for the output sideband signal-to-noise

-18-
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ratio S§/N and one for the input sideband signal-to-noise ratio.
The relation between these quantities and S- N is discussed in Sec-

tion I.4.3. It is noted that key correspondences are

- dB

"
il

S-N = 0dB «—— §/N

3dB «—— §/N 0 dB

1

S-N

and for large S/N
S-N =~ §/N

When the S-N measurement drops below zero, the scale
relating S/N to the sideband signal-to-noise ratio §/N is not valid.

The most important feature to be noted from Figs. 9 and 10
is that S-N only occasionally takes on values large enough to indi-
cate a significant sideband signal component in the reception. Part
of the signal degradation is due to the very large bursts of N power
that occur frequently during the course of the experiment. (Most, if
not all, of these bursts of N power can be attributed to the local
shipping noise.) The remaining signal degradation is the result of

the relatively large amount of propagation loss on the BIFI range.
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Figures 10a - 10e plot S power, C power and N power for
the 400 Hz signal transmission and Fig. 11 plots the same quantities
for the 127 Hz transmission. These plots are referred to as the
unity-gain plots since the vertical scaling is determined as if the
processing filters in Figs. T7a - 7c all have gain equal to one at the
peak of each tooth.

In Figs. 10 and 11 it is noted that, in general S (sideband
power) is greater than or equal to N (noise power) even during the
bursts of shipping noise. This is a consequence of the fact that the
S measurement consists of not only the true sideband power S , but

also the component of noise N where

-~

N = 101log o N

A second feature to be noted in Figs. 10 and 11 is that, unlike
the S (sideband power) measurement, C (carrier power) is only
slightly affected by the bursts of shipping noise. This is reasonable
since the noise passed through the single tooth C power processing
filter (Fig. 7a) is only a fraction of the noise passed through the S

multi-tooth comb filter (Fig. 7b).
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Figures 12a - 12e and Fig. 13 again plot S power, C power
and N power for the 400 Hz and 127 Hz transmission respectively.
The vertical scaling on these plots, however, is determined as if the
product of the power gain and the bandwidth of the processing filters
of Fig. 7 is constant. This scaling is equivalent to adding a constant
gain to the C power plot for both signal transmissions. This addi-
tive gain is 20.9 dB for the 400 Hz and 17.8 dB for the 127 Hz signal
transmissions. The resulting plots are referred to as ""constant
gain-bandwidth' plots.

The constant gain-bandwidth plots are best suited for illustra-
ting the behavior of the C power measurement. In Figs. 12 and 13
the large amount of variation in C power relative to the variation in
S power is apparent. This behavior can be modeled by viewing the
ocean as a time varying narrow notched filter. The C power fades
occur when the notch passes through the carrier frequency line. The
S power, however, remains relatively unaffected by the motion of
the notch if the notch bandwidth is modeled to be only a small frac-

tion of the total signal bandwidth.
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The last quantity measured in this group of measurements
is the carrier phase angle. The carrier phase is plotted in cycles
(relative to the phase of the reference oscillator) against time for the
400 Hz transmission in Figs. 14a - 14e and the 127 Hz transmissions
in Fig. 15.

The feature that is most important in these plots is the stabil-
ity of the carrier phase. A 'rapid" change of the order of one cycle
per hour at 400 Hz (such as 0330 - 0530 on 9 September 1970) indi-
cates a stability of 1 part in 1.44 x 106 , or a frequency shift of
.00028 Hz. Thus for signal processing of CW the BIFI area is very
similar to the Straits of Florida.

The excellent stability lends great credulity to the very small
fluctuations that do occur. Both the major maxima and major minima
are separated by approximately 12 hours, indicating a probable tidal
cause. This cyclic behavior is more apparent in Fig. 14f in which
carrier angle is plotted against a compressed time scale.

The significant parts of the sideband power measurements for
the Cooley-BIFI experiment are summarized in Figs. 16 and 17,
Figure 16 consists of an S- N plot of those portions of the data for
which S- N exceeded 6 dB for extended periods of time. Figure 17

consists of the unity-gain plot of the same data.
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A final note: during the 127 Hz transmission, the level of
the received signal was decreased approximately 20 dB at about 1058
on 11 September. This attenuation has been compensated for on all

of the power plots by adding in a 20 dB gain after 1058 of 11 September.

II.2 The Surface Reverberation Measurements

The on-line analysis does not indicate a significant surface
reverberation effect. The reverb power measurements appear to
consist only of the normal amount of noise in the reverb bandwidth as
do the reverb spectra displays.

It should be mentioned that the lack of significant reverbera-
tion effect measurement might be attributed to the exceptionally calm

sea that prevailed during the course of the experiment.

II.3 Multipath Arrival Measurements

The multipath measurement consists of the multipath pictures
and the correlation coefficient. Figures 18, 19 and 20 illustrate three
sequences of multipath pictures tﬁken at different times during the
course of the experiment. Each picture is the envelope of the pulse
compression filter output (the magnitude of the cross-correlation be-
tween the demodulated received signal and the pulse-compression
reference, see Section I.4.3). Successive pictures in each sequence
were taken 100 seconds apart. The time axis for each picture is in-

dicated by tick marks. These tick marks are separated by a time equal
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to the digit duration in the modulating waveform. Figures 18 and 19
were taken during the 400 Hz transmission so that the time between
tick marks is 0.02 seconds. Figure 20 was taken during the 127 Hz
transmission so that tick marks are separated by 0. 063 seconds.
The vertical scaling in the multipath pictures is not the same for
each picture but may differ by a factor of a power of two from pic-
ture to picture. Thus, it is not necessarily true that an arrival peak
in one multipath picture is greater than the corresponding arrival
peak in another picture.

The multipath pictures in Fig. 18 were taken between 2249
and 2318 on 10 September 1970. As can be seen from Figs. 8e and

12e, both the sideband signal-to-noise ratio and the C power were

large and relatively stable during this period. The multipath pictures
in Fig. 19 were taken twelve hours earlier between 0653 and 0721 on
10 September 1970, By referring to Figs. 8c and 12c, it is seen that
again both the sideband signal-to-noise ratio and C power are rela-
tively large. In this case, however, the C power suffers a deep
fade between 0711 and 0718 with the lowest value of C power occur-
ring at 0715, It appears from Fig. 17 that the correspondence of this
deep carrier fade on the multipath pictures is, at most, a slight in-
stability, Detailed investigation of the multipath phase structure is

called for.

The multipath pictures in Fig. 20 were taken between 1044
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and 1112 on 11 September 1970 during the 127 Hz signal transmission.
The temporal spacing between the tick marks is about three times as
great as for the 400 Hz transmission, that is the resolution for the
127 Hz transmission is about one-third that for the 400 Hz transmis-
sion. At the 127 Hz frequency, at least two and sometimes three
strong arrival paths appear, each arrival being separated by about
.09 seconds.

The multipath correlation coefficient for delay 7 = 100 sec
is plotted in decibels against time in Fig. 21 between 2300 and 0500
on the 10th and 11th of September.

The poor signal-to-noise ratio at the processor output during
most of this period precluded any attempt to study multipath behavior

vs. time.
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